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Abstract

Managing the water quality of freshwaters is a crucial task worldwide. One of the most used methods to biomonitor water
quality is to sample benthic macroinvertebrate communities, in particular to examine the presence and proportion of
certain species. This paper presents a benchmark database for automatic visual classification methods to evaluate their
ability for distinguishing visually similar categories of aquatic macroinvertebrate taxa. We make publicly available a new
database, containing 64 types of freshwater macroinvertebrates, ranging in number of images per category from 7 to 577.
The database is divided into three datasets, varying in number of categories (64, 29, and 9 categories). Furthermore,
in order to accomplish a baseline evaluation performance, we present the classification results of Convolutional Neural
Networks (CNNs) that are widely used for deep learning tasks in large databases. Besides CNNs, we experimented with
several other well-known classification methods using deep features extracted from the data.

Keywords: Biomonitoring, Fine-grained Classification, Benthic Macroinvertebrates, Deep Learning, Convolutional
Neural Networks

1. Introduction

All ecosystems and ultimately human societies depend
on biodiversity and ecosystem functioning [18]. Freshwa-
ter ecosystems are among the most threatened ecosystems
worldwide (see, e.g., [39, 13]) as the loss of aquatic bio-
diversity and associated ecosystem services is estimated
to surpass the loss of biodiversity in rainforests (e.g., [37,
48]). The importance of monitoring aquatic ecosystems
and biodiversity is acknowledged in environmental legisla-
tion, such as the EU Water Framework Directive (WFD)
[1], the EU Marine Strategy Framework Directive [2], and
the US Clean Water Act [3]. The EU WFD legislation
requires monitoring of several biological indicator groups
for freshwater ecological status assessment. Knowledge ob-
tained from these biomonitoring programs is used to as-
sess the status of ecosystems, preserve and assure good
future water quality. Even for the species living in species
poor freshwaters of northern Europe, this legal require-
ment brings about a need to track hundreds of macroin-
vertebrate and thousands of microscopic periphyton and
phytoplankton taxa.

Taxonomic identification of biomonitoring samples in-
volving microscopy is cost intensive, as the identification of
indicator species is usually done by human experts. While
there are also DNA-based methods of identification, they
currently do not cope well with the WFD requirements for

information on indicator taxa abundance. Furthermore,
genetic methods are still at least as cost intensive as tra-
ditional ones, although the price of these methods is de-
creasing quickly [14]. A recent study showed that manual
identification of freshwater macroinvertebrate taxa done
by human experts is more prone to errors (i.e., 30%) than
previously assumed [16], and this may extend to other mi-
croscopic indicator groups as well [11, 12]. Thus, human-
made taxonomic identification errors can affect the results
and reliability of ecological aquatic research and manage-
rial decisions regarding ecosystems services and resources.
Put into a management context and recalling that the
number of highly trained taxonomic experts is decreas-
ing, this suggests that large amounts of resources may be
ineffectively allocated in restoration efforts [16].

In this paper, we focus on automatic methods of identi-
fication of benthic macroinvertebrates and present a bench-
mark database to evaluate and test automatic identifica-
tion methods. Alongside aquatic macrophytes, which gen-
erally do not require microscopic identification, benthic
macroinvertebrates are the most commonly used biologi-
cal indicators in the WFD implementation [7]. In Finland,
280 taxa are currently used as indicators for WFD index
calculations. In official Finnish aquatic monitoring, four to
six samples, each containing ca. 50-1000 benthic macroin-
vertebrates belonging to 2-70 taxa, are taken from each
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monitoring site using a kick-net. Samples are individu-
ally preserved and transported to a laboratory where the
specimens are picked from the debris before microscopic in-
spection. A technician then takes about 1-4 hours to pick
all animals from the collected material in a single sam-
ple and a highly trained expert needs another 1-4 hours
to identify the sorted specimens using microscopy. In na-
tional proficiency tests human experts classify test samples
with a 87-100 percent accuracy [36]. As funding for en-
vironmental protection and thus monitoring is nowadays
decreasing in Europe [43], alternative ways to achieve the
requirements set forth in the WFD have to be considered.
Here, we propose to employ computer vision and machine
learning techniques for the identification of macroinver-
tebrate taxa in order to provide cost-effective and more
accurate solution for this crucial problem. We propose
a semi-automatic taxa identification method, which sig-
nificantly reduces the expert time and, thus, provides a
cost-effective solution. To our best knowledge, this is the
first time such a semi-automatic approach is adopted in
this domain. Using the proposed imaging approach, we
present a benchmark dataset containing more than 15000
images and, in order to serve as a baseline performance
evaluation, our initial classification results obtained using
Convolutional Neural Networks (CNNs) applied on the
original images and several other classification methods
applied on the deep features extracted from the images.

The rest of the paper is organized as follows. Section 2
presents related work, while Section 3 provides an exten-
sive description of the proposed database and procedures
used to produce it. Section 4 shows preliminary results
obtained on the proposed database using deep CNNs and
a combination of deep features and well-known classifiers.
Finally, Section 5 concludes the paper and suggests topics
for future research.

2. Related Work

Introduction of publicly available benchmarks has been
a driving force in the development and improvement of
computer vision algorithms. With time, computer vision
databases transformed from having low resolution gray-
scale images with only one object per image, e.g., UIUC
car database [4], to ones with more complex image com-
position (multiple objects, occlusion, and truncation) and
containing multiple visual classes in the database, as in
Pascal VOC [15]. The introduction of the large-scale Im-
ageNet database [44], which includes 1000 image classes
with approximately 1 million images, has stimulated the
development and success of the modern state-of-the-art
deep learning techniques, i.e., CNNs, that are now applied
in all areas of computer vision (e.g., object classification,
detection, and segmentation).

