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Abstract

Deep neural networks need to make robust inference in the presence of occlu-
sion, background clutter, pose and viewpoint variations -to name a few- when the
task of person re-identification is considered. Attention mechanisms have recently
proven to be successful in handling the aforementioned challenges to some degree.
However previous designs fail to capture inherent inter-dependencies between the
attended features; leading to restricted interactions between the attention blocks.
In this paper, we propose a new attention module called Cross-Correlated Atten-
tion (CCA); which aims to overcome such limitations by maximizing the informa-
tion gain between different attended regions. Moreover, we also propose a novel
deep network that makes use of different attention mechanisms to learn robust and
discriminative representations of person images. The resulting model is called the
Cross-Correlated Attention Network (CCAN). Extensive experiments demonstrate
that the CCAN comfortably outperforms current state-of-the-art algorithms by a
tangible margin.
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1. Introduction

In this paper, we propose a Cross-Correlated Attention Network (CCAN) to
jointly learn a holistic attention selection mechanism along with discriminative
feature representations for person Re-IDentification (Re-ID). To this end, we make
use of complementary attentional information along a global and a local branch
(or feature extractor), in order to localize and focus on the discriminative regions
of the input image.

Person Re-ID refers to the task of judging whether two images, depicting peo-
ple, belong to the same individual or not. In general, the two images are ob-
tained from two distinct cameras without any overlapping views. More specif-
ically, given a query image containing the person of interest (or probe), Re-ID
aims to find all the images that contain the same identity (id) , as that of the query
image, from a large gallery set [1].

Any robust Re-ID algorithm is required to address the following challenges:
(1) viewpoint variations in visual appearance and environmental conditions due to
different non-overlapping camera views, (2) significant pose changes for the same
probe across time, space and camera views, (3) background clutter and occlusions,
(4) different individuals may have similar appearance across different cameras
or vice versa, (5) low resolution of the images limiting the use of face based
biometric systems [2]. All these factors lead to significant visual deformations
across the multiple camera views for the same person of interest.

In order to overcome these challenges, most of the early works focused on
(1) designing discriminative hand-engineered feature representations which are
invariant to lighting, pose and viewpoint changes, and occlusion or clutter [1, 3];
(2) learning a robust distance metric for similarity measurement such that the
embedded feature vectors belonging to the same class are closer to each other
compared to the ones from different classes [4, 5].

With the success of Deep Learning (DL) algorithms [6] across a large number
of tasks in computer vision, recent deep Re-ID algorithms combine both the afore-
mentioned aspects together into a unified end-to-end framework. While some
deep algorithms address Re-ID by developing distinct global feature extraction
units [7, 8], others use a hybrid model which holistically combines the global and
local features for an improved performance [9, 10]. Body-part detectors have been
pre-dominantly used to extract local features that are distinct, discriminative and
compatible with global features [11, 12]. Similarly, pose estimation, correction
and normalization networks [13, 14, 15] have also shown great potential with, or
without, part detectors in handling misalignment and viewpoint variations preva-
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lent in the Re-ID datasets. The use of such special purpose auxiliary information
tend to improve upon the methods it is applied to.

Attention based person Re-ID models have also been showing promising re-
sults as of late. Attention, as the name suggests, is comprised of two basic concep-
tual functionalities: “where to look” and “how carefully to look™. Hard-attention
often uses a window produced by, e.g, a Spatial Transformer Network (STN) [16]
that models the former with a binary mask over the input features, whereas soft-
attention simulates the latter by importance weighting of the input features [17].

Both these attention based learning approaches have been successfully inte-
grated when addressing the person Re-ID task [11, 12]. However, these models
do not capture spatial inter-dependencies (i.e, self-attention) within the input fea-
tures, thereby failing to recognize and perceive spatially distant, yet visually sim-
ilar regions. They also do not capture (or improve) any inter- (or cross-correlated)
dependencies between the separately attended regions, thus failing to boost the
overall Signal-to-Noise Ratio (SNR) in the learnt feature maps. Moreover, convo-
lutional based soft-attention blocks are not able to capture the inherent contextual
information that exist in the input features.

