DIGITAL ACCESS 10 -
SCHOLARSHIP sr HARVARD T e i Schotaty Communicatin

DASH.HARVARD.EDU

Factored Reasoning for Monitoring Dynamic Team
and Goal Formation

Citation
Pfeffer, Avi, Subrata Das, David Lawless and Brenda Ng. Factored reasoning for monitoring team
and goal formation. Information Fusion 10: 99-106.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:2223519

Terms of Use

This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#0AP

Share Your Story

The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:2223519
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Factored%20Reasoning%20for%20Monitoring%20Dynamic%20Team%20and%20Goal%20Formation&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=8ca292870d9b682e675e7e660b89f424&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution
and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Information Fusion 10 (2009) 99-106

Contents lists available at ScienceDirect

Information Fusion

INFORMATION |FUSION

journal homepage: www.elsevier.com/locate/inffus

Factored reasoning for monitoring dynamic team and goal formation

Avi Pfeffer **, Subrata Das P, David LawlessP®, Brenda Ng¢

2School of Engineering and Applied Sciences, Harvard University, USA
b Charles River Analytics, USA
€ Lawrence Livermore National Laboratory, USA

ARTICLE INFO ABSTRACT

Article history:

Received 23 May 2006

Received in revised form 1 February 2008
Accepted 22 May 2008

Available online 14 July 2008

Keywords:

Particle filtering
Goal detection
Threat detection
Multiagent tracking

We study the problem of monitoring goals, team structure and state of agents, in dynamic systems where
teams and goals change over time. The setting for our study is an asymmetric urban warfare environment
in which uncoordinated or loosely coordinated units may attempt to attack an important target. The task
is to detect a threat such as an ambush, as early as possible. We attempt to provide decision-makers with
early warnings, by simultaneously monitoring the positions of units, the teams to which they belong, and
the goals of units. The hope is that we can detect situations in which teams of units simultaneously make
movements headed towards a target, and we can detect their goal before they get to the target. By rea-
soning about teams, we may be able to detect threats sooner than if we reasoned about units individually.
We develop a model in which the state space is decomposed into individual units’ positions, team assign-
ments and team goals. When a unit belongs to a team it adopts the team’s goal. An individual unit’s
movement depends only on its own goal, but different units interact as they form teams and adopt
new goals. We present an algorithm that simultaneously tracks the positions of units, the team structure
and team goals. Goals are inferred from two sources: individual units’ behavior, which provides informa-
tion about their goals, and communications by units, which provides evidence about team formation. Our
algorithm reasons globally about interactions between units and team formation, and locally about indi-
vidual units’ behavior. We show that our algorithm performs well at the task, scaling to twenty units. It
performs significantly better than several alternative algorithms: standard particle filtering, standard fac-

tored particle filtering, and an algorithm that performs all reasoning locally within the units.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

We study situations in which loosely coordinated agents
dynamically form teams to achieve goals. The particular scenario
that we study is an urban warfare environment, in which units col-
laborate to attack important targets. Our task is to simultaneously
monitor the positions of units, the team structure and the goals as
they evolve dynamically over time. Whatever method we use
should scale up to a large number of units and targets.

We present a model for this scenario in which the state is
decomposed into individual unit positions, team membership
and team goals. Individual agents’ movement is influenced only
by their own goals, but agents interact by communicating with
each other. A natural approach to inference in such a model is to
use particle filtering (PF) [7,9,4], but the high dimensionality of
the problem makes the number of particles needed for good mon-
itoring very high. In particular, the probability that a particle will
contain a good position estimate for all units will be very small,
so all particles will have very small weight. Factored PF [11] repre-
sents the distribution over the state by a set of local particles for

* Corresponding author.
E-mail address: avi@eecs.harvard.edu (A. Pfeffer).

1566-2535/$ - see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.inffus.2008.05.005

each unit. However it suffers from the same problem as PF because
the local particles are always joined together before reasoning
about the dynamics, and therefore reasoning about the dynamics
is always done globally for all units together. We introduce a
new inference principle: reason locally about unit positions, and
globally about team structure and goals. By reasoning separately
about each unit’s position, we are able to effectively infer its goal
from its behavior, which we would not have been able to do if
we tried to reason about all units’ positions together. By reasoning
globally about team structure, we can capture interactions be-
tween the units.

We show experimentally that our global/local approach works
very well. It significantly outperforms ordinary PF in which all
the reasoning is done globally, and a method in which all reasoning
is done locally. Our method scales up well to 20 units, and up to 20
targets. Several researchers have studied multiagent goal or plan
recognition, but their focus has generally been different from ours.
Most of the work looks at more complex goals and interactions be-
tween units, but the goals are static, and team structure is fixed in
advance. For example, Intille and Bobick [6] recognize American
football plays, while Devaney [3] recognizes military tactics involv-
ing many agents. Hongeng and Nevatia [5] provide hierarchical
plan representations, as do Suria and Mahadevan [12], whose

100 A. Pfeffer et al./Information Fusion 10 (2009) 99-106

approach is related to ours in that it uses dynamic Bayesian net-
works and particle filtering. In contrast to all of these, we allow
agents to dynamically adopt goals and form teams as time elapses,
but the plans are simpler. Liu and Chua [10] is more similar to our
work, in that it does focus on dynamic goal formation. Their ap-
proach is based on HMMs, but they only demonstrate it for three
units.

