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Abstract

Domain Adaptation (DA) is a highly relevant research topic when it comes
to image classification with deep neural networks. Combining multiple source
domains in a sophisticated way to optimize a classification model can improve
the generalization to a target domain. Here, the difference in data distributions
of source and target image datasets plays a major role. In this paper, we describe
based on a theory of visual factors how real-world scenes appear in images in
general and how recent DA datasets are composed of such. We show that
different domains can be described by a set of so called domain factors, whose
values are consistent within a domain, but can change across domains. Many
DA approaches try to remove all domain factors from the feature representation
to be domain invariant. In this paper we show that this can lead to negative
transfer since task-informative factors can get lost as well. To address this, we
propose Factor-Preserving DA (FP-DA), a method to train a deep adversarial
unsupervised DA model, which is able to preserve specific task relevant factors in
a multi-domain scenario. We demonstrate on CORe50 [1], a dataset with many
domains, how such factors can be identified by standard one-to-one transfer
experiments between single domains combined with PCA. By applying FP-DA,
we show that the highest average and minimum performance can be achieved.

Keywords: Domain adaptation, Multi-Source domain adaptation, Adversarial
domain adaptation, Negative transfer, Visual factors, Domain factors

1. Introduction

The optimization of a well generalizing image classifier based on deep learn-
ing requires generally a considerable amount of training images that show high
variations in visual class appearances. In general each dataset comes with a
dataset bias [2] that is caused by a subset of all possible variations. If training
data and application data represent samples from the same distribution, i. e.
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Figure 1: The variations in the shown domain dataset can be described by different fac-
tors, as e. g. ’background’ ∈{street, office 1, office 2, parking}, ’location’ ∈{indoor, outdoor},
’lighting’ ∈{bright, dark}, ’hand’ ∈{present, absent}, ’hand posture’ ∈{flat, hollow}. We call
a factor a domain factor, if it has a constant value within each domain, but different values
across all domains. All of the mentioned factors are domain factors, except the ’hand posture’,
whose value changes also along classes.

have a similar dataset bias, this difference mostly has minor influence on the
classification performance. If both are composed of samples from different data
distributions we usually speak of domains. In this case a significant decrease
in classification performance can be expected if the domains are not handled
explicitly [3]. The research area of Domain Adaptation (DA) tries to obtain
classification models that are able to generalize well to new domains. The new
domains are usually called target domains and come with few or no labeled
data, while the domains that are used for supervised training of the network are
called source domains.

The datasets that are used for verification of DA approaches in computer
vision, i. e the different source and target domains, are often generated under
human influence to investigate a specific type of variation that the classification
model should deal with. As we will show in this paper, the difference between
the datasets is mostly based on values of visual factors, like types of lighting,
background or the camera. A domain is consequently defined by a combination
of these factors where the value of a factor is consistent in one domain, but can
change across domains. We call these factors domain factors. An example is
given in Figure 1, where the domain factors are strongly related to recording
locations. Using such a theory of visual factors allows to describe more formal
and understandable aspects of datasets, to predict effects of machine learning, in
particular of DA approaches, and to interpret and discuss experimental results
with more human interpretability than the unspecific notion of different data
distributions allows.

In general, there are two main types of DA approaches. For the first type, a
layer with a simple mathematical operation is designed to normalize out a given
aspect explicitly. The parameters of the layer can be determined for the target
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domain after training. This generally only works for biases that are known or
can easily be modeled, and includes methods like dataset based RGB mean
subtraction and batch normalization. The second type of approaches is based
on learned normalization that allows to handle general complex bias differences
that can hardly be modeled. Deep learning approaches usually enforce domain
invariance at a certain feature layer in the optimization process by an additional
loss function. Training usually involves unsupervised data of the target domain,
but also generalization of multiple source domains to a completely unknown
target domain is expected to improve in this way. In this work we want to focus
on such learned normalization approaches.

Adversarial DA approaches that are based on additionally attached domain
classifiers are often used for learned normalization. Their goal is to classify the
domain of a sample, however, they are integrated with a specific architectural or
loss function modification. With this modification the obtained feature repre-
sentation should not be informative about the domains given the training data.
In other words, what standard adversarial DA tries to do, is to completely re-
move all domain factors from the feature representation. In this paper we first
discuss theoretically that this can be harmful if factors are removed that are
generally helpful for classification, and later provide experimental evidence for
this so called negative transfer.

To counteract the negative transfer, we propose Factor-Preserving DA (FP-
DA). FP-DA is an adversarial multi-source approach that allows to preserve a
given factor by switching off competition between domains that differ in this
factor. With this method we report increased classification accuracies in a
leave-one-out domain setting, both in terms of average performance, but even
more pronounced in the minimal target domain performance, which is the more
important measure to look at for safety critical systems.

The remainder of this paper is structured as follows. We start with a formal
definition of domains and its components, followed by the introduction of our
theory of visual factors. There we show that scenes captured in images can
be described by a superposition of factors and that domains are characterized
by domain factors. This is followed by an overview of existing image datasets
and DA approaches in the context of visual factors. After this we introduce
the frequently used adversarial DA architecture by Ganin et al. [4] on which our
adapted training method, FP-DA, is based on. We will prove the advantages
of FP-DA using the example of the Core50 dataset [1] which comes with 11
domains. Our first experiments investigate how DA influences the transfer in a
multi-source domain constellation where 10 source domains and a single target
domain are given. Here we will show the effects of negative transfer when naively
applying DA. This is followed by single source transfer experiments to identify
visual factors that are removed by DA and therefore cause significant errors.
We show that Principal Component Analysis (PCA) can be a means for the
identification of those. Using the obtained knowledge from these experiments
we will finally present the best results with FP-DA in such a multi-source DA
scenario.
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Figure 2: Exemplary covariate shift between the marginal distributions of source and target
domain sample sets Xs and Xt.

2. Theory of Visual Factors

In this section we will first introduce the formal definition of domains that
is mostly used by recent DA approaches. This is followed by the introduction
of our theory of visual factors, to which we will refer throughout the remainder
of this paper.

