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Abstract

The concepts of event and anomaly are important building blocks for developing a situational picture of the observed environ-
ment. We here relate these concepts to the JDL fusion model and demonstrate the power of Markov Logic Networks (MLNs)
for encoding uncertain knowledge and compute inferences according to observed evidence. MLNs combine the expressive power
of first-order logic and the probabilistic uncertainty management of Markov networks. Within this framework, different types of
knowledge (e.g. a priori, contextual) with associated uncertainty can be fused together for situation assessment by expressing un-
observable complex events as a logical combination of simpler evidences. We also develop a mechanism to evaluate the level of
completion of complex events and show how, along with event probability, it could provide additional useful information to the
operator. Examples are demonstrated on two maritime scenarios of rules for event and anomaly detection.

Keywords: Context-based fusion, Situational Awareness, Uncertainty management, Markov Logic Networks

1. Introduction

State-of-the-art situation assessment (SA) systems (e.g. an
automatic surveillance system [1]) are able to deal with vast
amounts of data and information also of a heterogeneous kind.
Their goal is to provide a constantly updated situational picture
about the observed environment or set of entities to an opera-
tor in order to facilitate human decision making. Updating the
current system representation of the situation is generally per-
formed by acquiring, through sensors or other sources of infor-
mation, new observations which provide a possibly incomplete
and uncertain view.

Currently, low-level sensory data is the main source of infor-
mation used to understand the observed evolving scenario and
to identify anomalous conditions; in particular, up to now mar-
itime surveillance heavily relies on the Automatic Identification
System (AIS), coastal radars, space-based imagery, and other
sensors, to form a picture in which the operator can recognize
complex patterns and make decisions [2, 3].

Anomaly detectors or event recognition systems for maritime
situational awareness are presented in [4, 2, 5, 6, 7, 8, 9, 10].
The common thread that unites these works is the definition
of an expert system, that aims at detecting a set of anomalous
behaviours or potential threats. Subject matter experts define
a knowledge base (KB), which comprises the possible abnor-
mal patterns the target could follow; then, on the top of it, a
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Figure 1: Illustration of an ideal maritime situational awareness situation. The
sensory data for an object of interest must be coupled by high-level contextual
information.

reasoning engine queries the occurrence of an anomaly for a
target object in an arbitrary time instant. For example, in [2]
AIS data is used for extracting statistical behaviours of mo-
tion patterns, while in [5] situational awareness is achieved fus-
ing knowledge-based detection with data-driven anomaly de-
tection. In [4] a comprehensive literature survey of the anomaly
detection process via data analysis is presented; definitions of
anomaly and normalcy, explored under the light of decision
making systems, are given in order to support the analytical
reasoning process.

The main goal of a reasoning engine or probabilistic infer-
ence system is to associate a posterior probability distribution to
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a set of queries [11], given observed evidence. The incorpora-
tion of abductive/inductive and deductive inferencing processes
is a vital element in an automatic fusion system, and it repre-
sents a fundamental step for situational awareness. How this
involvement can be obtained, on both theoretical and applica-
tive levels, is a crucial point, and is subject of ongoing research
[12].

The reasoner is usually fired by low-level observations pro-
vided by sensors, covering in this way the majority of abnor-
mal situations in the domain; however, it is interesting to no-
tice how anomalous behaviours do not always follow standard
trends or well-known patterns, especially if related solely to
vessels movements, but sometimes they take the form of seem-
ingly unrelated activities on a larger scale [13]. Ship-centric
focus should be replaced by a broader vision, where the ideal
situational awareness system should then be flexible and adap-
tive enough to integrate both low-level and high-level informa-
tion, detecting anomalous or suspicious conditions by reason-
ing on manifest or uncertain data, but also on (apparently irrel-
evant) relations among objects, which may reveal unobserved
coincidences. The maritime domain is a daunting scenario for
testing such systems, because of many factors: its challenging
nature where the coverage of wide areas is given by discontin-
uous and intermittent sensory data, its well-known commercial
policies and practices which can suggest normalcy behaviour
patterns, the presence of local contextual information, stable in
time, which can depict alternative indicators of multi-layered
situations, and the urgency for systems capable to provide ef-
fective and advanced warning to promote countermeasures to
illicit activities.

The integration of contextual knowledge, as demonstrated in
[14, 15, 16] where it is exploited for improving tracking ac-
curacy, can greatly enhance the performance of an awareness
system. Despite its value, the representation and use of context
is often poorly integrated, if not absent, even if the richness and
completeness of this information is extremely useful to prop-
erly interpret the available stream of raw sensor data from a
multitude of points of view (security, safety, economical or en-
vironmental situation, etc.). Qualitative high-level knowledge
can help to infer about hidden states from low-level data gen-
erated by sensors, other fusion processes or human reports. In
other words, context is a powerful means to picture a broader
and deeper operational situation, as it can reduce uncertainties
where normally analysts would need to be consulted.

In this paper, we exploit MLNs to encode uncertain knowl-
edge, fuse data coming from multiple (and possibly heteroge-
neous) sources, and perform reasoning on incomplete data. One
key point of using the MLNs for reasoning is their ability to
reason with incomplete or missing evidence, which is a cru-
cial feature hardly found in other approaches, but sought after
especially in the maritime domain, where the data is often in-
accurate, delayed or simply not available. Another advantage
with respect to other systems, is the fact that MLNs support in-
consistencies or contradictions in the knowledge base, which
is a problem when different experts provide contributes to it.
This avoids non-trivial knowledge engineering techniques to be
performed in order to guarantee rules consistency. Here we use

Markov Logic Networks (MLNs) to detect two possible anoma-
lous conditions in maritime domain, a rendezvous at sea and a
hazardous combination of cargo ships in a harbour.

We use exemplary scenarios, the first one derived from ex-
perts’ suggestions gathered at the NATO STO Centre for Mar-
itime Research and Experimentation and the second one ex-
panded from [17], to highlight how unobserved complex events
could be built by logical combination of simpler evidence, and
how contextual information is extremely valuable in many con-
ditions. MLNs present advantages suited to our domain as they
support reasoning with missing or partial observations (incom-
plete evidence), they allow to encode expert rules and relational
knowledge with an associated degree of uncertainty, they are
able to handle contradictions and inconsistencies [18].

Preliminary investigation on MLNs in maritime domain has
been initiated in [19], where we leveraged the expressive power
of first-order logic (FOL) and the probabilistic uncertainty man-
agement of Markov networks in order to detect anomalies via
reasoning on uncertain knowledge. Here we aim to expand and
refine that work by providing contributions for:

• clarifying the concepts of event (simple and complex) and
anomaly in the scope of fusion terminology;

• explicitly explaining how simple and complex events can
be encoded in the form of FOL formulas with associated
degree of uncertainty in maritime domain;

• demonstrating how MLNs could provide a powerful tool
for fusing heterogeneous sources (e.g. a priori, contextual,
sensory, etc.) of information for situation assessment by
being able to express unobserved complex events by logi-
cal combination of simpler evidences;

• developing a mechanism to evaluate the level of comple-
tion of complex events as this calculation is not directly
solvable within the MLNs framework.

1.1. Terminology

To facilitate human decision making, an updated situational
picture of the observed environment assessing the current state
of domain entities and their relationships is required. Events
and anomalies can be considered fundamental building blocks
for developing such a picture of the environment. In this sec-
tion, we provide the necessary definitions of these concepts and
relate them to the JDL fusion model [12]. In the following, the
term level will be used as per JDL terminology.

While there are many papers in the literature that deal with
events and provide various definitions [20], we here break-
down the main concepts in light of the typical functionality and
requirements of a SA system. An event modelling framework in
maritime domain was recently presented in [21], where a piracy
example is presented with the intent of facilitating the decision
making process, but no reasoner is associated to the graphical
representation of events.