There are also several public databases available for
fine-grained classification depicting, e.g., cars [26, 31], flow-
ers [38], birds [6, 45], dogs [32, 23], aircraft [35, 47], plant

leaves [28], or plankton [17]. However, even in the afore-
mentioned databases, different categories are generally eas-
ily distinguished —even if not recognized —also by non-
experts. For macroinvertebrates, this is not the case. Non-
experts typically cannot detect the subtle morphological
differences between the taxa and, thus, the classification
problem is even more fine-grained than in the datasets
typically used for fine-grained classification. The macroin-
vertebrate identification is further complicated by the fact
that often specimens from two different taxa can appear
more similar than two specimens from a single taxon.

The area of automatic identification of freshwater macroin-
vertebrates is relatively unexplored. Most of the previous
works have been using only small datasets containing only
8-9 image categories [22, 25, 24, 33]. Recent works have
presented results for more than 30 categories of macroin-
vertebrates (35 in [5], 50 in [21], and 54 in [30]). However,
the datasets used in these experiments are not publicly
available.

The goal of this work is to introduce and publish a
new and significantly larger benchmark database for auto-
matic fine-grained classification of benthic macroinverte-
brates containing 64 categories and more than 15000 im-
ages. We have used a part of this database (Dataset 2)
for experiments in two earlier papers [42, 41]. In [42],
we compared the classification performance obtained us-
ing engineered features (e.g. SIFT and HOG) and features
learned by a CNN. Our experiments showed that the CNN
features clearly outperform the engineered ones. In [41],
we applied simple data augmentation to improve the clas-
sification results. In this work, we focus on the database
itself and provide baseline results using CNN features with
different classifiers.

3. Database Creation and Description

3.1. Sample Preparation and Manual Classification

When creating the database, we prepared the sam-
ples of benthic macroinvertebrates and manually classified
them following the typical steps used in manual identifi-
cation. The samples were collected from Finnish rivers
and transported to the laboratory for further processing.
First, larger debris was manually removed from the sam-
ples. Then each sample was placed onto a sieve of equal
or smaller mesh size than used in the kick-net and rinsed
clean of smaller particles under water. After careful rins-
ing, the sample material was spread evenly onto a tray
and benthic macroinvertebrates were picked by a techni-
cian using a strong light. Next, specimens were placed
into vials filled with preservative for later inspection un-
der a microscope. Prior to microscopic identification, some
of the specimens were presorted into smaller groups based
on morphotypes to speed up the process of manual identi-
fication. The process of cleaning a sample and its manual
classification is illustrated in Figure 1.

2
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Figure 1: A simplified scheme of the cleaning and classification pro-
cesses

Depending on the difficulty of classification (i.e., taxa
identification), specimens were classified with different tax-
onomic resolution. In Finland, identification at the species
level is commonly performed, but for some taxa only the
coarser family or genus level (marked as ”sp.” in Table 1)
can be established with certainty. For some taxa, speci-
mens at different developmental stages of the same species
have to be split into separate groups during identification
due to absence of common visual features between those
stages, see Figure 2: larval (marked as ”larva” in Table 1)
and adult (marked as ”adult”). Examples of coleopteran
(represented by two developmental stages) taxa in the pro-
posed database are Elmis aenea and Oulimnius tubercula-
tus.

Figure 2: Difference of the larval (left) and adult (right) stages of
development of Elmis aenea

3.2. Proposed Imaging Setup

Taking kick-net samples and extracting macroinverte-
brates from them is a very laborious task and, at the mo-
ment, there are no cost-effective alternatives to using man-
ual labor. However, a semi- or fully automatized imaging
stage, facilitating automated identification, can easily be
assembled nowadays. In this subsection, we present a semi-
automatic imaging setup developed for aquatic macroin-
vertebrates, which allows imaging of approximately 1000
specimens in only 3 hours.

The imaging setup is presented in Figure 3. It con-
sists of two Guppy PRO F-125B/C cameras (frame rate
of 30 fps) with Megapixel Macro Lens (f=75mm, F:3.5-
CWD<535mm) viewing the test tube from perpendicular
angles and a LED light of 1040 lumen. A rotating mech-
anism, allowing the change of the test-tube without inter-
ruption of the imaging session, is shown in the top left
corner of the image. During the imaging process, the soft-
ware builds a model of a background and controls/sets off

shutters of the cameras when a significant change is de-
tected, for example, due to the appearance of a specimen
into the field of view of the cameras. This process is con-
trolled by computer with Intel Core 2 Duo processor (at
2.66 GHz) and 4GB of RAM. The material cost of this
imaging system is approximately 4-5K e, which is much
less than an average cost of a high quality stereo micro-
scopes traditionally used for fine-grained classification of
macroinvertebrates [33].

Figure 3: Schematic of the imaging setup

During imaging, the operator takes the samples stored
in separate vials and processes them one-by-one. (When
creating the database, the samples were previously classi-
fied and each vial contained species of the same category.)
Using tweezers, the operator drops each specimen into a
high-grade glass cuvette (test tube in Figure 3) filled with
alcohol, where it is photographed from two viewpoints by
cameras positioned at a 90 degree angle, while sinking to
the bottom of the cuvette. When the number of already
processed specimens grows on the bottom of the cuvette
and they start appearing in the field of view of the cam-
eras, the operator changes the cuvette. If a specimen is
too big or too heavy (sinks too fast), the resulting frames
are stitched in order to obtain a full view of an object
in one image. While this process sometimes causes blur,
thus degrading quality of the final image, image stitching
is required for the following processing.

