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Abstract

This paper proposes a novel pixel-level distribution regularization scheme (DRSL) for self-supervised domain adaptation of
semantic segmentation. In a typical setting, the classification loss forces the semantic segmentation model to greedily learn the
representations that capture inter-class variations in order to determine the decision (class) boundary. Due to the domain-shift, this
decision boundary is unaligned in the target domain, resulting in noisy pseudo labels adversely affecting self-supervised domain
adaptation. To overcome this limitation, along with capturing inter-class variation, we capture pixel-level intra-class variations
through class-aware multi-modal distribution learning (MMDL). Thus, the information necessary for capturing the intra-class vari-
ations is explicitly disentangled from the information necessary for inter-class discrimination. Features captured thus are much
more informative, resulting in pseudo-labels with low noise. This disentanglement allows us to perform separate alignments in
discriminative space and multi-modal distribution space, using cross-entropy based self-learning for former. For later, we propose
novel stochastic mode alignment method, by explicitly decreasing the distance between the target and source pixels that map to
the same mode. The distance metric learning loss, computed over pseudo-labels and backpropagated from multi-modal modeling
head, acts as the regularizer over the base network shared with the segmentation head. The results from comprehensive experiments
on synthetic to real domain adaptation setups, i.e., GTA-V/SYNTHIA to Cityscapes, show that DRSL outperforms many existing
approaches (a minimum margin of 2.3% and 2.5% in mIoU for SYNTHIA to Cityscapes).

Keywords: Semantic Segmentation, Self-supervised Learning, Domain Adaptation, Multi-modal distribution learning.

1. Introduction

In recent years, deep neural network based semantic segmen-
tation models have achieved considerable success. This success
is much reliant on the large pixel-level annotated dataset over
which these models are trained. However, like many other deep
neural network based models, semantic segmentation models
suffer from considerable performance degradation when tested
on images from the domain different than then one used in
training. This problem, attributed to the domain shift, is ex-
acerbated in semantic segmentation algorithms since many of
them are trained on the synthetic dataset, due to lack of large
real-world annotated datasets, and are tested over the real-world
images. Retraining or fine-tuning for new domains is expen-
sive, time consuming, and in many cases not possible due to
the large number of ever-changing domains, especially in case
of autonomous vehicles, and unavailability of annotated data.

To overcome domain shift, unsupervised domain adaptation
(UDA), has been employed with reasonable success [1, 2, 3],
but state-of-the-art is still lacking desired accuracy. Many un-
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supervised domain adaptation algorithms for semantic segmen-
tation [4, 5, 6, 7, 8, 9, 10] perform global marginal distribu-
tion alignment through adversarial learning to translate the in-
put image or feature volume or output probability tensor from
one domain to other. The adversarial loss looks at the whole
tensor (image/feature or output probability) even when the ob-
jective is to improve the pixel-level label assignments [6], more-
over aligning marginal distributions does not guarantee pre-
serving the discriminative information across the domain [11].
Self-supervised learning methods [3, 12, 13, 14, 2, 7, 15] (ei-
ther independently or along with adversarial learning ) try to
overcome this challenge by back-propagating the cross-entropy
loss computed over pixel-level pseudo-labels generated by the
source model. Quality of these pseudo-labels is dependent
upon the generalization capacity of the classifier and effects
overall adaptation process. The deep neural network based se-
mantic segmentation model when trained by minimizing cross-
entropy loss, greedily learns representations that capture inter-
class variations. When optimally trained these inter-class vari-
ations should help map accurate decision boundary, projecting
pixels from different classes to different sides of it (decision
boundary). However, due to the domain shift, the decision
boundary is not aligned in target domain, resulting in noisy
pseudo-labels leading to poor self-supervised domain adapta-
tion.

Previous works [16, 17] have shown discriminative clus-
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Figure 1: Separately capturing pixel-level intra-class variations and inter-class discriminative information, enables us to perform different
alignment operations, i.e. class aware mode alignment & cross-entropy based decision boundary alignment. A & B are consistent in-term of

being on same side of decision boundary, but variant enough to map to different modes.

tering on target data and moment matching across domains
helps in adaptation . CAG-UDA [11] & [18] tried to align the
class aware cluster centers across domains for better adaptation.
However, visual semantic classes exhibit large set of variations,
due to difference in texture, style, color, pose, illumination etc..
These variations are generally assumed to be across instance,
e.g. two different types of cars, but they do manifest frequently
in the same instance too, e.g. pixels belonging to different road
locations or to different parts of car. Class aware single cluster
based alignment might align centers of the source and target do-
main without aligning overall distribution, leaving classes with
large variations vulnerable to misclassification in target domain.
Learning to capture intra-class variations by representing each
class with multiple modes and aligning the modes across do-
main might overcome these challenges.