To address the aforementioned drawbacks, we design the CCAN, a novel yet
intuitive Cross-Correlated Attention based deep network. CCAN consists of a
novel attention module which aims to exploit and explore the correlation between
different regions at various levels of a deep model. It also benefits from a top-
down interaction scheme between the global and local feature extractors through
the different attention modules to automatically focus and extract distinct regions
in the input image for enhanced feature representation learning.

The major contributions of our work are as follows:

e A novel Cross-Correlated Attention (CCA) module to model the inherent
spatial relations between different attended regions within the deep archi-
tecture.

¢ A novel deep architecture for joint end-to-end cross correlated attention and
representational learning.

e State-of-the-art results in terms of mAP and Rank-1 accuracies across sev-
eral challenging datasets such as Market-1501 [18] and DukeMTMC-relD
[19], CUHKO3 [8] and MSMT17 [20].
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2. Related Work

Much of the earlier work in person Re-ID was focused on hand-engineered
feature representations [21, 22, 23, 24, 1] or learning a robust metric [25, 5, 26]
to overcome the associated challenges. Recent studies employ Deep Neural Net-
works (DNNG5s) for joint learning of the discriminative features and similarity mea-
sures in end-to-end frameworks [7, 27]. Since we are chiefly interested in atten-
tion methods for person Re-ID in this paper, we will not cover part/pose-based
solutions here and refer interested readers to [13, 14, 28].

To address the viewpoint/pose variations and misalignment issues commonly
present in a Re-ID system, a profound idea is to benefit from the use of attention
techniques in DNNs [29, 12, 30, 31, 11, 32, 33, 34]. Li et al. [11] used a Spatial
Transformer Network (STN) [16] as a basis for creating a form of hard-attention
to search and focus on the discriminative regions in the image, subject to a pre-
defined spatial constraint. Zhao et al. [29] designed a novel hard-attention module
(with components similar to STN) and integrated it into a CNN. This helped to
focus on more discriminative regions. Subsequently, by extracting and processing
features from the attention regions, improvements to the overall performance were
observed. AANet [33] proposed a Part Feature Network by cropping body parts
according to the location of the peak activation in the feature maps. Arguably,
hard-attention modules fail to capture the coherence between image pixels within
the attention windows due to their inflexible modelling nature. The Compara-
tive Attention Network (CAN) [31] employs LSTMs to perform soft-attention at
a holistic scale and identify discriminative regions in Re-ID images. Liu et al.
[30] proposed HydraPlus-Net (HPN) which utilizes soft-attention across multiple
scales and levels to learn discriminative representations. Dual ATtention Match-
ing networks (DuATMs) [35] use spatial bi-directional attentions along sequence
matching to learn context-aware feature representations. Wang et al. proposed
Mancs [32] and designed a soft-attentional block and a novel curriculum sam-
pling method to learn focused attention masks. In contrast to the aforementioned
algorithms, HA-CNN [12] uses both hard and soft attention modules to efficiently
learn “where to look” and “how carefully to look” simultaneously.

Recently, Zhou et al. [36] propose a novel attention regularizer along with
a novel triplet loss which consistently learns correlated attention masks from
low, mid and higher level feature maps within an interactive loop. DGNet [37]
proposed coupling person re-id learning and image generation in a unified joint
learning framework such that the re-id learning stage can benefit from the gener-
ated data with an inherent feedback loop to learning a superior embedding space.
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CAMA [38] enhances learning of traditional global representations for person
Re-ID by learning class activation maps to discover discriminative and distinct
visual features. CASN [39] designed a new siamese framework in order to learn
discriminative attention masks and enforce attention consistency among images
of the same person. Likewise, OSNet [40] designed a new aggregation gate that
dynamically fuses features at multiple different scales with channel-wise atten-
tional weights. MHAN [41] proposed the High-Order Attention (HOA) to in-
tegrate complex and higher order statistical information in learning an attention
mask so as to capture and distinguish subtle differences between the pedestrian
and the background.