For our purposes an event is a “significant occurrence or hap-
pening”. It can be subdivided in simple, when we consider the
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Table 1: Examples of events and anomalies at different JDL levels

JDL Level Event Type Anomaly

0 Absence of AIS signal simple AIS off

1 Vessel increased speed simple Vessel speed over limit

2 Vessel X stopped, Vessel Y stopped, Vessel X and Y are close complex Vessel X and Y are having a rendezvous

Figure 2: Example of the detection of a complex event by observing the oc-
currence of its components. C2 is composed by complex event C1 and simple
event S 3. All the events in this example are non-instantaneous as each of them
spans a certain interval of time.

variation of a quantity or state, or complex, which is a combi-
nation of atomic or complex activities [20]. Figure 2 gives an
intuitive representation of the idea.

A simple event, is any significant variation of input data, at
any level, discernible by the system. Also called atomic in the
literature, we here use the term simple to avoid confusion with
ground atoms defined in Section 2. They can be directly ob-
servable or not, and can be either instantaneous or last for an
arbitrarily long period of time. As the name implies, this is
the most basic type of occurrence and cannot be further decom-
posed into simpler constituting events.

More in general, variations of input signals (Level 0), of a
target’s state (e.g. speed, direction, etc. that can be included in
Level 1), of a target’s relation with other entities (Level 2), are
all examples of simple events.

Complex events are a combination of two or more compo-
nent events (simple or complex) that can be arbitrarily com-
bined through logical operators (∧, ∨, ¬) to encode articulated
expert and domain knowledge. Complex events can be either
triggered by a specific time-ordered sequence of component
events, or be just an unordered collection of them. In addition,
a complex event can be composed by a heterogeneous combi-
nation of events generated by data at different levels. Gener-
ally, complex events span a certain interval of time. They could
have a fixed time-frame, that is constituting events have to oc-
cur within a given time window, or not as they wait indefinitely
for all the component events to happen.

Simple and complex events will be represented in Section 2
by predicates, with the difference being that a complex event
will appear only as the consequent of an implication (i.e. on the
right side of an implication) as it cannot be directly observable
but only inferable from the detection of its components.

An anomaly can be considered a critical event to which the
system is generally called to react to. Usually, a threshold es-

Figure 3: Implicit knowledge modelling. Exemplification of ship trajectories
being clustered [23] to model normal movements patterns. A trajectory leaving
known clusters would be flagged as anomalous.

tablishes if input data can be considered unexpected or anoma-
lous, thus raising an exception. Thresholds, provided by do-
main experts or learned automatically by the system from data,
are therefore used to immediately spot an anomalous condi-
tion. However, anomalies provide no notion whatsoever on the
meaning of the exceptional input. Following this definition, an
anomalous event is an occurrence of some type that deviates
from expected values or behaviour. In a Situation Assessment
system, the knowledge base is consulted to infer a possible con-
clusion from the anomalous condition.

An exhaustive description of anomalies taxonomy in mar-
itime domain can be found in [22], where the author provides a
clear and comprehensive classification of possible events of in-
terest, grouping them by kinematic and non-kinematic patterns
and providing an ontology of possible anomaly causes.

Events and anomalies can be defined by explicit or implicit
models in the system. In the former case the model encodes,
usually exploiting expert and contextual knowledge, the com-
plete description of what an (anomalous) event is. On the con-
trary, implicit modelling means that samples of activities are
unsupervisedly learned by the system in order to detect a devia-
tion from common patterns. Trajectory clustering (as shown in
Figure 3) is an example of technique for extracting and main-
taining (low-level) knowledge about normal movement patterns
[23].

“High (low)-level event” or “High (low)-level anomaly” is
something, to the best of our knowledge, never properly for-
malized. Following the description given in the above sections
and taking into account JDL levels, our position here is that
whenever the system detects any appreciable variation of input
data of any level, a corresponding event is generated. Table 1
shows some examples of events generated from data at differ-
ent levels. For instance, the detection of presence or absence of
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AIS signal is something that can be considered at the bottom of
the JDL hierarchy, while the speed of a vessel is a feature of its
state and belongs to Level 1. Two stopped vessels very close
out at sea is a relation between two entities and helps defining
the current situation (JDL level 2).

It is not true then, that, to flag a situation as anomalous, data
and information have to bubble up through the levels following
increasing processing and refinement steps. Anomalies can be
generated from data of every kind and level as shown in Table
1. For example, the absence of AIS signal can be directly con-
sidered something anomalous, as well as a speeding boat or a
rendezvous out at sea. Also, anomalies could be generated both
from simple and complex events as Table 1 exemplifies.

1.2. Related work on reasoning systems
Expert systems, also known as rule-based systems, are often

used to represent high-level contextual information and to de-
scribe the events to be detected [9]. Simple if-then-else rules
have the advantage to be easy to code and extremely effective
to flag a suspicious event or anomaly. Unfortunately, in most
of the cases the reasoning engine is not refined enough, but
simply the result of an binary process that may lead to dras-
tic decisions with no degrees of incertitude. In a step forward,
uncertainty can be coupled to the rules in the knowledge base
as in the case of MYCIN [24], or can be interpreted as prob-
abilities when Bayes’ rule is used as the basis of inference, as
in Prospector [25]. A major drawback of these systems is that
rule-based systems act as a monolithic chain that triggers the
rules only when complete evidence is available. Whereas a
more natural behaviour would be to infer (abduct or deduct),
with different degrees of information quality or reliability [26],
the missing pieces of information from a priori knowledge to
draw a general picture even in absence of direct observations.

An improvement is provided by Description Logics, which
represent a formalization of Semantic Networks as an exten-
sion of classical logic and are very useful for intuitively repre-
senting knowledge. Although sound, they do not offer support
for uncertainty, even if the structure graph enables the support
of multiple hypotheses. From the need for supporting uncer-
tainty and vagueness for reasoning under probabilistic uncer-
tainty in ontologies, probabilistic and fuzzy description logics
have stemmed, extending classical DLs to deal with numerical
probabilities or fuzzy truth values [27].

Dealing with uncertainty is one of the most desirable char-
acteristics for a fusion system [28], as uncertain data affects
decisions and the quality of estimates. Uncertainty is defined as
the lack of exact knowledge, which would allow us to formu-
late a reliable conclusion. Uncertainty is generated when logic
fails, according to Russell and Norvig [11], because laziness or
theoretical or practical ignorance are introduced in the model-
lization of the problem. In particular, laziness refers to the will
to model the domain with less rules than necessary, while ig-
norance occurs when the theory is lacking in some respect or
part of the data is missing. Probability theory provides a way
to overcome and represent the uncertainty that derives from ig-
norance; on this side, Bayesian networks provide a tractable
solution. Already extensively used in surveillance domain (see

[29] for a recent survey), in [6] they have been used for assess-
ing the threat probability obtained by the combination of five
types of anomalies or abnormal behaviours, that are deviation
from standard routes, unexpected AIS activity, unexpected port
arrival, close approach and zone entry. Despite being so largely
used for probabilistic representations of uncertain knowledge,
Bayesian networks have strong limitations, including the fact
that they allow reasoning about the same fixed number of at-
tributes, as their nature is essentially propositional: the set of
random variables is fixed and finite, and each has a limited do-
main [11]. As result, their application to complex problems is
often impeded, as they require to define in advance with con-
fidence how many entities will be involved, and what type of
relationships intercur among them. Even in Hidden Markov
Models, which have been used in case of temporally and spa-
tially distributed observations for event recognition [30, 31], the
number and type of states must be specified in advance. This
last condition largely impacts on performances when scaling up
to a larger size scenario, reducing their applicability in a flexible
and uncertain domain as the maritime.

