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Abstract

Many sparse representation (SR) based salient object detection methods have

been presented in the past few years. Given a background dictionary, these

methods usually detect the saliency by measuring the reconstruction errors,

leading to the failure in the complex scene. In this paper, we propose to replace

the traditional SR model with a robust sparse representation (RSR) model, for

salient object detection, which replaces the least squared errors by the sparse

errors. Such a change dramatically improves the robustness of the saliency de-

tection in the existence of non-Gaussian noise, which is the case in most practical

applications. By virtual of RSR, salient objects can equivalently be viewed as

the sparse but strong “outliers” within an image so that the salient object de-

tection problem is reformulated to a sparsity pursuit one. Moreover, we jointly

utilize the representation coefficients and the reconstruction errors to construc-

t the saliency measure in the proposed method. Finally, we integrate a local

consistency prior among spatially adjacent regions into the RSR model in order

to uniformly highlight the whole salient object. Experimental results demon-

strate that the proposed method significantly outperforms the traditional SR
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based methods and is competitive with some current state-of-the-art methods,

especially for those images with complex structures.

Keywords: Salient object detection, robust sparse representation, local

consistency, complex structures

1. Introduction

Visual saliency refers to identifying certain regions of a scene, which stand

out from their surroundings and catch immediate attention [1]. As an important

branch of visual saliency, salient object detection has attracted a wide range of

attention. Generally, it is essentially a binary segmentation problem [2] starting5

by detecting the attractive objects in a scene followed by a segmentation proce-

dure that extracts the entire objects from the background. It has been widely

applied to many fields, such as image segmentation [3], classification [4], cluster

[5], recognition [6], content-based image retrieval [7] and image fusion [8].

Recently, sparse representation (SR) has been exploited to salient object de-10

tection [9, 10, 11, 12] as a result of its successful applications in many computer

vision and image processing tasks, such as face recognition [13], image classifi-

cation [14], and so on. In these SR based methods, the salient object detection

is normally carried out in three steps. First, input images are divided into many

patches or super-pixels. Secondly, an over-complete dictionary is constructed,15

which helps to encode the feature vectors collected from those patches or super-

pixels. Thirdly, the saliency value for each patch or super-pixel is measured

according to its representation coefficients or residual errors.

For the SR based salient object detection methods, there are two important

issues: dictionary construction and saliency measure. Earlier methods are prone20

to adopt the surrounding patches of each test patch as the dictionary [9, 10].

Due to the fact that the edges of salient objects have high contrast against

their surrounding patches, such SR based methods usually assign higher salient

values to the edges rather than the whole objects, as illustrated in Fig. 1(b).

Recently, some boundary priors [15] are integrated into these methods based on25
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the assumption that backgrounds are usually distributed on the boundary of an

image. Under this assumption, the patches or super-pixels near the boundary

of an image are often selected to construct a background dictionary [12, 16, 17].

As shown in the first row of Fig. 1(c), these methods could overcome the

shortcomings of those methods with the surrounding patches as the dictionary.30

Figure 1: Typical challenging examples for SR based salient object detection methods. (a)

Original images; (b) SR based method with surrounding patches as the dictionary [10]; (c)

SR based method with background templates near the image boundary as the background

dictionary; (d) Proposed RSR method with the background dictionary but without the local

consistency prior; (e) Proposed RSR method with the background dictionary as well as the

local consistency prior; (f) Ground truth.

With respect to the saliency measure, most SR based salient object detection

methods employ either the sparseness (i.e., the coding length) of the representa-

tion coefficients or the reconstruction errors, especially the latter, to define the

saliency measure [9, 10, 11], because there is an assumption that natural signals

can be represented or approximately represented as a linear combination of a35

“few” atoms from a redundant dictionary [9, 10].

However, the traditional SR model employed in those salient object detec-
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tion methods imposes a sparsity constraint on the representation coefficients

to achieve the sparse coding of each test image patch or super-pixel. It ba-

sically minimizes the sum of squared reconstruction errors, therefore tending40

to be sensitive to the non-Gaussian noise as well as sparse “outliers” [13, 18].

Two undesirable results will be obtained when the residual errors are used as

the saliency measure, especially for those methods based on the background

dictionary. One is that many regions belonging to the foreground will not be

highlighted when the foreground object and the background look similar, as45

shown in the second and third rows in Fig. 1(c). The other one is that the

background will not be well suppressed, as shown in the last two rows in Fig.

1(c).

Moreover, there generally exist strong spatial correlations among the local

regions in an image, i.e., the spatially adjacent patches or super-pixels with50

similar features should have similar saliency values. But in most of the existing

salient object detection methods, this local consistency is often ignored, and the

saliency of each image patch or super-pixel is computed independently. As a

result, the whole salient object could not be uniformly highlighted, as shown

in the third and last rows in Fig. 1(d). Besides, background can not be well55

suppressed, resulting parts of the background being falsely taken as the salient

regions, as shown in the first and fourth rows in Fig. 1(d).