3.3. Image Preprocessing

After imaging using the described imaging setup, some
images were completely discarded due to their poor qual-
ity. The remaining images were in PNG format, their
size varied from 640x480 to 1280x960 pixels and they con-
tained a varying amount of background. In order to focus
on learning object representations rather than variations
in the background, we cropped the objects (macroinverte-
brate specimens) from the original images. We used Otsu’s
threshold [40] for green and red channels, filtering, and
analysis of connected components to form binary masks
for original images. Then we used the binary masks to
define the outer edges of each specimen and an additional
margin of at least 20 pixels was added before cropping out

3
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a square region. Finally, we scaled the cropped patches
to the size of 256x256 pixels, which is the standard image
size used with CNNs. Examples of the original images,
cropped images, and corresponding binary masks are pre-
sented in Figure 4.

Figure 4: From left to right: original image, cropped image, corre-
sponding binary mask. Top row - Leuctra sp., bottom row - Atherix
ibis

3.4. Database Description

The proposed database contains 15,074 images of ben-
thic macroinvertebrates from 64 categories (i.e., taxa) with
7 to 577 images per category. The database covers the
majority of the taxa used in national river water quality
index calculations and represented species can be found
in most natural Finnish rivers. The database contains
original and cropped images for all specimens along with
binary masks corresponding to the cropped image. All
images and masks are in PNG-format. Also features ex-
tracted by CNNs (i.e., deep features) from the images are
provided for public use at http://urn.fi/urn:nbn:fi:

csc-kata20170615175247247938.
To scale the database for distinct classification and

identification purposes, the database is split into 3 datasets:

• Dataset 1 contains the full database with 64 cate-
gories;

• Dataset 2 is constructed from 29 most abundant cat-
egories, where the smallest category contains 230 im-
ages;

• Dataset 3 is the smallest and the most balanced one;
it is composed from 9 categories of macroinverte-
brates with approximately 350 images in each.

Dataset 1 contains all 64 of the macroinvertebrate cate-
gories and is very unbalanced. Therefore, it demonstrates
the performance of the tested methods in the most chal-
lenging conditions. Dataset 2 has been previously used for
experiments in [42, 41]. Dataset 3 is generated in order to
compare results of the new methods with the ones applied
in the previous works [22, 25, 24, 34].

The images have a green background caused by the op-
erator’s choice of the white balance settings during imag-
ing process. However, this does not significantly affect the
classification ability of the automated classifier. Most of
the macroinvertebrate specimens in the database are rep-
resented by a pair of images, but, for some specimens,
there is only a single image due to a failure of the imag-
ing system or unsuccessful stitching. The description of
the database with the category names, the number of im-
ages per category, the number of specimens per category,
and dataset memberships is given in Table 1. To give a
better impression of the inter-category similarity and also
large intra-category variations we show nine example im-
ages from each category in Dataset 2 in Figures 5 and 6.

We formed 10 different partitions of each dataset. Each
partition contains the full data divided randomly into train-
ing (50%), testing (30%), and validation (20%) sets with
the following constraints: We maintained these propor-
tions also for each category in each partition (i.e., strat-
ified partitions) and we always placed the two images of
the same specimen into the same set (training, testing, or
validation) to avoid presenting the same specimen in both
training and testing data. We also share these partitions
for public use. A separate set of deep features is provided
for each partition corresponding to a network trained using
the respective training and validation sets.

3.5. Comparison to Other Databases

In this subsection, we compare the proposed database
with other similar databases used for fine-grained classifi-
cation of freshwater macroinvertebrates (Our previous [24],
STONEFLY9 [33], EPT29 [29]). The databases in the
comparison differ in the number of images, image quality,
availability for public use, supplementary data provided
with the images, and many other parameters as described
in Table 2.

The proposed database represents a set of taxa typical
of Northern Europe, whereas EPT29 [29] contains fauna
typical of North America. The proposed database contains
images with a 256x256 pixel resolution, while the EPT29
database contains microscopy images with a very high res-
olution, i.e., 2560x1920 pixels. However, the image size of
the proposed database is large enough to capture the most
important features of different taxa. Similar images can
be obtained in the future for automatic classification with
relatively little human effort and low costs as described in
subsection 3.2, while microscopy images require a lot more
manual labor and are more expensive due to the high cost
of the microscope. Furthermore, the proposed database
occupies only 1.3 GB. Although the number of images in
EPT29 database is less than a quarter of that of the pro-
posed database, its high-resolution images occupy more
than 50 times the storage space required by the proposed
database. In the proposed database, most of the specimens
are represented by a pair of images presenting it from two
perpendicular angles. Even though EPT29 presents each
specimen with several images (avg. 3), all of them show

4
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Table 1: Database Description