Therefore, we propose a novel class aware multi-modal dis-
tribution alignment method for unsupervised domain adaption
of semantic segmentation model. We combine together the
ideas of distribution alignment and pseudo-label based adap-
tation, however, instead of just using discriminatively learned
features during the adaptation, we explicitly learn representa-
tions separately. In addition to learning the inter-class variation
through minimizing cross-entropy loss, i-e the pixel-level intra-
class features variations are captured by learning a multi-modal
for each class (Fig. 1), resulting in a much more generalized
representation. Both of these tasks have competing require-

ments, minimizing cross entropy loss results in learning inter-
class discriminative representation along with intra-class con-
sistency. Whereas multi-modal distribution learning intends to
preserve information that can model intra-class variations. We
disentangle these two information requirements by developing
class-aware multi-modal distribution learning (MMDL) mod-
ule , parallel to standard segmentation head. MMDL extracts
the spatially low-resolution feature volume from the encod-
ing block and maps to the spatially high-resolution embedding.
Class aware multi-modal modeling is performed over these em-
bedding using Distance metric learning [19]. Since both of
these heads share the backbone, simultaneously decreasing loss
on both act as a regularizer over the learned features, resulting
in the less noisy pseudo-labels. During domain adaptation, the
high quality pseudo-labels allow us to learn domain-invariant
class discriminative feature representations in the discrimina-
tive space. At the same time, stochastic mode-alignment is per-
formed across domains, by minimizing distance between rep-
resentation of source pixels and target pixels mapping to same
mode; thus preserving intra-class variations. Modes themselves
are updated by increasing the posterior probability of target
pixel belonging to the mode identified closest to target. During
adaptation too, these losses computed paralelly act as regular-
izer over each other, hence dampening each others noise.

Our contributions are summarized as follows. First, we pro-
pose a multi-modal distribution alignment strategy for the self-
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supervised domain adaptation. By designing a multi-modal dis-
tribution learning (MMDL) module parallel to standard seg-
mentation head, with shared backbone, we disentangle inter-
class discriminative and intra-class variation information; al-
lowing them to be used during adaptation separately. We show
that due to regularization of MMDL, the pseudo-labels gen-
erated over target domain are more accurate. Lastly, to per-
form stochastic mode alignment, we introduce the cross do-
main consistency loss. We present state-of-the-art performance
for benchmark synthetic to real, e.g., GTA-V/SYNTHIA to
Cityscapes adaptation.

2. Related Work

The domain shift between testing and training data deteri-
orates the model performance in most of the computer vision
tasks like classification [20, 21, 22, 23, 24, 25], object detection
[26, 27, 28] and semantic segmentation [5, 29, 6, 30, 31, 4, 32,
14, 33]. In this work, we focus on the domain shift problem
for semantic segmentation with self-supervised learning. Our
work is related to semantic segmentation, domain adaptation,
and self-supervised learning.
Domain Adaptation for Semantic segmentation:

Recent works [34, 3, 14, 29, 5, 35, 13, 32, 1, 36, 9, 37] aiming
to minimize the distribution gap between source and target do-
mains are focused in two main directions. 1) adversarial learn-
ing and, 2) self-supervised learning for unsupervised domain
adaptation (UDA) of semantic segmentation.
Adversarial Domain Adaptation: Adversarial learning is the
most explored area for output space [35, 38, 34, 12, 9], la-
tent/feature space [5, 39] and input space adaptation [4, 6, 40,
7]. We briefly describe the feature space/feature alignment,
as our work is related to it. The authors in [41, 4, 42] used
adversarial loss to minimize the distribution gap between the
high level features representations of the source and target do-
main images. However, these methods do not align class-wise
distribution shifts but instead match the global marginal dis-
tributions. To overcome this, [5, 6] combined category level
adversarial loss (by defining class discriminators) with domain
discriminator at feature space. [32] tried to regularize the seg-
mentation network using weak labels along with latent space
marginal distribution alignment for domain adaptation of se-
mantic segmentation. Similarly, the authors in [33] investi-
gated the robustness of the UDA of semantic segmentation and
proposed a self-training augmented adversarial learning to im-
prove the robustness to adversarial examples. Their approach
resulted better performance in the presence of adversarial ex-
amples, however, reducing the performance over normal input
images.
Self-supervised learning: Self-supervised learning for UDA is
recently studied for major computer vision tasks like semantic
segmentation and object detection [43, 3, 27, 13]. The authors
in [1] proposed a self-paced self-training approach by gener-
ating class balanced pseudo-labels and class spatial priors ex-
tracted from the source dataset used to condition the pseudo-
label generation. Zou et al. [2] extended the [1] with confi-
dence regularization strategies and soft pseudo-labels for self-