In this paper, we aim to detect the salient object in an image with complex

structures by addressing the two problems mentioned above. More specifically,

to enhance the algorithm robustness against the non-Gaussian noise, we replace60

the least squared reconstruction errors with the sparse reconstruction errors.

In another word, we impose a l2,1-norm minimization constraint on the recon-

struction errors to ensure the column-sparsity of the error matrix. It can be

interpreted as that the salient objects are sparsely distributed “outliers” within

an image and seeking such “outliers” is equivalent to a sparsity pursuit prob-65

lem, which can be solved by a robust sparse representation (RSR) model [18].

When applied to the detection of salient objects, RSR is expected to possess

higher distinctiveness between the foreground objects and their backgrounds,
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as shown in Fig. 1(d). Besides, based on the local consistency, the spatially ad-

jacent pathes or super-pixels with similar features should have similar saliency70

values. Thus they should possess similar sparse representation coefficients as

well as reconstruction errors when they are sparsely coded by using RSR with

respect to the same background dictionary. We achieve that by introducing t-

wo Laplacian regularizations with respect to the representation coefficients and

reconstruction errors, respectively, into the RSR model. As a result, the whole75

salient object can be uniformly highlighted and the background can also be well

suppressed, a shown in Fig. 1(e). Eventually, an object function taking both

the above mentioned aspects into account is minimized, thus helping to generate

the saliency map.

In summary, our paper differs from the existing works in three aspects:80

(1) We employ the RSR model, instead of the traditional SR model, in our

proposed method. To our best knowledge, this is the first attempt to apply

the RSR model to the detection of salient objects. By virtue of RSR, the

salient object is modeled as sparse but strong “outliers” within an image so that

the salient object detection can be accomplished by solving a sparsity pursuit85

problem.

(2) We involve a local consistency prior among spatially adjacent regions by

imposing two Laplacian regularizations on the representation coefficients and

reconstruction errors in our proposed method. This is different from the existing

method in [17], in which only a Laplacian regularization term is imposed on the90

representation coefficients.

(3) Two saliency measures are defined based on the representation coeffi-

cients and the reconstruction errors, respectively, and the two saliency measures

are fused to obtain the final saliency measure. Especially, in the representation

coefficient based saliency measure, the sparseness and magnitude information95

of the representation coefficients are jointly employed.

The remainder of this paper is organized as follows. Section 2 briefly reviews

the related work. Section 3 describes the proposed salient object detection

method in detail. Experimental results and conclusions are given in Section 4
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and Section 5, respectively.100

2. Related work

2.1. Contrast-based salient object detection methods

During the last few years, numerous salient object detection methods have

been proposed [9, 10, 11, 12, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28], among which

the contrast-based methods are most popular [9, 10, 15, 16, 21, 22, 26, 27].105

These contrast-based methods can be further divided into local-contrast based

and global-contrast based ones, respectively.

Local-contrast based methods tend to highlight a certain region with high

visual attention with respect to its small neighborhoods [17, 21, 22, 29]. The

earlier local-contrast based methods are designed for only saliency detection110

[19], but in recent years, they are extended to salient object detection [21, 29].

The common observation is that these methods tend to produce higher saliency

values near the edges instead of uniformly highlighting the whole salient objects.

As opposed to those local-contrast based ones, global-contrast based meth-

ods evaluate the saliency value of each pixel or region with respect to the entire115

image [22, 23]. In other words, these methods aim to capture the holistic rarity

or uniqueness from an image. Compared with the local-contrast based methods,

global-contrast based methods can obtain more uniform detection results and

have attracted more attentions [20, 22, 23].

In view of the advantages of local-contrast based and global-contrast based120

methods, combining such two methods has been studied in recent years [24, 25,

30, 31]. For example, in [24], a salient object detection method was presented,

which integrated a global saliency estimation via a high-dimensional color trans-

form (HDCT) and a local saliency estimation via regression. The two resulting

saliency maps complemented each other to obtain a final saliency map. Similar-125

ly, in [25], the authors presented a coding-based saliency measure by exploring

both global and local cues for saliency computation.
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2.2. SR based salient object detection methods

Recently, some salient object detection methods have been presented based

on the sparse representation (SR) theory. In the earlier SR based methods, the130

predefined dictionary is simply selected from the surrounding patches of each

given test patch. Such approaches generally produce higher saliency values at

the boundaries of the object [9, 10]. In essence, these methods can be categorized

as the local-contrast based ones.

Lately, several boundary priors [15] have been integrated into these SR based135

methods considering the fact that the background is usually distributed on the

boundary of an image. Based on this assumption, the patches or super-pixels

near the image boundary are often selected to construct a global background

dictionary. Then, the saliency value for each patch or super-pixel could be mea-

sured according to reconstruction errors with respect to the predefined back-140

ground dictionary. For example, in [16], saliency was measured via the recon-

struction errors with respect to the background templates obtained from the

image boundary. To accurately locate the salient object, the authors [17] con-

structed a heuristic background dictionary to increase the discriminating power

and representation efficiency of the traditional SR model. The heuristic back-145

ground dictionary was obtained from the image boundary where the foreground

noises had been removed from the border regions. Due to the fact that all of

the test image super-pixels are reconstructed from the same background dictio-

nary, these methods can be seen as global-contrast based ones. In general, these

methods could more uniformly highlight the whole salient object in most cases150

than those methods using the surrounding patches as the dictionary.