In contrast to the aforementioned techniques, CCAN makes use of a novel,
yet intuitive, cross-correlated attention module which discovers and exploits inter-
correlated spatial dependencies in the learnt feature maps. It then propagates these
learnt dependencies along the feature extraction units to inherently learn robust
and discriminative features and attention maps; thereby improving the overall in-
formation gain in a data-driven fashion.

3. Cross-Correlated Attention Networks

Let ; € X be an image, with X C RH¥*W*C denoting the image-space,
where H, W and C' indicate its rows, columns and channels, respectively. In
person Re-ID, we are provided with N pairs of the form {x;, yi}ij\il with y; €
{1,---, K} representing the identity of the person depicted in x;. The aim, here,
is to learn a generic non-linear mapping ¥V : X — ‘H from the image space X
onto a latent feature space H such that, in H, embeddings coming from the same
identity are closer to each other than those of different identities. We achieve this
by exploiting the complementary nature of global and local information in Re-
ID images using a combination of two different, and complementary, learnable
attention modules. We first provide a detailed overview of the attention modules
(§3.1); followed by the overall structure of CCAN (§3.2).

3.1. Attention Layers

In CCAN, we introduce a variation of self-attention named Cross-Correlated
Attention. The Cross-Correlated Attention mechanism aims to capture, exploit
and boost spatial inter-dependencies (or cross-correlation) between different se-
lected regions.

The Cross-Correlated Attention (CC-Attention or CCA) module which aims
to model the cross-correlation (or inter-dependencies) between different feature



(©2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

maps as a means to construct the attention mask. Each CCA module accepts
two inputs and calculates the attention as a weighted combination of the input
feature maps (see Fig. 1 for a conceptual diagram). This, as will be shown em-
pirically, captures the inter-dependencies between the spatial regions in various
feature maps with only a small computational overhead.
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Figure 1: The architecture of Cross-Correlated Attention (CC-Attention) used in our model
(blue blocks in Fig. 3). CC-Attention is able to find correlated spatial locations in its two
different input feature maps, which are further processed by the subsequent processing
layers for discriminative feature learning.

The CCA block works with the so-called positional matrices q, ¢’ € RMV*C,
In our application, the positional matrices are constructed from two feature maps
Q,Q € RM*NXC yia reshaping through spacial dimension, i.e R® > q; =
Q(m,n,:) Vi e {1,... MN},Vm € {1,...,M},VYn € {1,..., N}. The ma-
trices q and ¢’ are then transformed into two feature spaces using independent
non-linear mappings g and f, respectively. The non-linear mappings are realized
through f(q)) = gb(q; Wf) and g(q;) = qb(qi Wg), where Wy, W, € REXC,
where the non-linearity ¢ : R — R acts element-wise on f and g. In our ex-
periments, we choose ¢(x) = ReLU(z) = max(0,z). These two spaces are
then used to calculate a primary attention map between the inputs at the different
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spatial locations as follows:
A=9¢([A,ATIW,) , (1)

where A’ = g(q)f(¢')", [ ., .] denotes the concatenation operation along the
width. Furthermore, « is a linear layer with weight W, € R*MN>MN [ A], - is
a measure of spatial dependencies between the ' and the j™* spatial locations
of the positional matrices g and q’ respectively; thereby realizing a measure of
cross-correlation between them. The symmetric operation described above guides
the CCA module to focus on the correlated positions in both the g and q’, which
is processed by the subsequent layers of the network. The resultant map A is then
used to generate y € RMY*X for input q as follows:

= ﬁ ([A]l; ©® ¢(h(g;))), Vi=1...MN, @)

j=1

Yi

where © is Hadamard (element-wise) product , y; is a weighted combination of
the responses at all positions denoted by 7, and h is also a non-linear layer with
its weight Wy, € RX* such that h(g;) = ¢(g; Wh). We further pass y through
a linear layer w to obtain the final output of the CC-Attention module as follows

zi=w(y)+q;, Yi=1,....mn 3)

with z = [21; -+ ; Zmn) € R and z; € R, and w(y;) = ¢(y; Wy) such
that W,, € RE*X_ The output z is reshaped to RM*N*C to match that of input
Q. In all our experiments, we have fixed the value of K to be C'/8.