training based UDA for semantic segmentation. LSE [14] fur-
ther worked with self-generated scale-invariant examples and
entropy based dynamic selection for self-supervised learning.
The authors in [37] proposed a domain-aware meta-learning ap-
proach (MetaCorrection) to correct the segmentation loss and
condition the pseudo-labels based on noise transition matrix.
They report considerable mIoU gain especially when applied
on pre-adapted model. In this work, we exploit a strategy sim-
ilar to [1] to generate pseudo-labels for target domain images
during adaptation.
Clustering Based Features Regularization: Some previous
works also explored the effect of discriminative clustering on
target data and moment matching across domains for target data
adaptation [16, 17]. Recently, [11, 18] tried to define category
anchors on the last feature volume of the segmentation model to
align class aware centers across the source and target domains.
Tsai et al. [44] tried to match the clustering distribution of
discriminative patches from source and target domain images.
Similarly, [3] and [13] exploited latent space and output space
respectively by defining category based classification modules,
forcing towards class-aware adaptation. However, these meth-
ods do not explore the intra-class variations present in source or
target data but instead leverage the discriminative property to
align the inter-class clusters. We specifically focus to capture
the intra-class variations present in the source and target data
by learning class-aware mixture models to help the adaptation.

3. Distribution Regularised Self-supervised Learning

In this section, we provide details of our distribution regular-
ized self-supervised learning (DRSL) architecture. It employs
DeepLab-v2 [45] as a baseline and embeds new components
that enable the semantic segmentation model to be robust to
domain shift.

3.1. Preliminaries

For supervised semantic segmentation, we have access to
source domain images {xs, ys} from Xs ∈ RH×W×3 with corre-
sponding ground truth labels Ys ∈ RH×W×K . The {H,W} shows
the width and height of source domain images and K shows
the number of classes. Let G be a segmentation model with
weights wg that predicts the K channel softmax probability out-
puts. For a given source image xs, the segmentation probabil-
ity vector of class c at any pixel location (i, j) is obtained as
p(c|xs,wg)i, j = G(xs)i, j For fully labeled source data, the net-
work parameters wg are learned by minimizing the cross en-
tropy loss (Eq. 1),

Ls
seg(xs, ys) = −

H∑
i=1

W∑
j=1

K∑
c=1

y(c,i,j)
s log(p(c|xs,wg)c,i, j) (1)

where Ls
seg is the source domain segmentation loss. For un-

supervised domain adaptation of the target domain, we have
access to the target domain images {xt,−} from Xt ∈ RHt×Wt×3

with no ground truths available. Thus, we adapt the iterative
process used by [3, 1] to first generate pseudo-labels ŷt using
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Figure 2: The proposed DRSL approach (a) Base features extracted from the base network are used for two separate tasks. The MMDL-FR
module captures intra-class variations through multi-modal distribution learning. Semantic Segmentation head estimates the discriminative class

boundaries necessary for the primary segmentation task. This disentanglement allows us simultaneous alignment in discriminative and
multi-modal space, allowing MMDL-FR module to act as a regularizer over the Segmentation Head. (b) The proposed Stochastic mode
alignment: Minimizing Lmcl brings the source and target embeddings of the same mode of the same class closer than any source pixel’s
embedding belonging to different class. Lma decreases the in-mode variance for the target samples by forcing them to come closer to the

assigned mode and move away from other class’s modes.

the source trained model and then fine-tune the source trained
model on target data using Eq. 2.

Lt
seg(xt, ŷt) = −

Ht∑
i=1

Wt∑
j=1

b(i,j)
t

K∑
c=1

ŷ(c,i,j)
t log(p(c|xt,wg)c,i, j) (2)

where Lt
seg is the segmentation loss for target domain images

with respect to generated pseudo-labels ŷt. bt represents a bi-
nary mask with same resolution as ŷt to back-propagate loss
for pixels which are assigned pseudo-labels. The total loss for
the segmentation model is the combination of true labels based
source domain loss and pseudo-labels based target domain loss
and is given by Eq. 3,

LG(xs, ys, xt, ŷt) = Ls
seg(xs, ys) +Lt

seg(xt, ŷt) (3)

3.2. Multi-Modal Distribution Learning

We propose to learn the complex intra-class variations
through a multi-modal distribution learning (MMDL) frame-
work where instead of a single cluster/anchor, each class is
represented by multiple modes. This diverse representation of
each class is used in the adaptation process to align the domains
on fine-grained level. Furthermore, we disentangle the task of
learning these intra-class variations (MMDL) from the main
segmentation task by designing a separate module for it called
multi-modal distribution learning based feature regularization
(MMDL-FR). The proposed MMDL-FR module is model ag-
nostic and can be appended at the encoder of any segmentation
network.