Other work does not consider the issue of goals, but does study
tracking the movements of interacting agents. Kahn et al. [8] is
similar to our work in that it proposes a particle filter to track mul-
tiple interacting targets. They use an MCMC-based approach to
make the tracking problem tractable, whereas we apply the glo-
bal/local principle. There are a number of differences between their
work and ours. They consider only local interactions between tar-
gets that are close to each other, whereas in our work two far-apart
targets may interact by sharing a common goal. Furthermore, be-
cause interactions are local in their work it is always known which
targets are interacting, and the same targets interact in all parti-
cles, whereas we have uncertainty over which targets belong to
the same team, and different particles have different interaction
structure. Finally, team membership in our work is a long-running
concept, to which there is no analogue in their work. Our work in
this paper also greatly improves on our previous work [2]. In that
work we studied the tracking of just two units using factored par-
ticle filtering. As we show in Section 5, that method does not scale
up to a larger number of units. In this paper we improve on the
method using the global/local principle, scaling up reasonably well
to 20 units.

2. The problem

The setting is an urban environment in which there are a num-
ber of important locations, and some enemy units that may want
to attack them. The goal of the system described in this paper is
to detect malicious goals - when do the enemy units have a goal
of attacking a location? In particular, we want to detect threats,
when enemy units form teams to coordinate an attack on a loca-
tion, such as an ambush. By detecting a threat early, we can enable
friendly units defending the location to be more prepared, thereby
potentially averting a dangerous situation. The hope is that we can
detect situations in which teams of units simultaneously make
movements headed towards a target, and we can detect their goal
before they get to the target. By reasoning about teams, we may be
able to detect threats sooner than if we reasoned about units
individually.

The goal of a unit can be inferred from two basic sources of evi-
dence. First, we can infer goals from behavior. This is the source of
evidence normally used in goal recognition. In our scenario, the
behavior of a unit is its movement. Thus we have to simultaneously
track the location of a unit and reason about its goal. Since a unit
that has a goal will generally move in the direction of the goal,
our beliefs about its movement will affect our beliefs about its goal.
At the same time, if we strongly believe the unit to be heading to-
wards a particular goal, that will affect our tracking of the unit. The
second source of evidence allows us to reason directly about team
formation. Units will communicate with each other to form teams.
Thus if we observe one unit communicating with another unit that
we already believe intends to attack a location, our belief that the
first unit will have the same goal will go up. Adequately reasoning
about joint goals requires combining these two sources of
evidence.

In our scenario there is a map consisting of streets and intersec-
tions. In our experiments, we use a map of central Baghdad that
has 119 streets and 79 intersections. Each street has a “forward”
and a “backward” direction. This does not mean the streets are

one-way streets; a unit can travel in either the forward or back-
ward direction. The directions are used to uniquely identify which
way a unit is traveling at any point in time. Intersections on the
map have an importance between 0 and 1; those with an impor-
tance >0 are potential targets. Units move around the map. At each
point in time, we receive a noisy observation about the unit’s posi-
tion. We also receive an observation indicating whether or not the
unit communicated. However we do not know with whom the unit
communicated. This uncertainty about which units communicated
with each other raises interesting inferential problems which will
be addressed in Section 4.2.

3. The model

In the following presentation, units and teams are identified by
integers. Units are indexed by i and j and teams are indexed by k. M
is the number of units. Our model uses the following state
variables:

e For each unit i, there is a position Position; = (Street; For-
ward; Distance; Speed;), where Street; is the street the unit is
on, Forward; indicates whether the unit is moving in the forward
or backward direction along the street, Distance; is the distance
the unit has traveled along the street, and Speed,; is the current
speed of the unit.!

e Teamy; is the team, if any, to which unit i belongs. The value is @ if
i does not belong to a team. We assume that each unit belongs to
at most one team. In some applications it may be desirable to
allow a unit to belong to more than one team and have multiple
concurrent goals, but allowing this would cause an exponential
blowup in the number of possible team assignments of each
unit. Relaxing this assumption is a topic for future research.

e TeamGoaly is the goal of team k. A goal is any target location.

In addition to these state variables that influence and are influ-
enced by the state at other time points, the model contains the fol-
lowing transient variables that only affect the current state:

e PairComm;; is a flag indicating whether or not units i and j
communicate.

e Content;; describes the content of the communication, if any,
between i and j. Its possible values are Invite; _,j, which means
that i is inviting j to join its team, Invite;_,;, PairGoal[g], which
means that i and j spontaneously adopt the new joint goal g,
or NoContent, meaning that the communication is not related
to forming a team to attack a target.

e Accepted;; is a flag indicating whether or not the content, if any,
of the communication between i and j was accepted.

e SingleComm; is a flag indicating whether unit i communicates at
all.

e SingleGoal; is the new goal, if any, spontaneously adopted by a
unit, not as a result of communication. It may be (, or any of
the possible targets.

e Goal; is the resulting goal, if any, of unit i, after any new goal has
been adopted or old one maintained. The value is ¢ if i has no
goal.