2.1. Formal Definition of Domains

Following the definitions of [3, 5, 6], we assume to have a set of n data
samples X = {x1, ..., xn}, where each sample x represents a multi-dimensional
feature vector in the feature space X . Each sample has a corresponding label y
from Y given in Y = {y1, ..., yn}. In classification tasks, the goal is to find the
best approximation of the conditional distribution P (Y|X) of samples to class
labels. However, this approximation strongly depends on the samples included
in X. DA approaches try to make this approximation more general and evaluate
the transfer between sample sets, called domains, that come with different X.
Specifically here the training and test set are called source and target domain.
The general formal definition of source and target domain, as described in [7],
is given by Ds = {X s, P (Xs)} and Dt = {X t, P (Xt)}. Both come with a
related task, given by T s = {Ys, P (Ys|Xs)} and T t = {Yt, P (Yt|Xt)}, which
we assume to be identical here. In this work we consider only homogeneous DA,
where the feature spaces X s and X t are identical, meaning that the difference
between domains is related to the marginal distributions, i. e. P (Xs) 6= P (Xt).
This difference is mostly caused by a different sample selection bias [8] for both
sample sets and is called covariate shift. A visualization is given in Figure 2.

However, the notion of different data distributions does not allow to model
the rich constellation of multiple domains comprehensively. Therefore we target
to describe domains as combinations of a set of shared underlying factors. Based
on relations between factors in the domains the effects of DA approaches can
better be predicted and thus be influenced.

2.2. Domains in Context of Visual Factors

We start from the general notion that each high-dimensional image bi of a
scene i can be generated by a mixing function M(fi) = bi from an activation of
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Figure 3: An image bi can be generated by a function M from an activation of factors fi. For
image classification, a feature vector xi can be extracted from bi, and yi

′ can be predicted
by a label classifier. Adversarial DA approaches often use an additional domain classifier that
is connected via a gradient reversal layer (GRL).

factors fi = (f1i , f2i , ..., fli). Each factor fr can be a continuous or categorical
variable. In general, many different meaningful combinations of the mixer M
and the factors F can be found to model the same image data I. Our goal here
is not to analytically solve the factorization given a certain optimality criterium.
Instead, we like to discuss more theoretically the properties of factors in relation
to image classification tasks under domain transfer. This theory we will use
later to describe image datasets and predict and influence the effects of DA
approaches.

For the classification of an image bi, a feature extractor usually transforms
the image to a feature vector xi, ideally of a feature space where classes can easily
be separated. Based on xi, a label classifier predicts the class probabilities y′i.
In adversarial DA approaches often an additional domain classifier is attached
to the feature extractor via a gradient reversal layer, which influences only
backpropagation. The overall process with image generation and classification
is depicted in Figure 3.

In general, the factors can be categorized as task-informative or not task-
informative. Task informative factors strongly correlate with a certain class,
but are not necessarily directly related to that class. Such as for example the
factor ’hand posture’, which can give clues about the ground-truth class of a
presented object.

For domain classification, some factors can further be categorized as domain-
informative. Domain-informative factors have independent of the ground-truth
class a constant value for images from a certain domain, which changes across
domains. Such factors are often associated to fixed recording locations of each
domain, which consequently induce changing lighting and background related
factor values across domains. A domain itself therefore can be described by
a combination of factors whose values are constant within each domain, but
can differ across domains. We call these factors the domain factors. A domain
invariant feature extractor must therefore not consider domain factors, since
these can lead to misclassification if a classifier uses features based on them
and the domain changes. However, removing domain factors from the feature
representation can also have adverse effects as we will show.

In general there are infinite possibilities on how to factorize scenes by visual
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factors. The factorization could for example either be human designed, by
choosing certain factors manually, or estimated by a component analysis method
based on a given image dataset. The choice ultimately influences the number of
factors and the nameability, which is not necessarily given for the latter. Other
aspects like the mutual dependence of individual factors, which consequently
influences their values, and the controllability of a factor in a scene are also
dependent on the chosen factorization. In the end, a well-chosen factorization
might provide increased predictability and explainability of classification models
handling new factor values or new combinations of known values. However, this
also depends on the fineness of the factorization. While for some a discrimination
of indoor and outdoor is enough, for others a more fine-grained factorization is
required.

Exemplary views on how to factorize scenes can be found in scene rendering
or photography. In the rendering view the factorization is based on human
interpretable factors:

• Object factors: ’type’, ’shape’, ’color’, ’texture’, ’viewpoint’, ...

• Light source factors: ’type’, ’positioning’, ’emission power’, ...

• Camera factors: ’sensor’, ’filter’, ’processing’, ’viewpoint’, ...

The factorization and with it the number of factors is pre-defined by the ren-
dering program. The factor values and their mutual dependence are fully con-
trollable by a rendering artist. He decides for instance how chosen object colors
appear in combination with placed light sources in the rendered scene.

The photographer view differs from the rendering view in reduced controlla-
bility and increased mutual dependence of the factors. While in natural images,
the object in focus and the viewing angle are usually controlled by the photog-
rapher, there is less control over natural lighting conditions and context objects.
Certain objects usually induce other context objects, just as a car would most
likely induce asphalt.

The two presented views describe extremes regarding controllability of factor
values. Sometimes, image datasets, especially those used for DA, describe a
mixture of these. This is for example the case when objects are artificially
placed in unnatural environments, where the target object related factors are
fully controlled but the environment factors are not.

2.3. Effects of Machine Learning and DA in Context of Visual Factors

In general, a test set defines what changes regarding factor values a classifi-
cation model should be able to generalize to. First, there may be new, unseen
factor values for certain class samples in the test set, and then there could be
new combinations of already seen factor values. Both cases are depicted in
Figure 4.

New, unseen values in the test set could be related to factors of target objects,
like different object colors, as well as to context objects factors, lighting factors,
or others. A classification model requires internal class representations that
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Figure 4: Constellations of factor values in training and test set. Top: New value for factor
’location’ in the test set. Bottom: New combination of factor values in the test set. All factor
values are already included in the training set.

ignore such factors to perform well on the test set. However, standard machine
learning algorithms that are optimized on a training set are not forced to be
invariant of such factors and could therefore misclassify samples if these factors
are considered for classification. In DA, the information about the new factor
values is often implicitly provided by unsupervised samples from the target
domain. Using these samples in a sophisticated way during optimization can
help to become invariant of the changing factors.

A second case is the occurrence of new combinations of values, while each
value was already seen in other combinations during training. With standard
machine learning it is likely that combinations are learned as a single representa-
tive feature, if factor values are exclusively shown in combination with specific
values of other factors. Consequently, the learned model might fail on new
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combinations. If the factors on which the combinations are based are domain
factors, then they will be removed from the feature representation by DA al-
ready during training. Thus, there will be no influence of the new combinations
in the test set.