The MMDL-FR module consists of mixture models based
per-pixel classification augmented with distance metric learn-
ing (DML) based per-pixel embedding block. The input of the
MMDL-FR module is the feature volume F ∈ Rh×w×d, where
{h,w, and d} shows the spatial height, width and depth of the
encoder output (base features) as shown in Fig. 2(a). The
embedding block is comprised of 4 fully convolutional layers

with different dilation rates (similar to ones used in the last
layer of the segmentation network) followed by an upsampling
layer. The output of the embedding block E is a feature volume
E = E(F) ∈ Rho×wo×d̂, where (ho,wo) = (H/2,W/2) (Sec.4.2.3)
and d >> d̂ for any randomly selected source image.

To train the MMDL-FR module, we adapt a formulation sim-
ilar to [19]. For each class c, a multi-modal distribution with M
number of modes is learned. Let e = E(i, j) be embedding
for location (i, j), a vector Vc

m represent the center of the mode
m, (m = 1, ..,M) of the class c, (c = 1, ...,K) of the mixture
models. In this work, these mode centers are formulated as
the weights of a fully connected layer with size K · M · d̂,
and are reshaped into (K × M) × d̂ producing K × M matrix
for each input embedding vector e. This simple method makes
it easy to flow back gradients to the fully connected layer and
learn the segmentation backbone during training. To compute
the classification probability for each embedding vector e, we
compute the euclidean distance Dc

m(e) = ||e − Vc
m||

2
2 between

e and representative Vc
m and compute the posterior probabil-

ities qc
m(e) ∝ exp(−(Dc

m(e))2/2σ2), where σ2 is the variance
of each mode and is set to 0.5. For class c posterior prob-
ability, we take the maximum over M modes of class c as,
Q(C = c|e) = maxm=1,...,M qc

m(e), where C = c shows class c.
Loss Functions: To train the MMDL-FR module, two losses
are used, i.e., triplet loss and the cross entropy loss. The triplet
loss for embedding block is defined by Eq. 4,

Lemb(E) =
∑
e∈E

|min
m

Dc∗
m (e) − min

m,c∗ 6=c
Dc

m(e) + α|+ (4)

where |.|+ is the Relu function and α is the minimum margin
between the distance of an embedding e to the closest mode
representative Vc∗

m of the true class c∗, and distance of embed-
ding e to the closest mode representative of the incorrect class
Vc

m. Similarly, the cross entropy loss for mixture models based
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classification is given by Eq. 5,

Lcls(E, uf) = −
∑
e∈E

K∑
c=1

u(c)
f log(Q(C = c|e)) (5)

where u(c)
f is the embedding classification label obtained from

yc
s or ŷc

t for class c. The triplet loss enforces the embedding
block to learn representation that capture intra-class variation
information, while cross entropy loss pushes them to not lose
necessary class-specific information. Due to these two losses,
the MMDL-FR module acts as a regularizer at latent space over
the shared backbone, so that the shared features are much more
informative if only segmentation head is used.

3.3. Stochastic Mode Alignment
One of the characteristic of domain generalization will be

that the multi-modal distribution learning over one domain
should result in the modes which are very close to the modes
learned in the other domain. However, due to the domain shift,
this is not generally true. That is in the target domain, the fea-
tures of pixels assigned pseudo-label c might not be closer to the
any of the modes belonging to the class c. In addition, features
in target domain mapping to same mode might not be closer to
each other, resulting in low posterior probability. We minimize
two loss functions to perform stochastic mode alignment.

For first, we apply domain invariant consistency loss, ensur-
ing that features of pixels mapped to same modes of same class
should be near to each other regardless of the domain the are
sampled from. Assume a batch consisting of arbitrary number
of source and target images, {(xi

s, y
i
s)|i = 0, 1 . . . ,Ns, (xi

t, ŷ
i
t)|i =

0, 1 . . . ,Nt}, where ŷi
t are the pseudo-labels assigned to xi

t. Em-
bedding Ei

t = E(xi
t) and Ei

s = E(xi
s) are computed for all the

target and source images in the batch. We randomly sample
Ne number of embedding, {ei

t |i = 0, 1 . . . ,Ne} from {Ei
t |i =

0, 1 . . . ,Nt}, choosing only from the ones having valid pseudo-
label.