In our observation model, we assume that each unit is associ-
ated with a single positional observation. By no means do we con-
sider the data association model to be solved; we acknowledge
that it is a hard problem. However, the main goal of this work is

! To avoid confusion, we emphasize that there is not a variable for every street.
Instead, there is a Street; node for each unit i, whose possible values are numbers from
1 to 129, indicating the identity of the street the unit is on.

A. Pfeffer et al./Information Fusion 10 (2009) 99-106 101

to focus on monitoring team and goal formation. For this purpose
we assume that the data association is performed as a preprocess-
ing step. It would be interesting to investigate simultaneously
monitoring team and goal formation and performing data associa-
tion but that is beyond the scope of the current work.

At each point in time, the following observations are received:

e A noisy observation ObsPos; = (X;,Y;) of the coordinates of unit i.
The positional observation is generated by a Gaussian distribu-
tion centered around the true position, with the x and y compo-
nents independent. Our framework can easily accommodate
more complex models for the positional observation. All that
is required is that we can determine the density of the observa-
tion given the true position. Any model that satisfies this prop-
erty can be used.

e An observation ObsCommy;; indicating whether or not unit i com-
municated. When a communication does not actually happen,
there is a small probability that a communication is erroneously
reported. When a communication actually happens, it is
detected with high probability.

The probabilistic model is represented using a dynamic Bayes-
ian network (DBN). Rather than presenting the entire model in
one go, we present it in fragments. We use the notation X’ to de-
note the value of variable X at time t. Fig. 1a shows the fragment
describing the model of individual unit positions. The key point
about this model is that an individual unit’s position at time t de-
pends only on its own goal at time t and its own position at time
t — 1. Also, the positional observation at time t depends only on
the position at time t. The team structure and all other units’ goals
have no direct influence on the individual unit’s movement. Of
course, they do have indirect influence by influencing the unit’s
goal.

The goal affects the new position by influencing the unit’s deci-
sions when it reaches an intersection or might make a U-turn. The
desirability of moving in a certain direction depends on the dis-
tance to the goal, as determined by following streets on the map.
A unit heading towards a target will prefer to take the most direct
route. When a unit reaches an intersection, the probability that it
chooses a street is higher if the distance to the target along that
street is shorter, but there is still some uncertainty. At the begin-
ning of each iteration, a unit may choose to make a U-turn. The
probability of this is small unless the unit has a goal and the route
to the goal is shorter if it makes the U-turn. The dynamics of move-
ment are defined as follows:

1. The unit may optionally execute a U-turn at the beginning of
the iteration. If the unit does not have a goal, this happens with
very small probability. If the unit has adopted a goal, and the
route to the target is shorter, a U-turn happens with larger
probablllty In that case, it makes the U-turn with probability

ad, o where d; is the distance to the goal after making the

qd; P
t
Goali
.. t- .l/. t
Position T Posmoni

TeamGoal; ces TeamGoaI;v[

N

t
ObsPos; Team; — Goal;
(a) ()

Fig. 1. DBN fragments for (a) movement model; (b) individual goal model.

U-turn, ds is the distance without the U-turn, and q is a small
constant. A U-turn takes time, and the unit begins traveling in
the opposite direction at low speed.

2. The unit then moves in whichever direction it is heading, begin-
ning Distance*~! along the street and traveling at Speed“!.
The potential distance along the road at the end of the iteration
is computed, with some Gaussian noise: Distancek =
Distance*™" + Speed*™" + €.

3. If Distance* is less than the length of the street, the unit does
not reach an intersection, and Distance* becomes Distance*. A
new speed is computed by mixing the beginning speed with a
target speed and adding Gaussian noise: Speed® = ¢ Speed* ! +
(1 — 0)Target speed + €.

4. If Distancek is greater than the length of the street, the unit
reaches an intersection. If the unit does not have a goal, the next
street is then chosen with uniform probability. If the unit has a
goal, it chooses to take street j with probability proportional to
dj’/f , where d; is the distance to the goal taking the shortest route
beginning with street j. When the unit makes a turn, the time
elapsed before reaching the turn is computed, and the unit pro-
ceeds to move for the remaining time in the new direction,
starting at a slow speed. A new speed is then computed as in
step 3.

The movement model presented here is quite abstract. It could
be refined in various ways. For example, we could introduce accel-
eration into the state, or we could model the fact that units slow
down before intersections and U-turns. We could also introduce
a non-uniform distribution over the street a unit chooses at an
intersection when it has no goal, making straight more likely.
Our inference approach can easily be adapted to a more refined
movement model, as long as it maintains the property that the
new position depends only on the old position and the unit’s goal,
and as long as it is possible to easily sample a new position given
an old position. The problem may become more difficult, if it be-
comes more difficult to distinguish dangerous behavior from or-
dinary behavior, but the principle will remain the same: to
reason locally about unit’s behavior as much as possible, and glob-
ally about unit interactions.

Fig. 1b shows the DBN fragment defining the current goal of a
unit. Goal; depends on Team; and all of the team goals. It is fully
determined by its parents by the fact that the goal of i is the team
goal of Team;. The conditional probability distribution of Goal; is a
multiplexer, where Team; selects which parent’s value to use. Fig. 2
shows the DBN fragment defining a single unit’s communication.
SingleComm; depends on all the PairComm;; and PairCommj;
where j#1i. It is fully determined by its parents: tautologically, a
unit communicates if and only if it communicates with someone
else. ObsComm; is a noisy observation of SingleComm;.