# ID # Ims/Cat # Spes/Cat Category name Dataset 1 Dataset 2 Dataset 3

1 577 290 Ephemerella aroni (aurivillii) X X -
2 480 240 Leptophlebia sp. X X -
3 468 238 Baetis rhodani X X -
4 468 237 Elmis aenea larva X X -
5 465 234 Oulimnius tuberculatus larva X X -
6 460 230 Isoperla sp. X X -
7 458 230 Habrophlebia sp. X X -
8 455 228 Baetis niger X X -
9 447 232 Asellus aquaticus X X -
10 438 227 Oxyethira sp. X X -
11 436 223 Hydraena adult X X -
12 428 219 Ithytrichia lamellaris X X -
13 418 220 Simuliidae X X -
14 417 212 Micrasema gelidum X X -
15 414 208 Nemoura sp. X X -
16 409 206 Heptagenia dalecarlica X X -
17 408 204 Psychodiidae X X -
18 404 205 Taeniopteryx nebulosa X X -
19 395 202 Limnius volckmari adult X X X
20 387 194 Protonemura sp. X X X
21 378 204 Elmis aenea adult X X X
22 378 189 Leuctra sp. X X X
23 372 196 Micrasema setiferum X X X
24 367 187 Dicranota X X X
25 343 173 Ameletus inopinatus X X X
26 330 173 Philopotamus montanus X X X
27 322 174 Ceratopogonidae X X X
28 280 142 Hemerodromia X X -
29 230 121 Atherix ibis X X -
30 199 101 Plectrocnemia conspersa X - -
31 191 96 Paraleptophlebia sp. X - -
32 188 98 Hydracarina X - -
33 179 92 Oulimnius tuberculatus adult X - -
34 170 87 Hydropsyche pellucidula X - -
35 168 84 Chimarra marginata X - -
36 152 76 Leuctra nigra X - -
37 146 75 Baetis digitatus X - -
38 143 72 Siphonoperla burmeisteri X - -
39 132 67 Polycentropu flavomaculatus X - -
40 127 64 Diura nanseni X - -
41 127 66 Gyraulus sp. X - -
42 122 61 Elodes X - -
43 120 63 Ceraclea excisa X - -
44 94 48 Rhyacophila nubila X - -
45 94 48 Sericostoma personatum X - -
46 92 47 Gammarus lacustris X - -
47 83 43 Eloeophila sp. X - -
48 83 56 Sialis lutaria X - -
49 74 37 Limnephilidae X - -
50 69 35 Centroptilum luteolum X - -
51 68 34 Lepidostoma hirtum X - -
52 60 32 Hydropsyche siltalai X - -
53 57 29 Chelifera X - -
54 56 28 Chironomidae X - -
55 56 28 Rhyacophila fasciata obtilerata X - -
56 36 18 Cyrnus flavidus X - -
57 30 15 Pisidium sp. X - -
58 28 14 Silo pallipes X - -
59 25 13 Polycentropus irroratus X - -
60 24 12 Hydropsyche saxonica X - -
61 20 10 Brachyptera risi X - -
62 12 6 Agrypnia sp. X - -
63 10 6 Neureclipsis bimaculata X - -
64 7 6 Callicorixa wollastoni X - -

5
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(1) Ephemerella aroni (2) Leptophlebia sp. (3) Baetis rhodani (4) Elmis aenea larva (5) Oulimnius
tuberculatus larva

(6) Isoperla sp. (7) Habrophlebia sp. (8) Baetis niger (9) Asellus aquaticus (10) Oxyethira sp.

(11) Hydraena adult (12) Ithytrichia
lamellaris

(13) Simuliidae (14) Micrasema
gelidum

(15) Nemoura sp.

(16) Heptagenia
dalecarlica

(17) Psychodiidae (18) Taeniopteryx
nebulosa

(19) Limnius
volckmari adult

(20) Protonemura sp.

(21) Elmis aenea adult (22) Leuctra sp. (23) Micrasema
setiferum

(24) Dicranota (25) Ameletus
inopinatus

Figure 5: Example images from categories 1-25 of Dataset 2

6

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

(26) Philopotamus
montanus

(27) Ceratopogonidae (28) Hemerodromia (29) Atherix ibis

Figure 6: Example images from categories 26-29 of Dataset 2

Table 2: Comparison to other macroinvertebrate databases

Dataset 1 Dataset 2 Dataset 3 Our-previous STONEFLY9 EPT29

Number of categories 64 29 9 8 9 29
Total number of images 15,074 11,832 3,272 1,350 3,826 4,722
Number of views per sample avg. 2 avg. 2 avg. 2 1 avg. 5 avg. 3
Image resolution 256x256 256x256 256x256 (150-1000)x(150-1000) 2560x1920 2560x1920
Availability for public use X X X - X X
Availability of features X X X - X X
Availability of binary masks X X X - X X
Size of the database 1.3GB 1GB 0.25GB - 22GB 66GB

Figure 7: Left: A pair of images of a single specimen from the pro-
posed database. Right: Three views of a single specimen from the
EPT29 database.

it from a similar, dorsal, point of view. Examples of both
are shown in Figure 7.

4. Experiments

4.1. Experimental Setup

4.1.1. Evaluation Protocol

Most specimens in the database are represented by a
pair of images. Therefore, we chose specimen-based accu-
racy as the classification performance metric. Specimen-
based accuracy is calculated based on the category labels
obtained for both images (whenever two images are avail-
able): if both views agree on the category label, the spec-
imen is classified accordingly, if the category labels of dif-
ferent views do not match, the category label with highest
confidence is selected. The exact approach to evaluate the
label confidence depends on the classifier. For example,
for CNNs we compute the average network output and
use this for classification. For k-nearest neighbors classi-
fier (k-NN), the category of the closest nearest neighbor

is selected. The final classification accuracy is the propor-
tion of correctly classified specimens among all tested spec-
imens. The specimen-based accuracy is a natural choice
considering also the future semi-automatic macroinverte-
brate monitoring system, where the classification step is
fully automatic and its main objective is to classify each
specimen correctly using all available images.