A general negative side effect of DA removing domain factors occurs when
the removed factors are not only domain-informative, but also task-informative
or visually close to other task-informative factors. For example, if the hand,
which holds the target object, is removed from the feature representation, the
factor ’hand posture’ could also be removed, which, as mentioned before, can
be task-informative as well. Additionally, in case of visual closeness this might
remove parts of the target object due to network architectural reasons related
to receptive field sizes.

3. Related Work

In the first part of this section we will analyze different image datasets in
relation to the concept of the introduced visual factors. The second part will
review different related single and multi-source DA approaches.

Image Datasets in Context of Visual Factors. There are many datasets
for image categorization, that are based on internet search, like [9, 10]. This
provides a large variation for the different categories in terms of objects and
their context. However, these datasets also come with strong biases, like a
western world bias [11, 12] or a capture bias [2], and do not allow control over
many factor values, like the object type or its viewing point.

In contrast, datasets used for DA research [13, 14, 15, 16] usually come with
increased control over specific factor values. There are datasets like [17, 18, 19,
20] where some domains are based on restricted internet searches, as for example
only images from Amazon or clipart type. However, the control over object in-
stances is still limited. Increased control over objects and background is usually
found in the robotics community, where the same objects are placed in front of
different backgrounds, like in CORe50 [1], but also in the well-known Office-31
DA dataset [18] where two of the three domains were generated similarly. If the
segmentation of the object is known, like in MNIST [21], the background can
virtually be changed as in MNIST-M [4] to obtain a new domain. Full control
over all factor values is usually found in rendered datasets, like the disentangle-
ment library [22], which shows simple objects in a 3D environment with changing
values for factors like size, viewing angle, color and others.

Recent Approaches in Context of Visual Factors. Recent works in
DA are mostly based on either kernel-based methods or adversarial methods.
Kernel-based methods, like maximum mean discrepancy [23], try to align fea-
ture distributions of the involved domains by using a cost function on a shared
feature extractor that should minimize the distance between distributions. This
is applied for example in [24, 25, 26, 27, 28, 29]. Approaches using adversarial
methods [30, 31] are mostly based on a regressor or a full domain classifier that
is additionally attached to the shared feature extractor. The overall target here
is that the feature activations of the shared feature extractor should not rely
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on domain-informative factors. This is often achieved by flipping the gradient
from the domain classifier at the connection to the shared feature extractor via
a gradient reversal layer [4, 32, 28, 33]. Other approaches, like [34], optimize
a first feature extractor supervisedly on the source data and after this train a
second feature extractor on the unsupervised target data, in a way that a clas-
sifier cannot determine the domain from their outputs. This is similar to the
workflow of generative adversarial networks [35].

Newly proposed approaches are usually only tested on data for which a
gain in generalization performance can be reported. The effect of negative
transfer [36, 5] is only rarely addressed, as e. g. in [37, 38, 39, 40]. Research
showed that it can occur when the label spaces of source and target domain differ
[39], or the distributions are imbalanced [40]. In [41] they state that there exist
underlying multimode structures of the data distributions of domains that can
lead to negative transfer and tackle this by using individual domain classifiers
for each class.

We see a general problem in the removal of all domain factors, which tends
to remove task-informative factors as well. Having multiple source domains
usually leads to the removal of more domain factors and therefore a pronounced
negative effect can be expected. The negative effect of irrelevant source domains
was reported in [40, 42]. Our FP-DA is designed to reduce negative transfer by
switching off competition between groups of domains. There are other methods
that try to limit or better control the competition between domains. This
is mostly done by a weighting strategy that is a based on a score that rates
the similarity of domains, either pair-wise, i.e. only competition between the
target domain and a single source domain, as in [43, 44, 45, 46, 47] or as a
weighted competition also between multiple source domains, as in [48, 49, 20,
50]. However, none of the mentioned approaches consider factor or group based
competitions as we do.

4. Our Approach

The main idea of our FP-DA is to preserve a chosen factor fc during DA. It is
based on the adversarial DA architecture from [4]. The architecture corresponds
to the typical adversarial one shown in Figure 3, where a domain classifier is used
together with a gradient reversal layer to inhibit learning of domain-informative
features in the feature extractor. The parameters of the feature extractor θe, the
label classifier θy, and of the domain classifier θd are updated in the following
way:

θe ← θe − µ(
∂Ly

∂θe
− λ∂Ld

∂θe
) (1)

θy ← θy − µ
∂Ly

∂θy
(2)

θd ← θd − µ
∂Ld

∂θd
(3)
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with L being the corresponding loss for each branch of the architecture and µ the
learning-rate. The influence of the domain classifier on the feature extraction
path is controlled by the adaptation factor λ which is smoothly increased during
optimization. For further details on the general training procedure we refer to
[4]. Originally the domain classifier was used to discriminate data from a single
source and target domain, however, it can also be used for multiple source
domains and in this case also without any data from the target domain. In each
case, all domains compete against each other in the domain classifier.

To preserve a given factor, in FP-DA we switch off competition between
domains that have different values for a chosen factor fc. For this we use the
decomposition of the gradient

∂Ld

∂θd
=
∂Ld

∂d′
· ∂d

′

∂θd
, (4)

and replace ∂Ld

∂d′ by

˜
∂Ld

∂d′
= z�

(∂Ld

∂d′

)
, (5)

where z is an m-dimensional vector corresponding to the m domains. If an
element zj = 1 then the gradient of the domain neuron dj is kept and propagated
to the parameters θd. If zj = 0 then no gradient is propagated from the neuron
dj . For a given training sample of domain k, in FP-DA we compute zj like

zj =

{
1 if fc(j) = fc(k)

0 otherwise,
(6)

to only allow competition between domains that have the same value for fc as
the current training sample. Note, for FP-DA we assume fc to be a categorical
variable. The principle of FP-DA is exemplarily depicted in Figure 5. A limita-
tion of FP-DA is that within each group of domains that share the same value
for fc, all other domain factors from the dataset must still be represented to
learn a general model.