Fig. 3 shows a DBN fragment for determining which team a unit
belongs to, and what the team goal is. First an explanation of the
notation: TeamGoalTeamf means the goal, at time ¢, of the team to
which i belongs at time t. TeamGoal@e;mr means the goal, at time
t — 1, of the team to which i belongs at time t. Note that this might
not be i’s goal at time t — 1, if i belonged to a different team at time

PairCommlli ees PairComm:_li Paeromm Lo PderOHlm
SingleComm:
ObsComm,

Fig. 2. DBN fragment for communication observation.

102 A. Pfeffer et al./Information Fusion 10 (2009) 99-106

t-1 t
TeamGoal,

TeamGoal,

Team : Team:
t-1
Team
J
t-1 t
Team Team ;
i
t
Content . . /
1]
) t
‘ SingleGoal ;
Acceptedij

Fig. 3. DBN fragment for Team and TeamGoal variables.

t — 1. We make the assumption that no unit can communicate with
more than one other unit at any point in time. This assumption is
appropriate if communication is by cellular phone, but may not be
appropriate for other communication methods such as broadcast
communications. The assumption greatly simplifies the reasoning
process. As a result of this assumption there is at most one j for
which Content;; is interesting. (For convenience we will always re-
fer to the variable as Content;; even though i might actually be the
second subscript.) That is the j that is relevant in deciding the new
team of a unit. The team of a unit can change in one of three ways.
First, a unit may accept an invitation from another unit to join its
team. This is indicated when Content;; is Invite;_; and Accepted;;
is true. In this case Team] becomes Team; '. TeamGoaly,,, is the

Team!
same as TeamGoal',_ .. This is because i belongs to j's team at time
t (since it has just acéepted an invitation from j), so Team; is the
same as Team]?. and the goal of j's team has not changed. Second,
two units may spontaneously decide to form a team and adopt a
new goal. This is indicated when Content;; is PairGoal[g] and Ac-
cepted,; is true. Third, a unit may, on its own, spontaneously decide
to adopt a new goal g and form a team consisting of a single unit.
This is indicated when SingleGoal = g # . In both the second and
third cases, Team; was previously an empty team that did not con-
tain any units. TeamGoaly,,,« becomes g. In all of the above cases,
the unit may previously have belonged to another team. If none of
these happen, the team to which the unit belongs will stay the
same as before, and its goal will stay the same. This model deter-
mines the teams of all units, and the goal of all teams to which
at least one unit belongs. Since more than one unit may belong
to a team, a team goal may be determined multiple times. How-
ever, no contradiction can arise. The only way a team goal can
change is if one or two units spontaneously create it. But in that
case the team must have been empty before the units joined it.
Fig. 4 shows a DBN fragment for determining whether the con-
tent of a communication is accepted and whether a unit spontane-

t-1

TeamGoal t-1 t
Team .
J Content _
tl ¢
Position \
j t
Accepted i
t-1
TeamGoal t-1
Team .
1 t
/ SingleGoal ,
t-1 i,

Position |
1

Fig. 4. DBN fragment for invitation acceptance and spontaneous goal formation.

ously adopts a goal. The fitness of a goal is equal to h,/d, where h,
is the importance of target g, and d; is the distance of the unit to
target g. Whether or not a communication is accepted depends
on its content. If the content is Invite;_,; the probability depends
on the fitness of j’s goal to unit i. If the content is PairGoal[g], the
probability depends on the product of the fitness of g to both units.
In all cases, the probability of acceptance is smaller if the unit pre-
viously had a goal, in which case the probability decreases with the
fitness of the old goal.

This DBN fragment also defines the model for SingleGoal;. If the
content of any communication that i was involved in was accepted,
i cannot spontaneously adopt a new goal. Otherwise the probabil-
ity that it will adopt a new goal g is proportional to the fitness of g.
The overall probability that a unit will spontaneously adopt a new
goal is generally small but not negligible. Again, it is smaller if the
unit already had a goal, the probability is proportional to the fit-
ness of the new goal and inversely proportional to the fitness of
the old goal.

We do not show the DBN fragment for determining whether or
not two units communicate and what the content of the communi-
cation is. The reason is that all of the PairComm;; and Content;;
variables must be determined together. This is due to the con-
straint that a unit cannot communicate with more than one other
unit. Therefore we define a probability distribution over all legal
complete communication configurations, i.e. all complete assign-
ments to PairComm and Content. For each pair of units i and j,
we define Score(PairComm;;,Content;;). The score of a complete
configuration will then be the product of scores for all possible i,j
pairs.

Score(true,Invite;_,;) is 0 if j does not have a goal, otherwise
it increases with the fitness of j's goal to i. Similarly, Score(true,
PairGoal[g]) depends on the fitness of g to both units. Score(true,
NoContent) is a fixed constant. Finally, we let Score(false,NoCon-
tent) be 1. Letting C be the collection of i, j pairs that communicate,
this allows us only to consider communicating units when deter-
mining the probability:

P(C) x HScore(PairComm,»J-, Content;;)
(i)
= [Score(true, Content;)
(ij)eC

4. Inference

Our task is to simultaneously track the unit positions, team
structure and team goals. At each point in time we want a proba-
bility distribution over these variables given the history of position
and communication observations. Doing this exactly requires
maintaining a complete joint distribution over all state variables
that influence the next time step. Considering the discrete vari-
ables alone, if the number of targets is L and the number of units
is M, then there are (2 - 119 - (L + 1))™ discrete states, since a unit
may be traveling forwards or backwards along any of the 119
streets, and its goal may be () or any of the targets. Clearly, main-
taining an explicit joint distribution over all these states is infeasi-
ble for more than two units.

