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Abstract

In classification, noise may deteriorate the system performance and increase the complexity of

the models built. In order to mitigate its consequences, several approaches have been proposed

in the literature. Among them, noise filtering, which removes noisy examples from the training

data, is one of the most used techniques. This paper proposes a new noise filtering method

that combines several filtering strategies in order to increase the accuracy of the classification

algorithms used after the filtering process. The filtering is based on the fusion of the predictions

of several classifiers used to detect the presence of noise. We translate the idea behind multiple

classifier systems, where the information gathered from different models is combined, to noise

filtering. In this way, we consider the combination of classifiers instead of using only one to

detect noise. Additionally, the proposed method follows an iterative noise filtering scheme that

allows us to avoid the usage of detected noisy examples in each new iteration of the filtering

process. Finally, we introduce a noisy score to control the filtering sensitivity, in such a way

that the amount of noisy examples removed in each iteration can be adapted to the necessities

of the practitioner. The first two strategies (use of multiple classifiers and iterative filtering) are

used to improve the filtering accuracy, whereas the last one (the noisy score) controls the level

of conservation of the filter removing potentially noisy examples. The validity of the proposed

method is studied in an exhaustive experimental study. We compare the new filtering method

against several state-of-the-art methods to deal with datasets with class noise and study their

efficacy in three classifiers with different sensitivity to noise.
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1. Introduction

Data collection and preparation processes are commonly subjected to errors in Data Mining

applications [1, 2]. For this reason, real-world datasets usually contain imperfections or noise

[3, 4, 5]. In classification, a model is built from labeled examples, which should be capable of

reliably predicting the class for new previously unobserved examples. Obviously, if the data

used to train this model (formally known as a classifier) are corrupted, both the learning phase

and the model obtained will be negatively affected. The former will require more time to find

a solution but also more examples in order to be able to obtain an accurate classifier. As a

consequence, the final model will probably be less accurate due to the presence of noise, and it

will be more complex, since non-real patterns may be modeled.

Two different types of noise can be found in classification datasets: attribute and class noise

[3]. Class noise is the most disruptive type of noise since incorrectly labeled examples have

a high impact when building classifiers, whose performance is often reduced [3, 6]. On this

account, many works in the literature, including this paper, focus on its treatment [7, 8, 9, 10].

Among these works, two types of approaches have been proposed to deal with class noise [3]:

1. Algorithm level approaches [11, 12]. The methods in this category comprise the adapta-

tions of existing algorithms to properly handle the noise or being less influenced by its

presence.

2. Data level approaches [7, 8]. These methods consist of preprocessing the datasets aiming

at getting rid of the noisy examples as a previous step.

Algorithm level approaches are not often an available choice since they depend on the par-

ticular adaptation of each classification algorithm, and therefore they are not directly extensible

to other learning algorithms. Otherwise, data level approaches are independent of the classifier

used and allow one to preprocess the datasets beforehand in order to use them to train differ-

ent classifiers (hence, the computation time needed to prepare the data is only required once).

Thus, the latter type of techniques is usually the most popular choice.

Among data level approaches, noise filters, which remove noisy examples from the training

data, are widely used due to their benefits in the learning in terms of classification accuracy and

complexity reduction of the models built [7, 13]. The study of the noise filtering schemes that

are proposed in the literature [7, 14, 15, 16] focuses our attention on three main paradigms:
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• Ensemble-based filtering [7]. There are studies where some authors proposed the usage of

ensembles for filtering. The main advantage of these approaches is based on the hypothesis

that collecting predictions from different classifiers could provide a better class noise

detection than collecting information from a single classifier.

• Iterative filtering [17]. The strength of these types of filters is the usage of an iterative

elimination of noisy examples under the idea that the examples removed in one iteration

do not influence the noise detection in subsequent ones.

• Metric-based filtering [14, 9]. These noise filters are based on the computation of measures

over the training data and usually allow the practitioner to control the level of conservation

of the filtering in such a way that only examples whose estimated noise level exceed a

prefixed threshold are removed.

On this account, this paper proposes a novel noise filtering technique combining these three

noise filtering paradigms: the usage of ensembles for filtering, the iterative filtering and the

computation of noise measures. Therefore, the proposal of this paper removes noisy examples

in multiple iterations considering filtering techniques that employ systems based on the Fusion of

Classifiers (FC), also known as Multiple Classifier Systems (MCSs) [18, 19, 20, 21]. This type of

systems have already shown a good behavior with noisy data in the field of classification [22, 6].

Ensemble-based filters have previously considered the usage of FC to remove noisy instances

[7], [23], [24]. For example, Barandela et al. [23] proposed a filtering method that removes or

re-labels mislabeled examples depending on the degree of agreement among the predictions of

several classifiers built over the training data. A different way to design an ensemble-based filter

is that proposed by Sánchez and Kuncheva [24]. They applied a well-known filter over several

subsets of the training data, and the resulting filtered data from each subset were combined

into only one set using different techniques. The main differences between our proposal and

previous ensemble-based filters are: a) the iterative elimination of noisy examples, and b) our

filtering proposal also uses a noise sensitivity control in order to determine which potentially

noisy examples are finally eliminated in each iteration. In this way, we take advantage of the

three different aforementioned paradigms. The proposed method is called Iterative Noise Filter

based on the Fusion of Classifiers (INFFC).

A thorough empirical study will be developed comparing several representative noise filters

with our proposal. All of them will be used to preprocess 25 real-world datasets in which

different class noise levels will be introduced (from 5% to 30%, by increments of 5%). The filtered

datasets will be then used to create classifiers with three learning methods of a different and well-

known behavior against noise: a learner considered robust to noise as C4.5 [11] is, a Support
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Vector Machine (SVM) [25], considered accurate but being noise sensitive and the Nearest

Neighbor (NN) rule [26] which is also considered very noise sensitive. Their test accuracy over

the datasets preprocessed with our proposal and the other existing filters will be compared

using the appropriate statistical tests [27] in order to check the significance of the differences

found. Full results and details of the experimentations are available in the webpage associated

to this paper at http://sci2s.ugr.es/INFFC.

The rest of this paper is organized as follows. Section 2 presents an introduction to classi-

fication with noisy data. In Section 3, we introduce the details of the noise filter proposed. In

Section 4, we describe the experimental framework, whereas in Section 5 we analyze the results

obtained. Finally, in Section 6 we enumerate some concluding remarks.

2. Classification with noisy data

This section first introduces the problem of noisy data in the classification framework in

Section 2.1. Next, previous works on noise filters are briefly reviewed in Section 2.2, paying

special attention to those filters on which our proposal is based.

2.1. Noise in classification problems

Noise may be present as errors in the source and input of the data affecting the quality of

the dataset [28]. In classification, this quality is mainly influenced by two information sources,

that is, the class labeling and the attributes’ value sampling. Based on these two information

sources, two types of noise are traditionally distinguished in the literature [3]: attribute noise

and class noise.

Attribute noise affects the values of one or more attributes of examples in a dataset. It

can proceed from several sources such as transmission constraints, faults in sensor devices and

transcription errors [29]. Class noise (or labeling errors) is produced when the examples are

labeled with the wrong classes. Note that this definition of noise differs from that of outlier.

An outlier is an example of a concrete class LA which appears to be inconsistent with respect

to other examples of the same class, since it is situated within a different class [30]. However,

different from noisy examples, this one is not corrupted by errors in its class label or attribute

values, being LA its correct label.

Class noise is known to be more harmful than attribute noise to classifier performance mainly

due to the fact that whereas the importance of each feature for learning may be different, labels

always have a large impact on it [3, 22, 6]. For this reason, this paper focuses on class noise,

aiming at removing those wrongly labeled examples from the datasets.
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Class noise can be attributed to several causes [31]. One of them is the inadequacy of

the information used to label each example, for example, when a amnesic patient imprecisely

answers the questions of the doctor [32]. Data entry errors and the subjectivity during the

labeling process also can produce class noise; for example, in medical applications a variability

in the labeling by several experts may exist [33].

Several works of the literature are focused on analyzing the impact of class noise in the

learning of classifiers from data with class noise [34], [7], [6]. For example, in [34], the authors

investigated the behavior of the nearest neighbor classifier when mislabeled data are considered.

Among the effects of class noise in the system performance, the most frequently reported conse-

quence is the decrement of classification accuracy [6]. Class noise can also affect the complexity

of the classifier built in terms of size and interpretability (for example, in [7], the increase of

the size of decision trees when learning from data affected by class noise was shown).