Ontologies are another popular means to encode knowledge
and represent relationship among entities [31, 32, 7, 33]. In
[10], a rule-based system is coupled with ontologies for auto-
matic discovery of anomalies in maritime domains. An attempt
to integrate taxonomical knowledge through OWL ontologies
and rule-based knowledge through SWRL rules is described in
[20] for video surveillance. While the paper presents an action-
able solution by exploiting freely available software tools and
libraries, on one hand it lacks the full expressiveness of FOL as
SWRL provides only a limited support for zeroth-order logic.
On the other hand it does not couch uncertainty in principled
way if not through an extension for fuzzy reasoning [34]. The
same issues are present in [32] and [7]. In the first case a hybrid
approach is presented to fuse ontology-based context represen-
tation, and deductive and abductive reasoning for detection un-
der uncertainty of abnormal objects from their characteristics
and behaviour. In the latter work, PR-OWL is coupled with a
Multi-Entity Bayesian Network for vessel of interest identifica-
tion.

A much more powerful tool is FOL, which, with respect to
propositional logic, is enough expressive to represent complex
environments in a concise way. A difference relies in the on-
tological commitment [11], that is a concept that involves the
reality and its representation by means of a model: proposi-
tional logic assumes that a set of mutually exclusive (true or
false) facts hold or not in a certain world, linking symbols to
values, while FOL considers that objects and their relations
(predicates) do or do not hold, specifying much richer environ-
ment semantics. While being only semi-decidable, this prob-
lem is generally mitigated by attempting to convert the KB into
Horn clausal form which is commonly used by inference en-
gines [18].

Other possible decision theory tools include Dempster-
Shafer theory (DS), from which the Dezert-Smarandache for-
malization has been derived [35], and fuzzy logic. Dempster-
Shafer approaches, also known as evidence theory or theory
of belief functions, allows to represent the evidence of differ-
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ent levels of abstraction, with the possibility of distinguish-
ing between uncertainty and ignorance. With this respect, it
is more flexible than classical Bayesian theory when dealing
with incomplete knowledge and has explicit mechanisms for
decision support. However, Dempster-Shafer theory cannot be
used directly to encode expert knowledge in terms of complex
sequences of events.

As it concerns fuzzy logic, in the maritime domain Balmat
et alt. applied this technique to perform a risk assessment in
a ship-centric system [36]. Fuzzy logic has been successfully
used for event detection and recognition in the past [37], as it
enables to take into account insufficient information, dealing
thus with imprecise data, and the evolution of available knowl-
edge.

Statistical Relational Learning (SRL) is an emerging research
area that aims to represent, reason and learn in domains with
complex relational and rich probabilistic structure [38]. SRL
techniques have a very strong potential of application to SA
systems for their ability to model dependencies between related
instances (e.g. any combination of relations among observed
entities or between a set of targets and the environment).

Markov Logic Networks is a recent SRL technique that at-
tempts to unify the world of logic and probability [18]. MLNs
are able to encode expressive domain knowledge through FOL
formulas, and handle typically uncertain sensory data in a prob-
abilistic framework that takes into account relations and depen-
dencies through a graphical model (Markov Networks). MLNs
have been applied to video surveillance systems for event de-
tection in [39], where they are shown as a powerful fusion tool
to combine observations coming from multiple heterogeneous
sources of information.

Described in Section 2, MLNs will be here applied to the
maritime domain where the dynamics and relations of many
targets have to be captured through a multiplicity and hetero-
geneity of sensors and sources of information (including a pri-
ori knowledge, contextual information, and human-generated
reports) in a vast and complex scenario. The overall goal is
to provide a comprehensive situational picture to the opera-
tor. In our case, uncertainty is generated by the intrinsic am-
biguity of subjective opinions of experts (soft data[40]), as no
systematic and universal method exists to perfectly formalize
the scenario: conflicts, approximations, imprecisions and con-
tradictions can generate inexact, incomplete or unmeasurable
information. Thus, attaching a weight to each formula in the
knowledge base is a way to recognize the quality of its source
and incorporate it into the reasoning process.

2. Markov Logic Networks

We here provide essential background notions of Markov
Logic Networks, but the reader is advised to refer to [18] for
further details. MLNs are a powerful tool for combining log-
ical and probabilistic reasoning. While a knowledge base of
logic formulas is satisfiable only by those worlds (truth values
of atomic formulas) in which it is true, a MLN relaxes this hard
constraint by associating a probability value to the worlds that

do not fully satisfy the KB. Therefore, the fewer formulas a
given world violates the more probable it is.

An MLN is then a set L of pairs (Fi,wi) where Fi is a FOL
formula and wi its corresponding real-valued weight. The set
of all formulas Fi in L constitutes the KB while the weight wi

associated to each Fi reflects how strongly the constraint im-
posed by the formula is to be respected. This impacts directly
the probability assignment: worlds which satisfy a high weight
formula are going to be much more probable than those that do
not.

A Markov Logic Network L together with a finite set of
constants C defines a Markov network ML,C that models the
joint distribution of the set of random (binary) variables X =

(X1, X2, ..., Xn) ∈ X. Each variable of X is a a ground atom
(predicate whose arguments contain no variables) and X is the
set of all possible worlds, that is the set of all possible truth
value assignments of n binary variables. The network is built as
follows:

• ML,C contains one (binary) node for each possible ground
atom given L and C

• An edge between two nodes indicates that the correspond-
ing ground atoms appear together in at least one grounding
of one formula in L. Ground atoms belonging to the same
formula are connected to each other thus forming cliques.

• A feature fi is associated for each possible grounding of
a formula Fi in L. Each fi assumes value 1 if the corre-
sponding ground formula is true and 0 otherwise.

The probability distribution over X taking values x ∈ X speci-
fied by ML,C is given by:

P(X = x) =
1
Z

exp

 |L|∑
i=1

wini(x)

 (1)

where |L| indicates the cardinality of L, thus counting the num-
ber of formulas of the knowledge base, and ni(x) is the number
of true groundings of Fi in the world x.

Z =
∑
x′∈X

exp

 |L|∑
i=1

wini(x′)

 (2)

is a normalizing factor often call partition function.
Given the joint distribution function in (1), it is possible to

calculate the probability that a given formula Fi holds given the
Markov Network ML,C as follows:

P(Fi|ML,C) =
∑

x∈XFi

P(X = x|ML,C)

=
1
Z

exp

 ∑
x∈XFi

wini(x)

 (3)

where XFi is the set of worlds where Fi holds.
While (1) provides the probability of configuration x of truth

values for the ground atoms in the Markov Network, (3) can be

5



used instead to evaluate the probability that a formula Fi (e.g.
a predicate representing an event) holds given ML,C where C is
composed by observed entities and other constants provided by
contextual knowledge. This gives a glimpse of the power of the
framework, an arbitrary formula that can be grounded in ML,C

can be queried to get the probability of being true. Thus not
only the formulas in L but also any logical combination of them
that can be grounded in the Markov network can be queried as
well. This is extremely important for a SA system where the
operator might want to evaluate the truth degree of a new (com-
plex) event or condition as the combination of existing evidence
in the KB.The framework can also provide the probability that
a formula F2 holds given that formula F1 does or provide an
answer to weather the KB entails a given formula.

According to the definitions given in Section 1.1, an MLN
provides an explicit way of encoding knowledge. However,
both rule weights and the rules themselves can be be learned
from data. These capabilities make MLNs a powerful tool that
combines the benefits of both implicit and explicit modelling.