An intuitive way of thinking about the CCA module is to see g and f as non-
linear signatures of elements g and q’. The cross-correlation between the non-
linear signatures acts as a gate and controls the information flow based on inter-
correlation for generating the mask. The information, here, is encoded through h.
The result is further pruned by w and generates the attention map in an additive
form. The additive form resembles the residual computing which is proven to be
beneficial in training deep architectures.

Remark 1. In the CCA module, we have introduced a symmetric cross-correlation
operation between its input feature maps q and q' to generate the attention map A
(see Eqn. 1). It thereby encapsulates symmetrical inter-dependencies between its
inputs. The standard cross-correlation operation does not take into account such
symmetric relationships between the inputs. We believe that this subtle change
makes CCA attend to highly correlated regions in both of its input feature maps.

7
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Remark 2. When Q = Q', the overall structure represents a form of Symmetric
Self-Attention (SS-Attention or SSA) that aims to model highly correlated regions
within itself. This form of symmetric self-attention is applied in the global branch,
(i.e, SSlc ) which models the intra-dependencies within the input. Further simpli-
fication of the SS-Attention module by removing the “Concat” and “ «” block
leads to the Non-Local Self-Attention module which is shown in Fig. 2. Thus we
equip the traditional self-attention module with these two important changes to
model symmetric cross-correlation attention between its two different inputs.

MN x C

Figure 2: Schematic of the Non-Local Self-Attention module as defined in [42].

3.2. Structure of the CCAN

A CCAN consists of two main branches (i.e, streams or feature extractors),
namely the global, GG, and the local, L, branch (see Fig. 3 for an overview of
the architecture of CCAN). The purpose of the global branch is to capture and
encode the overall appearance of a person, while the local branch encodes part
information. The local branch, itself, has k, sub-branches (or part-streams).

The basic building block of all branches is the Inception block of GoogLeNet [43].
The global branch makes use of three Inception blocks, {IkG}i:l along with a self-
attention module SSlc to encode the global appearance (I} marks the beginning of
the k-th level of processing in CCAN). The Inception blocks in the global stream
enable us to analyze the input at various resolutions, thereby realizing a coarse to
fine global representation. The local branch, as the name implies, attends to the
local and discriminative parts of the input image. The local branch comprises of
k, sub-branches, each intended to extract features belonging to a distinct part in
the input image. For the s-th sub-branch, we denote its Inception blocks by Iﬁ,s
with k € {2,3} and s € {1,--- ,k,} (see Fig. 3 for details). We emphasize that
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Figure 3: Architecture of CCAN. G and L denote global and local branches. The local
branch has k;, sub-branches. The local branches receive part patches from the global
branch (i.e Z& and Z$). Building blocks of the sub-branches are shown by dashed
boxes (refer to § 3.2 for more detail). L., and L;.; denote cross-entropy and triplet loss
respectively. Green arrows indicate inputs for creating part patches.

each Iﬁ, is an independent module, meaning that weights are not shared across
the £, part-streams.

In order to feed part information into local branches, we slice the feature
maps at Z& and ZS (i.e the input and output of 1) into k, horizontal equal
patches independently. Thereafter, all the sliced patches are resized to the size of
their corresponding feature maps using bilinear interpolation. Moreover, each
of the sub-branches consist of a cross-correlated attention module (i.e CC’{jS)
Vs e{l,---,k,}. Every C’C’QL’S calculates the cross-correlation between the sliced
part patches of Z& (after having been passed through Iﬁ.) and Z§' in each of the
sub-branches independently. This sharing of feature mapsbetween the attention
modules across the global and local branch within CCAN leads to the discovery
of highly correlated regions; thereby realizing a simple but effective CCA scheme
within CCAN.