Errors in real-world datasets are therefore common and techniques that eliminate noise or

reduce its impact are need [3]. Two main alternatives have been proposed in the literature to

deal with noisy data:

• Algorithm level approaches. Also known as robust learners, these are techniques charac-

terized by being less influenced by noisy data. Examples of a robust learner are C4.5

[11] or RIPPER [12]. These classifiers have been adapted to properly handle the noise.

Thus, for example, C4.5 uses pruning strategies to reduce the chances that the trees are

overfitting due to noise in the training data [35].

• Data level approaches. The most well-known type of methods within this group is that

of noise filters [7, 17]. They identify noisy instances which can be eliminated from the

training data. These methods are used with many learners that are sensitive to noisy

data and require data preprocessing to address the problem, even though robust learners

also benefit from their usage. The separation of noise detection and learning phase has

the advantage of avoiding the usage of noisy instances in the classifier building process

[14]. Our proposal is included into this group of methods.

2.2. Noise filters

Preprocessing the dataset aiming to clean the noisy examples is one of the most common

approaches when training data are affected by noise [7]. Noise filters are designed to eliminate

noisy examples in the training set, which is then used as an input to classifiers [7, 17, 5]. They

are particularly oriented to remove class noise, since the elimination of such examples has shown

to be advantageous [8]. However, the elimination of instances with attribute noise seems to be
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counterproductive [35, 3], since they still contain valuable information in other attributes which

can help to build a more accurate classifier.

Even though several noise filtering schemes are proposed in the literature [7, 14, 15, 16], the

following three groups are based on some interesting properties as we have already commented

in Section 1: ensemble-based filtering [7], iterative filtering [17] and metric-based filtering [14].

Even though metric-based filtering methods has the advantage of controlling the level of conser-

vation of the filtering, they are generally simple approaches and do not perform as well as other

more advanced types of noise filters in many cases. For this reason, many other approaches

have been proposed in the literature [9, 10, 8, 7].

There are filtering methods that are based on the fact that the k-NN classifier [26] is sensitive

to noisy data [9, 10], particularly when k is low [36]. Other types of noise filters use classifiers

to detect noisy examples, which are those that are misclassified. The Classification Filter (CF)

[8] performs a partitioning of the training set into n subsets, then a set of classifiers is trained

from the union of any n−1 subsets; those classifiers are afterwards used to classify the examples

in the excluded subset, eliminating the incorrectly classified examples. This filter has the risk

of removing too many instances due to the usage of a single classifier. In order to solve this

problem, ensembles of classifiers are used to identify mislabeled instances; the proposals of

[7, 17] are two of the most representative and well known methods within this field (described

hereafter):

• The Ensemble Filter (EF) [7] uses a set of three learning algorithms (C4.5 [11], 1-NN

[26] and LDA [37]) to remove potentially noisy instances. The training data is classified

using a n-fold cross-validation with each classification algorithm and the noisy examples

are identified using a voting scheme. Two voting schemes are proposed: consensus (which

removes an example if it is misclassified by all the classifiers) and majority (which removes

an example if it is misclassified by more than a half of the classifiers).

• The Iterative-Partitioning Filter (IPF) [17] proposes a similar technique, but removes the

noisy data iteratively using several classifiers built with the same learning algorithm. IPF

removes noisy examples in multiple iterations until the quantity of examples eliminated

is under a threshold. In each iteration, the current training dataset is split into n equal

sized subsets and the C4.5 classifier is built over each of these n subsets to evaluate the

whole training set. Then, the incorrectly labeled examples are removed from it (according

to one of the two aforementioned voting schemes) and a new iteration is started.

Both methods, EF and IPF, claimed two important postulates in the field of the filtering

techniques. On the one hand, Brodley and Friedl (EF) [7] stated that, since noisy data are
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independent of the particular classifier built, using the predictions of different classifiers could

imply an improvement in noise detection against considering an specific classifier. On the

other hand, Khoshgoftaar and Rebours (IPF) [17] claimed that an iterative elimination of noise

usually results in a more accurate noise filtering.

However, the methods belonging to these approaches also have some drawbacks. Since EF,

which is an ensemble-based filter, does not follow an iterative elimination of noisy examples,

the classifiers are built from wrong data, and therefore their noise detection may be biased.

Otherwise, the IPF iterative noise filter only considers one classification algorithm to build the

filter, and thus it does not benefit from collecting information from different models built with

different classification algorithms.

In this work, we aim to follow these postulates at the same time, combining both types of

mechanisms to develop a new filtering method. In addition, we also take into account different

measures of noise in each potentially noise example in order to decide whether it should be

removed or not. In this way, we take advantage of the strengths of each type of filtering

method to create a new noise filter. The complete proposal is explained in the next section.

3. INFFC: Iterative Noise Filter based on the Fusion of Classifiers

Inspired by the ideas that motivated the design of the EF and IPF filters, the proposal of

this paper removes noisy examples in multiple iterations considering filtering techniques based

on the usage of multiple classifiers [18, 22, 38]. For this reason, we have called our proposal

Iterative Noise Filter based on the Fusion of Classifiers. Figure 1 shows an scheme of the filtering

method proposed. Three steps are carried out in each iteration. First, a preliminary filtering

is performed with a FC-based filter. Then, another FC-based filter is built from the examples

that are not identified as noisy in the preliminary filtering to detect the noisy examples in the

full set of instances in the current iteration. Finally, in order to control the noise sensitivity of

the filter, noisy examples are only removed if they exceed a noise score metric.

The building of the FC-based filter is described in Section 3.1. Then, the three main steps

carried out at each iteration are described in separate sections:

1. Preliminary filtering (Section 3.2). This first step removes a part of the existing noise

in the current iteration to reduce its influence in posterior steps. More specifically, noise

examples identified with high confidence are expected to be removed in this step.

2. Noise-free filtering (Section 3.3). A new filtering, which is built from the partially

clean data from the previous step, is applied over all the training examples in the current

iteration resulting into two sets of examples: a clean and a noisy set. This filtering is
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expected to be more accurate than the previous one since the noise filters are built from

cleaner data.

3. Final removal of noise (Section 3.4). A noise score is computed over each potentially

noisy example from the noisy set obtained in the previous step in order to determine

which ones are finally eliminated.

Figure 1: Iterative Noise Filter based on the Fusion of Classifiers.

Finally, Section 3.5 is devoted to the comparison of the time complexity of INFFC with

respect to those of other ensemble-based filters, such as EF or IPF.

We introduce each one of the three aforementioned steps (Sections 3.2-3.4) in each iteration

aiming at removing noisy examples with maximum reliability, that is, those which are noisy

examples with great confidence. In this way, examples that may be noisy or not, are left in the

training set for posterior processing. Ensuring that only the examples that are most likely to

be noise are removed implies that it will be less probable to delete noise-free examples, which

would harm the learning process.

The iterative process stops when, for a number of consecutive iterations g, the number of
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identified noisy examples in each of these iterations g is less than a percentage p of the size of

the original training dataset (in this paper, these parameters are set to g = 3 iterations and

p = 1%).

Table 1 describes the notation used in the following sections to describe the different sets of

examples considered in our filter.

Table 1: Sets of examples used in the proposed noise filter.

Set Description

DT Initial training set

CT Training set at the start of the iteration

CPC and CPN Sets of clean and noisy examples from CT provided by the preliminary filtering

CC and CN Sets of clean and noisy examples from CT provided by the noise-free filtering

CF Filtered CT

3.1. Noise filter based on the fusion of classifiers

The filtering technique used in the steps 2 and 3 in each iteration of the method proposed

in this paper is based on the combination of different classifiers. This filtering strategy was

previously used in the EF noise filter [7]. However, there are two main differences of our

filtering technique with respect to EF:

1. Noise evaluation strategy. The authors of EF proposed the usage of a k-fold cross-

validation to label each example as correct or noisy by each classifier, whereas in our

proposal all the training examples are considered to create only one model with each clas-

sifier to label the examples. Thus, the time complexity of the noise evaluation strategy

of INFFC is reduced with respect to that of EF.

2. Classifiers used to build the filter. The authors of EF propose to use C4.5 [11], 1-NN

[26] and LDA [37], whereas we propose to change 1-NN by 3-NN and LDA by Logistic

regression (LOG) [37], respectively. Therefore, the classifiers used by our FC-based filter

are C4.5, 3-NN and LOG. The aforementioned changes are mainly motivated by the noise

evaluation strategy used. Since our FC-based filter only builds one model to label each

example as clean or noisy, it needs to include classifiers that behave better with noisy

data than the very noise-sensitive 1-NN and LDA methods used in EF. Because of this,

we increment the k value of the k-NN method, increasing its robustness against noise

[36]. On the other hand, LOG is an statistical classifier, such as LDA, but is recognized
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to behave better in several domains. In this way, we improve the global behavior of the

filter when detecting noisy examples since 3-NN and LOG could be considered better than

LDA and 1-NN when dealing with noisy data.