One point that should be highlighted is that the Markov net-
work of ground atoms is comprised, as already mentioned, by
a set of binary random variables each of which constitutes a
node in the graph. In our application, the grounding of a
predicate can happen due to a priori or contextual knowledge
(e.g. harbour(H1) where H1 is a known location such as “La
Spezia”) or accrued sensory evidence (e.g. cargo(V1) where V1
corresponds to an observed vessel). An example of Markov
Network is shown in Figure 4. The truth value of grounded
predicates can be provided by external knowledge and obser-
vations or inferred by the reasoning engine. For example we
might know that H1 is a harbour while H2 is not. This would al-
low to say that harbour(H1) is true and that harbour(H2) is false
thus providing binary input to the system. However, one would
like to add an additional level of uncertainty, that is observation
uncertainty, to encode the naturally imprecise or uncertain na-
ture of data coming from sensors and human observers. For ex-
ample, the ground predicate proximity(V1,V2) asserts the vicin-
ity of vessels V1 and V2 according to a certain threshold. The
measured distance could be affected by error leaving thus a mar-
gin of uncertainty on the truth value of the predicate. To encode
such observation uncertainty, a possible solution, proposed in
[39], involves adding a single atom rule to the rule base with
associated weight proportional to the detection probability of
the observed evidence. Observation uncertainty will not be em-
ployed in the experiments of Section 4 and is instead left to
further investigation and future work.

3. Completion of complex events

As described in Section 1.1, a complex event is the logical
combination of two or more events and therefore cannot be di-
rectly observed but has to be inferred by observing the occur-
rence of component events. As suggested in Section 1.1, it is
often the case for SA systems that anomalous or critical situa-
tions have to be deduced from a number of indicators derived
from apparently normal behaviour of observed entities. Indi-
cators take generally the form of simple events but this is not

a rule and a complex event can be composed by an arbitrary
combination of simple and other complex events.

In order to prepare a timely response, adopt adequate
counter-measures, or simply plan in advance future actions, it
would be of course useful to detect a critical condition when it
is about to happen. It would be interesting then to detect com-
plex events that are “almost completed” or, in our logic setting,
“almost true”. In other words, it would useful to provide to
the operator a continuously updated indication of how complex
events are building up. Take for example the rule

cargo(v) ∧ isHeadingTo(v, h) ∧ harbour(h) ∧ risk(h, “high”)
⇒ alarm(v)

where the unary predicate alarm marks the occurrence of a
complex (critical) event involving vessel v. Since the an-
tecedent is composed by the conjunction of four predicates
(events), it evaluates to true only when all four predicates do.
It would be interesting to know how much the current world
is satisfying the implication. For example, if the first, third and
fourth predicates of the antecedent were true then we would say
that the rule is at 75% of its completion and could poentially
trigger if the remaining predicate evaluated also true in the fu-
ture. A condition like the one exemplified could attract the at-
tention of the operator or of the system itself that might decide
to conduct further investigation on vessel v directing sensing
capabilities or information providers to acquire additional data
(see JDL level 4 [12]).

The formulation of a priori (e.g. contextual) knowledge and
observed evidence within the MLN framework allows the eval-
uation of complex events by querying the truth value of the
associated (consequent) predicate. In the example above, the
complex event encoding a critical condition is represented by
the alarm predicate on the right side of the implication. How-
ever, the probability of such predicates does not necessarily re-
flect their completion condition. While it could work nearly
as expected for double implications (⇔), in the case of implica-
tions, as in the example above, the antecedent is only a sufficient
condition for the consequent to be true but is not a necessary
one. Therefore, when the antecedent is false, is says nothing
about the truth value of the consequent. In addition, the con-
sequent could be involved in other formulas and be subject to
their effects.

Evaluating the probability of the antecedent being true does
not provide a solution either as said probability does not match
the completion concept. If for example the weight the formula
expresses a hard constraint, then regular FOL holds and one
false predicate brings the truth value of a conjunction to zero
(as in the example above).

Therefore, to evaluate the level of completion of complex
events we use the following procedure for each formula F in
the KB representing a complex event:

1. Convert F into Conjunctive Normal Form1 (CNF) where
grounding of variables is done according to observations
and contextual knowledge;

1conjunction of disjunctions of literals
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Figure 4: Example of Markov network. The network is obtained by grounding formulas #18 and #19 in Table 3 with constants V1 and V2 referring to two observed
vessels.

2. Evaluate the truth value of ground predicates according to
available evidence. In the case of atoms whose truth value
is unknown, the Closed World Assumption2 (CWA) holds;

3. Let Ei be FOL literals representing simple events, then re-
cursively compute the completion of F by using the fol-
lowing two rules:

• if (E1∧ · · ·∧EK) is a conjunction of K events (predi-
cates) then completion(E1∧· · ·∧EK) =

∑K
k=1 (P(Ek))

• if (E1 ∨ · · · ∨ EN) is a disjunction of N events then
completion(E1 ∨ · · · ∨ EN) = max

n
(P(En))

In other words, the completion of a conjunction of events is
given by the average of their probability. If the events are of
complex type they must be recursively evaluated by applying
the same rules. The probability of each atom is obtained query-
ing the Markov Network as per (3). The probability of literals
whose truth value is unknown is set to zero, the same is done for
not yet grounded predicates. Please note that each atom could
be either a positive or negative literal and that the probability
being evaluated for each atom is the probability of it being true.

The completion of a disjunction of events is instead obtained
by taking the maximum probability value among the events in
the disjunction. Completion calculation is further exemplified
in Table 2, where the first two rows show how again the calcu-
lation for conjunctions and disjunctions and the third row ex-
emplifies the case of complex event whose event tree is shown
at the bottom left.

The application of the CWA sets to zero the probability of
any predicate that has no supporting evidence for being true.
This means that before invoking the CWA both external evi-
dence (i.e. actual observations) and (possible) inference effects
should be checked for ground atoms with unknown truth value
every time their completion level is to be evaluated.

Since the completion of events is calculated only after the
evaluation of the probability values of the predicates through
the MLNs framework, it does not affect inference and it is used
only as an indicator for the operator or the system. The choice
of the CWA provides a prudent look by setting to zero the prob-
ability of unobserved events being true. The open world case
could be practically dealt with in several ways. One example

2according to the Closed World Assumption, atoms with unknown truth
value are considered false [18].

Table 2: Completion of complex events. Being Ei FOL literals representing
simple events, the first two rows show the how the completion is calculated in
the case of conjunction (∧) and disjunction (∨) of component simple events
respectively. The third row (bottom) shows an example of a complex event
whose event tree comprises a combination of both logical operators.

Event tree Logic formula Completion

(E1 ∧ · · · ∧ EK) 1
K

∑K
k=1 (P(Ek))

(E1 ∨ · · · ∨ EN) max
n

(P(En))

n = {1, . . . ,N}

(E1 ∧ E2) ∨ E3 max
(

P(E1)+P(E2)
2 , P(E3)

)

could be to set the probability of unknown predicates to 0.5. A
better option could be to compute the completion as in the CWA
case (probability of unknown literals set to zero) but to explic-
itly highlight to the operator the number of false and unknown
events explicitly.

4. Knowledge representation and experiments

The creation of a knowledge base implies the use of a rep-
resentation formalism to code Subject Matter Experts (SME)
knowledge into formulas. The domain, that is a part of the
world about which we want to express sentences, is represented
by a set of assertions, also said formulas, in FOL, which guaran-
tees a precise semantic characterization. In our experiments we
set manually the MLN weights, which represent the uncertainty
of each rule, as sample data was not available to unsupervisedly
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learn the anomaly model. Weights and rule learning from data
will be investigated in future work. When a large amount of
data is available, it is preferable to train the MLN as described
in Section 2.

We start defining a knowledge base that will model our do-
main by describing entities and their relationship. We use a
maximum weight ω that is proportional to the number of the
ground atoms [18] to define the highest certainty about a rule,
that is a hard constraint; fractions of ω can be assigned to less
confident formulas [39].