5. Experiments

In this section we will evaluate FP-DA at the example of an object classifica-
tion task in a multi-source domain scenario. For this we will first naively apply
the standard DA method in leave-one-out experiments, where we choose one do-
main as target domain and the rest as source domains, to investigate the effects
of removing all domain factors. This is followed by one-to-one experiments, i. e.
single source transfer, where we investigate the transfer performance in context
of visual factors. Based on this we will show how factors responsible for high
transfer errors can be identified and used for the grouping that is required in
FP-DA. Finally we will show how our method is able to improve the average and
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Figure 5: Our FP-DA training method uses given groups of domains, here generated by the
values of the chosen factor fc, ’hand’, and allows competition only between domains within
each group. A training sample from the group where fc=absent is forwarded through the

domain classifier. The resulting gradient vector ∂Ld
∂d′ is element-wise multiplied by zabsent that

zeros the gradients of the domains where fc=present.

minimum performance in such a multi-source domain scenario. Note, besides
the leave-one-out and one-to-one experiments further constellations in between
are possible, however, we decided for the mentioned, since those are the most
meaningful cornercases and also tractable to do.

5.1. Experimental Setting

Dataset. For our experiments we chose the CORe50 dataset introduced
in [1]. The dataset consists of 11 distinct recording sessions, where 50 objects,
divided into 10 categories with 5 objects each, were captured while held and
rotated in a human hand. From each session a representative image of three
objects is shown in Figure 6.

Originally this dataset was meant to serve as a benchmark for continuous
learning, where class instances from new sessions were added over time and
the task was to classify the instance or the category. Nevertheless, we see this
dataset with its controlled and clean recording setting also applicable for domain
transfer investigations. Therefore we will use each session as a domain and
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1 2 3 4 5 6 7 8 9 10 11

Figure 6: Exemplary images from the 11 different sessions of the CORe50 dataset. The
background of each session is representative for each of the 50 objects. In each session a single
hand, i. e. right or left, was used exclusively for presentation. We use each session as an
individual domain.

choose category prediction as our main classification task for all experiments. To
our knowledge we are the first to use it in the domain transfer context. It can be
described mainly by the photographer view since it is based on natural images,
however, not fully, since the objects were artificially placed in the environment.
The domain factors here are mostly related to the recording location. Since
the objects are in each domain the same, they can be described as a constant
factor across domains. Clearly each domain was exclusively captured holding
the object with either the right or the left hand. However, it remains unclear
whether always the same person was presenting the object, if not, this could
describe another domain factor that is related to individual styles of presenting
and holding the objects.

Since there is only a single recording stream per domain, no clear train-
ing/test separation is possible. This would be in general no problem since most
of our results focus on generalization to a completely unknown target domain.
However, there are some results where unsupervised data of the target domain
is used during training. Therefore we chose from each session the half of the
300 images per object as fixed test data, by dividing the recording stream into
chunks of 20 images. Note, when training on domain A and testing on domain
B, independent of the application of DA, we use all images of A, but only 50%
of B, since the other 50% are reserved as unsupervised data for DA.

Implementation Details. For the baseline experiments without DA we
used the standard VGG-16 architecture from [51]. The weights are initialized
by a publicly available set of parameters that was pre-trained on the ImageNet
database. For DA experiments we attached additionally the domain classifier
after the last convolutional layer of this architecture. It consists of two fully
connected layers with 1024 neurons each, similar to [4], and a final output layer
with m neurons, corresponding to the number of domains. The adaptation
factor λ is smoothly increased during optimization from 0 to 1 with the same
update rule as presented in [4]. We chose a batch-size of 64 and an initial
learning-rate of µ = 0.0001, which was decreased over the number of steps.
On both classifiers we used dropout in the fully-connected layers and applied
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Figure 7: Multi-source leave-one-out experiments. The left out domain represents the target
domain, while the others are used as the supervised source domains. The experiments were
carried out with and without standard DA, while the latter was applied with and without
additional unsupervised (usv) samples from the target domain.

softmax on the final output. The input samples are mean normalized, but not
modified by any data augmentation method. The architecture was implemented
in TensorFlow. For all reported numbers we trained the specific architecture
10 times with randomly initialized parameters θd of the domain classifier and
randomly shuffled training data, for two epochs and averaged the classification
accuracy.

5.2. Standard Multi-Source Transfer

For the given dataset we first do leave-one-out experiments to find out how
well many source domains can generalize to a single target domain. This we do
without and with DA. For the latter case we only use the source domain data or
we further provide unsupervised data of the target domain. Even without DA
a good performance can be expected, as most domains are similar to at least
one other domain. DA without unsupervised target data should then improve
generalization for unseen combinations of factor values, while using target data
should further help in the case of new factor values.

Looking at the results without DA in Figure 7, we see that the expecta-
tions are widely met. The classification accuracy on the target domains reaches
mostly more than 90 %. The only target domains that show a comparatively
poor performance are domains 6 and 10. Looking at their visual characteristics,
we can see that they differ significantly from the others by having both strong
fine-grained edges in the background. In domain 6 caused by a carpet and in
10 caused by a fence. Interpreting these aspects as factor values, it is unclear
whether these are new values or new combinations of known values.
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The results for DA without unsupervised data show for most of the target
domains a slight drop in performance indicating negative transfer. This is can be
on the one hand site due to the additional constraint on the feature extractor by
the gradient from the domain classifier, but also due to task-informative factors
that are removed now. On domain 6 and 10 the accuracy has also only slightly
changed, which suggests that the issue here are mainly completely new factor
values and not combinations.

Looking at the results of DA with unsupervised data, the assumption about
new factor values in domain 6 and 10 can be approved with a significant increase
in accuracy. However, for other experiments, like for example on domain 1, 4,
and 8, we mostly see a weaker performance compared to DA without unsuper-
vised data. We believe that because of the increased number of domains during
training, even more factors, including task-informative factors, are now removed
from the feature representation. Compared to experiments without DA, there
is a clear performance drop on seven target domains. We explain this also by
the additional constraint and removed task-informative factors.

When comparing the results without DA to DA with unsupervised data in
total, the negative transfer for some domains balances out the strong gain for
domains 6 and 10 on average, while the latter leads to a strongly improved
minimal performance. We think that the negative transfer can be reduced by
preserving certain factors. These factors are based on mutual similarity and
difference between individual domains and thus can not easily be inferred from
the multi-source setting here.

5.3. Single-Source Transfer without Domain Adaptation

To determine error causing factors in DA we conducted one-to-one transfer
experiments without DA first, i. e. optimized the VGG-16 architecture on each
individual domain and evaluated it on all others. The results are given in
Table 1. For each target domain we also give the maximal performance among
all source domains. These maximal values are all smaller than their multi-source
counterpart in Figure 7. This means that multi-source training really builds a
more general model instead of just memorizing all domains individually.