After obtaining the prediction of each one of the aforementioned classifiers over the set of

examples to evaluate, those examples incorrectly classified by the majority of the classifiers,

that is, 2 of the 3 classifiers, are labeled as noisy. It is important to note that we can also use

the consensus scheme to determine which examples are noisy, but in this paper we will use the

majority scheme in all the ensemble-based filters, making the results comparable. Furthermore,

remember that in our proposal we use the same data to train each classifier and evaluate them

to determine the examples to be tagged as noisy.

3.2. Preliminary filtering

Data that we want to filter CT (note that CT = DT at the first iteration) are, logically, likely

to contain noisy examples. Therefore, filtering based on these noisy data may be misleading

since the filtering models built are affected by the noisy examples. Thus, these data are not

reliable enough to decide the final elimination of the noisy examples. On this account, we first

perform a preliminary filtering of the dataset CT at each iteration in order to remove most of

the potentially noisy examples. Afterwards, we consider a second filtering step, the noise-free

filtering, in which the filter is trained only with the examples considered as noise-free (CPC) at

this stage, and thus its noise identification is expected to be more reliable.

The filtering consists of the creation of a system based on FC considering the three aforemen-

tioned classifiers (C4.5, 3-NN and LOG) from CT (the training set at the start of the iteration).

This FC-based filter is used to evaluate the examples of the same set CT . The noisy examples

CPN identified by the filter are removed from CT , resulting in the training data CPC .

Please, note that the noise identification of this first filtering is based on data which may

contain noise. Thus, the noise identified in this step may be erroneous and noisy data will

be probably considered as clean data and vice versa; this is the reason why we call this step

preliminary filtering.

3.3. Noise-free filtering

The filtered dataset provided by the preliminary filtering (CPC) is a cleaner version than

the training set at the start of the iteration CT . Therefore, the FC-based filter built from these

cleaner data CPC is expected to perform a more accurate identification of the noise in CT , since

the models built for filtering are not affected by the most disruptive noisy examples previously

detected and removed from CT .
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Therefore, in the second step of each iteration, a new FC-based filter is created considering

CPC , that is, CT after the preliminary filtering (without the noisy examples identified in the first

step). This filter is evaluated on the examples of the whole set CT (all the training examples in

the current iteration). This results in two different sets of examples: CC ⊆ CT , which consists

of those examples considered as clean by the filter and CN ⊆ CT , which is the set of examples

considered as potentially noisy (note that CC ∩ CN = ∅ and CC ∪ CN = CT ).

Note that the noise identification carried out by the FC-based filter in this step is based on

the filtered CT , so it is expected to be more accurate in identifying noise that the filter in the

previous step; this is the reason why we call this step noise-free filtering.

3.4. Final removal of noise: the noise score

This last step controls the noise sensitivity of the filter moderating the amount of noisy

examples removed. By means of this last step, we try to ensure that only true noisy examples

are removed. Hence, questionable examples are analyzed in posterior iterations, since the

elimination of non-noisy examples may carry a significant decrease in accuracy and therefore it

is important to be sure that they are truly noise.

The noisy examples identified in the second step of the iteration CN are those considered

to be analyzed with the noise score. They are ordered according to this noise score, from those

which are more probably noise to those which are less probably noise or that may be indeed

clean examples wrongly identified as noisy by the filter. Finally, the examples that exceed a

threshold set by the user are eliminated (the effects of using different values of the threshold

on the filtering will be studied in Section 5.6). In order to define the noise score, we have made

the following observations:

1. The class label of some training examples may be erroneous.

Any dataset is susceptible of containing noise [3]. Since our proposal is particularly designed

to deal with datasets with class noise, one cannot blindly trust on the class of all the examples.

2. Noisy examples detected by any filter may be incorrect.

From the above premise, decisions obtained from noisy data may be also incorrect. In

our proposal, this observation is related to the decisions made by the noise filter in which the

examples that are noisy are presented. Therefore, the set of noisy examples detected in the

second step at each iteration, that is, the set of noisy examples to analyze with the noise score,

need not be correct. Thus, examples labeled as noise might be clean and vice versa.

3. Examples in noisy clusters are less reliable.
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The information obtained from a cluster of noisy examples, that is, an agglomeration of noisy

examples, is less reliable. Our proposal will be tested with several percentages of examples with

class noise in the training set, more specifically, up to 30% (see Section 4.1). Therefore, it is very

likely that clusters of noisy examples will be created, particularly for the higher noise levels,

in which a higher quantity of examples are corrupted. In this scenario, an example that was

labeled as noise by the filter may be clean (clean examples within the cluster may be labeled

as noise), and vice versa. The same occurs with the class labels: it is clear that in a cluster

of noisy examples, most of them would have the class label incorrectly assigned. Therefore,

information coming from these clusters should be taken cautiously (with less confidence).

4. The presence of examples with different class labels in the neighborhood of an example may

indicate that it is a noisy example.

The more examples in the neighborhood (k nearest neighbors) of an example e have their

class label different to that of the example e, the more likely for this example e to be noisy is.

It will be even more likely for e to be noisy if, in addition, its k nearest neighbors have been

labeled as clean examples by the noise filter.

5. The presence of examples with the same class label in the neighborhood of an example may

indicate that it is a clean example.

The more examples in the neighborhood (k nearest neighbors) of an example e have the

same class label to that of the example e, the more likely for the example e to be clean is. It

will be even more likely for e to be clean if, in addition, its nearest neighbors have been labeled

as clean examples by the noise filter.

On account of these observations, we will consider the following information (provided by

the examples from CT ) in order to set the confidence of an example e ∈ CN labeled as noisy to

be noisy:

1. Detection results of the noise-free FC-based filter (related to the observations 1

and 2): each example is labeled as clean or noisy by the FC-based filter constructed in

the second step of the method.

2. Information of each training example as belonging to the neighborhood of

other noisy examples (related to the observation 3): the times that one example is

among the k nearest neighbors of other examples labeled as noisy in CN (denoted as

t(e)). This value provides an idea of how involved is an example in noisy areas (clusters

with noise). If the value is high, it means that this example is among the nearest neighbors

of many other examples that may have noise.
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3. Information of the neighborhood of each example e (related to the observations 4

and 5): the classes of e and the examples close to e, that is, its k nearest neighbors (k = 5

is considered in this paper).

Based on the observation 3, we have defined the function confidence(e) (see Equation 1),

which checks whether the example e is close to other noisy examples. This function returns

values in the interval (0, 1]. The value of confidence(e) is higher if e is not in the neighborhood

of other noisy examples, whereas it is lower if e is in the neighborhood of several noisy examples.

Hence, if confidence(e) = 1 (when e is not among the nearest neighbors of any noisy example),

the information that this example provides (such as its class label and its label clean or noise

given by the FC-based filter) is very reliable. However, if confidence(e) ≈ 0 (when e is among

the nearest neighbors of many noisy examples), the information that it provides must not be

taken into account.

confidence(e) =
1√

1 + t(e)2
(1)

Similarly, based on the observations 3-5, we have defined the function neighborhood(e)

(Equation 2). This function aims to analyze the neighborhood of a given example e (its k

nearest neighbors) to determine the degree of e being in a noisy cluster.

neighborhood(e) =

∑k
i=1 clean(ei) · confidence(ei) · differentClasses(e, ei)

k
(2)

This function computes an average value of the k nearest neighbors considering their classes

(function differentClasses(e, ei)), the degree of the cleanness of each neighbor of e (function

clean(ei)) and the reliability of each neighbor (function confidence(ei)).