Contextual information is provided by a human operator, and
observed evidence necessary to ground the MLN is simulated
as already processed sensory data. It is important to distinguish
the role of these two sources of information. A static entity and
the associated resources or characteristics can be described a
priori by a human operator; this knowledge can be updated in
time when some of these features vary, but the entity is (almost)
permanent in the domain. On the contrary, evidence about mov-
ing or non-static objects is created on-the-fly when needed, it
is not permanent and it can vary in time. For this reason, we
must distinguish between contextual evidence, that is contex-
tual (static) information, and observed evidence that refers to
sensory data regarding a specific vessel of interest in a certain
instant of time.

Two main scenarios will be examined, discussing the impact
of contextual information injection. In the first case, a possible
rendezvous (stow ’n’ go) between ships is depicted; maritime
experts have been consulted to highlight common patterns and
to create the knowledge base after the situation definition. In the
second scenario, extended from [17], the threat is represented
by a dangerous combination of material carried by cargo ships
that arrive at adjacent berths simultaneously.

To run experiments with the Markov Logic Networks we
used Alchemy3, a library for statistical relational learning and
probabilistic logic inference based on the Markov logic rep-
resentation, integrated in a graphical interface provided by
probCog4, which allows to easily code rules and set Alchemy’s
parameters.

Alchemy offers the possibility to learn the weights associated
to the KB formulas from a set of sample patterns, in the form of
true/false atoms. In our experiments we set manually the MLN
weights (Table 12 and Table 3), which represent the uncertainty
of each rule, as sample data was not available to unsupervisedly
learn the anomaly model. Weights and rule learning from data
will be investigated in future work.

MLN inference hinges on one side on Markov Network in-
ference (#P-complete) and on FOL inference (NP-complete) on
the other. However, properly exploiting the structure of the net-
work, MLN inference is in some cases more efficient than in
standard FOL [18]. In our experiments, we run approximate in-
ference using the MonteCarlo-SAT (MC-SAT) algorithm with
5000 maximum steps.

3http://alchemy.cs.washington.edu/
4http://wwwbeetz.informatik.tu-muenchen.de/probcog-wiki/index.php

Figure 5: Entities and relations of the proposed “rendezvous” example.

4.1. Rendezvous scenario

The first scenario aims to detect a rendezvous act, that is a
meeting of two vessels for trafficking or smuggling of people or
goods (drugs, food, oil, etc.). The two vessels usually have no
transponder system activated, to be undetected, and commonly
they meet offshore, far away from the coast. A less frequent
case is when a small boat would rendezvous with the smug-
glers’ mother ships, usually cargo or large vessels.

The rendezvous represents a complex event, and is a binary
relation as it involves two objects of the same type (vessel). The
complete diagram of entities involved in this scenario is shown
in Figure 5. The focus is a vessels-centric structure, with the
main entity having attributes as stopped, insideCorridor and
AIS to indicate that the ship has stopped, navigates inside a
virtual traffic corridor (allowed area), and has AIS transponder
on. The stopped predicate implies a low-level action where the
speed over ground (SOG) or the position of the ship is moni-
tored, as well as AIS requires a translation of a low-level signal
into an event. The insideCorridor predicate requires a prior
definition of navigable zones and normalcy traffic corridors (as
in Figure 3), but their modelization is out of the scope of this
work (see for example [23]).

To describe complex events, which often imply a tempo-
ral sequence of facts, we employ Allen’s temporal logic [41].
Allen’s Interval Algebra provides a composition table for rea-
soning about the relations that occur between temporal inter-
vals. Other predicates as overlaps and meets are unary relations
and indicate a temporal link between two vessels.

Another attribute represents HUMan INTelligence
(HUMINT) reports, which consist in additional informa-
tion about suspicious vessels. The other entity in the scenario
is the zone where the vessel is located, and it can take values
harbour, nearCoast, openS ea or intWaters.

4.1.1. Knowledge base
The knowledge base, whose rules are defined by a human

operator, describes the rendezvous procedure and how it can
be discovered and represented, and the anomalies that can be
derived from data. A subject matter expert can help hand coding
the knowledge rule that are accepted for each domain, or the
models can be supervisedly learned from data.

The formulas set consists of nineteen rules, that describe nor-
mal and abnormal behaviours for ships. The first rules (#1-#4)
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Table 3: Knowledge base for the rendezvous scenario in FOL with associate weights

# Rule Weight

1 overlaps(v, y)⇔ overlaps(y, v) ω

2 meets(v, y)⇔ meets(y, v) ω

3 proximity(v, y)⇔ proximity(y, v) ω

4 rendezvous(v, y)⇔ rendezvous(y, v) ω

5 stopped(v) ∧ (isIn(v, openS ea) ∨ isIn(v, intWaters))⇒ suspicious(v) 4/5 ω

6 stopped(v) ∧ (isIn(v, harbour) ∨ isIn(v, nearCost))⇒ ¬suspicious(v) 2/5 ω

7 ¬AIS (v)⇒ alarm(v) ω

8 ¬insideCorridor(v)⇒ suspicious(v) 4/5 ω

9 humint(v, smuggling)⇒ suspicious(v) 3/5 ω

10 humint(v, clear)⇒ ¬suspicious(v) 1/5 ω

11 suspicious(v)⇒ alarm(v) ω

12 ¬suspicious(v)⇒ ¬alarm(v) 1/5 ω

13 isIn(v, z)⇒ (z , zp) ∧ ¬isIn(v, zp) ω

14 isIn(v, z) ∧ isIn(y, zp) ∧ (z , zp)⇒ ¬proximity(v, y) ω

15 ¬proximity(v, y)⇒ ¬rendezvous(v, y) ω

16 suspicious(v) ∧ suspicious(y) ∧ (overlaps(v, y) ∨ meets(v, y)) ∧ proximity(v, y)⇒ rendezvous(v, y) ω

17 (overlaps(v, y) ∨ meets(v, y)) ∧ proximity(v, y)⇒ rendezvous(v, y) 1/5 ω

18 ¬stopped(v) ∨ ¬stopped(y)⇒ ¬rendezvous(v, y) 3/5 ω

19 be f ore(v, y) ∧ proximity(v, y)⇒ ¬rendezvous(v, y) 4/5 ω

describe the symmetry of some relationship as temporal ones,
proximity and rendezvous. Then we build the anomaly identi-
fiers: a vessel is defined suspicious if stopped in international
waters or open sea (rule #5), if it sails outside traffic corri-
dors (#8), or if there is a HUMINT report on it (#9), while
the permanence in a harbour or near the coast is not consid-
ered an anomaly (#6). If the vessel has the AIS transceiver sys-
tem turned off, the alarm flag is raised (#7) independently from
where the ship is located or what is doing. A suspicious vessel
triggers an alarm (#11 and #12).

The concept of proximity is shaped by rule #13, #14 and #15:
a vessel can be located in one zone per time (#13), two vessels
that are not located in the same area can not be close in space
(#14), and in this last case there can be no rendezvous (#15). On
the contrary, two vessels that are in the same area in overlapping
time intervals define a rendezvous anomaly (#17), rule that is
stronger if they are flagged as suspicious (#16). If one of the
two has not stopped, the rendezvous is not possible (#18), like
when the two vessels are in the same area in not overlapping
time intervals (#19).

4.1.2. Contextual information
Generally, context does not directly provide information on

the object of interest, but in this case the evidence assumes
meaning only when matched with contextual information. For
instance, the isIn predicate fuses observed evidence (the vessel

Table 4: Contextual information for the rendezvous scenario.

isIn(V1, openS ea) ¬insideCorridor(V1)

isIn(V2, openS ea) ¬insideCorridor(V2)

isIn(V3, nearCoast) insideCorridor(V3)

isIn(V4, intWaters) insideCorridor(V4)

isIn(V5, intWaters) insideCorridor(V5)

position) with a priori knowledge (the zones).

Thus in our case, the zone subdivision and the traffic corridor
are additional information that can be exploited to better refine
the complex events. We know that rendezvous are mostly hap-
pening in open sea. Without zones definition, thus no context,
we would not be able to formalize this rule.