3. Proposed algorithm

In this section, we will first briefly introduce the robust sparse representation

(RSR) model in [18] and then explain how we apply it to the detection of salient

objects.155
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3.1. Robust sparse representation model

Let X = [x1, x2, ..., xN ] be an observed data matrix of size d × N , each

column of which is a data vector xi ∈ Rd. Given a dictionary D ∈ Rd×M with

M prototype atoms, the RSR model is defined as follows [18]

min
Z,E
‖Z‖1 + λ‖E‖2,1 s.t. X = DZ + E (1)

where ‖Z‖1 denotes the l1-norm of the matrix Z and is defined as ‖Z‖1 =∑
ij |Z(i, j)|. ‖E‖2,1 denotes the l2,1-norm of the matrix E and is defined as

‖E‖2,1 =
∑
j

√∑
i (E(i, j))

2
. Z(i, j) and E(i, j) are the (i, j)-th entries of the

matrices Z and E, respectively. The parameter λ > 0 is employed to balance160

the effects of the two components in Eq. (1).

Revealed in Eq. (1), the RSR model imposes the sparsity constraint on the

representation coefficients matrix Z to sparsely code each image patch or super-

pixel. And the l2,1-norm is imposed on the reconstruction errors matrix E to

ensure that it is sparse in column. In the traditional SR model, the conventional165

least-squared reconstruction error is employed, which tends to be sensitive to the

non-Gaussian noise, such as sparse “outliers”. Differently, in the RSR model, a

so-called sparse reconstruction error is employed, which improves the robustness

of the RSR model against the non-Gaussian noise or sparse but strong “outlier”,

and helps to select the discriminative patches or super-pixeles.170

Actually, the l2,1-norm has been widely utilized in different tasks, including

feature selection [32] and subspaces clustering [5]. In our method, each column

in the matrix E corresponds to the RSR reconstruction errors for each super-

pixel. By using the l2,1-norm minimization, E is ensured to be sparse in column,

i.e., some columns in E will be forced to be zero ones. This indicates that the175

super-pixels corresponding to these columns can be well reconstructed by using

the given background dictionary and are thus seen as background ones. In con-

trast, the super-pixels corresponding to those non-zero columns can not be well

reconstructed by using the given background dictionary. In other words, these

super-pixels are significantly different from those background super-pixels and180

are thus seen as foreground salient ones. Therefore, the l2,1-norm minimization
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on the error matrix E can be used to detect those foreground super-pixels that

are distinct from the background ones.

3.2. RSR based salient object detection

Fig. 2 illustrates the diagram of the proposed method, mainly consisting185

of three parts: image over-segmentation and feature extraction, robust sparse

coding with local consistency, saliency map generation and propagation. In the

following contents, we will elaborate each part.

Figure 2: Diagram of the proposed salient object detection.

3.2.1. Image over-segmentation and feature extraction

In our proposed method, the input image I is first over-segmented into N190

super-pixels S = [s1, s2, . . . , sN ] by using the simple linear iterative clustering

(SLIC) algorithm [33] due to its simplicity and efficiency. For each super-pixel

si, a feature vector xi ∈ Rm of dimension m = 9 is constructed, which includes

its red-, green-, and blue-components in RGB color space, its lightness- and two

color-opponent-components in the CIELab color space, and its hue-, saturation-,195

and value-components in the HSV color spaces. On top of it, the feature vector

for each super-pixel is generated via averaging all of the feature vectors of the

9
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pixels contained in the current super-pixel. Finally, horizontally stacking the

feature vectors of all superpixels produces a feature matrix X ∈ Rm×N for the

input image, i.e., X = [x1, x2, . . . , xN ] ∈ Rm×N .200

3.2.2. Background dictionary construction

Similar to other SR based salient object detection methods, the predefined

dictionary plays an important role in the proposed RSR based method. Mo-

tivated by its successful applications in the salient object detection methods

[12, 15, 16, 17, 27, 28], we also use the image boundary prior to construct a205

background dictionary D = [d1, d2, . . . , dK ] ∈ Rm×K in the RSR model. In

such a background dictionary D, di ∈ Rm denotes the feature vector of a super-

pixel near the image boundary, and K refers to the number of the dictionary

atoms. Here, we simply extract all the super-pixels that directly connect the

image border to construct the background dictionary.210

3.2.3. Robust sparse coding with local consistency

Using the dictionary D ∈ Rm×K constructed in the previous sub-section,

each super-pixel could be sparsely represented if directly applying the RSR

model in Eq. (1). However, this ignores the strong correlations among the spa-

tially local regions [17], and thus will be unavoidable for some isolated regions

in the detected result. In principle, the spatially adjacent super-pixels with

similar features should have similar saliency values [17]. Correspondingly, these

super-pixels will have similar representation coefficients and reconstruction er-

rors when sparsely coded by using RSR with respect to the same background

dictionary. We achieve that by imposing two Laplacian regularizations on the

representation coefficients and reconstruction errors. The resulting salient ob-

ject detection model is formulated as follows.