The function differentClasses(e1, e2), defined in Equation 3, takes into account the obser-

vations 4 (different classes increase the noise score) and 5 (coincident classes reduce the noise

score). In such away, if the example e and its neighbor ei have different class labels the value

of neighborhood(e) is increased, whereas if they have the same class label the value of neighbor-

hood(e) is reduced.

differentClasses(e1, e2) =

 1, if class(e1) 6= class(e2)

−1, if class(e1) = class(e2)
(3)

Furthermore, the observations 4 and 5 state that clean examples must have a higher weight

than examples with noise in the computation of the noise score. Thus, the function clean(ei)

is defined based on the consideration that the number of noisy examples surrounding a given

example ei (that is, n(ei)) is an indicator of the cleanness of that example - see Table 2 in order

to check the difference between the functions t(e) and n(e). Thus, clean examples surrounded
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by many clean examples have a higher degree of cleanness than clean examples surrounded

by noisy ones, since one must not trust the information provided by areas with many noisy

examples (observation 3). The same occurs with the noisy examples: if a noisy example is

surrounded by many other noisy examples, one can say that this example has a lower degree

of noise than other noisy example surrounded by clean examples, which is placed in a more

reliable area. For these reasons, the function clean(ei) is defined as follows:

clean(ei) =
k + isnoise(ei) · (n(ei)− k)

2k
, isnoise(ei) =

 1, if ei is noise

−1, if ei is clean
(4)

The function isnoise(ei), used by clean(ei), simply returns 1 if ei is a noisy example and -1 if

it is clean. Recall that the belonging of each example to the clean and noise sets is determined

by the FC-based filter used in the second step of the filtering.

Table 2: Difference between the functions t(e) and n(e).

Function Description

t(e) Number of times that e is among the k nearest neighbors of other noisy examples in CN

n(e) Number of noisy examples in CN among the k nearest neighbors of the example e

Thus, the function clean(e) (see Figure 2) provides a value of the cleanness of the example

e (not only if it is clean or noise as it is performed by the FC-based filter). The motivation

for its usage is that some examples are expected to have a higher degree of confidence to be

clean than other ones, and the same occurs with the noisy examples. It considers the fact that

a clean example is more reliable than an example with noise (observations 4 and 5). As Figure

2 shows, this function returns values in the interval [0, 1], being 0 the value corresponding to an

example with a maximum degree of being noisy and 1 the value corresponding to an example

having a maximum degree of being clean. Concretely, the interval [0, 0.5] is that of the values

of noisy examples (0 for a noisy example in a cluster of clean examples and 0.5 for a noisy

example in a cluster of noisy examples), whereas the interval [0.5, 1] is that of the values of

clean examples (0.5 for a clean example in a cluster of noisy ones and 1 for a clean example in

a clean cluster). Thus, a higher value of cleanness is assigned to clean examples (considered by

the FC-based filter) than to noisy examples.

Finally, the computation of the noise score NS for an example e ∈ CN is mainly based on

the analysis of its neighborhood, represented by neighborhood(e), and this value is weighted by

the reliability of the own example e, represented by confidence(e). Thus, both functions are

combined to define the noise score NS (e) as follows:
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Figure 2: Graphical representation of the function clean(e). The value of clean(e) depends on the label of e

(clean or noisy) provided by the noise-free filtering (the second step in each iteration).

NS(e) = confidence(e) · neighborhood(e) (5)

As we have previously mentioned, the function confidence(e) is defined in the interval (0, 1],

whereas the function neighborhood(e) is defined in [−1, 1]. Therefore, NS is defined in the

interval [−1, 1], being higher if the example e is more likely to have noise. The sign of the result

provided by the function neighborhood(e) defines if the example e is in fact clean (negative

values) or noisy (positive values), whereas its absolute value defines the degree of confidence in

this choice (being -1 the value corresponding if the example e is totally clean and 1 if the example

e is probably noise). A value NS (e) = 0 implies that there is not reliable information about

the example e to be labeled as clean or noisy. On the other hand, the function confidence(e)

is another factor that establishes how representative the result provided by neighborhood(e) is,

based on the degree of membership of e to noisy clusters.

After calculating the noise score for each potential noise example in CN , those examples

with a noise score higher than a threshold set by the user are removed. In the experimentation

carried out in this paper, this threshold is by default fixed to 0. Thus, those examples in which

there is any indication that they are noisy because their NS (e) > 0 are deleted. However, we

also study the behavior of proposed filter with other different values of the threshold in Section

5, showing that the proposed method is robust with respect to this value.

3.5. On the time complexity of INFFC

There are two main aspects to consider when comparing the time required for filtering of

INFFC to that of the other ensemble-based filters considered in this paper (EF and IPF):

• On the one hand, the noise evaluation strategy used by INFFC is faster than those of

EF or IPF, since INFFC does not perform any internal partitioning of the training set to
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identify the noisy examples. Thus, INFFC always build 3 classifiers over the training set,

whereas the time complexity of the noise evaluation strategy of EF and IPF depends on

the number of partitions.

• On the other hand, the increase in the overall time complexity of INFFC with respect to

EF and IPF is due to two main causes: its iterative elimination of noisy examples (which

is not used by EF, but it is by IPF) and the additional step of each iteration where the

noise score is computed (which is not used by neither EF or IPF).

Therefore, the most significant difference in time complexity of INFFC with respect to both

EF and IPF is the computation of the noise score, which is mainly based on the usage of the

k-NN classifier. The complexity of k-NN is of O(nat ·nex), where nat is the number of attributes

and nex is the number of examples in the training set. However, one must note that the noise

score is computed only over the set of noisy examples CN . If we assume that the majority of the

training data are clean (which is the most common scenario), the cardinality of CN is usually

not too large. Thus, we will compute the nearest neighbors of the examples belonging to the set

CN and maybe the nearest neighbors of some clean examples surrounding these noisy examples

in CN (which is required for computing the function clean(e) of all the nearest neighbors of

each noisy example). Besides, the size of CN is usually reduced at each iteration of INFFC

(since a fewer number of noisy examples are expected to be found at each successive iteration),

so it is expected that the time required for the computation of the noise score is lower at each

iteration.

Thus, even though INFFC might be slower than other ensemble-based filters, such as EF

and IPF (mainly due to the computation of the noise score), the time is not the most important

aspect to be considered since it is only required once –note that all the noise filters employed in

this paper are offline preprocessing methods that are not continuously receiving new data. In

any case, the overall time cost of INFFC can be reduced if its internal FC-based filters and the

aforementioned nearest neighbors that are needed to compute the noise score are implemented

in parallel, which should be the most appropriate choice to take advantage of the possibilities

of the design of the method.

4. Experimental framework

This section presents the details of the experimental study carried out in order to check

the validity of the proposed noise filter. First, Section 4.1 describes the datasets used. Then,

Section 4.2 shows the parameter setup for the classification algorithms used in the FC-based
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filter. Section 4.3 presents the noise filters compared with our proposal. Finally, Section 4.4

describes the methodology followed to analyze the results.

4.1. Datasets

The experimentation is based on the 25 datasets from the KEEL-Dataset and UCI reposi-

tories [39], [40] shown in Table 3, where #EX refers to the number of examples, #AT to the

number of attributes and #CL to the number of classes. Some of the largest datasets (penbased,

satimage, shuttle and splice) were stratified at 10% in order to reduce the computational time

required for training, given the large amount of executions carried out. Examples containing

missing values are removed from the datasets before their usage.

Table 3: Base datasets used in the experimentation.

Dataset #EX #AT #CL Dataset #EX #AT #CL

automobile 159 25(15/10) 6 monk 432 6(6/0) 2

balance 625 4(4/0) 3 new-thyroid 215 5(5/0) 3

banana 5300 2(2/0) 2 penbased 1099 16(16/0) 10

car 1728 6(0/6) 4 pima 768 8(8/0) 2

cleveland 297 13(13/0) 5 satimage 643 36(36/0) 7

contraceptive 1473 9(9/0) 3 shuttle 2175 9(9/0) 7

dermatology 358 33(1/32) 6 splice 319 60(0/60) 3

ecoli 336 7(7/0) 8 twonorm 7400 20(20/0) 2

flare 1066 11(0/11) 6 vehicle 846 18(18/0) 4

german 1000 20(13/7) 2 wdbc 569 30(30/0) 2

glass 214 9(9/0) 7 yeast 1484 8(8/0) 10

ionosphere 351 33(33/0) 2 zoo 101 16(0/16) 7

iris 150 4(4/0) 3

In order to control the amount of noise in each dataset, different noise levels x% are in-

troduced into each training dataset in a supervised manner following an uniform class noise

scheme [41]: x% of the examples are corrupted randomly replacing the class labels of these

examples by other ones from the set of classes. Thus, using this scheme any of the classes of the

dataset may be affected by the noise. This results in a more general noise introduction scheme

than considering the other well-known class noise introduction scheme, that is, the pairwise

class noise scheme [3], which only affects to the majority class and has a lower impact on clas-

sifier performance [22]. We will consider the noise levels ranging from x = 0% (base datasets)

to x = 30%, by increments of 5%. As a consequence, 150 noisy datasets with class noise are

created from the aforementioned 25 base datasets (a total of 175 datasets). All these datasets

are available on the webpage associated with this paper.