All investigated transfers are in line with our previous multi-source experi-
ment findings. The weak performance on domain 6 and 10 as target domain are
reflected here as well, with lowest average classification accuracy. On the other
hand, when training on 10, the performance on the target domains shows the
best average and minimum performance, which indicates that the domain covers
already a large variety in background related factor values. The highest max
performance and also highest average performance is achieved on target domain
1. At first sight this might mostly be related to the simple white background.
However, as we will show in the upcoming investigation of error causing factors,
this is not the only reason.

The overall matrix shows reoccurring patterns of weak performance. This
is especially pronounced at the transfers from domain 4, 5, 6, and 8 to the
domains 2, 3, 7, 9, 11. A closer examination of the these domains reveals that
the objects presented there are exclusively held in either the right or the left
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Target Domain

1 2 3 4 5 6 7 8 9 10 11 Avg Min
S
o
u
rc
e
D
o
m
a
in

1 - 0.67 0.72 0.74 0.68 0.45 0.64 0.80 0.57 0.48 0.52 0.63 0.45

2 0.69 - 0.80 0.59 0.54 0.55 0.72 0.60 0.76 0.52 0.69 0.65 0.54

3 0.69 0.78 - 0.52 0.51 0.36 0.72 0.60 0.74 0.40 0.66 0.60 0.36

4 0.70 0.46 0.50 - 0.68 0.70 0.51 0.72 0.36 0.68 0.52 0.58 0.36

5 0.67 0.42 0.46 0.68 - 0.62 0.40 0.72 0.37 0.54 0.34 0.52 0.34

6 0.68 0.46 0.44 0.72 0.68 - 0.47 0.67 0.38 0.54 0.49 0.55 0.38

7 0.70 0.75 0.75 0.58 0.52 0.47 - 0.65 0.66 0.47 0.76 0.63 0.47

8 0.83 0.59 0.57 0.76 0.71 0.59 0.57 - 0.48 0.52 0.50 0.61 0.48

9 0.52 0.66 0.74 0.42 0.37 0.30 0.57 0.43 - 0.40 0.66 0.51 0.30

10 0.75 0.69 0.63 0.81 0.75 0.69 0.59 0.74 0.60 - 0.64 0.69 0.59

11 0.57 0.66 0.79 0.48 0.42 0.40 0.74 0.53 0.66 0.48 - 0.57 0.40

Avg 0.68 0.61 0.64 0.63 0.59 0.51 0.59 0.64 0.56 0.50 0.58

Max 0.83 0.78 0.80 0.81 0.75 0.70 0.74 0.80 0.76 0.68 0.76

Table 1: One-to-one transfer experiments without DA. The results show the classification
accuracy. Good performance is indicated by bright green color, while bad performance by
bright red color. Left-hand domains are marked in blue.

hand. A transfer with a change in hands clearly leads to a performance drop in
comparison to a transfer between the same hands. Besides the hand there might
be other less prominent error factors. These we like to reveal in the following.

5.4. Identification of error causing factors with PCA

In this section we try to determine error factors in a systematic way. For this
we apply PCA on the one-to-one results of Table 1, where each row is treated
as a sample with 11 dimensions, and the gaps for transfers between the same
domain are filled with 1.0 . The total variance in the accuracy is 0.26, where
the first component describes already 73% of it. The activation of the first
component in Figure 8 shows a clear grouping in domains with high positive
and high negative values. These two groups perfectly represent the used hand.
Additionally, the absolute values of the activation seem to carry information
how clear on one side of the target object the hand is positioned within the
image. Domain 1 describes here a special case with an activation close to zero,
indicating that the hand is visible mostly at a neutral position below the target
object.

The second component explains 15% of the variance and shows a rather
continuous distribution of activation in Figure 8. We think that is related to
light source factors, resulting in different average contrasts for each domain.
Positive values indicate here a comparable low contrast of the objects and the
holding hand to the background, which is pronounced at domain 5, 6, 9 and
partly 11.
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Figure 8: PCA analysis of Table 1: The sign of the 1st component activation is in line with
the hand that was used. Positive values refer to left hand domains (marked blue), negative
values to right hand domains. Note the low absolute value for domain 1 which indicates
the hand showing the object in a neutral position from the bottom. Positive values in the
2nd component could be related to domains with low contrast, while negative ones to high
contrast. The 3rd component might indicate highly textured background by high positive
values.

The third component represents 12% of the variance. The activation in
Figure 8 is rather continuous again and might correlate with the strength of
background texture, having the highest values for domains 6, 10 and 11.

The activation of PCA components gives hints about possible domain fac-
tors. Instead of our manual interpretation, it would also be possible to correlate
the PCA activation with image metadata like, time of the day, the time of
the year or the GPS location of the recording. However, interpretability is not
necessarily given, since the PCA suggested factorization could also be a mix
of multiple human interpretable factors. Besides PCA also other factorization
methods like independent component analysis could have been applied, possibly
leading to less clear results due to the missing orthogonality of the components.

Note, since starting from a pre-defined domain separation on which the trans-
fer matrix is based, PCA only allows to detect error causing factors that are
consistent throughout the pre-defined domains. In other words, factors that
vary within a pre-defined domain, e. g. on category level, can not be identified
here.

5.5. Single-Source Transfer with Domain Adaptation

For the transfer from one source domain to one target domain with DA, we
need to additionally provide unsupervised data of the target domain. Adversar-
ial DA will try to remove domain factors between these two domains. Before, we
identified the hand as one such factor and also showed that a changing hand is
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Target Domain (w/ usv data for training)