min
Z,E
‖Z‖1 + λ1‖E‖2,1 + λ2tr(ZLZ

T ) + λ3tr(ELE
T )

s.t. X = DZ + E
(2)

where Z ∈ RK×N and E ∈ Rm×N are the representation coefficients matrix and

reconstruction errors matrix corresponding to the input image X, respective-
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ly. D is the predefined background dictionary. The Laplacian regularizations

tr(ZLZT ) and tr(ELET ) are defined as

tr(ZLZT ) =
1

2

N∑
i,j

‖zi − zj‖22 ωij (3)

tr(ELET ) =
1

2

N∑
i,j

‖ei − ej‖22 ωij (4)

In Eq. (3) and Eq. (4), zi and ei denote the i-th columns of the matrices Z

and E, respectively. The weight ωij implies the similarity between the i-th and

j-th super-pixels and will be discussed later in detail. Based on these weights,

an affinity matrix W ∈ RN×N with its (i, j)-th entry Wi,j = ωij and a diagonal215

degree matrix C ∈ RN×N with its i-th diagonal element Ci,i =
∑
j

Wi,j are

constructed. The Laplacian matrix L is thus defined as L = C −W . λ1, λ2,

and λ3 are three positive trade-off parameters.

The weight ωij is computed by Eq. (5) in this paper.

ωij =

 exp(−‖pi−pj‖
2
2

2σ2
p

) · exp(−‖xi−xj‖
2
2

2σ2
f

), if si and sj are spatially adjacent,

0, otherwise.

(5)

where pi, pj ∈ R2 denote the center positions of the super-pixels si and sj .

xi, xj ∈ Rm are their feature vectors, respectively. σp and σf are two scalars,220

and are experimentally set to
√

0.5 and 1, respectively.

In Eq. (5), the component, exp(−‖pi−pj‖
2
2

2σ2
p

), denotes the spatial distance

between the two super-pixels si and sj , and the component, exp(−‖xi−xj‖
2
2

2σ2
f

),

indicates their feature similarity. Eq. (5) ensures that two super-pixels with

smaller spatial distance and more similar features are assigned to higher weight225

values, thus preserving the local consistency among the spatially adjacent super-

pixels with similar features.

Fig. 3 illustrates the validity of the two Laplacian regularization terms.

Compared with those detection results obtained by the RSR model without

considering the local consistency (i.e., Fig. 3(b)), the performance is improved230

to some extent by imposing one of the two Laplacian regularization terms (i.e.,
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Figure 3: Illustrations of the validity of the two Laplacian regularization terms. (a) Original

image; Saliency maps obtained by the RSR model (b) without considering the local con-

sistency; (c) imposing the Laplacian regularization only on the representation coefficients;

(d) imposing the Laplacian regularization only on the reconstruction errors; (e) imposing t-

wo Laplacian regularizations on the representation coefficients and reconstruction errors; (f)

Ground truth.

Fig. 3(c) and (d)). As well, compared with the detection results obtained

by imposing one Laplacian regularization term (i.e., Fig. 3(c) and (d)), the

performance is further improved by using two Laplacian regularization terms.

More specifically, the foreground salient object is more uniformly highlighted (as235

shown in the first two rows in Fig. 3), and the background noise is also better

suppressed (as shown in the last two rows in Fig 3) by using two Laplacian

regularization terms than using one of the two Laplacian regularization terms.

The optimization algorithm is convex and can be solved by various methods.

In this paper, we jointly adopt the Alternating Direction Method of Multipliers

(ADMM) [34] and a modified Sparse Reconstruction by Separable Approxima-

tion (SpaRSA)-based method [35] to solve the optimization problem in Eq. (2).

This requires the minimization of the following augmented Lagrangian function:

L(Z,E, Y ) = ‖Z‖1 + λ1‖E‖2,1 + λ2tr(ZLZ
T ) + λ3tr(ELE

T )

+ 〈Y,X −DZ − E〉+ µ
2 ‖X −DZ − E‖

2
F

(6)

where Y is a Lagrangian multiplier, introduced to remove the equality con-
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straint in Eq. (2), and µ is a penalty parameter. < · > denotes the Euclidean240

inner product of two matrices. Clearly, this problem becomes unconstrained,

and can be minimized with respect to Z and E, respectively. Algorithm 1 sum-

marizes the calculations of the optimization model. More details can be seen in

Appendix A.

Algorithm 1 Solving the optimization problem in Eq. (6).

Input: Feature matrix X, parameters λ1, λ2, λ3, and Laplacian matrix L.

Output: Z and E

1: intialize: Z(0) = 0, E(0) = 0, Y (0) = 0, µ(0) = 1, µmax = 1010, ρ = 1.1,

t = 0, ε1 = 10−3, and ε2 = 10−6.

2: repeat

3: Fix E and update Z using Eq. (A.4).