Therefore we need to use an approximate monitoring algo-
rithm. The basic framework for our algorithm is particle filtering
(PF) [4]. In PF, the joint distribution over the state variables is
approximated by a set of samples, or particles as they are called.
Each particle contains an assignment of values to the state vari-
ables. The probability of any property of the state is the fraction
of particles that have that property. In particular, we are concerned
with the probability that a threat exists to a target - this is simply
the fraction of the particles for which such a threat exists. The basic

A. Pfeffer et al./Information Fusion 10 (2009) 99-106 103

steps of PF are as follows. Let x denote the state variables, v the
transient variables, and y the observations:
Begin with N particles x !, .. x
Forn=1 to N:
Propagate: Sample values for v*" and X"
from P(v&", x5" 1),
Condition: w, — P(y‘|v&", Xt).
Resample: For m=1 to N:
Sample x“™ from X', ... XN, with the probability
that X" is chosen being proportional to wy,.

t—1,N

Propagating the particles through the dynamics and condition-
ing on the observations is non-trivial for our problem and will be
discussed in Section 4.2.

The difficulty with PF for this problem is that the variance of the
method is high and the number of particles required for a good
approximation generally grows exponentially with the dimension-
ality of the problem. Therefore this approach does not scale well
with the number of units. An observation is that the different units
are largely independent of each other. The movement of the differ-
ent units is assumed to be independent; they only interact with
each other by communicating and inviting each other to join teams
or forming new teams together. Therefore we might expect that in-
stead of maintaining particles that assign values to all variables for
all units, we can maintain local particles that only assign values to
variables belonging to a single unit. This is the idea behind factored
particle filtering [11].

The basic premise of factored particle filtering is that all the
state variables in the domain can be divided into a set of factors.
The joint distribution over all state variables is approximated by
the product of marginal distributions over the factors, in the style
of Boyen and Koller [1]. In our application, the choice of factors is
obvious: the variables pertaining to a single unit correspond to a
factor. We believe that in many applications the correct factoriza-
tion will be apparent and can be supplied by hand. We are cur-
rently looking into ways of factorizing a complex process
algorithmically by automatically discovering weakly interacting
components.

In addition to decomposing the state into factors, factored par-
ticle filtering additionally approximates the marginal factor distri-
butions using a set of factored particles. Factored PF introduces two
new steps into the PF process described above. The first joins fac-
tored particles together to produce global particles. This step will
be discussed in more detail in Section 4.1. The second projects glo-
bal particles back down onto the factors. In between these two
steps, all the usual steps of PF are performed. In particular propa-
gating through the dynamics and conditioning on the observations
are done with global particles.

For this reason, ordinary factored PF is also not ideal for our sit-
uation. The problem is that in any global particle, it is highly likely
that there will be some units whose position is far from the truth.
Therefore, it will often be the case that for all global particles in the
set of particles, the probability of the positional observation will be
extremely low. Even if one unit’s position in the particle is good,
other units’ positions may be bad and so the observation will not
confirm the first unit’s position. As a result, inference about units’
true positions based on the global positional observations will be
poor. Furthermore, units’ positions are important indications about
their goals, so the reasoning about units’ goals will also be poor.

One might suggest that since this is the case, doing global rea-
soning at all is a bad idea, and all the reasoning should be done lo-
cally. However, that will not allow us to reason about unit
interactions and communication between units. Therefore we
present an approach in which we combine global and local reason-
ing. We reason globally about unit interactions and team forma-

tion, and locally about the positions and individual goals of units.
To avoid confusion, we use the notation P{", T;" and G;" to refer
to unit i’s position, team and goal at time t in the nth local particle
belonging to factor i, whereas Position"" will stand for the vector of
unit positions at time t in the nth global particle. The process is as
follows:

For each factor i, begin with N factored particles

<P;’—1.n7 T?—l,n’ Gf—l.n>.

Join the factors together to produce N global particles

(Position'~ """, Team'~ """, TeamGoal‘~'"),
each with weight w".
Propagate goals: For n=1 to N:
Sample (PairComm®",Content"") given
(Position~ !, Team‘~!"*, TeamGoal~ ™).
Compute SingleComm"" from PairComm"".
w" — w'[[, P(ObsCommy|SingleComm;™). ()
Sample Accepted"” given Content"" and
(Position~ """, Team'~ 1", TeamGoal‘~ ™).
Sample SingleGoal“" given Accepted"” and
(Position~!" Team‘~ 1", TeamGoal‘~'").
Compute Team"" and TeamGoal“" from
(Content"", Accepted"”, SingleGoal“")
as well as (Team'™ ", TeamGoal"~'").
Project: Fori=1 to M:
Forn=1to N:
Project (Team“", TeamGoal“") to obtain
(TE" G,
wr = Ywn,
Propagate positions: For n=1 to N:
Sample Pi" given (Pi""", Gi™).
w!' — wI'P(ObsPos; |P-").