1 2 3 4 5 6 7 8 9 10 11 Avg Min
S
o
u
rc
e
D
o
m
a
in

1 - 0.08 -0.06 0.04 0.07 0.21 -0.01 0.04 -0.07 0.22 0.09 0.06 0.49

2 0.04 - 0.02 -0.02 -0.02 -0.07 0.04 -0.02 -0.04 0.05 0.03 0.00 0.48

3 -0.03 0.02 - -0.11 -0.17 -0.02 0.02 -0.10 0.01 0.06 0.07 -0.02 0.33

4 0.05 0.00 -0.05 - 0.12 0.06 -0.05 0.07 -0.08 0.05 -0.03 0.01 0.28

5 0.04 0.06 -0.05 0.02 - 0.09 -0.03 0.05 -0.05 0.12 0.00 0.02 0.32

6 0.08 0.06 -0.03 0.10 0.14 - -0.01 0.11 -0.08 0.17 -0.02 0.05 0.31

7 -0.09 0.04 0.02 -0.09 -0.09 0.02 - -0.16 -0.01 0.03 0.02 -0.03 0.43

8 0.00 -0.04 -0.08 0.03 0.09 0.08 -0.07 - -0.08 0.17 -0.04 0.01 0.41

9 0.05 0.10 0.07 -0.08 -0.05 -0.02 0.11 -0.02 - -0.02 0.11 0.03 0.28

10 0.03 -0.05 -0.13 0.01 0.00 0.01 -0.07 0.01 -0.15 - -0.05 -0.04 0.45

11 -0.04 0.01 -0.01 0.00 -0.09 -0.03 0.00 -0.11 0.07 -0.02 - -0.02 0.34

Avg 0.01 0.03 -0.03 -0.01 0.00 0.03 -0.01 -0.01 -0.05 0.08 0.02

Max 0.83 0.80 0.82 0.83 0.83 0.76 0.75 0.84 0.75 0.74 0.78

Table 2: One-to-one transfer experiments with DA. The difference in percentage points to
Table 1 is shown. Min and Max refer to absolute accuracies. Left-hand domains are marked
in blue.

the main cause of classification error. Consequently, the removal of that factor
should lead to an increased performance.

However, when looking at the results in Table 2, usually a further decrease
in performance is visible for changing hands. This is especially the case for the
transfer from domain 3 to 5 with a decrease of 17 percentage points and 7 to 8
with 16 percentage points. An increase is mainly observed on transfers where
the hand does not change between domains. The biggest improvements can be
found in the transfers from domain 1 to 10 and 1 to 6 with an increase of 22
and 21 percentage points. We think that this significant increase is also caused
by the same effect as in the multi-source experiments, where the unsupervised
data of 6 and 10 has provided the biggest benefit by introducing the new factor
values related to the background. The average increase in accuracy for transfers
where the hand does not change is at 5.7 percentage points, while the average
decrease for changing hands is -3.8 percentage points.

The highest minimum performance has dropped significantly from former
59% accuracy on source domain 10 to now 49% on domain 1, indicating the
strong negative transfer caused by DA.

Our results clearly indicate strong negative transfer, caused by removing
the factor ’hand’ through DA. The reason for this is on one side that the hand
is simultaneously a task-informative factor, by its posture giving clues about
the object category. On the other side it has visual closeness to the target
object, which means removing it can harm classification significantly due to
fixed receptive field sizes in the architecture.
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Figure 9: Multi-source DA with our proposed FP-DA. 1st, 2nd, and 3rd describe the grouping
based on the three PCA components, rand. a random permutation. FP-DA with the domain
grouping based on the used hand (1st) and usv data shows the highest average and highest
minimum performance among all constellations.

5.6. FP-DA for Multi-Source Domain Adaptation

In this section we like to investigate how FP-DA can reduce negative transfer
by preserving a given factor. The best candidate for such a factor is the hand,
which also corresponds to the first PCA component. Similarly, we will also eval-
uate the groupings defined by the sign of the activation of the second and third
PCA eigenvector. As FP-DA switches off competition between certain pairs of
domains, in general it leads to a decreased influence of the domain classification
path. To investigate this effect, we also tested several random factors, each
having 2 groups with 5 respectively 6 domains. The results, together with the
previous multi-source experiments, can be found in Figure 9.

Looking at the performance when defining the groups based on the 1st PCA
component, i. e. based on the hand used for presenting, the overall highest aver-
age and highest minimum accuracy can be reached. The increase in comparison
to DA [4] with unsupervised data is at 1.9 and 1.1 percentage points, respec-
tively. The detailed results for each domain reveal that FP-DA manages mostly
to reduce the negative transfer that was caused by standard DA, in certain cases
an even better classification accuracy than without DA could be achieved. This
applies for example to domain 4 and 7. Overall, here the expectations of FP-DA
were fulfilled and its effectiveness was proven.

Using the 2nd or the 3rd PCA component provides only a reduced gain of
average performance of about 1.2 percentage points. A similar gain is achieved
for the random groupings. This indicates that in general a reduced competition
and thus influence of the domain path is beneficial here, but not the removal of
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2nd and 3rd PCA component in particular.
Another strategy to deal with the changing hand would be to augment the

data by horizontal flipping. However, this is not a method to deal with domain
factors in general and was therefore not considered here.

6. Conclusion

In this work we discussed that current domain transfer literature lacks of
more specific investigations of causes of negative transfer. Using only different
data distributions as explanation for effects in DA is in our opinion not suf-
ficient. For in-depth analysis we introduced in this paper our factor theory,
which explains the appearance of an image by a mixture of multiple factors
with different values that describe a scene. We discussed that in general there is
no unique factorization of a given dataset, however, a well-chosen factorization
can help to describe characteristics in more detail. With focus on DA datasets,
certain factors can be categorized as domain-informative and domains can be
described by a combination of these factors, the domain factors. For a given
classification task, certain factors can further be described as task-informative.
With these categorizations we used the factor theory to explain effects of ma-
chine learning and DA, where the challenge lies mainly in new factor values or
new combinations of such in the test data.

The standard adversarial DA approach [4], targets to remove all domain fac-
tors from the feature representation to become domain invariant. We discussed
that this can lead to negative transfer if such factors are not only domain-
informative, but also task-informative, or visually close to task-informative fac-
tors. We showed this in extensive experiments, where we first saw decreased
performances in certain multi-source constellations caused by DA and later in-
vestigated this in detail by one-to-one experiments. There we found, supported
by a PCA analysis, that without DA the hand holding the object was the most
error causing factor in the transfer between domains where different hands were
used. The subsequent application of DA on these transfers showed a further
decrease in performance by the removal of this domain factor ’hand’ and con-
firmed our hypothesis about negative transfer caused by DA. We think that the
removal of this domain factor also removed the task-informative factor ’hand
posture’.

To actively preserve such factors and consequently reduce negative transfer,
we proposed FP-DA, a training method for multi-source DA that allows only
competition within groups of domains that have the same value for the factor
to preserve. Using FP-DA, we showed in our experiments that by preserving
the factor ’hand’ the negative transfer could be reduced and the highest average
and highest minimum classification accuracy could be achieved.
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thesis, École Polytechnique Fédérale de Lausanne, 2012.