Moreover, context is used here to strengthen the posterior
probability of a predicate; for instance, suspicious can be
grounded either if the “vessel stopped at zone X”, or HUMINT
provided a smuggling report, or vessel is not transiting into traf-
fic corridors. Two of these situations are generated only when
sensory data is matched with context, and context actively con-
tributes to reinforce the predicate. Contextual information is
presented in Table 4.
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Figure 6: Illustration of the rendezvous example: several vessels navigate at different distance from the coast. Some of them have the AIS transponder off

(symbolized by the red “!”), and for two of them intelligence reports have been provided (represented by the speaking head).

Table 5: Observed evidence in the rendezvous scenario.

stopped(V1) humint(V1, smuggling)
stopped(V2) humint(V4, smuggling)
stopped(V3) proximity(V1,V2)
stopped(V4) ¬proximity(V1,V3)
¬stopped(V5) ¬proximity(V1,V4)

overlaps(V1,V2) proximity(V1,V5)
overlaps(V2,V3) ¬proximity(V2,V3)
overlaps(V3,V4) ¬proximity(V2,V4)
overlaps(V4,V5) ¬proximity(V2,V5)
¬AIS (V1) ¬proximity(V3,V4)
¬AIS (V2) ¬proximity(V3,V5)
AIS (V3) proximity(V4,V5)
¬AIS (V4)
AIS (V5)

Table 6: Anomalies in the rendezvous scenario; the rendezvous anomalous
event is taking place only between V1 and V2.

V1 V2 V3 V4 V5

V1 Y N N N

V2 Y N N N

V3 N N N N

V4 N N N N

V5 N N N N

Table 7: Results for the rendezvous alarm in the first scenario.

V1 V2 V3 V4 V5

V1 1.00 0 0 0

V2 1.00 0 0 0

V3 0 0 0.02 0

V4 0 0 0.02 0.01

V5 0 0 0 0.01

Table 8: Results for the rendezvous alarm in the first scenario with no contextual
information provided.

V1 V2 V3 V4 V5

V1 0.96 0 0 0

V2 0.96 0 0 0

V3 0 0 0 0

V4 0 0 0 0.2

V5 0 0 0 0.2

4.1.3. Results
As concrete example, we imagine a situation in which

V1 and V2 are having a rendezvous at open sea; they have
the AIS transponder switched off and are close in space
(proximity(V1,V2)). On V1, intelligence sources provided a
smuggling report, indicating that historical data suggests the
vessel may be suspicious. In the meantime, a cruise ship V5
is transiting in international waters, a big leisure craft V3 is
moored near the coast. Another vessel V4, for which smug-
gling reports have been provided as well, is still in international
waters with the AIS transponder not activated. The scenario is
illustrated in Figure 6. From sensory data (Table 5), we observe
that V1, V2, V3 and V4 are still, thus the predicate stopped is
true. Three of them do not have AIS transponder sending mes-
sages, and (V1,V2) and (V4,V5) are close to each other.

Table 9: Low-level anomalies for a single vessels, as, for instance, AIS
transceiver switched off can raise an alarm flag.

V1 V2 V3 V4 V5

Alarm Y Y N Y N

The system is asked to answer two queries,
P(alarm(Vn)|ML,C) and P(rendezvous(Vn,Vm)|ML,C), which
represent the probability for the predicates alarm to be true
for a given vessel Vn, and the probability that a rendezvous
is happening between vessels Vn and Vm. ML,C represents
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Figure 7: Entities and relations of the proposed “hazmat” maritime example.

Table 10: Results for the single vessel alarm in the rendezvous scenario.

V1 V2 V3 V4 V5

Alarm 0.99 0.98 0.08 1.00 0.01

Table 11: Results for the single vessel alarm in the rendezvous scenario with
no contextual information provided.

V1 V2 V3 V4 V5

Alarm 1.00 0.97 0.56 0.99 0.09

the Markov Network created groundings the set formulas L
as per Table 3, while C is the set of constants as in Section
4.1.1. Contextual and sensory evidences are specified in
Tables 4 and 5 respectively. We tested the MLN with the same
evidence set, but two different contexts: in the first case, all the
available information is provided, while in the second case the
contextual information is removed and only the sensory data is
maintained.

Ground truth values are shown in Table 6 and 9 for
P(rendezvous(Vn,Vm)|ML,C) and P(alarm(Vn)|ML,C) respec-
tively.

The results presented in Table 10 indicate that, in pres-
ence of contextual information, the system correctly classifies
the anomaly of having the AIS turned off or being suspicious
enough to alert the operator, and, as suggested by Table 7, it
also recognizes the rendezvous between V1 and V2 with a high
probability assigned. No other rendezvous is detected. When
contextual information is missing, the AIS anomaly, which de-
rives from sensory data, is detected with high confidence (Table
11). Contrarily, the rendezvous alert, that depends on traffic cor-
ridors and sea zones defined by context (Table 4), is classified
as an abnormal pattern with lower confidence (Table 8).

Uncertainty rises for (V4,V5) and two single (V3 and V5) un-
suspicious vessels when no high-level information is provided.
This can be noticed in the detected anomalies for ships couples
(Table 7), where the missing context suggests the possibility of
a open sea rendezvous, and in the single-vessel alarm values
(Table 10), which are no longer zero (or close to zero). This is
due to the fact that the reasoner, which entirely relies on sensory
data, assigns higher importance to the proximity predicate. As

we can see, context here does not have significant discrimina-
tive influence on results and rendezvous detection; however, it
helps by reducing uncertainty and refining the event detection
probability.

4.2. Hazmat scenario

In this scenario several cargo ships head toward a harbour.
Some of the ships carry chemical or generic hazardous materi-
als (hazmat), as, for instance, bleach and ammonia, that when
combined may cause a severe threat [17]. The ships are as-
signed berths in a row, and will be in the harbour before others
or at the same time.

The entities in our examples are, as shown in Figure 7,
cargo, harbour, material and berth, which are linked together
by the fact that the cargo ship, carrying some hazardous mate-
rial (hazMat, which can be dangerous if combined with other
sensitive material) is heading (isHeadingTo) toward a certain
harbour, in which has a berth. The predicate hasBerth takes a
triplet of harbour, vessel and berth as argument to bound the
three classes. The berth has a predicate ad jBerth, which is
important to indicate that two vessels are moored in adjacent
berths, and thus are neighbours.

Instead of the seven original predicates (be f ore(v1, v2),
meets(v1, v2), overlaps(v1, v2), starts(v1, v2), during(v1, v2),
f inishes(v1, v2) and isEqualTo(v1, v2)), which define time of
permanence at berths of the two ships v1 and v2, we shorten
the list to be f ore(v1, v2), meets(v1, v2) and overlaps(v1, v2), as
these are the most frequent time relations between ships perma-
nence times. In fact, a ship can leave a harbour before another
comes in, thus the two vessels do not meet. Alternatively, it can
stay moored for a long time, which overlaps with other ves-
sels permanence. One more case is represented by the meeting
event, that happens if a vessel leaves just after another one ar-
rives; this situation is relevant as the cargo content may not be
fully processed, and still placed on the berth, thus allowing in-
teractions with other ships contents. Other temporal definitions
in our domain can be considered special cases of the overlap
relation. These predicates, that are unary relations, are impor-
tant as they allow us to properly model the scenario time line
and the causality between successive events.
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Table 12: Knowledge base for the hazmat scenario in FOL with associated weights