For domain invariant consistency, we create a triplet
(ei

t, e
i
s, ê

i
s) such that pseudo-label of ei

t and ground-truth label
of ei

s is same class c, and both map to same mode m of class c.
êi

s on the other hand is source pixel’s embedding of any class
c+ 6= c. This loss when minimized brings ei

t closer to ei
s than

any source pixel’s embedding belonging to different class.

Lmcl =

Ne∑
i

|||ei
t − ei

s||
2
2−||e

i
t − êi

s||
2
2+α1|+ (6)

Note: we could have chosen most closest source sample as
negative, however, this would have been computationally pro-
hibitive. Margin, α1, is set to 1, for all experiments.

The in-mode variance for the target samples is decreased by
forcing them to come closer to the assigned mode and move
away from the modes of the other classes. We sample Te em-
beddings per image per class from both source and target im-
ages and create set Es and Et respectively. Eq. 7 minimizes the
triplet loss for both the source and target embeddings simulta-
neously.

Lma(Es, Et) =
1

T s
e
Lemb(Es) +

1
T t

e
Lemb(Et) (7)

where T s
e and T t

e represent cardinality of Es and Et, which might
be different since samples from all classes might not be avail-
able.

3.4. Total Loss for Training and Adaptation
The DRSL model is trained using the combination of seg-

mentation losses, mode consistency loss and MMDL-FR mod-
ule losses. Let Ls

cls and Lt
cls represent call to Eq. 5 using sourse

and target embeddings respectively. The source model with
MMDL module is trained using Eq.8.

Lsrc = L
s
seg + β Lemb + ηL

s
cls (8)

During adaptation to target domain the loss functions in Eq.9
and Eq.10 are used.

LDRS L = LG + β Lma + η(Ls
cls +L

t
cls) (9)

LDRS L+ = LG + β Lma + η(Ls
cls +L

t
cls) + γ Lmcl (10)

where, β, η and γ are hyper-parameters to limit the effect of
MMDL-FR module loss values.

4. Experiments and Results

We performed multiple experiments for domain adaptation of
semantic segmentation and compare the obtained results with
state-of-the-art methods.

4.1. Experimental Setup
Datasets: Following [13, 1, 3], we use the standard bench-

mark setting of synthetic-to-real setup for our experiments.
Specifically we setup for, GTA-V to Cityscapes and SYNTHIA
to Cityscapes dataset, where the prior is source domain dataset
and the later is the target domain dataset.
Cityscapes [36] dataset is a known benchmark for the task
of semantic segmentation and domain adaptation. The dataset
have 5000 high resolution labeled images partitioned as, train-
ing (2975), validation (500) and testing (1125). However, the
annotations are only available for training and validation sets.
GTA-V dataset [48] is obtained from the video game and the
images are densely labeled with similar classes to cityscapes.
There are 24966 images with spatial resolution spatial resolu-
tion 1052×1914. The GTA-V dataset also covers the road scene
imagery. SYNTHIA [49] is another synthetic labeled images
collection having 16 classes similar to Cityscapes. The dataset
have 9400 images each with a spatial size 760×1280. Contrary
to GTA-V and Cityscapes, SYNTHIA dataset has more view-
point variations where; the camera is not supposed to be on the
top of a vehicle every time.

Network Architecture: Following [34, 35], we use ResNet-
101 [50] backbone based DeepLab-v2 [45] as our baseline
segmentation model. Parallel to the segmentation head is the
multi-modal distribution learning based feature regularization
(MMDL-FR) module consisting of a combination of DML
based Embedding Block (EB) and multi-modal distribution
learning. We call the DeepLab-v2 last block as the encoder
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Table 1 Semantic segmentation performance for GTA-V to Cityscapes adaptation. The abbreviations “AI”, “AF” and “AO” stand for adversarial
training at input space, latent space, and output space. Similarly, “S T ” represents self-supervised learning.
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Target Image Gound Truth DeepLab-v2 [45] DRSL (Ours) DRSL+ (Ours)

Figure 3: Semantic segmentation qualitative results for Cityscapes validation set when adapted from GTA-V dataset.