4: Fix Z and update E using Eq. (A.9).

5: Update the multiplier Y : Y (t+1) = Y (t) + µ(t)(X −DZ(t) − E(t)).

6: Update µ:

µ(t+1) =

 min(ρµ(t), µmax), if µ(t) ×max
(∥∥Z(t+1) − Z(t)

∥∥
F
,
∥∥E(t+1) − E(t)

∥∥
F

)
< ε1

µ(t), otherwise.
,

7: Update t: t = t+ 1.

8: until Convergence:
∥∥X −DZ(t) − E(t)

∥∥
F

/
‖X‖

F
< ε2

3.2.4. Saliency Map Generation245

In this part, we will explain how we compute the saliency measure for each

super-pixel as well as how we compute the saliency value for each pixel.

A. Saliency measure for each super-pixel.

Given a background dictionary D, each column of the sparse errors matrix E

obtained by solving the model in Eq. (6) may contain the salient information of250

each super-pixel that is distinct from the background. In addition, the represen-

tation coefficients may reflect the similarity between each test super-pixel and

the backgrounds to some extent. Therefore, the proposed saliency measure for

13



each super-pixel consists of two sub-indexes in this paper. One is based on the

reconstruction errors while the other is based on the representation coefficients.255

Generally, a super-pixel will be more salient if it has larger reconstruction

errors with respect to the background dictionary. Considering that, we define

the reconstruction errors based saliency measure SalE(si) for the i-th super-

pixel si as

SalE(si) = 1− exp(−
‖e∗i ‖

2
2

2σ2
E

) (7)

where e∗i denotes the i-th column vector of the optimal errors matrix E∗ obtained

by solving Eq. (6) and corresponds to the reconstruction errors of the super-

pixel si. ‖e∗i ‖2 represents the l2-norm of the vector e∗i and is defined as ‖e∗i ‖2 =√∑
j (e∗i (j))

2
. σE is a scalar parameter and is experimentally set to 4 here.

In addition to the reconstruction errors, the saliency value of each super-260

pixel can also be determined by its representation coefficients to some extent.

For example, as shown in Fig. 4(a), a background super-pixel will be sparse-

ly coded by the predefined background dictionary. In contrast, as shown in

Fig. 4(b), a foreground super-pixel will be densely coded by the same back-

ground dictionary. In other words, the saliency value of each super-pixel can be265

determined by the sparsity (also called coding length) of its representation coef-

ficients. As well, the foreground object in an image usually has higher contrast

than the background and thus has higher energy. Correspondingly, as shown in

Fig. 4, the representation coefficients for a foreground super-pixel have higher

magnitudes than those for a background super-pixel.270

Based on the above two observations, we define the representation coeffi-

cients based saliency measure SalZ(si) for the i-th super-pixel as

SalZ(si) = ‖z∗i ‖0 ·

(
1− exp

(
−
‖z∗i ‖

2
2

2σ2
Z

))
(8)

where z∗i denotes the i-th column vector of the optimal representation matrix Z∗

obtained by solving Eq. (6) and corresponds to the representation coefficients

of the super-pixel si. ‖z∗i ‖0 represents the l0-norm of the vector z∗i and defined

as the number of nonzero entries in the vector z∗i . ‖z∗i ‖0 and ‖z∗i ‖2 indicate the

14
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Figure 4: Comparisons of representation coefficients of background and foreground super-

pixels. (a) Representation coefficients for a background super-pixel; (b) Representation coef-

ficients for a foreground super-pixel.

sparsity and the energy of the representation coefficients corresponding to the275

super-pixel si to some extent, respectively. Similarly, σZ is a scalar parameter

and is experimentally set to 4 in this paper.

The final saliency measure Sal(si) for the super-pixel si is defined by inte-

grating the two saliency measures SalE(si) and SalZ(si) as

Sal(si) = SalE(si)
α. ∗ SalZ(si)

1−α (9)

where α ∈ (0, 1) is a scalar to control the contributions of the two terms and is

set to 0.8 in the experiment par.

B. Saliency measure for each pixel.280

According to the saliency measure defined by Eq. (9), an initial super-

pixel level saliency map Msp(si), i.e., Msp(si) = Sal(si), is obtained. After

that, a smooth saliency map M ′sp(si) is obtained by performing the propagation

method [16] on the map Msp(si). Finally, a pixel-level saliency map Mpixel(p)

is obtained by mapping the saliency map M ′sp(si) to the full-resolution image,

i.e.,

Mpixel(p) = M ′sp(si), if p ∈ si (10)

Fig. 5 illustrates the saliency detection results obtained by different phases.

As shown in Fig. 5(d), the saliency measure defined by Eq. (9) could more
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uniformly detect the whole salient object than those measures defined by Eq.

(7) or Eq. (8) independently. After the saliency map propagation, the salient

object is further uniformly highlighted. Meanwhile, the background is also well285

suppressed.

Figure 5: Saliency maps obtained by different saliency measures. (a) Original image; (b)

Saliency maps obtained by using the reconstruction errors; (c) Saliency maps obtained by

using the representation coefficients; (d) Saliency maps by fusing (b) and (c); (e) Saliency

maps after propagation; (f) Ground truth.