# Rule Weight

1 overlaps(v, y)⇔ overlaps(y, v) ω

2 meets(v, y)⇔ meets(y, v) ω

3 neighbours(v, y)⇔ neighbours(y, v) ω

4 concurrent(v, y)⇔ concurrent(y, v) ω

5 dangerous(m1,m2)⇔ dangerous(m2,m1) ω

6 alarm(v, y)⇔ alarm(y, v) ω

7 meets(v, y) ∨ overlaps(v, y)⇔ concurrent(v, y) ω

8 ¬meets(v, y) ∧ ¬overlaps(v, y)⇔ ¬concurrent(v, y) 4/5 ω

9 be f ore(v, y)⇒ ¬concurrent(v, y) ω

10 ¬concurrent(v, y)⇒ ¬alarm(v, y) ω

11 cargo(v) ∧ isHeadingTo(v, h) ∧ harbour(h)⇔ hasBerth(v, x, h) ∧ berth(x) ω

12 cargo(v) ∧ cargo(y) ∧ hasBerth(v, x, h) ∧ hasBerth(y, z, h) ∧ ad jBerth(x, z)⇔ neighbours(v, y) ω

13 ¬neighbours(v, y)⇒ ¬alarm(v, y) 4/5 ω

14 cargo(v) ∧ cargo(y) ∧ hazMat(v,m1) ∧ hazMat(y,m2) ∧ ¬dangerous(m1,m2)⇒ ¬alarm(v, y) 3/5 ω

15 cargo(v) ∧ cargo(y) ∧ hazMat(v,m1) ∧ hazMat(y,m2) ∧ neighbours(v, y) ∧ dangerous(m1,m2) ∧ concurrent(v, y)⇒ alarm(v, y) ω

4.2.1. Knowledge base
The domain knowledge can be formalized with FOL formu-

las, described in Table 12, where the higher the weight the more
confident the statement.

The first six rules (#1-#6) codify the symmetry among ele-
ments, and are useful to avoid sorting items; in this way rela-
tions between ships VX and VY hold also viceversa.

Rule #7 states that two vessels which meet or overlap are
concurrent in time, simplifying the concept of “simultaneous”
or “operative/moored at the same time”. The opposite condition
(#8) or the case when one vessel arrives or leaves be f ore (#9)
others define having no interaction with other ships in the sce-
nario (being not concurrent). If two vessels are not concurrent,
they do not represent a threat (#10).

Referring to spacial relationship, a cargo that is heading to-
ward a harbour will have a berth assigned (#11), and two ves-
sels in the same harbour will be neighbours only if they will
share adjacent berths (#12). If two vessels are not neighbours,
they can not generate an alarm (#13), as well as if they transport
cargo materials that are not dangerous when combined (#14).

We can then define the main threat by the rule for which two
neighbour cargo ships carry hazmats which are potentially dan-
gerous if combined (#15). In this case the cargo ships share
adjacent berths and are moored in the harbour at the same time.

4.2.2. Contextual information
Probabilistic knowledge must be integrated with explicit con-

textual knowledge, as sensory data may be not enough to rep-
resent and identify complex situations. A simple low-level
anomaly detector would not detect the aforementioned threat,
as two cargo ships which enter in a harbour, even carrying haz-

mats, for commercial reasons raise no alarm. However, addi-
tional information provided by context can help to identify a
suspicious event.

Context, described in detail in Table 13, can be represented
in our scenario by scenario-dependent information, which is:

• A harbour H1 has four berths B1, . . . , B4, and some of the
berths are adjacent. The exact map of adjacent berths can
be provided by a human operator. In our case, we codify
the proximity with a set of symmetric rules. We suppose,
as shown in figure 8, that berths B1 and B2 are adjacent, as
well as B3 and B4, and B4 and B5.

• Some materials defined by M, if combined together, are
dangerous or potentially lethal. This information must
necessary be provided by a SME, as it can not directly
be inferred from materials only. In our example, we sup-
pose that (M1,M2), (M2,M3) and (M2,M4) are dangerous
combinations.

As we will see in the experiments, it is important that this infor-
mation be the most complete as possible, to depict accurately
the scenario with its entities and relationships.

4.2.3. Results
We aim to demonstrate how contextual information is a cru-

cial key element to build an exhaustive and accurate situational
picture, which allows to timely detect an anomaly.

We imagine a situation as the one described in Figure 8 and
Table 14. V1 leaves the harbour prior to the arrival of V2 and V4.
After a while, V3 reaches berth B3, and it remains there when
V5 arrives and moors at B2. The fact that a ship is carrying
hazardous material and the type of material can be classified
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(a) (b) (c)

Figure 8: Illustration of the evolution of the hazmat scenario. Cargo ship V1 leaves much earlier than the arrival of V2 and V4 (a), and before V3 reaches its berth
(b). As V2 leaves, V5 arrives (c).

Table 13: Contextual information provided a priori for the “hazmat” scenario.
Apart from harbour and its facilities, the description of dangerous combinations
of materials is provided.

harbour(H1)

berth(B1,H1)

berth(B2,H1)

berth(B3,H1)

berth(B4,H1)

ad jBerth(B1, B2)

ad jBerth(B2, B3)

ad jBerth(B3, B4)

¬ad jBerth(B1, B3)

¬ad jBerth(B1, B4)

¬ad jBerth(B2, B4)

dangerous(M1,M2)

dangerous(M2,M3)

dangerous(M2,M4)

¬dangerous(M1,M4)

¬dangerous(M3,M4)

as sensory data, as this information can be fetched on-the-fly
when the ship becomes a vessel-of-interest or when the system
registers the vessel. Also the time predicates can be calculated
at runtime, comparing the ETA (Estimated Time of Arrival) and
a minimum time of permanence to handle the ship content.

All the cargo ships in our scenario transport hazardous mate-
rial, but from a priori information (Table 13) we know that the
dangerous combinations are constituted by (M1,M2), (M2,M3)
and (M2,M4).

The query P(alarm(Vn,Vm)|ML,C) represents the probability
for predicate alarm to be true for a given vessel couple (Vn,Vm),
where ML,C is the Markov Network created by grounding the
set formulas L shown in Table 12, C is the set of constants as
defined in Section 4.2.1, and contextual and sensory evidences
are provided according to Tables 13 and 14 respectively. For
sake of clarity and completeness here we consider all the pos-
sible combinations of vessels (Vn,Vm); however, to speed up
the application of the proposed techniques in a real-world en-
vironment, only vessels that will share adjacent berths could be
selected for a check.

In Table 15 are shown the possible risky combinations of

Table 14: Observed facts (evidence) in the “hazmat” scenario. The time of
permanence of a cargo at its berth is calculated only with respect to neighbour
cargo ships.

cargo(V1) hasBerth(V1, B1,H1)

cargo(V2) hasBerth(V2, B2,H1)

cargo(V3) hasBerth(V3, B3,H1)

cargo(V4) hasBerth(V4, B4,H1)

cargo(V5) hasBerth(V5, B2,H1)

hazMat(V1,M1) be f ore(V1,V2)

hazMat(V2,M2) be f ore(V1,V5)

hazMat(V3,M3) overlaps(V2,V3)

hazMat(V4,M4) overlaps(V2,V4)

hazMat(V5,M2) overlaps(V4,V3)

isHeadingTo(V1,H1) overlaps(V3,V5)

isHeadingTo(V2,H1) overlaps(V4,V5)

isHeadingTo(V3,H1)

isHeadingTo(V4,H1)

isHeadingTo(V5,H1)

Table 15: Dangerous combinations of hazardous materials carried by cargo
ships that share adjacent berths are highlighted in red and marked with “Y”.

V1 V2 V3 V4 V5

V1 N N N N

V2 N Y N N

V3 N Y N Y

V4 N N N N

V5 N N Y N

hazardous materials carried by cargo ships that share adjacent
berths and are moored in the harbour at the same time. Threats
are highlighted in red and marked with “Y”, while a normal sit-
uation is white coloured, marked with “N” and should raise no
alarm flag. Diagonal terms give no anomaly. Hazardous ma-
terial M1 is considered dangerous when combined with others,
but as the cargo which carries it leaves be f ore others, no alarm
is raised. Materials that are brought at not adjacent berths do
not constitute a dangerous combination, thus the couple (V4,V5)
does not constitute a threat.