In order to create a noisy dataset from the original one, the noise is introduced into the

training partitions as follows:
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1. A level of noise x% of class noise is introduced into a copy of the full original dataset.

2. Both datasets, the original one and the noisy copy, are partitioned into 5 equivalent folds,

that is, with the same examples in each one.

3. The training partitions are built from the noisy copy, whereas the test partitions are

formed from examples from the base dataset, that is, the noise free dataset.

The accuracy estimation of the classifiers in a dataset is obtained by means of 5 runs of a

stratified 5-fold stratified cross-validation (SCV). Hence, a total of 25 runs per dataset and noise

level are averaged. The aforementioned 175 datasets will be preprocessed with our approach

an other 7 noise filters resulting in 1400 new preprocessed datasets. The preprocessing with all

the 8 noise filters of the 5x5 folds for each one of the 175 unprocessed datasets implies a total

of 35000 executions, and the running of each one of the three classification algorithms (C4.5,

SVM and k-NN) of the 5x5-fold SCV of the 1575 datasets (175 unprocessed and 1400 processed)

results in 118125 additional executions, from which the results obtained are analyzed in this

paper. Furthermore, we have performed additional experiments with several thresholds for our

proposal, which increases the number of experiments carried out.

4.2. Parameter setup of the FC-based filter

The parameter setup for the three classification algorithms used by our FC-based filter is

presented in Table 4:

Table 4: Parameter specification for the classification algorithms used in the FC-based filter.

Classifier Ref. Parameters

C4.5 [11] Confidence: 0.25, minimal instances per leaf: 2, prune after the tree building

k-NN [26] k = 3, Euclidean distance

LOG [37] Ridge value in the log-likelihood: 10−8

4.3. Noise filtering methods

The noise filters used for the comparison have been chosen due they apply different filtering

strategies and are well-known representatives of the field. They are briefly described in the

following:

1. Edited Nearest Neighbor (ENN) [9]. This algorithm removes those examples which class

does not agree with that of the majority of its k nearest neighbors.
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2. All k-Nearest Neighbors (AllKNN) [16]. This applies the k-NN rule k times varying the

number of neighbors considered between 1 to k. Those examples misclassified by k-NN

are removed from the training set when all the values of k have been considered.

3. Classification Filter (CF) [8]. CF splits the training set into n subsets. A set of classifiers

is trained from the union of any n−1 subsets. The examples misclassified in the excluded

subset are then eliminated from the training set.

4. Multiedit (ME) [15]. This splits the training data into n folds. k-NN classifies the examples

from the part x considering the part (x+1) mod n as training set and the misclassified

examples are removed. This process is repeated until no examples are eliminated.

5. Nearest Centroid Neighbor Edition (NCNE) [10]. This is a modification of ENN, which

consists of discarding from the training set every example misclassified by the k nearest

centroid neighbors (k-NCN) rule.

6. Ensemble Filter (EF) [7]. EF classifies the training data using an n-fold cross-validation

with several classification algorithms. Then, the noisy examples are identified using a

voting scheme (consensus or majority) and removed from the training data.

7. Iterative-Partitioning Filter (IPF) [17]. IPF removes noisy examples in multiple itera-

tions. In each iteration, the training data is split into n folds and C4.5 is built over

each of these subsets to evaluate all the examples. Then, the examples misclassified are

removed (using the consensus or majority scheme) and a new iteration is started.

The parameter setup for all the noise filters is shown in Table 5. Even though almost all

of the parameters are the default ones recommended by the authors of such filters, we have set

the majority scheme and n = 3 partitions for ensemble-based filters in order to establish a fair

comparison among these types of filters.

Table 5: Parameter specification for the noise filters.

Filter Ref. Abbreviation Parameters

AllKNN [16] AllKNN k value: 3, Distance: Euclidean

Classification Filter [8] CF Classifier: C4.5, n: 3

Edited Nearest Neighbor [9] ENN k value: 3, Distance: Euclidean

Multiedit [15] ME k value: 1, Subblocks: 3, Distance: Euclidean

Nearest Centroid Neighborhood Edition [10] NCNE k value: 3

Ensemble Filter [7] EF Voting scheme: majority, n: 3

Iterative-Partitioning Filter [17] IPF Voting scheme: majority, n: 3

Iterative Noise Filter based on the Fusion of Classifiers - INFFC Voting scheme: majority, n: 3

Note that EF and IPF are filtering approaches based on the use of ensembles (ensemble-

based filters), whereas the rest of the methods are based on single classifiers and/or measures
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(non-ensemble filters). Therefore, we will consider these two groups in the comparisons carried

out in the following section.

4.4. Methodology of analysis

The effect of the aforementioned filters along with our proposal will be analyzed comparing

the performance obtained for each dataset with three different classifiers: C4.5 [11], SVM [25]

and k-NN [26] with k = 1. As we have already mentioned, the performance estimation is

obtained by means of 5 runs of a 5-fold SCV, averaging the test accuracy results. Given the

large amount of results obtained, for the sake of brevity only averaged results are shown in the

paper (the detailed results can be found on the web page associated with this paper), but it

must be taken into account that our conclusions are based on the proper statistical analysis,

which considers all the results (not averaged). In addition to the accuracy results, the number

of datasets preprocessed with each filter in which each classifier obtains the best result is shown.

The performance of our approach is studied with each classifier (C4.5, SVM and 1-NN)

using statistical comparisons in three different scenarios:

1. Comparison between INFFC and not applying preprocessing (Section 5.2). By means of

this comparison we try to check if the application of noise filtering techniques implies an

advantage with respect to no preprocessing (None).

2. Comparison among INFFC and the non-ensemble filters (Section 5.3). Its motivation is

to check the behavior of our proposal against classic state-of-the-art filters belonging to

other different paradigms from ensemble-based methods. These include the noise filters

AllKNN, CF, ENN, ME and NCNE.

3. Comparison among INFFC and the ensemble-based filters (Section 5.4). We also compare

our proposal, which is based on ensembles of classifiers, with other related noise filters

that also use multiple classifiers (EF and IPF).

We have separately studied the differences between our proposal and the non-ensemble and

ensemble methods for two main reasons. First, the separation is motivated by the different

nature of the methods of both groups. Second, performing a multiple statistical comparison

usually requires a larger number of datasets to detect significant differences when the number

of comparison methods increases. This is due to the fact that multiple statistical comparisons

are limited by the number of datasets and an unified comparison can only be performed if a

lager number of datasets than the one considered in this paper is available for study.

Wilcoxon’s test [42] will be applied to study the differences between the proposal of this

paper and no using preprocessing. The p-values associated with the comparison of the results
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of the two methods involved over all the datasets will be obtained. The p-value represents the

lowest level of significance of a hypothesis that results in a rejection and it allows one to know

whether two algorithms are significantly different and the degree of their difference. We will

consider a difference to be significant if the p-value obtained is lower than 0.1 - even though

p-values slightly higher than 0.1 might be showing important differences.

Regarding the comparison between our approach and the other noise filters (either non-

ensemble or ensemble-based methods), the Aligned Friedman test [27, 43] will be used. We will

use this test to compute the set of ranks that represent the effectiveness associated with each

algorithm and the p-value related to the significance of the differences found by this test. In

addition, the adjusted p-value with Holm test [44] will be computed. More information about

these tests and other statistical procedures can be found at http://sci2s.ugr.es/sicidm/.

In addition, it is important to carry out an analysis of which examples are removed from

the data set belong to those corrupted by the noise introduction scheme and which to the non-

corrupted set of examples. Consider that DT = DN tDO, being DN the set of examples whose

class labels have been corrupted by the noise scheme and DO the set of original non-corrupted

examples. On the other hand, each noise filter removes a set of examples DR ⊆ DT . Based on

these sets of examples, we have defined two different metrics in order to check the elimination

capabilities of each noise filter (see Table 6).

Finally, we will also study the effect of the noise threshold in the performance of our ap-

proach, by comparing the results of INFFC considering several thresholds by means of the usage

of the Aligned Friedman procedure and the Holm test.

Table 6: Measures computed.

Metric description Expression

Eliminations among the corrupted examples 100
|DN∩DR|
|DN |

Eliminations among the non-corrupted examples 100
|DO∩DR|
|DO|

5. Analysis of results

This section presents the analysis of the results obtained. First, performance results are

presented and analyzed in Section 5.1. In order to analyze the results obtained, several statistical

comparisons are performed, studying the differences among the proposal of this paper and not

preprocessing (Section 5.2), its comparison with the other non-ensemble methods (Section 5.3)

and its comparison with the other ensemble-based methods (Section 5.4). The analysis of the
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examples removed by each noise filter is presented in Section 5.5, whereas the study on the

behavior of INFFC with different thresholds for the noise score is shown in Section 5.6.