The global branch is appended with a global average pooling (GAP) layer and
two fully connected (FC and FCS') layers, with the output of the FCY realizing
a d-dimensional embedding space. Similarly, the outputs of local sub-branches
are passed through GAP layers and concatenated to produce a 1024 x k, feature
vector. This is then passed through FC¥ to produce the d-dimensional embedding
vector in the local branch, which is further passed through FCZ . It should be noted
that the FCS and FCY realize representations suitable for classification (i.e, £
and £L). As such, their output dimensionality is K, the number of identities in
the training set. We will discuss this in more detail later.
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3.3. Loss function
Following the common practice in learning embeddings [44, 45, 46, 47], we
make use of a combination of classification and ranking losses (cross entropy
loss with Label-Smoothing Regularization (LSR) [48] and the semi-hard triplet
loss [49, 50], respectively), to jointly optimize the global and the local branch.
The overall loss is defined as follows:
Liop = LG+ LG+ LE + L (4)

tri tri

where the subscripts “ce” and “tri” denote the cross-entropy and triplet loss re-
spectively. Moreover, the superscripts G and L indicate the global and local
branch. We briefly describe the semi-hard triplet mining strategy used in our
algorithm for calculating the triplet loss.

Semi-hard Triplet Mining

In each mini-batch of N training samples, we mine |P| triplets of the form
{(x¢, ¥, x7) }Li'l, with the constraint that (¢, %) are in the same category, while
(x?, x}) are not. We also use the semi-hard mining strategy [49] to generate robust
triplets for training the network. More specifically, given the anchor x® and its
positive example x”, we obtain the top  semi-hard negative triplets as follows

" =<qa: argmin D7 ;
DP < DJ; Vj=1,r

s.t. D! < Dg“} :

where D! = ||z*—a’ H2 7 is set to 10 for all the datasets. Moreover, to avoid
any degeneracy, we randomly pick v different identities and sample N /v random
images from each of the selected identities to create the mini-batch. These triplets
are then used to compute the triplet embedding loss:

|P|
Lo :%;[ng_mg||2_,ymz—mz?uz+f]+ , 5)

where [y]+ = max(0, y) is the hinge loss, and 7 > 0 is a user-specified margin.

3.4. Person Re-ID by CCAN

Given a trained CCAN model and an input image x;; we first obtain its d di-
mensional global feature £ and d dimensional local feature f. We perform L2

10
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normalization on each of them separately, and then proceed to concatenate them
to obtain the joint 2d feature vector fi* = [f; f{]. Thus, given a probe image
x, from one camera view and all the gallery images {Z;} from the other camera
views, we obtain f;;‘ and { f]’-“} and compute the between-camera matching dis-
tances using the Euclidean distance. We then rank all {Z,} in ascending order
based on their distances given x; and use that to evaluate the identity of x,,.

4. Experiments

Datasets and Evaluation Protocol In this section, we show the effectiveness
of our proposed algorithm through an extensive set of experiments across three
well known person Re-ID datasets; (a) Market-1501 [18], (b) DukeMTMC-relD
(or DukeMTMC) [19], (c) CUHKO3 [8] and (d) MSMT [20]. Market-1501 has
751/750 train/test identity split, and 32, 668 images in total. DukeMTMC-relD
has 702/702 train/test identity split, and 36,411 images in total. CUHKO3 has
14,097 images in total. In order to make the re-identification task more challeng-
ing on CUHKO3, we use the 767/700 train/test identity split [51] instead of the
1367/100 standard split. The train/test id split and the test protocol are shown
in Table 1. The MSMT17 [20] dataset consists of 126,441 person images from
4,101 identities, thus constituting the largest person Re-ID dataset at present. All
person images are detected using a Faster R-CNN [52]. This dataset is collected
using 15 different cameras; and the images were captured over 4 different days
experiencing different weather conditions during a month. The training set con-
sists of 32,621 images belonging to 1,041 identities, whereas the test set con-
tains 93, 820 images belonging to the remaining 3, 060 identities. The test set is
further randomly divided into 11,659 and 82,161 images for query and gallery
sets respectively. Both mean Average Precision (mAP) and Cumulative Match-
ing Characteristic (CMC) metrics are used for measuring performance on these
datasets.