In Table 16 and 17 the results for this scenario are presented.
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Figure 9: Example of level of completion calculation for the alarm complex event in formula #15 in Table 12.

Figure 10: Example of level of completion calculation for the rendezvous complex event of formulas #16 and #17 in Table 3.

Table 16: Results for alarm raising in the “hazmat” scenario.

V1 V2 V3 V4 V5

V1 0.05 0 0 0.01

V2 0.05 0.95 0.18 0.01

V3 0 0.95 0.02 0.89

V4 0 0.18 0.02 0.51

V5 0.01 0.01 0.89 0.51

Table 17: Results for the “hazmat” scenario without contextual information.

V1 V2 V3 V4 V5

V1 0.01 0.23 0.17 0.01

V2 0.01 0.33 0.37 0

V3 0.23 0.33 0.34 0.32

V4 0.17 0.37 0.34 0.32

V5 0.01 0 0.32 0.32

We performed two tests with the MLN: in both cases the ev-
idence set is the same, but the contextual information is com-
pletely missing in the second experiment. We tested all the pos-
sible vessels combinations, and, when contextual information is
provided, the reasoner set an alarm in the case of (V2,V3) and
(V3,V5), matching the truth (Table 15). Contrarily, no alarm is
risen when context is missing, as the values for suspicious cargo
ships are low.

4.3. Completion level of complex event example
Two examples of completion calculation are provided in the

following. Figure 9 shows the first case where formula #15 in
Table 12 has been grounded according to observed evidence.
The antecedent of formula is entirely composed by a conjunc-
tion of predicates. The literal neighbours(V1,V2) corresponds
to a complex event whose components are expanded on the left.
All the component simple events are direct observations or con-
textual knowledge that, in the example, have resulted being true
with complete certainty. The remaining literals in formula #15
are direct evidence or contextual knowledge where the predi-
cate concurrent(V1,V2) has been evaluated as being false. The
level of completion of this formula is simply calculated as the
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average of all probabilities with a resulting 85% that indicates
that the alarm complex event is close to fully occur. However,
as can be seen in Table 16, the probability associated to the
event by the Markov network is 0.05. The two results together
provide useful information to the operator as the Markov net-
work is correctly not considering V1 and V2 as being currently
a threat thus not rising unnecesary false alarms. However, the
level of completion could be useful to monitor how events are
evolving in the scenario. In this case, it is highlighting a dan-
gerous condition close to be fully occurring. The level of com-
pletion could also provide useful information for a posteriori
forensic analysis.

A second example of calculation is shown in Figure 10 illus-
trating the grounding of formulas #16 and #17 in Table 3. The
example is functional in showing the calculation when multiple
formulas refer to the same complex event. In this case, formula
#17 defines a low weight condition for the rendezvous complex
event that is defined as two vessels that are in the same area
in overlapping time intervals. Formula #16 provides a much
stronger condition by considering also HUMINT information
on the two vessels. The level of completion of a complex event
that appears as consequent of two or more formulas is calcu-
lated by applying the rules described above in this section to
the disjunction of the antecedents of the formulas. Figure 10
shows how, given accrued evidence on vessels V4 and V5, a
rendezvous event has actually occurred. Specifically, formula
#17 is complete while #16 is at 83%. The output probability for
the rendezvous event for vessels is 0.01 as can be seen in Table
6. This means that the event has occurred but is not considered
dangerous (i.e. one of the two vessels has not stopped and is
not considered suspicious by HUMINT reports).

4.4. Discussion
Analysing the results of the previous experimental section,

we can state that MLNs constitute an improvement and a
promising addition to the maritime situational awareness litera-
ture.

First of all, output probabilities can be associated to simple
and (unobserved) complex events, and, more in general, to ev-
ery predicate in the knowledge base. Together with the level of
completion, this feature constitutes an important information,
as it allows the operator to assess the level of risk associated to
the events, and the percentage of their completion for further
analysis.

All FOL based approaches are problematic in the case of
an inconsistent knowledge base because a single inconsistency
leads to the inconsistency of the entire knowledge base from
which anything can follow. Many approaches have been at-
tempted at paraconsistent logics to allow for local inconsis-
tency without global inconsistency. A survey can be found
in [42]. However, these techniques generally tackle the prob-
lem by weakening classical logic (e.g. negation) and thus loos-
ing expressiveness. Loops, contradictions and inconsistencies
between rules are, contrarily to what happens in most frame-
works (fuzzy logic, DLs, basic expert systems, etc.), handled
autonomously by weighing the evidence supporting the formu-
las [18] as per (3). This means that the framework can be used

even in presence of an inconsistent KB as it would likely be
the case when merging the knowledge from multiple sources or
collecting it from different experts. Probabilities are involved
also in the construction of the knowledge base, as they are asso-
ciated to the each formula: contradictory or subjective experts
formulation of the problem can have associated an “a priori”
uncertainty, which represents the degree of confidence they as-
signed to the relational knowledge among objects and entities
in the scenario.

Moreover, differently from expert systems or rigid if-then-
else rules, which require all the evidence to be provided simul-
taneously to make a decision, the chosen framework and the
definition of completion of events are here developed to satisfy
the operator’s need for detecting potentially anomalous events
while they are still in progress even in presence of incomplete
evidence. The maritime field is favourable in stressing how
data and information coming from heterogeneous sources can
be fused together within the MLN framework; in fact, the do-
main is characterized by events that typically span a consider-
able amount of time and that slowly evolve as new information
is acquired while they are still happening. This implies that the
system should work with partial or missing observations, and
not being jeopardized by them. This aspect is really valuable
for timely anomaly and threat prediction, as the status of the
situation can be foreseen in advance and updated as new infor-
mation is acquired.

Another advantage over the state-of-the-art systems is the
possibility to query an arbitrary formula and get probabilities as
output. For instance, the operator may want to build on-the-fly
a custom query and test it in real-time. In the rendezvous ex-
ample, the query for indirect predicates as suspicious(v), with
v = {V1, . . . ,V5} returns the probability for each vessel to be
suspicious, given the evidences, and more complex formulas,
as

[
(suspicious(v) ∨ suspicious(y)) ∧ proximity(v, y)

]
, allow to

better investigate the situation for couples of vessels.
Finally, the experimental results highlight the importance of

context as a key element in a real-world domain for a timely,
complete and accurate situation assessment. In absence of
context, the anomaly detection performance dramatically de-
creases; therefore, we can say that context provides the neces-
sary discriminative power to achieve correct inferences.

5. Conclusions

Events and anomalies are fundamental concepts to identify
and comprehend critical occurrences in the observed environ-
ment. Proper event detection and understanding facilitate sit-
uation assessment and human decision making with applica-
tions to safety, security, consequence management and recov-
ery among others. In this paper, we examined this concept in
the maritime domain in the scope of the JDL fusion model ter-
minology.

Furthermore, we employed Markov Logic Networks as an
efficient and robust tool which leverages both the expressive
power of FOL and the probabilistic uncertainty management of
Markov Networks. This allowed us to encode uncertain a priori
and contextual knowledge, fuse data coming from multiple and
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heterogeneous sources of information and perform reasoning
on incomplete data. In particular, observed and contextual ev-
idences are fed into the inference engine and reasoning is thus
performed combining evidence from low-level data and high-
level information. The latter, represented in our case by logic
formulas which refer to domain entities and their relationships,
is a key element to reduce uncertainty and achieve a more com-
plete and accurate situational awareness picture. The results
confirm this rationale and encourage further developments on
more complex scenarios.

We have also provided a mechanism for early event detection
by evaluating the level of completion of complex events. This
could be useful to provide early warnings before hazardous con-
ditions actually take place.
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