4.1.2. Classifiers and Their Parameters

We conducted most experiments using a state-of-the-
art deep learning technique, i.e., CNNs. More specifi-
cally, we used the MatConvNet [46] implementation of the
AlexNet CNN architecture [27]. MatConvNet is a Mat-
lab implementation enabling deep learning either by us-
ing one of the state-of-the-art CNN architectures or de-
signing a new one. Also pretrained models are available,
but in this work, we trained each network from scratch.
The applied AlexNet architecture has five convolution lay-
ers followed by three fully-connected Multilayer Percep-
tron (MLP) layers. The last MLP layer is followed by
a softmaxloss(train)/softmax(test) layer, but in our tests,
we considered the output of the last MLP layer, because we
did not want to suppress the scores for secondary category
options (i.e., other high output values besides the winner
category) before computing the combined confidence score
used in specimen-based accuracy estimation. For training,
we used 100 training epochs and saved the model after ev-
ery epoch. For testing, we then selected the model giving
the highest accuracy on the validation set. The batch size
of 64 was used and, as the learning rate, we used directly
the logarithmic-scale learning schedule used in MatCon-

7
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vNet’s ImageNet example.
Besides direct CNN experiments, we extracted the deep

features for each dataset and partition using the respec-
tive trained AlexNet CNN-models. The features were ex-
tracted after the second MLP-layer (layer ’fc7’ in the Mat-
ConvNet example). According to the AlexNet model, the
feature vector dimension was thus 4096. These features
are provided as a supplementary material along with the
images of the proposed database.

The extracted deep features were then used to train
different classifiers, namely k-NN, nearest centroid clas-
sifier (NCC), Support Vector Machines (SVMs) [8, 10],
Random Forest (RF) [9], Random Bayes Array (RBA)
[5], Ridge Regression, regularized Extreme Learning Ma-
chine (RELM) [19], and Graph Embedded Extreme Learn-
ing Machine (GEELM) [20]. For SVMs, we used linear,
polynomial, and Radial Basis Function (RBF) kernels and
the one-against-all multi-class classification strategy. We
also applied two dimension reduction techniques, Linear
Discriminant Analysis (LDA) and Reference Vector Linear
Discriminant Analysis (RV-LDA), and used the resulting
features for classification with NCC. To optimize the pa-
rameters of the applied methods, we defined sets of possi-
ble parameter values, trained the classifiers on the training
set using each parameter value or value combination, and
selected the best parameters for each data partition based
on the performance on the validation set. The final classi-
fier was trained using the optimized parameters and both
training and validation sets.

The parameters were selected as follows: K from [1, 3,
5, 7, 9] (for k-NN), C = 10b, where b = −3, ..., 3 (SVMs,
RELM, GEELM), σ = A ∗ 10b, where b = −3, ..., 3 and A
is the mean of the distances between samples (SVM(rbf),
RELM, GEELM), p from [1,2,4] (SVM(poly)), the num-
ber of hidden layer neurons from [100, 250, 500, 1000, 1500]
(RELM, GEELM), ntree from [500, 1000, 2000, 3000, 5000]
(RF), mtry from [10, 30, 64, 90, 200] (RF). For RBA,
the number of Bayesian classifiers was selected from [500,
1000, 1500, 2000] and, for each classifier, we used 10, 30, or
64 randomly selected feature vector elements. To improve
the RBA results, we did not use feature vector elements,
whose variance in the training set was smaller than 0.05
for Dataset 2 or smaller than 0.01 for Dataset 3. Thus,
the number of elements exploited with different partitions
was varying for RBA. We did not apply RBA for Dataset
1, because for many partitions the feature variances were
too small. For RV-LDA, automatic stopping and the max-
imum of 10 iterations was used. SVM with the polynomial
kernel was not applied on Dataset 1 due to its computa-
tional complexity.

4.2. Experimental Results

4.2.1. CNN Classification

Table 3 shows specimen-based classification accuracies
obtained for all three datasets of the proposed database us-
ing the described CNN model. As expected, the accuracies

are highest for Dataset 3, which is the most balanced of
the datasets. Dataset 1 has the highest imbalance between
the categories, e.g., Callicorixa wollastoni and Neureclipsis
bimaculata have less than five training images.

Table 3: Classification accuracy of AlexNet on the proposed datasets

Data
Dataset 1 Dataset 2 Dataset 3

Partition
1 75.31 81.36 91.41
2 75.52 81.47 92.38
3 75.69 81.47 89.84
4 76.12 79.71 87.50
5 75.01 81.52 86.33
6 76.38 79.33 91.60
7 76.63 81.58 90.43
8 76.29 80.81 90.43
9 74.37 80.81 91.80
10 76.04 82.35 89.65

mean 75.74 81.04 90.14
std 0.70 0.91 1.93

The accuracies are shown separately for each data par-
tition along with their mean and standard deviation. To
give further insight into occurring errors, we also give the
average confusion matrix for Dataset 2 in Table 4 and for
Dataset 3 in Table 5. The values shown are the average
numbers of test specimens falling to each category and all
the values of 3.0 or higher have been bolded. Unless on the
diagonal, the bolded values show where the main confusion
in the classification occurs. The jth column of the confu-
sion matrix shows into which categories the test specimens
from the jth category are classified. In the optimal case,
all the specimens are classified to the jth category and the
only non-zero value appears on the diagonal. Similarly the
ith row shows from which other categories specimens have
been misclassified to the ith category.