(base network) and the output feature-map as base features.
For segmentation, these features are passed to segmentation
layer while for MMDL-FR, these features are passed to the
embedding block(Fig. 2). The embedding block consists of
4 fully convolutional layers with different dilation rates (sim-
ilar to ones used in the segmentation layer of the segmenta-
tion network), producing an aggregated output. Unlike [19]’s
fully-connected layers based DML for embedding generation,
our strategy preserves the spatial structure necessary for seg-
mentation and requires much less memory. The modes of the
multi-modal are modeled with a fully connected layer as de-
scribed in Sec. 3.2. and shown in Fig. 2. For each input the
embedding block of the MMDL-FR module outputs an embed-
ding volume E of size (h×w× d̂). For an input image, we select
a maximum of Te embedding vectors per-class at random for
further processing.

Implementation Details: To implement the proposed ap-
proach and conduct the experiments, we use PyTorch deep
learning framework and a single GTX 1080ti GPU with a single
Core-i5 machine with 32GB RAM. The ImageNet [51] trained
weights for ResNet-101 [50] are used to train the DeepLab-v2
on source dataset. SGD optimizer with weight decay of 5×10−4,
momentum of 0.9, and initial learning rate of 2.5 × 10−4 for

source domain training and 5 × 10−5 during adaptation is used.
In both source training and adaptation, we used a scale vari-
ance (0.5-1.5) and horizontal flipping randomly. For DML and
mixture models based classification, the loss weights are set to
β = 0.25 and η = 0.1 to limit the excessive gradient flow to
segmentation model. Similarly for mixture models, the num-
ber of modes M is set to 3, and the number of embedding Te

per-class per-image is set to 300. For both source and target
domain images, due to GPU memory limitations, small patches
of size 512×512 cropped at random compared to original high-
resolution images are processed.

The baseline segmentation model and the MMDL-FR mod-
ule are initially trained with original source domain images, in-
general called as source-only model. For self-supervised do-
main adaptation, selection of pixels as pseudo-labels is an im-
portant step as the adaptation process depends on the quality of
pseudo-labels. We adapt an approach similar to [1], to generate
pseudo-labels using the original source data trained model. For
a given class c, we select δ confident pixels as pseudo-labels in
the first round (δ = 20% ) and increase this number of pixels
ratio by 5% in each additional round. To further help the adap-
tation, we have obtained the translated version of the source do-
main datasets using CycleGan[4] and use these alongside orig-
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inal source images during adaptation.

4.2. Experimental Results
In this section, we present experimental results of the pro-

posed approach for semantic segmentation. We follow the stan-
dard synthetic to real adaptation setup.

4.2.1. Results on GTA-V to Cityscapes Adaptation
Table 1 presents domain adaptation performance for the task

of semantic segmentation of the proposed DRSL approach
compared to existing adversarial learning and self-supervised
learning architectures. To have a fair comparison, the methods
are divided into three groups where each comparing model is
listed with its respective source model and backbone network.
Fig. 3 shows example images to highlight the performance of
the proposed DRSL qualitatively. The DRSL improves the per-
formance for both objects and stuff classes, as shown in Fig.
3 (Column. 4). Small and far away objects like person, traf-
fic light, and signboards are better adapted alongside near to
camera objects and large area stuff classes like road, bus, and
sidewalk. The cross domain mode alignment loss further pe-
nalizes the adaptation for small objects, further improving the
performance for classes like bicycle, traffic sign, traffic light,
pole, fence and person as shown in Table. 1 (DRSL+).

Overall, the proposed DRSL+ outperforms the latest self-
supervised learning frameworks with clear gaps, surpassing the
source dataset trained model with 14.0% gain in mIoU(last col-
umn of Table. 1). The DRSL+ performs well on both object
classes as well as stuff classes compared to previous methods
which may perform better on some classes but fail on other
classes. Compared to CRST and MRENT [2] which regu-
larizes the labels and models for high predictions, the pro-
posed approach achieves a mIoU gain of 1.0 and 1.7% re-
spectively. Similarly, the DRSL outperforms the PyCDA [13],
which works on pyramid level labeling, and LSE [14] which in-
corporates scale invariances with class balancing strategies aug-
mented with higher mIoU baseline models. Compared to com-
posite adversarial learning-based methods like FCAN [46] and
IntraDA [12], DRSL shows improvement with a minimum of
1% in mIoU and specifically with high margins in small objects.
Similarly, compared to CAG-UDA[11] (mIoU=43.9% without
warm-up training), the DRSL+ gains 3.9% in mIoU.