5.1. Accuracy results and number of datasets with best result

Table 7 shows the test accuracy results obtained by each classifier when using each one of

the 8 filters considered and without preprocessing (None column). This table also shows the

number of datasets on which each filter provides the best result with each one of the three

classifiers and noise level. The best results at each noise level are highlighted in boldface. From

this table, several remarks can be made:

1. Test accuracy results:

• For all the classifiers (C4.5, SVM and 1-NN), INFFC is the best method at all the

noise levels, and also without additional noise.

• Considering C4.5, the results of IPF and EF are also remarkable (even though they

are lower than those of INFFC). In general, the worst filters are ME and AllKNN.

The behavior of None should be mentioned: at the lowest noise levels (up to 10%),

it obtains good test accuracy results; at intermediate noise levels, from 15% to 20%,

it obtains medium results compared with the rest of the noise filters; finally, when

the noise level is higher than 25% it obtains the worst results, as expected.

• The results of SVM are similar to those of C4.5. The two best filters after INFFC

are IPF and EF. The worst filters are again ME and AllKNN (up to 5% of noise)

and from 10% onwards, None is clearly the worst method. However, None obtains

very good results without noise.

• Regarding to 1-NN, INFFC is usually followed by IPF, even though CF (up to 20%)

and EF (from 20% onwards) are obtain remarkable results. The worst results are

usually obtained by ME and None.

• Even though filters may be counterproductive without excessive noise, since they are

more likely to remove clean examples, one must realize that they only imply a low

loss of accuracy without noise (0% of noise level). In any case, we acknowledge that

this observation is based on average results. In order to reach meaningful conclusions

we should use statistical tests as it is recommended in the specialized literature [27],

which are performed in the following sections.

2. Number of datasets with best result:
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Table 7: Test accuracy of each classifier (C4.5, SVM and 1-NN) and number of datasets on which each filter

provides the best result (best results are remarked in bold).

Test accuracy Best (out of 25)

Method 0% 5% 10% 15% 20% 25% 30% 0% 5% 10% 15% 20% 25% 30%

C4.5

AllKNN 79.20 78.87 78.48 78.00 77.39 77.36 76.35 1 0 0 1 1 1 1

CF 80.43 80.21 79.83 79.37 78.87 78.63 78.01 0 0 0 0 1 0 0

ENN 80.09 79.87 79.75 79.06 78.76 78.33 77.65 0 2 2 0 3 5 1

EF 80.41 80.22 79.83 79.56 79.33 79.01 78.46 2 5 6 5 5 3 3

IPF 81.18 80.79 80.56 79.92 79.32 79.27 79.03 6 3 2 3 1 5 1

ME 77.88 77.60 76.79 76.60 75.52 75.32 74.45 3 1 0 0 0 2 0

NCNE 80.58 80.23 79.98 79.18 78.65 78.43 77.41 1 1 2 3 1 1 0

INFFC 81.77 81.57 81.21 80.97 80.44 80.07 79.99 8 9 9 12 12 8 17

None 81.32 80.89 80.35 79.46 78.24 77.21 76.16 7 5 5 2 2 0 2

SVM

AllKNN 77.89 77.50 77.48 76.76 75.86 75.14 74.20 3 3 4 2 1 1 1

CF 79.53 79.00 78.79 78.28 77.75 77.40 76.75 0 1 0 2 0 1 1

ENN 78.60 78.48 78.24 77.91 77.25 76.87 75.83 1 1 1 1 1 1 0

EF 79.72 79.33 79.02 78.73 78.20 78.24 77.56 3 4 3 4 4 2 4

IPF 79.76 79.42 79.28 78.88 78.47 78.29 77.84 2 1 1 0 1 4 4

ME 77.25 76.87 76.21 75.49 74.90 74.25 73.25 0 0 0 1 0 2 0

NCNE 78.92 78.56 78.01 77.33 76.15 75.21 74.11 3 3 1 3 1 0 1

INFFC 80.71 80.43 80.17 79.89 79.67 79.41 78.97 6 9 12 10 13 10 11

None 79.98 77.80 76.06 74.71 72.87 71.05 69.77 8 4 3 4 4 4 3

1-NN

AllKNN 79.09 78.80 78.38 77.75 77.31 76.65 76.24 6 5 5 2 1 0 1

CF 79.99 79.76 79.56 79.07 79.01 78.18 77.73 1 0 2 1 2 2 0

ENN 79.58 79.32 78.98 78.56 78.18 77.43 76.92 0 1 0 1 1 0 0

EF 79.95 79.61 79.32 79.05 78.84 78.43 78.27 2 4 2 5 6 3 6

IPF 80.29 79.95 79.70 79.40 79.22 78.74 78.52 2 4 4 4 3 4 4

ME 77.18 76.88 76.17 75.85 75.37 74.81 74.01 0 0 0 1 1 4 1

NCNE 80.01 79.70 79.22 78.46 77.87 77.29 76.22 4 3 5 2 2 1 0

INFFC 80.75 80.37 80.10 79.89 79.65 79.25 79.17 4 8 8 10 8 12 13

None 79.15 76.43 74.01 71.67 69.49 67.04 64.07 7 2 0 0 1 0 0

• INFFC generally obtains the best results in more datasets than the rest of the meth-

ods independently of the classifier considered. There are two exceptions: for the

noise sensitive classifiers, SVM and 1-NN, None excels over the rest of filtering tech-

niques. These exceptions can be attributed to the fact that, without any noise, SVM

and 1-NN are able to build accurate classifiers. Thus, in absence of noise, the more

information (number of examples) they have, the more exact the models constructed

may be (so the application of filtering techniques is not needed in this case). How-

ever, their behavior obviously worsen when the noise level increases, since they are
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very noise-sensitive techniques.

• For C4.5, IPF and EF (and None at the lowest noise levels, up to 10%) also obtains

good results.

• For SVM, IPF only obtains good results at the highest noise levels, from 25% on-

wards. The results of EF, AllKNN (up to 10%) or None must be also considered,

since they are also good compared with the rest of noise filters.

• For 1-NN, IPF and EF also highlight at many noise levels, whereas AllKNN and

NCNE only obtains good results at the lowest noise levels (up to 10%).

5.2. Comparison between INFFC and not preprocessing

The results of INFFC with each one of the classifiers (C4.5, SVM and 1-NN) are compared

with those of the datasets without preprocessing (None). In order to study whether there

are statistical differences among them, Wilcoxon’s test has been performed - see Table 8. In

this table, INFFC and None using different classifiers (C4.5, 1-NN and SVM) are compared

using the Wilcoxon’s test and the associated p-values are shown. From the very low p-values

obtained in these comparisons, one can conclude that there exist statistical differences for all

the classifiers at all the noise levels between the usage of our filter and None (considering a

significance level of α = 0.1). For C4.5 and SVM without noise, even though these differences

are not significant, very low p-values are obtained. This fact shows the great advantage of

applying filtering techniques with respect to no preprocessing, particularly when the noise level

increases.

Table 8: p-values of the Wilcoxon’s test after comparing the proposed filter versus no preprocessing using each

one of the three classifiers: C4.5, SVM and 1-NN.

Method 0% 5% 10% 15% 20% 25% 30%

C4.5 0.14854 0.02831 0.02735 0.00172 0.00010 0.00004 0.00006

SVM 0.17024 0.00189 0.00081 0.00019 0.00017 0.00017 0.00010

1-NN 0.01702 0.00002 0.00001 0.00001 0.00001 0.00001 0.00001

5.3. Comparison among INFFC and the non-ensemble filters

Table 9 presents the statistical comparison performed among INFFC and the non-ensemble

filters using each one of the three classifiers considered (C4.5, SVM and 1-NN). It shows for

each filter results in the form ranks/p-value, where ranks represent the ranks obtained by the

Aligned Friedman procedure and p-value is the adjusted p-value computed by the Holm test.
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This table also shows the p-value obtained by the Aligned Friedman test. Looking at Table 9,

we can observe that:

1. Results of C4.5. INFFC is significantly better than all the other filters at all the noise

levels considering a significance level of α = 0.1, although there is a exception: the

comparison versus NCNE at the two lowest noise levels (0% and 5%), even thought the

p-values are relatively low (close to 0.2 and 0.1, respectively).

2. Results of SVM. INFFC is statistically better than the rest of the filters, even though

with NCNE and CF without noise these p-values are slightly higher than 0.1.