4.1. Implementation

Our CCAN model is implemented in PyTorch [62]. We use Googl.eNet-
V1 [43] with Batch Normalization [63] pretrained on Imagenet [64] as our back-
bone architecture. The dimensionality of the output feature maps of the global
branch (i.e, I§, 1§ and 1Y) is fixed to 480, 832, and 1024 respectively. Similarly,
in the local branch, the dimensionality of the output feature maps of I}, and If
is set to 832, and 1024 for every s respectively. The embedding dimension d
and the number of local parts (i.e k,) are set to 1024 and 4 across all the four

11
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Table 1: The details of evaluated datasets. dis refers to the distractor images of the
DukeMTMC-relD dataset. TS, SQ, MQ and SS stand for Test Setting, Single Query,
Multiple Query and Single Shot, respectively.

Dataset Images IDs Train | Test TS
Market1501 32,668 1501 751 750 | SQ/MQ
1404
DukeMTMC-relD | 36,411 + 702 702 SQ
408 dis
CUHKO03 14,097 1467 767 | 700 SS
MSMT17 126,441 | 4,101 | 1,041 | 3,060 SQ

Table 2: Comparison results on Market-1501 [18] dataset.

Method | SVDNet [53] | MHAN [41] | Dare [54] AOS [55] | MLEN[56] | SGGNN [57]
mAP 62.1 85.0 69.9 70.4 743 82.8
RI 823 95.1 86.0 86.5 90.0 923
Method | IANet[58] | PCB[28] | MSCAN[11]] JLML[10] | PBR[59] | MGCAM [60]
mAP 83.1 81.6 575 65.5 76.0 743
RI 94.4 93.1 80.3 85.1 90.2 83.8
Method | AANet [33] | HPN[30] | DKPM [61] | DuATM [35] | Mancs [32] | HA-CNN [12]
mAP 83.4 - 753 76.6 823 75.7
RI 93.9 76.9 90.1 91.4 93.1 91.2
Method | CASN [39] | CAR[36] | OSNet[40] | DGNet[37] | CAMA [38] | CCAN (Ours)
mAP 82.8 84.7 84.9 86.0 84.5 87.0
RI 94.4 96.1 94.8 94.8 94.7 94.6

datasets. None of the Inception and FC layers share weights between each other.
The ADAM optimizer [65] is used to train the model, with the two moment terms
(B1, B2), and the weight decay set to (0.9, 0.99) and 1 x 10~%, respectively. The
learning rate is initially set to 5 x 10~% for Market-1501 and DukeMTMC-relD;
and 1 x 103 for CUHKO3 in both the labeled and detected settings; which is
fixed for the first 150 epochs and decayed by a factor of 0.1 after every 50 epochs
thereafter. The batch size is set to 64 of 16 identities with 4 images per identity in
all the datasets. The smoothing parameter € of LSR is 0.1. The margin 7 for the
triplet loss (Refer to Eqn. 5) is set to 1 for Market-1501 and DukeMTMC-relD,
and 1.5 for CUHKO3 in both the dataset settings. The training images are first
resized to 288 x 144 and then randomly cropped to 256 x 128, followed by a
random horizontal flip. Following the protocol of [32], we apply random erasing
[66] after the 50" epoch. However, during the test phase, the images are resized to

12
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Table 3: Comparison results on DukeMTMC [19] dataset.

Method | SVDNet [53] | IDE [1] Dare [54] AOS [55] MLEN [56] | SGGNN [57]
mAP 56.8 64.2 56.3 62.1 62.8 68.2
R1 76.7 80.1 74.5 79.2 81.0 81.1
Method | TANet [58] | PCB [28] | MSCAN [11] | JLML [10] PBR [59] | MGCAM [60]
mAP 73.4 69.7 - 56.4 64.2 -
R1 87.1 83.9 - 73.3 82.1 -
Method | AANet [33] | HPN [30] | DKPM [61] | DuATM [35] | Mancs [32] | HA-CNN [12]
mAP 74.3 - 63.2 64.6 71.8 63.8
R1 87.7 - 80.3 81.8 84.9 80.5
Method | CASN [39] | CAR[36] | OSNet[40] | DGNet [37] | CAMA [38] | CCAN (Ours)
mAP 73.7 73.1 73.5 74.8 72.9 76.8
R1 87.7 86.3 88.6 86.6 85.8 87.2

256 x 128 without any such data-augmentation techniques. We report the results
after 200 epochs of training.