Resample locally in each factor.

The weights for communication observation in (*) could also be
computed locally, but in fact it does not make a difference because
in Section 4.2 we show how we avoid computing these weights
altogether.

4.1. Joining factored particles

As discussed earlier, the factored inference approaches intro-
duce a join step and a projection step into the PF framework. The
projection step is straightforward. A global state uniquely defines
a local state for each unit. However the join step is more difficult.
The join consists of all global particles, such that the projections of
the global particle onto each of the factors is consistent with a local
particle for that factor. This join is too large to store or compute, so
instead we generate N samples from the result of the join. Since
different units may belong to the same team, and therefore must
have the same goal, we must make sure that the particles chosen
from different factors are consistent with each other.

In Ng et al. [11], an importance sampling process was presented
for sampling from the join. The process samples a particle from
each factor in turn. When it samples a particle from a factor, it
forces the variables that overlap with other factors to have the
same value as previously sampled. Thus only a subset of the avail-
able particles are considered for sampling. To compensate for this,
the method introduces an importance weight equal to the fraction
of particles in the new factor that are consistent. The result of the
process is a global particle with an importance weight.

Our method is similar, but there is a twist. Ng et al. [11] as-
sumed that the overlapping variables between different factors
are fixed and known in advance. This assumption is not valid here.
Instead, the overlap is determined by the individual particles

104 A. Pfeffer et al./Information Fusion 10 (2009) 99-106

chosen by sampling. Whether or not the factors for units 1 and 2
overlap depends on whether the units are on the same team in
the chosen particles. This means that we cannot predefine a join
process in which we know in advance which variables to constrain
at each point in the process. We cannot optimize the join process
to ask a set of predetermined queries. We have to be flexible and
determine on the fly exactly how the different factors join together.
We define a particle-dependent process for producing a single
weighted sample from the join as follows. Notation: P[V], T[V]
and G[V] denote the values of P,T and G in particle V.

Set TeamGoal, = 0 for all k.
Letw=1.
Fori=1 to M:
LetV;= 0.
Forn=1 to N:
If TeamGoaly» = 0 or G = TeamGoaly
Add (P}, T!,G}) to V..
Sample a factored particle V; from V;.
Position; = P[V;].
Team; = T[V;].
If T[V;]=0
TeamGoalT[vi] = G[VJ
w— whil,
Return ((Position, Team, TeamGoal),w).

Unfortunately, the time complexity of the sample-join is
O(N*M). We need to perform the importance sampling process
once for each of the N particles produced. The process goes through
all M units, and for each unit needs to go through a process of
deciding which of the N factored particles are consistent with the
previously sampled factored particles. One thing that might be
done is to precompute, for each factor, all sets of particles consis-
tent with each possible assignment of goals in previous factors,
so that when we need to sample from the factor, we know imme-
diately which particles to use. However, this must be done for all
possible previous team goal assignments, which is exponential in
the number of units. In comparison, the cost of PF is O(MNlogN).
This is an advantage of PF, but PF may require many more particles.

4.2. Sampling communication configurations

A key step in the sampling process is to sample a communica-
tion configuration, given the observation about which units have
communicated. Of course, we cannot possibly enumerate all possi-
ble communication configurations, so we cannot compute the
probability of any single configuration. We cannot directly gener-
ate a sample configuration, because each pair of units’ communica-
tion depends on all the other pairs. Furthermore, even if we could
generate a configuration, the probability of the observed communi-
cation would be very low for all but a small fraction of configura-
tions. We could use Markov chain Monte Carlo techniques to
sample a particular configuration, given the observations. However
each sample would be quite costly to generate. Instead, we use the
technique of evidence reversal [9], together with approximating
assumptions about the model, to generate samples directly given
the evidence.

The first assumption is that every time a unit communicates,
the communication sensor will detect it.2 It is still possible for
the sensor to report a communication when there is none. Making
this assumption allows us to restrict attention to units that we have

2 This does not contradict the statement in Section 3 that a communication is
observed with high probability, but not all the time. The assumption made here is an
approximation to the truth, made for the purpose of making the sampling of
communication configurations tractable.

observed communicating. Furthermore, the only pairs we need to
consider are those where we have observed both units communicat-
ing. The second assumption is that the fitness of goals does not
determine whether or not units communicate in the first place, only
the content of the communication and whether or not it is accepted.
As we said earlier, the goal fitness shows up in multiple places in the
model. Therefore ignoring it in one place does not mean that we are
ignoring it altogether. We emphasize that these assumptions are
made only by the reasoning process, not in the model itself.

Now, given a set of observed communicating units, we want to
sample a set of pairwise communications. Each assignment will
match some pairs of units that have been observed to communi-
cate, while others will be left unmatched. Under the assumptions,
any pairwise assignment with the same number of matching pairs
must have the same probability. How do we ensure this? We intro-
duce a parameter p;, which intuitively represents the probability
that a unit actually communicates with one particular other unit
when there are i units to communicate with. Thus the total proba-
bility that a unit communicates with any other unit is i p; Let
gi=1 —i p;; thus g; is the probability that a unit does not commu-
nicate with any other unit when there are i units to communicate
with.