3. Results of 1-NN. INFFC is statistically better than AllKNN and ME at all the noise

levels. It also is statistically better than ENN and NCNE from 15% onwards (and it

obtains a very low p-value close to 0.1 versus ENN with 10% of noise level). Finally,

INFFC is statistically better than CF at the highest noise levels, from 25% onwards,

although relatively low p-values are obtained with 15% and 20% (close to 0.17 and 0.14,

respectively). Thus, in the worst cases, at the lowest noise levels, INFFC shows a better

behavior, but without statistical differences.

5.4. Comparison among INFFC and the ensemble-based filters

Table 10 presents the statistical comparison performed among INFFC and the ensemble-

based filters using each one of the three classifiers considered (C4.5, SVM and 1-NN). Looking

at Table 10, we can observe that, for C4.5 and SVM, INFFC is clearly better than EF and

IPF at all the noise levels. With 1- NN, our proposal is statistically better than the other two

ensemble-based filters from 20% onwards, considering a significance level α = 0.1 (at the other

noise levels, very low p-values are obtained, all close to 0.1 except for 10% noise level in which

the p-value is higher).

5.5. Number of examples removed by each filter

Table 11 shows the results obtained for the two metrics described in Table 6, referring to

percentages of examples removed by each noise filter at each noise level in the sets of corrupted

examples and non-corrupted examples. For the sake of brevity, only averaged results for each

metric at each noise level are shown. The complete results for each data set at each noise level

can be found in the webpage associated with this paper. The analysis of this table of results

leads to following observations:

1. Corrupted examples removed. Generally, the number of examples removed among

the corrupted examples (those with induced noise) is maintained for all the filters at the
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Table 9: Results for each non-ensemble filter and noise level in the form ranks/p-value, where ranks represent

the ranks obtained by the Aligned Friedman test and p-value is the adjusted p-value computed by the Holm

test. Those cases where the null hypothesis is not rejected (α = 0.1) are indicated with a star (*).

Method 0% 5% 10% 15% 20% 25% 30%

C4.5

AllKNN 98.46/0.00007 109.56/0.00000 109.54/0.00000 109.37/0.00000 108.15/0.00000 102.79/0.00000 109.31/0.00000

CF 80.50/0.01292 72.42/0.04831 77.42/0.00481 81.94/0.00046 77.13/0.00166 70.42/0.03724 72.27/0.00101

ENN 71.25/0.06861 71.29/0.04831 66.23/0.04736 62.10/0.02753 62.73/0.02124 66.96/0.03724 68.85/0.00135

ME 114.88/0.00000 114.06/0.00000 117.08/0.00000 113.90/0.00000 120.25/0.00000 117.85/0.00000 117.35/0.00000

NCNE 61.17/0.18944* 61.40/0.12673* 62.85/0.04736 69.21/0.01115 68.87/0.01043 72.15/0.03724 74.56/0.00075

INFFC 44.73 42.27 37.88 34.48 33.87 40.83 28.67

SVM

AllKNN 95.54/0.00020 97.92/0.00008 89.94/0.00289 91.65/0.00033 98.73/0.00000 98.31/0.00000 90.46/0.00000

CF 67.13/0.12529* 72.88/0.04587 69.31/0.08286 72.02/0.03531 66.69/0.01048 67.69/0.00590 66.38/0.00276

ENN 85.00/0.00393 78.15/0.02111 74.00/0.06993 69.77/0.03531 68.17/0.01048 68.13/0.00590 73.27/0.00079

ME 110.54/0.00000 107.62/0.00000 107.98/0.00001 111.69/0.00000 106.98/0.00000 105.50/0.00000 105.73/0.00000

NCNE 68.06/0.12529* 70.04/0.04587 82.19/0.01720 83.58/0.00295 97.23/0.00000 100.48/0.00000 106.27/0.00000

INFFC 44.73 44.38 47.58 42.29 33.19 30.88 28.88

1-NN

AllKNN 91.08/0.01439 94.65/0.00418 90.85/0.00738 97.77/0.00012 103.52/0.00000 98.23/0.00000 90.31/0.00001

CF 69.06/0.49687* 64.71/0.74839* 62.56/0.39177* 62.38/0.17781* 56.13/0.14441* 59.19/0.05091 60.25/0.02636

ENN 75.54/0.28394* 75.98/0.22132* 77.65/0.11785* 73.10/0.05527 74.31/0.00723 85.27/0.00012 83.44/0.00009

ME 118.90/0.00000 119.02/0.00000 118.69/0.00000 116.12/0.00000 114.19/0.00000 107.38/0.00000 104.46/0.00000

NCNE 61.83/0.56389* 63.06/0.74839* 69.42/0.32044* 76.13/0.04347 85.00/0.00050 86.19/0.00012 100.12/0.00000

INFFC 54.6 53.58 51.83 45.5 37.85 34.73 32.42

different noise levels. However, the capability of noise detection is reduced in most of the

noise filters when the noise level increases, except for INFFC, IPF and ME, which are less

affected by the increase of the noise level.

Even though INFFC is the filter that detects a lower number of noisy examples. This

fact is more clearly observed at the lowest noise levels (for example, between AllKNN and

INFFC a high difference can be observed). However, this difference is usually decreased

when noise level increases. This may be due to the fact that, with low noise levels, the

amount of noisy examples is small and hence, the detection or un-detection of some of

these examples may notably alter this percentage, whereas more examples identified as

noisy are need to alter this percentage at higher noise levels.

Therefore, even though INFFC detects less noisy examples, it obtains good noise elimi-

nation results (around 87% at all the noise levels). It can be considered to be comparable

to the rest of the noise filters, particularly when the noise level increases (for example,
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Table 10: Results for each ensemble-based filter and noise level in the form ranks/p-value, where ranks represent

the ranks obtained by the Aligned Friedman test and p-value is the adjusted p-value computed by the Holm

test. Those cases where the null hypothesis is not rejected (α = 0.1) are indicated with a star (*).

Method 0% 5% 10% 15% 20% 25% 30%

C4.5

EF 48.78/0.00032 45.60/0.00106 46.28/0.00185 44.26/0.00078 40.92/0.00702 42.58/0.01139 46.16/0.00017

IPF 39.70/0.02143 44.16/0.00123 41.86/0.00944 46.20/0.00047 48.78/0.00014 44.44/0.00924 45.88/0.00017

INFFC 25.52 24.24 25.86 23.54 24.3 26.98 21.96

SVM

EF 44.04/0.00330 43.80/0.00153 44.16/0.00737 44.22/0.00753 47.76/0.00007 46.02/0.00060 46.24/0.00105

IPF 44.68/0.00330 45.94/0.00087 43.58/0.00737 43.42/0.00753 44.04/0.00040 44.24/0.00088 42.90/0.00343

INFFC 25.28 24.26 26.26 26.36 22.2 23.74 24.86

1-NN

EF 42.90/0.10551* 41.54/0.13166* 39.22/0.33988* 42.12/0.11285* 40.64/0.09284 44.60/0.00761 39.96/0.11043*

IPF 40.14/0.13644* 41.90/0.13166* 41.62/0.33988* 41.52/0.11285* 43.08/0.07571 42.64/0.00999 43.92/0.05036

INFFC 30.96 30.56 33.16 30.36 30.28 26.76 30.12

with CF, ENN, IPF or NCNE).

2. Non-corrupted examples removed. The number of examples removed among non-

corrupted examples (those in which noise has not been introduced) has a greater variation

in the majority of the noise filters when the noise level increases. Thus, for example,

AllKNN drastically removes more examples when the noise level increases (from a 31.82%

at 5% of noise level to 46.82 at 30% of noise level). Something similar occurs with the rest

of the filters, with the exception of INFFC and IPF, which are able to better maintain

the number of examples removed from this set. INFFC is the method that removes less

examples among the non-corrupted ones, with great differences with respect to the rest

of the noise filters considered. For example, it obtains 12.92% versus 17.31% of IPF (the

second method that removes less examples) and versus 46.82% of AllKNN (the method

that removes the largest number of examples).

As a conclusion, it can be said that our proposal is able to maintain the level of elimination

in both the corrupted and non-corrupted sets of examples regardless of the noise level. Even

though it removes less examples among the corrupted ones, it maintains a similar elimination

level to other noise filters, particularly when the noise level increases. However, almost all

the filters behaves worse considering the non-corrupted set of examples. They eliminate large

amounts of possible clean examples compared with INFFC. Thus our method is able to maintain

a good balance between the examples that one must delete and those that must not. Moreover,
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observing the results obtained along this study, the importance of maintaining as many non-

corrupted examples as possible can be highlighted, since statistically better results are obtained

even though less noisy examples are removed. Hence, a good balance between the elimination

of noisy examples and the correct detection of noise-free ones should be maintained.