[8] W. M. Kouw, An introduction to domain adaptation and transfer learning,
CoRR abs/1812.11806 (2018).

[9] J. Deng, W. Dong, R. Socher, L. Li, K. Li, F. Li, Imagenet: A large-
scale hierarchical image database, in: Conference on Computer Vision and
Pattern Recognition (CVPR), IEEE Computer Society, 2009, pp. 248–255.

[10] G. Griffin, A. Holub, P. Perona, Caltech-256 object category dataset (2007).

[11] T. DeVries, I. Misra, C. Wang, L. van der Maaten, Does object recogni-
tion work for everyone?, in: Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, IEEE Computer Society, 2019, pp. 52–59.

[12] S. Shankar, Y. Halpern, E. Breck, J. Atwood, J. Wilson, D. Sculley, No
classification without representation: Assessing geodiversity issues in open
data sets for the developing world, CoRR abs/1711.08536 (2017).

[13] X. Peng, B. Sun, K. Ali, K. Saenko, Learning deep object detectors from 3d
models, in: International Conference on Computer Vision (ICCV), IEEE
Computer Society, 2015, pp. 1278–1286. doi:10.1109/ICCV.2015.151.

[14] D. Li, Y. Yang, Y. Song, T. M. Hospedales, Deeper, broader and artier
domain generalization, in: International Conference on Computer Vision
(ICCV), IEEE Computer Society, 2017, pp. 5543–5551. doi:10.1109/ICCV.
2017.591.

20

http://dx.doi.org/10.1109/CVPR.2011.5995347
http://dx.doi.org/10.1109/ICCV.2015.151
http://dx.doi.org/10.1109/ICCV.2017.591
http://dx.doi.org/10.1109/ICCV.2017.591


[15] P. Koniusz, Y. Tas, H. Zhang, M. T. Harandi, F. Porikli, R. Zhang, Museum
exhibit identification challenge for the supervised domain adaptation and
beyond, in: European Conference on Computer Vision (ECCV), volume
11220 of Lecture Notes in Computer Science, Springer, 2018, pp. 815–833.
doi:10.1007/978-3-030-01270-0\_48.

[16] X. Peng, B. Usman, K. Saito, N. Kaushik, J. Hoffman, K. Saenko, Syn2real:
A new benchmark forsynthetic-to-real visual domain adaptation, CoRR
abs/1806.09755 (2018).

[17] H. Venkateswara, J. Eusebio, S. Chakraborty, S. Panchanathan, Deep
hashing network for unsupervised domain adaptation, in: Conference on
Computer Vision and Pattern Recognition (CVPR), IEEE Computer So-
ciety, 2017, pp. 5385–5394. doi:10.1109/CVPR.2017.572.

[18] K. Saenko, B. Kulis, M. Fritz, T. Darrell, Adapting visual category mod-
els to new domains, in: K. Daniilidis, P. Maragos, N. Paragios (Eds.),
European Conference on Computer Vision (ECCV), volume 6314 of Lec-
ture Notes in Computer Science, Springer, 2010, pp. 213–226. doi:10.1007/
978-3-642-15561-1\_16.

[19] A. Bergamo, L. Torresani, Exploiting weakly-labeled web images to im-
prove object classification: a domain adaptation approach, in: Conference
on Neural Information Processing Systems (NIPS), Curran Associates, Inc.,
2010, pp. 181–189.

[20] X. Peng, Q. Bai, X. Xia, Z. Huang, K. Saenko, B. Wang, Moment match-
ing for multi-source domain adaptation, in: International Conference on
Computer Vision (ICCV), IEEE Computer Society, 2019, pp. 1406–1415.
doi:10.1109/ICCV.2019.00149.

[21] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning ap-
plied to document recognition, Proceedings of the IEEE 86 (1998) 2278–
2324.

[22] F. Locatello, S. Bauer, M. Lucic, G. Raetsch, S. Gelly, B. Schölkopf,
O. Bachem, Challenging common assumptions in the unsupervised learning
of disentangled representations, in: International Conference on Machine
Learning (ICML), volume 97 of Proceedings of Machine Learning Research,
2019, pp. 4114–4124.

[23] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, A. J. Smola,
A kernel two-sample test, The Journal of Machine Learning Research 13
(2012) 723–773.

[24] E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, T. Darrell, Deep domain
confusion: Maximizing for domain invariance, CoRR abs/1412.3474 (2014).

21

http://dx.doi.org/10.1007/978-3-030-01270-0_48
http://dx.doi.org/10.1109/CVPR.2017.572
http://dx.doi.org/10.1007/978-3-642-15561-1_16
http://dx.doi.org/10.1007/978-3-642-15561-1_16
http://dx.doi.org/10.1109/ICCV.2019.00149


[25] M. Long, Y. Cao, J. Wang, M. I. Jordan, Learning transferable features
with deep adaptation networks, in: International Conference on Machine
Learning (ICML), volume 37 of JMLR Workshop and Conference Proceed-
ings, JMLR.org, 2015, pp. 97–105.

[26] M. Long, H. Zhu, J. Wang, M. I. Jordan, Unsupervised domain adaptation
with residual transfer networks, in: D. D. Lee, M. Sugiyama, U. von
Luxburg, I. Guyon, R. Garnett (Eds.), Conference on Neural Information
Processing Systems (NIPS), 2016, pp. 136–144.

[27] M. Long, Y. Cao, Z. Cao, J. Wang, M. I. Jordan, Transferable repre-
sentation learning with deep adaptation networks, IEEE Transactions on
Pattern Analysis and Machine Intelligence 41 (2019) 3071–3085.

[28] K. Bousmalis, G. Trigeorgis, N. Silberman, D. Krishnan, D. Erhan, Domain
separation networks, in: Conference on Neural Information Processing
Systems (NIPS), 2016, pp. 343–351.

[29] M. Karimpour, S. Noori Saray, J. Tahmoresnezhad, M. Pourmah-
mood Aghababa, Multi-source domain adaptation for image classification,
Machine Vision and Applications 31 (2020) 44.

[30] E. Tzeng, J. Hoffman, T. Darrell, K. Saenko, Simultaneous deep transfer
across domains and tasks, in: International Conference on Computer Vision
(ICCV), IEEE Computer Society, 2015, pp. 4068–4076. doi:10.1109/ICCV.
2015.463.