4.2. Comparison to State-of-the-Art Methods®
Evaluation on Market-1501

We have evaluated against a number of recently proposed methods with, or
without, the use of attention modules. Table 2 clearly shows the superior per-
formance of CCAN against all the other methods in terms of mAP and Rank-1
accuracies on the Market-1501 dataset. More specifically, CCAN improves over
the current state-of-the-art AANet by a prominent margin in the single query set-
ting. We also outperform hard and soft attention based HA-CNN by 11.3/3.4%
with respect to mAP and Rank-1 respectively in the single query setting.

Evaluation on DukeMTMC-relD

We further evaluated our proposed CCAN on the DukeMTMC-relD [19] dataset.
More variations in resolution and viewpoints due to wider camera views, and
more complex environmental layout make DukeMTMC-reID more challenging
compared to the Market-1501 dataset for the task of Re-ID. Table 3 shows that
CCAN again outperforms almost all the baseline algorithms, except AANet in
terms of Rank-1. However, we achieve higher mAP by a significant margin. We

2We report our results in bold, while we use red to report the best previous results obtained so
far.
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also outperform hard and soft attention based HA-CNN by 13.0/6.7% with re-
spect to mAP and Rank-1 respectively.

Table 4: Comparison results on CUHKO3 dataset in both the Labeled and the Detected settings.

Labeled Detected
Measure (%) | mAP | R1 | mAP | R1
MLEN [56] 49.2 | 547 | 47.8 | 52.8
IDE [1] 48.5 | 529 | 46.3 | 504
AOS [55] - - 47.1 | 434
Dare (De) [54] | 52.2 | 56.4 | 50.1 | 54.3
PCB [28] 56.8 | 619 | 544 | 60.6
SVDNet [53] - - 37.3 | 41.5
MGCAMI60] | 50.2 | 50.1 | 46.9 | 46.7
Mancs[32] 63.9 | 69.0 | 60.5 | 65.5
HA-CNNJ[12] | 41.0 | 444 | 38.6 | 41.7
CAMA [38] - - 64.2 | 66.6
OSNet [40] - - 67.8 | 72.3
CASN [39] 68.0 | 73.7 | 644 | 71.5
CCAN (Ours) | 729 | 75.2 | 70.7 | 73.0

Evaluation on CUHKO3

We have also evaluated CCAN on both the manually labeled and detected
person bounding boxes versions of CUHKO03. The 767/700 split results in a
small training set with only 7365 images against 12,936/16, 522 training im-
ages in Market-1501/DukeMTMC-relD datasets respectively. Even with such a
constrained training setting, Table 4 clearly shows that notable improvement for
CCAN against the baseline methods, including the current state-of-the-art Mancs,
in both the labeled and detected settings. Furthermore, we also outperform HA-
CNN by 31.9/30.8% and 32.1/31.3% in terms of mAP and Rank-1 in both the
settings respectively.

Evaluation on MSMT17

Table 5 shows the result of our proposed CCAN when trained and evaluated
on the new challenging MSMT17 [20] dataset. As can be seen, CCAN achieves
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a significant performance gain with regards to mAP and Rank-1 over all the base-
line algorithms. Specifically, CCAN outperforms the current state-of-the-art al-
gorithm on MSMT, i.e. Glad [67], by 19.6/14.9% in terms of mAP and Rank-1
respectively.

Table 5: Comparison results on MSMT17 dataset.

Model mAP | R-1 | R-5 | R-10
GLNet [43] 23.0 | 476 | 650 | 71.8
PDC [68] 29.7 | 58.0|73.6 | 794
Glad [67] 340 | 61.4 | 76.8 | 81.6
PCB [28] 404 | 68.2 - -
OSNet [40] 52.9 | 78.7 - -
IANet [58] 46.8 | 75.5 - -
DGNet [37] | 523 | 77.2 - -
CCAN (Ours) | 53.6 | 76.3 | 86.9 | 90.2

These results, on all the four challenging datasets mentioned above, clearly
demonstrate and validate our proposed approach of cross-correlation based joint
attention and discriminative feature learning for person Re-ID. CCAN outper-
forms all the current methods that rely only on hard, soft, or a combination of
these two types of attention.