Table 11: Percentages of examples removed by each noise filter at each noise level in the sets of corrupted

examples and non-corrupted examples (the best results are remarked in bold).

Set Corrupted examples Non-corrupted examples

Noise level 5% 10% 15% 20% 25% 30% 5% 10% 15% 20% 25% 30%

AllKNN 95.67 94.77 94.47 94.57 93.85 93.58 31.81 34.86 37.87 40.73 43.65 46.82

CF 90.98 90.63 90.26 90.12 89.51 88.90 20.38 21.02 22.31 23.33 24.40 26.07

ENN 92.36 90.81 90.23 90.00 88.89 88.28 20.39 21.42 22.60 23.92 25.65 27.48

EF 93.18 92.65 92.32 92.08 91.65 91.63 19.21 19.92 21.02 21.95 22.77 24.46

IPF 90.51 89.72 89.68 89.55 89.09 89.16 15.42 15.56 16.17 16.62 16.87 17.31

ME 92.98 92.73 92.58 92.54 92.39 92.70 30.54 32.51 34.69 36.56 38.64 40.97

NCNE 91.84 90.17 89.52 88.12 87.78 86.24 20.71 22.58 24.45 26.66 28.77 31.19

INFFC 87.86 86.75 86.86 86.73 87.17 87.03 11.58 11.84 12.00 12.34 12.78 12.92

5.6. Influence of the threshold in INFFC

In addition to the comparison with respect to the state-of-the-art filtering methods, we

have studied the effect of the value of the threshold in our proposal. In order to perform this

analysis, we have studied the number of examples corresponding to each value of the noise

score computed by INFFC (considering all the datasets used in this paper). These results are

represented in Figure 3 for four noise levels, that are 0%, 10%, 20% and 30% (the graphics for

rest of noise levels can be found in the webpage associated to this paper).

Attending to Figure 3, two points must be remarked:

• The distribution of the noise score displaces to the right (to higher values) when the noise

level increases. This is due to the fact that, increasing the number of noisy examples in a

dataset produces a higher appearance of examples that are more easily identified as noisy

by the noise metric (even though they are not necessarily noisy since they may be in noisy

clusters), and therefore their noise score is higher.

• Most of the values of the noise score are in the interval (-0.5, 0.8). On this account, we

have chosen this interval of values to perform an study of the behavior of the proposed

filter considering several values of the threshold, in order to check how it affects to the

results obtained.
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(a) 0% of class noise. (b) 10% of class noise.

(c) 20% of class noise. (d) 30% of class noise.

Figure 3: Distribution of the noise score for different noise levels. Each figure represents the number of examples

corresponding to each value of the noise score computed by INFFC (considering all the datasets used in this

paper).

Table 12 shows for each of the thresholds considered in INFFC (from 0-5 to 0.8, by incre-

ments of 0.1) the results in the form ranks/p-value, where ranks represent the ranks obtained

by the Aligned Friedman procedure and p-value is the adjusted p-value computed by the Holm

test. In order to perform this comparison we have considered the results of the C4.5 classifier,

although the results with SVM and 1-NN (found in the webpage of the paper) provide similar

results to those shown here. The results of Table 12 show that the thresholds with the best
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Aligned Friedman rankings are 0, 0.1 and 0.2 at most of the noise levels. In general, no sta-

tistical differences are found between these thresholds and the usage of lower threshold values,

but they are generally statistically better than higher values of the threshold. This fact shows

that removing all the potentially noisy examples in each iteration is not always the best option.

Thus, in many cases, it is better to adopt more conservative strategies to detect and remove

the noisy examples (even though no statistical differences may be found). However, removing

few noisy examples in each iteration seems to be a worse alternative, since statistical differences

are found comparing the highest thresholds with the lower ones set as control methods by the

Aligned Friedman test.

Table 12: Results for comparison among INFFC considering different thresholds in the form ranks/p-value,

where ranks represent the ranks obtained by the Aligned Friedman test and p-value is the adjusted p-value

computed by the Holm test. Those cases where the null hypothesis is not rejected (α = 0.1) are indicated with

a star (*).

Threshold 0% 5% 10% 15% 20% 25% 30%

-0.5 160.90/1.00000* 169.80/0.41766* 155.68/1.00000* 144.08/0.99949* 134.06/1.00000* 119.68/1.00000* 110.46/1.00000*

-0.4 159.38/1.00000* 167.74/0.43093* 156.20/1.00000* 143.88/0.99949* 132.62/1.00000* 118.50/1.00000* 110.80/1.00000*

-0.3 158.92/1.00000* 163.52/0.43225* 158.00/1.00000* 141.60/0.99949* 124.26/1.00000* 115.98/1.00000* 108.54/1.00000*

-0.2 167.56/1.00000* 155.38/0.60225* 158.36/1.00000* 136.18/0.99949* 120.24/1.00000* 118.64/1.00000* 109.16/1.00000*

-0.1 172.50/1.00000* 147.38/0.74059* 150.86/1.00000* 127.82/1.00000* 116.84/1.00000* 112.54/1.00000* 112.76/1.00000*

0 159.08/1.00000* 137.98/0.81359* 141.06/1.00000* 120.82/1.00000* 112.76/1.00000* 115.18/1.00000* 104.36

0.1 156.10/1.00000* 114.24 141.66/1.00000* 104.58/1.00000* 108.48 103.18 110.22/1.00000*

0.2 146.1 117.40/0.91208* 124.88 102.14 115.66/1.00000* 113.00/1.00000* 129.10/1.00000*

0.3 159.70/1.00000* 165.72/0.43225* 160.02/1.00000* 192.36/0.01295 171.92/0.21311* 188.38/0.02328 195.10/0.01217

0.4 182.54/1.00000* 204.50/0.01450 200.64/0.07303 230.98/0.00006 224.54/0.00045 244.80/0.00001 253.30/0.00000

0.5 204.02/0.42982* 226.40/0.00089 219.26/0.00974 239.64/0.00002 263.28/0.00000 264.26/0.00000 270.58/0.00000

0.6 209.42/0.31528* 229.60/0.00070 228.14/0.00339 256.98/0.00000 274.98/0.00000 279.40/0.00000 278.90/0.00000

0.7 210.20/0.31528* 229.84/0.00070 231.14/0.00266 258.86/0.00000 278.82/0.00000 281.88/0.00000 282.24/0.00000

0.8 210.58/0.31528* 227.50/0.00083 231.10/0.00266 257.08/0.00000 278.54/0.00000 281.58/0.00000 281.48/0.00000

As final remark, one must realize that all the reported results and the statistical compar-

isons performed show the suitability of our filtering approach dealing with class noise datasets.

The combination of the iterative ensemble-based filter and the noise score to control the noise

sensitivity has shown to be a good alternative to other existing noise filters found in the litera-

ture. The threshold of the proposal must be carefully fixed in order to obtain the best possible

results. Very high values of the threshold seems to be inferior to choosing lower values - we

recommended that this threshold is fixed close to 0, according to our experimentation.

6. Concluding remarks

This paper proposes a new noise filtering method combining three different noise filtering

paradigms: the usage of ensembles for filtering, the iterative filtering and the computation of
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noise measures. Thus, we propose an iterative noise filtering method based on the fusion of

the predictions of several classifiers. We also introduce a noisy score to control the filtering

sensitivity to remove more or less noisy examples according to the practitioner’s necessities.

We have compared our proposal against other well-known filters found in the literature over a

large collection of real-world datasets with different levels of class noise.

The most remarkable fact behind the analysis of results is that almost all the filters stud-

ied in this paper eliminate higher amounts of clean examples compared to INFFC. However,

INFFC maintains a similar elimination level of noisy examples than that of other noise filters,

particularly when the noise level increases. Thus our method is able to maintain a good balance

between the examples that one must delete (noisy examples) and those that must not (clean

examples). Furthermore, from the experimental results we can conclude that our noise filter

enhance the performance of the rest of the noise filters and no preprocessing. The statistical

analysis performed supports our conclusions.

The analysis on the impact of the threshold fixed in the noise score shows that removing

all the potentially noisy examples in each iteration is not always the best option, but neither

removing very low quantities of noisy examples. Hence, a balance must be found in order to

obtain the desired results. For this reason, we recommend a threshold close to 0, whose optimal

value can be adapted depending on the problem.
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