4.2.2. Results on SYNTHIA to Cityscapes Adaptation
Table 2 presents the proposed DRSL approach segmenta-

tion performance for SYNTHIA to Cityscapes adaptation. To
have a fair comparison with existing methods, the comparing
methods are divided into three groups and the respective source
model results with different setups are shown. Moreover, for
SYNTHIA to Cityscapes, we show the mIoU (16-classes) and
mIoU* (13-classes) as shown by [3, 1]. Fig.4 shows qualita-
tive results for DRSL and DRSL+ compared to baseline results.
Row-1 and row-2 of Fig.4 focuses on objects like rider, bicy-
cle, person, and the stuff classes, row-3 highlights the faraway
objects and segmentation for road scene imagery.

The DRSL approach performs well on both stuff and ob-
ject classes adaptation and shows an improvement of 11.7% in

mIoU and 12.9% in mIoU* compared to the baseline model
(source). Compared to strong CBST[1] and MLSL[3] self-
supervised learning approaches, the DRSL shows a minimum
improvement of 2.3% and 2.4% in mIoU and mIoU* respec-
tively. Similarly, the DRSL shows significant improvement
to existing regularization based models, like CRST [2] and
entropy-based methods, e.g., LSE[14] and MinEnt [34]. Com-
pared to CAG-UDA[11] (44.5% mIoU and 51.4% mIoU*), the
DRSL+ gains 2.2% in mIoU and 1.9% in mIoU* respectively.
The gaps can be more visible if compared with ”without warm-
up” training CAG-UDA.

4.2.3. Ablation Experiments
Ablation experiments are performed for GTA-V to

Cityscapes.
Multi-Modal Distribution Learning based Regularization
Module (MMDL-FR): During training and adaptation it’s es-
sential to understand the balance between the segmentation and
different elements of MMDL-FR. We search over a range of
values to identify (empirically) optimal values for the loss scal-
ing factors, β and η (Table. 3). Based on the experiments, β and
η are set to 0.25 and 0.1 respectively, for all the experiments
including SYNTHIA to Cityscapes.
Effect of MMDL-FR Module on Adaptation Process: As
described in Sec. 3.2 and Fig. 2, the MMDL-FR module reg-
ularizes the encoder (base-network) of the segmentation model
with DML based embedding block and MMDL based classifi-
cation. The MMDL-FR overall enhances the adaptation perfor-
mance compared to the non-regularized version of the proposed
method as shown in Table. 4.
Effect of Modes: As described in Sec. 3.2, it is very critical
to select correct number of modes for multi-modal in MMDL.
We have experimented with multiple number of modes (Table.
5) and selected M=3 for all the experiments.
Effect of Labels Reduction for MMDL-FR Module: The
output of the embedding block in the MMDL-FR module is
8 times reduced compared to input image size. Embeddings
needed to be upsampled 8 times if labels are not reduced requir-
ing a lot of memory. Contrary to this, reducing labels 8 times
introduces boxing effect. Based on these observations the scale
factor 2 is used. A comparative performance of labels reduction
is shown in Table. 6.

Table 6 Effect of label reduction ratio on mIoU.

GTA-V→ Cityscapes
Label Reduction Ratio 1 2 4 8

Embeddings Upsampling Ratio 8 4 2 1
Adaptation Performance (mIoU) 47.1 47.6 46.8 46.4

Pseudo-label Accuracy: To understand how the MMDL-FR
results in more accurate pseudo-labels during the adaptation
process, we compute mIoU of pseudo-labels for when MMDL-
FR is not used (A) and when MMDL-FR is used (B). At the
start of adaptation (round-0), we have same mIoU for both A
& B (Table-7) since MMDL-FR will start to contribute when
adaptation starts , i.e., during round-0. Due to MMDL-FR, the
predictions by B after round-0 have much lower self-entropy
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Table 2 Semantic segmentation performance of DRSL for SYNTHIA to Cityscapes adaptation. We present the mIoU (16-classes) and mIoU*
(13-classes) comparison with existing state-of-the-art domain adaptation methods for the Cityscapes validation set.
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Source [45]

DeepLab-v2

- 64.3 21.3 73.1 2.4 1.1 31.4 7.0 27.7 63.1 67.6 42.2 19.9 73.1 15.3 10.5 38.9 34.9 40.3
CLAN [6] AO 81.3 37.0 80.1 - - - 16.1 13.7 78.2 81.5 53.4 21.2 73.0 32.9 22.6 30.7 - 47.8
Structure [8] AF + AO 91.7 53.5 77.1 2.5 0.2 27.1 6.2 7.6 78.4 81.2 55.8 19.2 82.3 30.3 17.1 34.3 41.5 48.7
LSE [14] S T 82.9 43.1 78.1 9.3 0.6 28.2 9.1 14.4 77.0 83.5 58.1 25.9 71.9 38.0 29.4 31.2 42.6 49.4
CRST [2] S T 67.7 32.2 73.9 10.7 1.6 37.4 22.2 31.2 80.8 80.5 60.8 29.1 82.8 25.0 19.4 45.3 43.8 50.1
Source [47]