The confusion matrix for Dataset 2 reveals that all
the 87 test specimens from category 1, Ephemerella aroni,
were always correctly classified. When considering the
sample images in Figure 5, it is evident that this cate-
gory has some distinct features that even a non-expert
can detect. For specimens from categories 17, Psychodi-
idae, and 27, Ceratopogonidae, the largest confusion values
in the matrix are 0.5. Also these categories look somehow
distinguishable to a non-expert viewer. Specimens from
categories 4, 9, 11, 13, 16, 19, 21, 24, 26, and 28 have been
classified quite successfully as well with largest confusion
values being less than 3, but these categories are already
more difficult to distinguish. For example, some specimens
from categories 13 and 19 (Simuliidae vs. Limnius volck-
mari adult) or from categories 28 and 29 (Hemerodromia
vs. Atherix ibis) look very similar. The largest confusion
has occurred between categories 6 and 20 (Isoperla sp. vs.
Protonemura sp.), categories 10 and 12 (Oxyethira sp. vs.
Ithytrichia lamellaris), categories 2 and 7 (Leptophlebia
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Table 4: Average confusion matrix of AlexNet for Dataset 2. The value at (i, j) is the average number of test specimens from category j
classified to category i.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
1 87.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
2 0.0 49.9 2.4 0.0 0.0 1.8 7.5 2.6 0.1 0.1 0.0 0.4 0.8 1.1 0.0 1.4 0.0 0.0 0.1 0.1 0.0 0.9 0.7 0.3 0.3 0.1 0.0 0.0 0.1
3 0.0 1.5 55.0 0.0 0.2 1.6 0.3 3.0 1.1 0.2 0.0 0.1 0.0 0.0 0.2 0.5 0.0 0.2 0.0 0.3 0.0 0.0 0.1 0.0 5.0 0.0 0.0 0.0 0.0
4 0.0 0.0 0.1 66.2 5.2 0.1 0.0 0.0 0.2 0.0 0.2 0.2 0.0 0.2 0.0 0.1 0.1 0.0 0.0 0.2 0.1 0.0 0.0 0.0 0.3 0.0 0.1 0.0 0.5
5 0.0 0.0 0.1 2.2 61.7 0.4 0.3 1.8 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.3 0.0 0.2 0.1 0.0 0.6 0.2 0.0 1.5 0.0 0.0 0.6 0.0
6 0.0 0.9 0.2 0.6 0.2 40.3 0.5 0.1 1.6 0.0 0.0 0.2 0.0 0.1 3.4 2.6 0.0 0.6 0.0 8.0 0.0 1.1 0.0 0.0 0.3 0.6 0.0 0.0 0.6
7 0.0 8.6 1.9 0.0 0.3 0.9 44.5 3.6 1.0 0.4 0.0 0.1 1.9 1.6 0.1 0.3 0.3 0.0 1.4 0.3 0.0 3.7 0.1 0.6 1.2 0.8 0.0 0.2 0.4
8 0.0 4.7 4.1 0.0 0.5 0.4 4.9 45.3 0.0 1.2 0.0 0.4 0.6 0.2 0.0 0.2 0.4 0.0 0.4 0.0 0.0 0.0 0.2 0.0 8.1 0.0 0.1 0.1 0.2
9 0.0 0.6 3.3 0.0 0.0 1.1 0.3 0.0 58.4 0.0 0.0 0.0 0.2 0.0 4.6 0.2 0.0 0.4 0.0 1.2 0.0 0.2 0.0 0.0 0.4 0.1 0.0 0.0 0.0
10 0.0 0.5 0.1 0.7 0.1 0.0 0.5 1.4 0.0 54.2 0.4 9.7 0.6 2.4 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.3 0.5 0.4 0.0 0.1 1.0 0.2
11 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 64.1 0.0 0.0 0.0 0.0 0.1 0.2 0.0 0.0 0.0 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2
12 0.0 0.1 0.0 0.1 0.1 0.0 0.1 0.9 0.0 8.7 0.1 53.2 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.2 0.1
13 0.0 0.3 0.2 0.0 0.0 0.0 0.5 0.8 0.0 0.3 0.0 0.0 58.0 0.2 0.0 0.3 0.2 0.0 0.5 0.0 0.0 0.0 0.1 0.4 0.0 0.1 0.0 0.0 0.2
14 0.0 0.5 0.0 0.0 0.0 0.1 0.1 0.2 0.0 0.2 0.0 0.0 0.2 49.3 0.0 1.0 0.0 0.0 0.1 0.0 0.0 0.0 5.0 1.0 0.1 0.3 0.0 0.2 0.6
15 0.0 0.2 0.3 0.1 0.3 4.6 1.3 0.0 1.5 0.0 0.0 0.0 0.0 0.0 44.9 0.2 0.0 4.4 0.0 6.2 0.0 0.5 0.0 0.0 0.1 0.0 0.0 0.0 0.0
16 0.0 0.5 0.3 0.8 0.1 1.2 0.1 0.0 0.4 0.0 0.0 0.0 0.1 0.5 0.0 48.2 0.0 0.0 0.0 1.5 0.0 0.2 0.0 0.2 0.1 0.6 0.0 0.2 2.9
17 0.0 0.0 0.0 0.3 0.3 0.0 0.2 0.1 0.0 0.0 0.8 0.2 0.5 0.6 0.0 0.0 59.3 0.0 0.6 0.0 0.0 0.0 0.2 0.2 0.1 0.0 0.1 0.8 0.0
18 0.0 0.0 0.4 0.0 0.0 1.5 0.0 0.0 1.6 0.0 0.0 0.0 0.0 0.0 5.7 0.0 0.0 54.4 0.0 4.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
19 0.0 0.0 1.2 0.1 0.3 0.0 0.9 0.7 0.0 0.0 0.1 0.0 1.1 0.2 0.1 0.1 0.1 0.0 56.9 0.0 0.0 0.0 0.1 0.0 0.3 0.0 0.0 0.1 0.2
20 0.0 0.4 0.1 0.0 0.0 10.5 0.1 0.0 1.0 0.1 0.1 0.0 0.0 0.0 2.5 2.0 0.0 2.0 0.0 34.2 0.3 0.2 0.1 0.0 0.0 0.1 0.0 0.0 0.5
21 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 60.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
22 0.0 0.4 0.6 0.0 0.2 0.9 4.5 1.0 0.5 0.3 0.0 0.1 0.1 0.1 1.1 0.0 0.0 0.0 0.4 0.9 0.0 46.0 0.3 1.1 1.6 0.7 0.1 1.0 0.2
23 0.0 0.3 0.1 0.1 0.0 0.0 0.0 0.2 0.0 0.9 0.0 0.7 0.2 4.0 0.0 0.3 0.3 0.0 0.3 0.0 0.0 0.0 50.7 0.1 0.0 0.0 0.0 0.0 0.3
24 0.0 0.9 0.0 0.0 0.0 0.5 0.2 0.0 0.6 1.0 0.0 0.0 0.4 0.5 0.0 0.7 0.0 0.0 0.0 0.5 0.0 1.0 0.2 47.7 0.2 2.9 0.0 0.6 3.8
25 0.0 0.4 1.2 0.1 1.2 0.9 1.4 6.0 0.1 0.2 0.0 0.1 1.0 0.7 0.0 0.6 0.0 0.0 0.0 0.7 0.0 0.3 0.0 0.0 30.3 0.4 0.5 0.2 0.2
26 0.0 0.9 0.1 0.0 0.0 1.2 0.2 0.1 1.2 0.0 0.0 0.0 0.0 1.2 0.1 1.2 0.0 0.0 0.0 0.2 0.0 0.1 0.2 1.9 0.3 44.8 0.0 0.0 0.5
27 0.0 0.0 0.3 0.0 0.0 0.4 0.1 0.1 0.2 0.0 0.0 0.2 0.1 0.0 0.1 0.2 0.4 0.0 0.1 0.0 0.0 0.8 0.0 0.0 0.5 0.0 51.9 0.2 0.0
28 0.0 0.0 0.0 0.4 0.2 0.0 0.5 0.7 0.2 0.8 0.0 0.4 0.1 0.0 0.1 0.0 0.1 0.0 0.0 0.1 0.0 1.3 0.0 0.9 0.9 0.3 0.0 37.5 0.9
29 0.0 0.4 0.0 0.0 0.0 0.6 0.0 0.1 0.1 0.4 0.0 0.0 0.1 0.3 0.1 1.1 0.0 0.0 0.0 0.2 0.0 0.1 0.1 2.1 0.0 0.2 0.1 0.1 24.3