Now suppose we start with one unit, and do not match it with
any other unit. This happens with probability g;. We then go to an-
other unit, and match it with a third unit. This happens with prob-
ability p;_;. That gives us a configuration of three units with one
unmatched and two matched. Now suppose that instead we match
the first unit with a second unit, which happens with probability p;,
then go to a third unit and do not match it, which happens with
probability g;_». That also gives us a configuration of three units
with one unmatched and two matched. No matter what configura-
tion we choose for the remaining units, either of these starts will
produce the same number of matching pairs in the total configura-
tion. Thus both these starts must have the same probability. This
implies that p;q;_» = q; pi_1, for i > 2. Therefore p; = q;%] Substitut-
ing in the definition of g;, we have

P = (1 —ip))p;_4
Y 1-i-2p,
Solving yields the recurrence relationship

Dia

= _ . fori > 2
Pi=q= (i=2)pi_; +ipi4

To start the recurrence, we need a base case p;, which is a free
parameter. p; can be understood as the probability that one unit
communicates with another unit when there are no other units to
communicate with. We do not need po to derive p, because p;_» is
multiplied by i — 2 in the formula. The values of the p; are precom-
puted before any monitoring begins.

The process for sampling a configuration is now easy. At the
beginning, each unit is marked as unprocessed. We start by consid-
ering a unit. Let the number of other units be m. With probability
gm we do not match the unit being considered to any unit. Other-
wise we choose another unit to match it to uniformly at random;
thus each other unit has probability p,, of being chosen. We then
mark the unit as being processed. If we matched it to another unit,
we also mark the other unit as being processed. We then repeat the
process until all units have been processed. The following pseudo-
code describes the process:

Pairs 0
For each unit i:
Mark i as unprocessed.
Repeat until all units have been processed:
If there is only one unprocessed unit i:
Mark i as processed.

A. Pfeffer et al./Information Fusion 10 (2009) 99-106

Else:
Choose an unprocessed unit i uniformly at random.
Let the number of other unprocessed units be m.
With probability q,,:
/| i is not matched to any other unit
Mark i as processed.
Otherwise:
/| i is matched to some other unit
Choose an unprocessed unit j different from i uniformly
at random.
Pairs < Pairs U (i,j).
Mark i and j as processed.
Return Pairs.

5. Experimental results

We tested our algorithm on simulated data generated from the
model, and compared its performance to ordinary PF, factored PF,
and an algorithm that performs all the reasoning locally and never
joins the factored particles. Each run of the system lasted 100 time
steps. A threat, which was defined to be four units sharing a com-
mon goal, was considered to be successfully detected if it was dis-
covered within 12 time steps of its development. This was enough
time for each unit to reach two intersections on average. If the
threat was not detected within that time, the result was a false neg-
ative. If a threat was reported when none was present, the result

105

was a false positive. For each experiment, except experiment (d),
we ran 500 runs and counted the number of true positives (TP),
false positives (FP), and false negatives (FN). Experiment (d) used
100 runs. Our metrics are precision, which is 5, i.e the fraction
of threats reported by the algorithm that were really threats, and
recall, which is %, i.e. the fraction of real threats caught by the
algorithm. In each experiment we varied the threshold of probabil-
ity required for an algorithm to report a threat, thereby trading off
precision for recall. In all experiments, we adjusted the number of
particles allocated to each algorithm so that they all had approxi-
mately the same running time. The first column of Fig. 6f shows
the number of particles used for most of our experiments; the sec-
ond column shows the number used for experiment (d).

Fig. 5a shows the precision-recall curves for each method for
experiments with ten units and six target locations. The graph
shows the recall that could be achieved for different levels of pre-
cision. Also shown for reference is the performance of random
guessing. While all methods do better than random guessing, our
method does best, getting much higher precision while still achiev-
ing high recall. At one point it achieves 56% precision with 87% re-
call (standard error 3.7%). A system with this level of performance
would be very useful in practice. Interestingly, factored PF per-
forms very poorly, indicating that it is not simply the factoring that
leads to the good performance of our method, but reasoning locally
about unit positions. Also, the relatively poor performance of the
method that does all the reasoning locally shows the importance
of reasoning globally about unit interactions.

a ! i ' T T T T T T T T
; = Our method —+—
e e Ordinary PF ---%--- |
o 'i All local -
b Factored PF @
08 | i Random guessing --=-- -
07t i x |
0.6 b/
ERL a.
g 05F % ' |
14 i\
04 | "\]
\ o
.‘)
03} !]
' o !
o2r y) x. i
0.1} n En .]
0 . ! L L 1 L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Precision
c ! ! T T T T T T T T
Our method —+—
09F Ordinary PF ---%--- |
- All local ----%:---
Factored PF @
0.8 |
0.7 pe.
06 |
i
o O05F
14
04 |
03}
02}
0.1}
0 . ! L L 1 L L L L
0 0.1 0.2 0.3 0.4 05 0.6 0.7 08 09 y
Precision

T
Our method ——
Ordinary PF ---%---]

Recall

Recall

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.9

0.8

0.7

0.6

0.5

04

0.3

0.2

0.1

All local ----%----
Factored PF @

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Precision

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Precision

Fig. 5. Comparison of methods: (a) 10 units, 6 targets; (b) 20 units, 6 targets; (c) 10 units, 20 targets; (d) 10 units, 6 targets with more particles.