3.3. Computational complexity

Suppose the data matrix X and dictionary D have sizes d×N and d×M ,

respectively. Then the coefficients matrix Z has size M × N . As discussed in

[18], the computational complexity of Algorithm 1 is mainly dependent on the290

product of three matrices in Eq. (A.3) when the matrix Z is updated. Then the

computational complexity of the proposed method is thus O(rdM2N), where

r is the number of iterations needed for convergence. It demonstrates that

the number of dictionary atoms M has a greater impact on the computational

complexity of the proposed method than other parameters. In the proposed295

method, M is set to the number of boundary super-pixels (about 49), which is

far smaller than the total number of super-pixels N (about 200). This makes

the computational cost of the proposed method acceptable.

4. Experiments and analysis

In this section, several sets of experiments are performed to verify the supe-300

riority of the proposed salient object detection method.
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Table 1: Summary of the public datasets.

Name Size Characteristics

MSRA10K [22] 10000
single object, high contrast,

simple backgrounds

ECSSD [36] 1000
multiple objects, various object categories,

structurally complex scene

DUT-OMRON [28] 5168
multiple objects, different scales and

locations, cluttered backgrounds

Table 2: Summary of the evaluation metrics.

Name Description

Precision-recall (PR) [2] Precision (P): |S∩G||S| , recall (R): |S∩G||G|

F-measure [2] Fβ = (1 + β2) P∗R
β2P+R , β2 = 0.3

precision, recall, and F-measure

with an adaptive threshold [20]
thre = 2

W×H
∑W
i=1

∑H
j=1 S(i, j)

mean absolute error (MAE) [2] MAE = 1
W×H

∑W
i=1

∑H
j=1 |S(i, j)−G(i, j)|

4.1. Experimental setup

4.1.1. Datesets

In our experiments, we employ three public datesets, including MSRA10K

[22], ECSSD [36], and DUT-OMRON [28], to test the superiority of our proposed305

method. The detailed descriptions for these datasets are presented in the Table

1.

4.1.2. Evaluation metrics

In the experiments, we adopt multiple evaluation metrics to verify the supe-

riority of our proposed method. Table 2 shows the summary of the evaluation310

metrics. In the Table 2, S and G represent a saliency map and the correspond-

ing ground-truth, respectively. |·| computes the number of non-zeros entries in

17



the mask. S(i, j) represents the saliency value of the (i, j)-th pixel in S. W and

H are the width and height of the image, respectively.

4.1.3. Parameters setting315

Figure 6: PR curves of the proposed method with different parameters values on the ASD

dataset. (a) N ; (b) α; (c) λ1; (d) λ2; (e) λ3.

The parameters of our method involve the number of superpixels N , the

fusion weight α in Eq. (9), and the balance parameters λ1, λ2, and λ3 in Eq.

(2). The setting of these parameters is important to the performance of the

proposed method. We experimentally set the values of these parameters based

on the performance of the proposed method on the ASD dataset [20], which320

has 1000 images. This dataset has similar characteristics with the MSRA10K

dataset due to the fact that they are both collected from the MSRA database

[37]. Each of them is set one by one, respectively, by fixing the others. More

specifically, in the experimental part, we test the impacts of the parameters N

(with α = 0.8, λ1 = 0.1, λ2 = 0.01, λ3 = 0.01), α (with N = 200, λ1 = 0.1,325

λ2 = 0.01, λ3 = 0.01), λ1 (with N = 200, α = 0.8, λ2 = 0.01, λ3 = 0.01), λ2

(with N = 200, α = 0.8, λ1 = 0.1, λ3 = 0.01), and λ3 (with N = 200, α = 0.8,

λ1 = 0.1, λ2 = 0.01) on the proposed method, respectively. The PR curves of

the proposed method with different parameters are illustrated in Fig. 6.
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From Fig. 6(a), it can be found that the performance increases with N , but330

nearly unchanged when N is greater than or equal to 200. So, we set N = 200.

The rest of parameters are set in a similar way. In summary, these parameters

are set to the values as in Table 3.

Table 3: Some parameters employed in our proposed method.

Parameter N α λ1 λ2 λ3

Value 200 0.8 0.1 0.01 0.01

4.1.4. Experiments

First, we employ the public dataset, MSRA10K [22] to illustrate the validity335

of the robust sparse representation model and local consistency prior when ap-

plied to the detection of salient objects. Then, we employ three public datasets,

including MSRA10K [22], ECSSD [36], and DUT-OMRON [28], to test the su-

periority of our proposed method. Finally, we analyze some failure examples of

our proposed method.340

4.2. Validity of RSR model and local consistency prior

In this part, we will employ the MSRA10K [22] dataset to illustrate the

validity of the RSR model and local consistency prior employed in our proposed

method. For that, we compare our proposed method (RSR-LC, for short) with

another three methods, including a RSR based (RSR-B, for short) and two345

SR based (SR-S, SR-B, for short) methods mentioned in Fig. 1 in the earlier

Introduction part. The RSR-B method can be seen as a special case of our

proposed method with λ2 = λ3 = 0 in Eq. (3), without considering the local

consistency prior. In RSR-B and SR-B methods, a global background dictionary

obtained from the image boundary is employed. And in the SR-S method, a350

local dictionary using the image patches surrounding each test image patch is

employed. Some detected results by these four methods can be seen in Fig. 1

in the earlier Introduction part.
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Fig. 7 provides the quantitative results of the four methods. It can be found