Table 5: Average confusion matrix of AlexNet for Dataset 3. The
value at (i, j) is the average number of test specimens from category
j classified to category i.

19 20 21 22 23 24 25 26 27
19 57.5 0.2 0.4 0.1 1.6 0.6 0.6 0.0 0.6
20 0.1 52.3 0.1 0.7 0.4 0.2 2.3 0.2 0.0
21 0.0 0.2 61.3 0.0 0.2 0.0 0.1 0.0 0.0
22 1.7 3.2 0.0 52.0 0.4 4.5 5.5 1.7 0.0
23 0.4 0.4 0.2 0.0 54.0 0.9 0.4 0.0 0.0
24 0.1 0.3 0.0 1.8 0.7 48.1 0.8 4.5 0.0
25 0.3 2.0 0.0 1.5 1.5 0.5 39.7 1.0 0.4
26 0.0 0.4 0.0 0.4 0.2 2.2 1.7 44.6 0.0
27 0.9 0.0 0.0 0.5 0.0 0.0 0.9 0.0 52.0

sp. vs. Habrophlebia sp.), and categories 8 and 25 (Baetis
niger vs. Ameletus inopinatus). Indeed, all these category
pairs look easily confusable in Figures 5 and 6. Thus, it can
be concluded that the error sources for the CNN classifi-
cation correlates with the human (non-expert) impression
of category similarity.

Similar conclusions can be made looking at the confu-
sion matrix for Dataset 3. The specimens from categories
21, Elmis aenea adult, and 27, Ceratopogonidae, have been
classified with the highest accuracy. The largest confusion
has occurred between categories 22 and 25 ( Leuctra sp. vs.
Ameletus inopinatus), categories 22 and 24 ( Leuctra sp.
vs. Dicranota), and categories 24 and 26 (Dicranota vs.
Philopotamus montanus). Also these results agree with
the human (non-expert) impression of category similarity.

The accuracy achieved by CNNs is already beyond the
ability of a non-expert to distinguish specimens from dif-

ferent categories. Nevertheless, the database size is still
too small to efficiently train the AlexNet model having
over 6 million parameters from scratch. We have already
considered this problem in [41], where some improvement
was gained using pretrained networks and dataset enrich-
ment. Furthermore, the AlexNet architecture has not been
optimized for this particular classification task. Thus, im-
proved results are expected in the future.

We trained the networks using a Windows laptop hav-
ing Intel Core i7-7820HQ 4-core processor (at 2.90 GHz)
and 64GB of RAM. When the laptop was free from other
load, the average training times per epoch were approxi-
mately 9 minutes for Dataset 1, 7 minutes 30 seconds for
Dataset 2, and 2 minutes 10 seconds for Dataset 3.

4.2.2. Performance Comparison of Different Classifiers

The specimen-based accuracies obtained by applying
classifiers listed in Section 4.1.2 over the deep features ex-
tracted from the images are provided per data partition for
Dataset 2 in Table 6. For Dataset 1 and Dataset 3, we give
only means and standard deviations over the partitions in
Table 7. ’Regr.’ refers to Ridge Regression classifier. The
original CNN results are repeated in the first column for
easier comparison. The column is titled as MLP, because
in that case the same deep features are handled by one
more MLP layer.