106

A. Pfeffer et al./Information Fusion 10 (2009) 99-106

a ! el ' ' ' " All evidence ~—— b
T No communication evidence ---%---
09 | = No position evidence ----%----
0.8 E
'“ 4
orr (@) (d)
= 06} J Our method 100 300
3
o * Ordinary PF 190 1550
05 ¢ l Factored PF 115 | 300
04} 1 All local 120 880
Time per iteration 0.25 2
03} * J
02} . J
®
0.1 1 1 1 1 1 1 1 1 1
0 0.1 02 03 04 05 06 07 08 09 1

Precision

Fig. 6. (a) Comparison of performance of our method with all evidence and without different sources of evidence; (b) number of particles used and running time per iteration

in seconds in the different experiments.

Fig. 5b shows how the algorithms scale up to a situation with 20
units. Again our method does best, at one point achieving 57% pre-
cision with 76% recall (standard error 4.0%). Fig. 5c shows the per-
formance when the number of targets is increased to 20. This is a
much harder task, because some targets are close to each other
and it is difficult to identify a unit’s goals. Nevertheless, our meth-
od is able to achieve reasonably good performance, at one point
getting 55% precision with 51% recall (standard error 4.5%).

As we discussed, one of the disadvantages of our method is that
it is quadratic in the number of particles. This might lead us to be-
lieve that if we allocated more particles to the different algorithms,
the gap between them would close. Fig. 5d shows that this is not
the case. The performance of our algorithm improves significantly
with more particles. Strangely, ordinary PF does somewhat worse,
although this may be noise resulting from the fact that only 100
runs were used for this experiment. The standard errors for this
curve range from 8 to 10%, indicating that there is a fair amount
of noise, but the trend is still clear. At the very least, we can say
that being able to use many more particles does not seem to pro-
vide an advantage to PF. Fig. 6a assesses the relative importance
of each of the two sources of evidence. We see that evidence from
positional observations is more important, but taking communica-
tions into account is also useful. Surprisingly, the method that does
not take into account communication evidence performs better
than the all local method, perhaps because it still considers poten-
tial unit interactions.

6. Conclusion

We have presented a new model of dynamic team and goal for-
mation and an algorithm for dynamically monitoring the positions
of units, the team structure and goals, and applied them to an
asymmetric urban warfare domain. Our method, based on the prin-
ciple of reasoning locally about individual units’ actions and glob-
ally about unit interactions, has been shown to be successful. This
principle is a general one, and can be applied to any situation in
which units operate individually but interact with each other.

We have shown that our method scales up to reasonably large
situations, involving up to 20 units or 20 targets. An important next

step is to try to further scale up our method, to situations involving
possibly hundreds of units. Another next step is to extend the
method to situations in which the number of units changes, and
units can split or combine dynamically. We would also like to al-
low different units to have different roles on a team. Our basic
principle should still hold in both cases. It would also be good to
find a way to approximately compute the join in time that is less
than quadratic in the number of particles.

Acknowledgements

This work has been performed under several contracts funded
by ONR and OSD, with special thanks to Dr. Wendy Martinez.

References

[1] X. Boyen, D. Koller, Tractable inference for complex stochastic processes, in:
Uncertainty in Artificial Intelligence (UAI), 1998.

[2] S. Das, D. Lawless, B. Ng, A. Pfeffer, Factored particle filtering for data fusion
and situation assessment in urban environments, in: International Conference
on Information Fusion, 2005.

[3] M. Devaney, Plan recognition in large-scale multi-agent tactical domains, PhD
Thesis, College of Computing, Georgia Institute of Technology, 2003.

[4] A. Doucet, N. de Freitas, N. Gordon (Eds.), Sequential Monte Carle Methods in
Practice, Springer-Verlag, 2001.

[5] S. Hongeng, R. Nevatia, Multi-agent event recognition, in: International
Conference on Computer Vision, 2001.

[6] S.S. Intille, A.F. Bobick, A framework for recognizing multiagent action from
visual evidence, in: National Conference on Artificial Intelligence (AAAI),
1999.

[7] M. Isard, A. Blake, Condensation - conditional density propagation for visual
tracking, International Journal of Computer Vision 29 (1998) 5-28.

[8] Z. Kahn, T. Balch, F. Dellaert, An MCMC-based particle filter for tracking
multiple interacting targets, in: European Conference on Computer Vision
(ECCV), 2004.

[9] K. Kanazawa, D. Koller, S. Russell, Stochastic simulation algorithms for
dynamic probabilistic networks, in: Uncertainty in Artificial Intelligence
(UATI), 1995.

[10] X. Liu, C.-S. Chua, Multi-agent activity recognition using observation
decomposed hidden markov model, in: International Conference on
Computer Vision, 2003.

[11] B. Ng, L. Peshkin, A. Pfeffer, Factored particles for scalable monitoring, in:
Uncertainty in Artificial Intelligence (UAI), 2002.

[12] S. Suria, S. Mahadevan, Probabilistic plan recognition in multiagent systems,
in: International Conference on Automated Planning and Scheduling,
2004.