ResNet-38
- 32.6 21.5 46.5 4.81 0.03 26.5 14.8 13.1 70.8 60.3 56.6 3.5 74.1 20.4 8.9 13.1 29.2 33.6

CBST [1] S T 53.6 23.7 75.0 12.5 0.3 36.4 23.5 26.3 84.8 74.7 67.2 17.5 84.5 28.4 15.2 55.8 42.5 48.4
MLSL [3] S T 73.7 34.4 78.7 13.7 2.9 36.6 28.2 22.3 86.1 76.8 65.3 20.5 81.7 31.4 13.9 47.3 44.4 50.8
Source [45]

DeepLab-v2
- 69.2 26.6 66.5 6.5 0.1 33.2 4.1 18.0 80.5 80.0 55.3 15.1 67.5 20.1 6.8 14.0 35.2 40.3

DRSL AI + S T 70.1 30.1 81.6 15.6 1.0 40.9 20.9 36.4 85.4 84.0 59.4 26.9 81.8 35.9 16.7 48.1 45.9 52.0
DRSL+ AI + S T 82.8 40.1 81.3 13.0 1.6 41.6 19.8 33.1 85.3 84.3 59.5 30.1 78.6 25.3 19.8 51.7 46.7 53.2

Target Image Gound Truth DeepLab-v2 [45] DRSL (Ours) DRSL+ (Ours)

Figure 4: Semantic segmentation qualitative results for SYNTHIA to Cityscapes adaptation.

Table 3 Effect of (β, η) values of the MMDL-FR module.

β, η (0.0, 0.0) (0.1, 0.1) (0.25, 0.1) (0.5, 0.5) (1.0, 1.0)
DRSL (mIoU) 44.9 46.1 47.6 45.9 46.0

Table 4 Effect of MMDL-FR module on adaptation.

Methods Source [45] Without MMDL-FR With MMDL-FR
mIoU 33.6 44.9 47.6

Table 5 Effect to number of modes (M) in MMDL.

Number of Modes (M) M=1 M=3 M=5
mIoU 44.7 47.6 46.2

and pseudo-labels have higher mIoU than the ones generated by
model-A, thus improving self-supervised domain adaptation.

Table 7 Pseudo-labels with & without MMDL-FR module

Method
Start of Round-0 Start of Round-1

mIoU Self-Entropy mIoU Self-Entropy
A: Without MMDL-FR {ST, ISA} 73.9 6.56 ×10−2 76.4 1.57×10−2

B: With MMDL-FR {ST, ISA, MMDL-FR} 73.9 6.56×10−2 78.7 1.14×10−2

Effect of Consistency Loss Weight: The cross domain mode
consistency loss helps to make the embeddings of the source
and target images belonging to the same mode of the same class
closer, helping to better adapt the small object classes. How-
ever, its contribution in the whole loss needs to be limited to
make the system stable. Our experiments suggests γ = 0.1 suits
the DRSL+ as shown in Table. 8.

Table 8 Effect of cross domain mode consistency loss.

Loss weight γ 0.01 0.1 0.25
mIoU 46.0 47.8 45.3

Effect of Input Space Adaptation (ISA): Removing ISA
module, mIoU decreases 1.6 points, from 47.6 (DRSL) to 46.0
(DRSL w/o ISA), indicating that ISA is needed but not vital for
the effectiveness of the proposed model.

5. Conclusion

In this paper, we propose a distribution regularized self-
supervised learning approach for domain adaptation of seman-
tic segmentation. Parallel to the semantic segmentation de-
coding head, we employ a clustering based feature regulariza-
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tion (MMDL-FR) module. Where segmentation head identi-
fies what can differentiate a class, MMDL-FR explicitly mod-
els intra-class pixel-level feature variations, allowing the model
to capture much richer representation of the class at pixel-level,
thus improving model’s generalization. Moreover, this disen-
tanglement of information w.r.t tasks improves task dependent
representation learning and allows performing separate domain
alignments. Shared base-network enables MMDL-FR to act
as regularizer over segmentation head, thus reducing the noisy
pseudo-labels. Extensive experiments on the standard synthetic
to real adaptation show that the proposed DRSL outperforms
the state-of-the-art approaches.
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