that the RSR-B method significantly outperforms the SR-S and SR-B methods355

in terms of the PR and F-measure curves. This clearly shows the superiority

of the RSR model over the traditional SR model when applied to salient object

detection. Moreover, it can also be easily found that the local consistency prior

will further improve the performance by comparing the detected results of the

RSR-B method and the proposed method.360

Figure 7: Quantitative comparisons of the RSR-LC, RSR-B, SR-B, SR-S methods.

4.3. Superiority of the proposed method

In addition to the MSRA10K [22] dataset, we will employ another two public

benchmark datasets, i.e., ECSSD [36] and DUT-OMRON [28], to further test

the superiority of the proposed method. As well, we compare the proposed

method with another 9 state-of-the-art ones, including SR-LC [17], BFS [38],365

HDCT [24], PCA [39], TD [40], GC [41], GS [15], SF [42], SS [43].

4.3.1. Visual comparison

Fig. 8 illustrates some detected results obtained by these methods. As shown

in Fig. 8, most of the methods mentioned in this paper could achieve satisfactory

results for all of the three datasets. But by a careful comparison, we find that370

GC, HDCT, BFS and RSR-LC could obtain higher performance in foreground

detection and background suppression than the other methods in most cases.

Especially, for those images with similar foregrounds and backgrounds (e.g., the
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third row in Fig. 8(a) and the second row in Fig. 8(b)), the proposed method

RSR-LC could still detect the whole objects. Similar results could also be375

obtained by the proposed RSR-LC for those images with complex backgrounds

(e.g., the last row in Fig. 8(c)). For these images, most of the state-of-the-

art methods could not obtain a satisfactory result. In addition, we also find

that the proposed method RSR-LC significantly outperforms SR-LC for these

images. This further demonstrates the superiority of the RSR model over the380

traditional SR model.

Figure 8: Visual comparisons on different methods. (a) Results on the MSRA10K dataset;

(b) Results on the ECSSD dataset; (c) Results on the DUT-OMRON dataset.
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4.3.2. Quantitative comparison

Fig. 9 provides the quantitative results of different methods, complying with

those subjective results mentioned in Fig. 8.

For MSRA10K dataset, our proposed method is competitive with HDC-385

T and better than the other state-of-the-art methods in terms of PR and F-

measure curves. Given an appropriate threshold to segment the saliency map,

our proposed method will obtain the highest F-measure value among the meth-

ods mentioned here. Furthermore, our proposed method obtains a good MAE

value.390

Figure 9: Quantitative comparisons on different methods. From left to right: Results on

MSRA10K, ECSSD, and DUT-OMRON datasets, respectively. From top to bottom: PR

curves, F-measure curves, precision, recall, and F-measure bars with an adaptive threshold,

and MAE bars, respectively.

For ECSSD dataset, our proposed method achieves the best PR and F-
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measure performance among the methods. That is to say, compared with the

state-of-the-arts, our proposed method is more effective in salient object detec-

tion for those images where multiple salient objects exist and belong to various

categories. Seen from the F-measure bars with an adaptive threshold, our pro-395

posed method also obtains the highest F-measure value among the methods.

And our proposed method achieves the least MAE value.

For DUT-OMRON dataset, HDCT and our proposed method perform com-

petitively and are both better than the other state-of-the-art methods in terms

of the PR and F-measure curves. That is to say, our proposed method could400

still achieve satisfactory results for images with more complex background struc-

tures. Given an appropriate threshold, our proposed method can obtain the sec-

ond best F-measure value among the methods. Moreover, our proposed method

achieves the best performance in terms of the metric of MAE.

4.3.3. Computational complexity comparison405

To demonstrate the computational efficiency of our method, we list the av-

erage computational time of some state-of-the-art methods1 and our proposed

method on the ASD dataset [20]. These methods are all run in Matlab 2013

on a personal computer with an Intel(R) Core(TM) i7-4790 3.60 GHz CPU. As

shown in Table 4, our proposed method (RSR-LC) is slightly slower than SR-LC410

but much faster than PCA and BFS.

Table 4: Average running time of some methods (seconds per image).

Methods Ours SS PCA BFS SR-LC

Time (s) 1.7649 0.0219 2.4589 6.4427 1.2793

1Here we just list those compared methods whose Matlab codes are provided in their

corresponding project websites.
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4.4. Failure cases

In the proposed method, those super-pixels near the image boundary are

selected to construct the background dictionary based on the background prior

[15]. In most cases, this may work well. However, in some images, salient objects415

appear near the image boundary, and thus some foreground regions will be con-

tained in the background dictionary. As a result, these foreground regions will

be mistakenly marked as background regions for these images. In addition, if

the background regions far from the image boundary and those near the image

boundary have obviously distinctive characteristics, some background regions420

will also be mistakenly marked as foregrounds. Some failure cases are illustrat-

ed in Fig. 10. Exploiting more efficient background dictionary construction

methods will overcome this problem and we leave this as the future work.