[31] H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand,
Domain-adversarial neural networks, CoRR abs/1412.4446 (2014).

[32] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette,
M. Marchand, V. S. Lempitsky, Domain-adversarial training of neural
networks, Journal of Machine Learning Research 17 (2016) 59:1–59:35.

[33] M. Long, Z. Cao, J. Wang, M. I. Jordan, Conditional adversarial domain
adaptation, in: Conference on Neural Information Processing Systems
(NeurIPS), 2018, pp. 1647–1657.

[34] E. Tzeng, J. Hoffman, K. Saenko, T. Darrell, Adversarial discrimina-
tive domain adaptation, in: Conference on Computer Vision and Pat-
tern Recognition (CVPR), IEEE Computer Society, 2017, pp. 2962–2971.
doi:10.1109/CVPR.2017.316.

[35] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. C. Courville, Y. Bengio, Generative adversarial nets, in:
Conference on Neural Information Processing Systems (NIPS), 2014, pp.
2672–2680.

22

http://dx.doi.org/10.1109/ICCV.2015.463
http://dx.doi.org/10.1109/ICCV.2015.463
http://dx.doi.org/10.1109/CVPR.2017.316


[36] M. T. Rosenstein, Z. Marx, L. P. Kaelbling, T. G. Dietterich, To transfer or
not to transfer, in: Conference on Neural Information Processing Systems
(NIPS) Workshop on Transfer Learning, volume 898, 2005, pp. 1–4.

[37] S. Schrom, S. Hasler, Effects of domain awareness in generalizing over
cameras in road detection, in: Machine Learning Reports 03/2017, 2017.

[38] S. Schrom, S. Hasler, Domain mixture: An overlooked scenario in do-
main adaptation, in: International Conference On Machine Learning
And Applications (ICMLA), IEEE Computer Society, 2019, pp. 22–27.
doi:10.1109/ICMLA.2019.00013.

[39] Z. Cao, K. You, M. Long, J. Wang, Q. Yang, Learning to transfer examples
for partial domain adaptation, in: Conference on Computer Vision and
Pattern Recognition (CVPR), IEEE Computer Society, 2019, pp. 2985–
2994. doi:10.1109/CVPR.2019.00310.

[40] L. Ge, J. Gao, H. Q. Ngo, K. Li, A. Zhang, On handling negative transfer
and imbalanced distributions in multiple source transfer learning, Statisti-
cal Analysis and Data Mining 7 (2014) 254–271.

[41] Z. Pei, Z. Cao, M. Long, J. Wang, Multi-adversarial domain adaptation, in:
S. A. McIlraith, K. Q. Weinberger (Eds.), AAAI Conference on Artificial
Intelligence, AAAI Press, 2018, pp. 3934–3941.

[42] L. Duan, D. Xu, S. Chang, Exploiting web images for event recognition
in consumer videos: A multiple source domain adaptation approach, in:
Conference on Computer Vision and Pattern Recognition (CVPR), IEEE
Computer Society, 2012, pp. 1338–1345. doi:10.1109/CVPR.2012.6247819.

[43] J. Guo, D. J. Shah, R. Barzilay, Multi-source domain adaptation with
mixture of experts, in: Conference on Empirical Methods in Natural Lan-
guage Processing, Association for Computational Linguistics, 2018, pp.
4694–4703.

[44] Y. Mansour, M. Mohri, A. Rostamizadeh, Domain adaptation with mul-
tiple sources, in: Conference on Neural Information Processing Systems
(NIPS), Curran Associates, Inc., 2008, pp. 1041–1048.

[45] I. Redko, N. Courty, R. Flamary, D. Tuia, Optimal transport for multi-
source domain adaptation under target shift, in: Conference on Artificial
Intelligence and Statistics (AISTATS), volume 89 of Proceedings of Machine
Learning Research, PMLR, 2019, pp. 849–858.

[46] S. Zhao, G. Wang, S. Zhang, Y. Gu, Y. Li, Z. Song, P. Xu, R. Hu, H. Chai,
K. Keutzer, Multi-source distilling domain adaptation, in: AAAI Confer-
ence on Artificial Intelligence, AAAI Press, 2020, pp. 12975–12983.

23

http://dx.doi.org/10.1109/ICMLA.2019.00013
http://dx.doi.org/10.1109/CVPR.2019.00310
http://dx.doi.org/10.1109/CVPR.2012.6247819


[47] R. Xu, Z. Chen, W. Zuo, J. Yan, L. Lin, Deep cocktail network: Multi-
source unsupervised domain adaptation with category shift, in: Conference
on Computer Vision and Pattern Recognition (CVPR), IEEE Computer
Society, 2018, pp. 3964–3973. doi:10.1109/CVPR.2018.00417.

[48] Y. Li, M. Murias, G. Dawson, D. E. Carlson, Extracting relationships by
multi-domain matching, in: Conference on Neural Information Processing
Systems (NeurIPS), 2018, pp. 6799–6810.

[49] S. Rakshit, B. Banerjee, G. Roig, S. Chaudhuri, Unsupervised multi-
source domain adaptation driven by deep adversarial ensemble learn-
ing, in: German Conference on Pattern Recognition (GCPR), volume
11824 of Lecture Notes in Computer Science, Springer, 2019, pp. 485–498.
doi:10.1007/978-3-030-33676-9\_34.

[50] H. Wang, W. Yang, Z. Lin, Y. Yu, Tmda: Task-specific multi-source
domain adaptation via clustering embedded adversarial training, in: In-
ternational Conference on Data Mining (ICDM), IEEE Computer Society,
2019, pp. 1372–1377.

[51] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-
scale image recognition, in: International Conference on Learning Repre-
sentations (ICLR), 2015.

24

http://dx.doi.org/10.1109/CVPR.2018.00417
http://dx.doi.org/10.1007/978-3-030-33676-9_34

	1 Introduction
	2 Theory of Visual Factors
	2.1 Formal Definition of Domains
	2.2 Domains in Context of Visual Factors
	2.3 Effects of Machine Learning and DA in Context of Visual Factors

	3 Related Work
	4 Our Approach
	5 Experiments
	5.1 Experimental Setting
	5.2 Standard Multi-Source Transfer
	5.3 Single-Source Transfer without Domain Adaptation
	5.4 Identification of error causing factors with PCA
	5.5 Single-Source Transfer with Domain Adaptation
	5.6 FP-DA for Multi-Source Domain Adaptation

	6 Conclusion