The results show that for Dataset 1 and Dataset 2 the
other applied classifiers could not outperform the original
CNN results. The best performing classifier was SVM with
the RBF kernel, while the linear SVM achieved almost
similar results. SVM with the polynomial kernel, Ridge
Regression, RELM, and GEELM obtained relatively high
accuracies. As expected, the simplest classifiers, k-NN and
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Table 6: Classification accuracies of different classifiers on deep features for Dataset 2

Data
MLP k-NN NCC

LDA+ RV-LDA+ SVM SVM SVM
RF RBA Regr. RELM GEELM

Partition NCC NCC (lin) (poly) (RBF)
1 81.36 72.97 74.23 74.51 74.40 80.59 78.84 81.36 68.97 74.45 80.04 80.15 0.7664
2 81.47 71.55 74.67 72.04 72.04 80.70 77.80 80.65 68.86 72.57 80.21 79.99 0.7664
3 81.47 74.51 74.34 75.44 75.27 81.47 80.76 82.02 71.66 73.30 80.26 81.25 0.8037
4 79.71 69.24 71.11 71.44 71.38 80.65 77.19 79.82 68.70 68.42 78.29 79.11 0.7478
5 81.52 73.63 75.33 71.82 71.55 80.81 79.06 81.30 69.90 73.46 80.37 80.98 0.7314
6 79.33 71.16 72.26 69.46 69.30 79.22 76.26 78.56 67.21 71.33 78.62 78.56 0.7769
7 81.58 74.34 74.84 71.88 71.88 80.43 79.50 81.25 70.89 74.56 80.87 81.30 0.8026
8 80.81 72.92 73.96 73.85 74.01 81.25 78.34 80.98 71.05 71.93 80.43 80.37 0.7922
9 80.81 70.01 71.60 70.34 70.45 79.17 76.81 78.56 68.20 67.49 77.91 79.11 0.7785
10 82.35 71.38 74.45 72.97 73.25 81.74 78.78 82.51 71.18 72.86 80.87 81.30 0.7741

mean 81.04 72.17 73.68 72.37 72.35 80.60 78.33 80.70 69.56 72.14 79.79 80.21 77.40
std 0.91 1.79 1.47 1.84 1.86 0.85 1.35 1.34 1.41 1.01 1.09 1.01 2.28

Table 7: Classification accuracies of different classifiers on deep features for Dataset 1 and Dataset 3

Data
MLP k-NN NCC

LDA+ RV-LDA+ SVM SVM SVM
RF RBA Regr. RELM GEELM

Partition NCC NCC (lin) (poly) (RBF)
Dataset 1

mean 75.74 64.26 67.37 67.61 67.64 74.65 75.19 61.70 72.50 73.05 71.12
std 0.70 0.65 1.17 1.01 1.03 0.52 0.42 0.64 0.47 0.58 1.74

Dataset 3
mean 90.14 81.23 85.00 19.98 21.04 91.04 88.93 89.57 83.50 86.95 91.00 91.15 89.39
std 1.93 1.56 1.57 4.92 4.82 1.43 1.68 1.41 1.59 1.74 1.46 1.34 3.23

NCC, have clearly more moderate results. The worst per-
forming classifier is RF, which likely suffers from the high
dimensionality (4096) of the deep features. The feature
reduction techniques, LDA and RV-LDA, kept the NCC
performance close to the original, while the feature vector
dimensionality was significantly lower.

For the smallest dataset, Dataset 3, the results are
somewhat different. The highest accuracy was obtained
by RELM. Also the linear SVM and Ridge Regression
classifier could further improve the CNN results. The fea-
ture reduction techniques were not able to maintain the
discrimination power of the original deep features. Likely
the final feature vector dimensionality (8) is already too
low.

5. Conclusions

In this paper, we presented a new benchmark database
of benthic macroinvertebrates (often used in freshwater
biomonitoring) for the purpose of automatic fine-grained
classification. The database contains 64 categories of macroin-
vertebrates and is the largest publicly available macroin-
vertebrate database, in terms of numbers of both cate-
gories and images. We also described a semi-automatic
imaging technique, which significantly reduces the expert
time and effort along with the overall cost for water qual-
ity monitoring. Furthermore, we performed preliminary
classification experiments using deep CNNs and also with
several other well-known classifiers using the deep features
extracted from the trained CNNs. The results show that
the automatic classification methods can already outper-

form the ability of a non-expert human to distinguish be-
tween different macroinvertebrate taxa and classification
accuracy is approaching that of a trained expert.

In the future, we strive for automated macroinverte-
brate classification in freshwater biomonitoring. Once CNNs
are trained, classification is quick and, therefore, the clas-
sification step can be incorporated directly into the imag-
ing pipeline. We will further optimize the parameters and
network architecture used for CNN classification. We will
do experiments with non-square cropped regions. We will
use pretrained networks and exploit transfer learning tech-
niques. Transfer learning techniques will be necessary also
if the imaging technique is further improved and the image
properties are slightly different, e.g. in terms of lighting or
color balance, in the new images. Transfer learning will be
necessary to exploit the previously acquired learning with
the new samples.
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Highlights

• We publish a database with 64 types of freshwater
macroinvertebrates and more than 15,000 images.

• CNNs outperforms a non-expert human in classifica-
tion accuracy.

• Several other well-known classifiers are applied using
the features extracted from the CNNs.

• In most cases, the classifiers cannot further improve
the CNN results.
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