Figure 10: Failure cases. (a) Original images; (b) Saliency maps obtained by the proposed

method; (c) Ground truth.

5. Conclusion

In this paper, we have presented a new salient object detection method425

that incorporates a local consistency prior into the robust sparse representation

(RSR) model. By virtue of RSR, salient objects can be seen as strong but sparse

“outliers” within an image, which allows to reformulate the salient object detec-

tion problem as a sparsity pursuit one. Given the same background dictionary,

the RSR based method can better suppress the background noise than those430
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traditional SR based ones. Moreover, owing to the local consistency prior, the

whole salient object could be more uniformly highlighted. Experimental results

demonstrate that the proposed method significantly outperforms the traditional

SR based methods and is competitive with some current state-of-the-art meth-

ods, especially for those images with complex structures.435
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Appendix

Appendix A.

In this appendix, the update scheme required for solving Eq. (6) in the text

is described in detail.

(1) Update Z:445

Z = arg min
Z
‖Z‖1 + λ2tr(ZLZ

T ) + 〈Y,X −DZ − E〉+
µ

2
‖X −DZ − E‖2F

= arg min
Z
‖Z‖1 + λ2tr(ZLZ

T ) +
µ

2

∥∥∥∥X −DZ − E +
1

µ
Y

∥∥∥∥2
F

= arg min
Z
‖Z‖1 + f(Z)

(A.1)

where f(Z) = λ2tr(ZLZ
T ) + µ

2

∥∥∥X −DZ − E + 1
µY
∥∥∥2
F

. This sub-optimization

problem can be solved by using the modified SpaRSA-based method [35] in an

iterated way, i.e.,

Z(t+1) = arg min
Z

1

η
(t)
Z

‖Z‖1 +
1

2

∥∥∥∥∥Z − (Z(t) − 1

η
(t)
Z

∇Zf(Z(t)))

∥∥∥∥∥
2

F

(A.2)
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where η
(t)
Z = 1.02

(
2λ2 ‖L‖2F + µ(t)

∥∥DTD
∥∥2
F

)
[44, 45]. ∇Zf(Z(t)) is the partial

differential of f(Z) with respect to Z in the t-th iteration, and is computed by:

∇Zf(Z(t)) = 2λ2Z
(t)L− µDT (X −DZ(t) − E(t) +

1

µ(t)
Y (t)) (A.3)

Thus, the sub-optimization problem in Eq. (A.2) has the following closed-form

solution [34]:

Z(t+1) = S 1

η
(t)
Z

(
Z(t) − 1

η
(t)
Z

∇Zf(Z(t))

)
(A.4)

where the threshold function Sτ (x) is defined as

Sτ (x) =


x− τ, if x > τ

x+ τ, if x < −τ

0, otherwise

(A.5)

(2) Update E:

E = arg min
E

λ1‖E‖2,1 + λ3tr(ELE
T ) + 〈Y,X −DZ − E〉+

µ

2
‖X −DZ − E‖2F

= arg min
E

λ1‖E‖2,1 + λ3tr(ELE
T ) +

µ

2

∥∥∥∥X −DZ − E +
1

µ
Y

∥∥∥∥2
F

= arg min
E

λ1‖E‖2,1 + f(E)

(A.6)

where f(E) = λ3tr(ELE
T ) + µ

2

∥∥∥X −DZ − E + 1
µY
∥∥∥2
F

. Similarly, this sub-

optimization problem can also be solved by using the modified SpaRSA-based

method [33] in an iterated way, i.e.,

E(t+1) = arg min
E

λ1

η
(t)
E

‖E‖2,1 +
1

2

∥∥∥∥∥E −
(
E(t) − 1

η
(t+1)
E

∇Ef
(
E(t)

))∥∥∥∥∥
2

F

(A.7)

where η
(t)
E = 1.02

(
2λ3 ‖L‖2F + µ(t)

)
[44, 45]. ∇Ef(E(t)) is the partial differ-

ential of f(E) with respect to E in the t-th iteration, and is computed by:

∇Ef(E(t)) = 2λ3E
(t)L− µ(X −DZ(t) − E(t) +

1

µ
Y (t)) (A.8)
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The sub-optimization problem in Eq. (A.7) has the following closed-form solu-

tion [34]

E(t+1)(:, i) =


(
‖G(:,i)‖2−

λ1

η
(t)
E

)
‖G(:,i)‖2

G(:, i), if ‖G(:, i)‖2 ≥
λ1

η
(t)
E

0, otherwise

(A.9)

where G = E(t) − 1

η
(t)
E

∇Ef
(
E(t)

)
. E(:, i) and G(:, i) denote the i-th columns of

the matrices E and G, respectively.
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