5. Ablation Study

In this section, we undertake a detailed study of the various aspects of our
proposed CCAN framework.

5.1. Dimensionality of the embedding space.

We first evaluate CCAN for different values of d on the Market-1501 [18]
dataset. As observed in Fig. 4(a), both mAP and R1 continue to increase as d is
increased from 128 to 1024, with the highest values obtained when d is set to 1024.
Based on this experimental study, we decided to choose 1024 as the embedding
dimension d for all the experiments. It is to be noted that even with a smaller
d (such as 256), we still outperform all baseline algorithms (Refer to Table 2?).
This clearly shows that CCAN is able to learn discriminative features and achieve
state-of-the-art results for a large range of d.
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Figure 4: Ablation study of the (a) dimensionality of the embedding space (i.e. d) and (b) number
of body parts (i.e. k). Both the experiments were conducted on Market-1501 in the Single Query
setting.

5.2. Number of body parts

We further evaluated the effect of various number of parts, i.e., k, in CCAN.
Fig. 4(b) provides a detailed overview of the following evaluation for five different
values of k,. It can be seen that CCAN performs the best when k,, is set to 4,
thereby suggesting that CCAN is able to detect and focus on the 4 distinct regions
of the input person image; namely (a) head-shoulder, (b) upper-body, (c) thighs,
and (d) crus-foot. It should also be noted that even with 2 different parts, CCAN
is able to achieve competitive results against several baseline algorithms. This
indeed demonstrates that CCAN is successful in exploiting the complementary
nature of the learnt CCA attention modules even when lesser number of parts are
specified. Based on this, in all the subsequent experiments, we have fixed the
dimensionality of the embedding space (i.e. d) to 1024 and the number of parts
(i.e. kp)to 4.

5.3. Importance of various attention modules

We perform an ablation study in order to study the importance of various atten-
tion modules in CCAN. The results, evaluated on Market1501 dataset [18] single
query setting, are shown in Table 6. The following critical insights are observed
: (@) The performance of the global branch GG (Id = 1) and the local branch L (Id
= 2) by itself reads as 81.7% and 79.5% mAP respectively. (b) Though combina-
tion of G and L helps (Id = 3), incorporating only SS¢ along G (Id = 4) leads to
almost similar performance. (¢) Furthermore, Id=3 and 5 show the importance of
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adding a CCA module, i.e CC%, along L.(d) Finally CCAN improves over Id=6
with the addition of a SS¢ along G (Refer to Fig 3). This indeed verifies the
joint interactive learning of the attention modules and feature extractors to obtain
a discriminative embedding space for the person images. It is to be noted that
in all our experiments, we have kept the final structure of CCAN fixed across all
the datasets, suggesting a novel and rich architecture for the task of Re-ID that
generalises well.

Table 6: Study of the importance of various attention modules on Market-1501 dataset.

Id 1 2 3 4 5 6
Setting | G | L | G+L | G+SS¢ | G+L+CCL | CCAN
mAP | 81.7 (795 83.6 | 833 85.6 87.0
R1 |927]921]933] 929 94.3 94.6

6. Conclusions

In this paper, we propose a new attention module, called Cross-Correlated
Attention (CCA), which aims to improve the information gain by learning to fo-
cus on the correlated regions of the input image. We incorporate CCA into a
novel deep attention architecture that we name Cross-Correlated Attention Net-
work (CCAN) to achieve state-of-the-art results on three challenging datasets by
utilizing the complementary nature of the attention mechanisms. In contrast to
most existing attention based Re-ID models that use constrained attention learn-
ing algorithms, CCAN is capable of exploring and exploiting correlated interac-
tion among the attention modules to locate and focus on the discriminative regions
of the input person image without the need of any part (or pose) based estimator or
detector network in a unified end-to-end CNN architecture. In the future, we plan
to design and incorporate attention-diversity loss into CCAN to obtain further im-
provements and better focused attention maps. We also plan to study the effects
of augmenting CCAN with additional part/pose estimation or detection networks
in the future.
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