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Highlights

• An approach EPLS is proposed for air quality data fusion and clustering.

• EPLS preserves the most valuable features which are adaptive to other

measures and clustering approaches.

• EPLS-based clustering algorithm can easily handle large-volumes of data.

• EPLS can be efficiently suitable for air quality clustering problem.
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Abstract

Nowadays air quality data can be easily accumulated by sensors around the

world. Analysis on air quality data is very useful for society decision. Among five

major air pollutants which are calculated for AQI (Air Quality Index), PM2.5

data is the most concerned by the people. PM2.5 data is also cross-impacted

with the other factors in the air and which has properties of non-linear non-

stationary including high noise level and outlier. Traditional methods cannot

solve the problem of PM2.5 data clustering very well because of their inherent

characteristics. In this paper, a novel model-based feature extraction method

is proposed to address this issue. The EPLS model includes 1) Mode Decom-

position, in which EEMD algorithm is applied to the aggregation dataset; 2)

Dimension Reduction, which is carried out for a more significant set of vectors;

3) Least Squares Projection, in which all testing data are projected to the ob-

tained vectors. Synthetic dataset and air quality dataset are applied to different

clustering methods and similarity measures. Experimental results demonstrate
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that EPLS is efficient in dealing with high noise level and outlier air quality clus-

tering problems, and which can also be adapted to various clustering techniques

and distance measures.

Keywords: Air Quality, PM2.5, Clustering, EEMD, PCA

1. Introduction

In recent years, an increasing number of sensor devices have generated a

large amount of temporal data which can be treated as time series data. These

time series can be measured and analyzed across the scientific disciplines, in-

cluding human beats in medicine, cosmic rays in astrophysics, rates of inflation5

in economics, and air temperatures in climate science[1] etc. Extracting nu-

merical features from time series data would have a huge influence for human

decision, such as revealing human interpretable characteristics of the human

activity data [2], data forecasting for social behaviors as well as clustering and

classification [3, 4, 5].10

According to the definition of AQI, ambient air pollutants in China are

concentrations of particulate matter (PM2.5 and PM10), SO2, CO, NO2, O3.

These time series are nonstationary and seasonality with high level of noise and

outlier. Nonstationary means that the statistic properties change with time.

Many studies have analyzed air quality time series in the stationary frame-15

work, however, this assumption is invalid. Air quality time series should be

pre-processing to deal with the negative impact caused by noise and outlier.

Traditional whole time series clustering and statistic feature extraction are un-

able to overcome the patterns of noise and outlier. In order to solve these

problem, a novel algorithm needed to be proposed.20

Among all techniques applied to analyzing time series data, clustering is

the most widely used one without costly human supervision or time-consuming

annotation of data [6]. Clusters are formed by grouping objects which have

maximum similarity in an unlabelled dataset. In detail, clustering is applied on

exploratory data for summary generation and acts as a pre-processing step or25
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subroutine for other tasks [7, 8, 9]. It can be concluded that time series clustering

can be classified into three main branches [10]:(1) whole time series clustering

[11]; (2) subsequence clustering [7]; (3) time point clustering [12]. As for whole

time series clustering, there are three different categories, namely shape-based

[6, 13, 14], feature-based [2, 10] and model-based [15, 16]. In the shape-based30

approach, two time-series are matched by shapes and usually employ conven-

tional clustering methods[17]. As for feature-based approach, the raw time series

are converted into a feature vector for clustering methods[18]. Model-based ap-

proach is transformed from raw time series into model parameters (a parametric

model for each time series), and then a suitable model distance and a suitable35

clustering algorithm can be chosen.

According to nonstationary time series, feature-based representations of time

series are universal. Some factors such as mean, standard deviation, skewness

and kurtosis are used as features by Nanopoulos [19]. These features are statisti-

cal values for stationary time series with low dimensions. Usue et al. introduced40

ten features that contains measures of dimension, shift, correlation, seasonality,

trend, noise, outliers, autocorrelation, skewness and kurtosis to represent time

series [10], and these features form a characteristic vector for clustering[20]. Val-

chos et al. used periodic features to obtain via the direct Fourier Decomposition

for clustering of MSN query log and electrocardiography time series data [21].45

Duncan et al. describes a new time-frequency feature extraction method, which

is based on Empirical Mode Decomposition (EMD) [2]. Generally, these features

are classified into three categories: (1) Time domain features. These techniques

usually involve extracting statistic (e.g., variance, mean, spread, Gaussianity),

or some information theoretic and entropy/complexity measures(e.g., automu-50

tual information, Approximate Entropy, Lempelziv complexity). (2) Frequency

domain features [22]. These methods are mostly underpinned by the discrete

Fourier or Wavelet transformation of data. (3) Time-frequency domain features.

These features can be obtained from Hilbert-Huang transformation, Wigner-

ville distribution, Cohen time-frequency distribution.55

After features extraction, a similarity measure need to be selected, and Eu-
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clidean distance can lead to better clustering results as an useful method [11].

But Euclidean distance measure is not a generally method, for some datasets

Elastic measure including DTW and edit distance can achieve higher perfor-

mance. Is there a better distance measure method for general dataset? In the60

same time, the choice of features representation is also a problem [23]. For a

specific dataset, the selection of feature vector and suitable distance measure

is a very challenging task[24], and these two measures can extremely affect the

results of time series clustering.

In this paper, EPLS, a novel algorithm, is proposed for feature based time65

series clustering. EPLS algorithm is based on Ensemble Empirical Mode De-

composition (EEMD), Principal Component Analysis (PCA) and Least Square

method (LS), which transfers the raw time series into a new feature time se-

ries within ten dimensions. EEMD is expert in dealing with large-scale non-

stationary time series, and which can reveal the inner time-frequency patterns.70

This is prominent for air quality time series clustering. Usually the raw time se-

ries is subjected to high noise and outlier levels, meanwhile the high-dimensional

feature was affected by some distance measures. Therefore, it is difficult to

achieve high performance for directing clustering. EPLS attempts to provide

the features of time series which reserves the most valuable feature vector. This75

feature vector is distance measure independent for its low-dimensional charac-

teristic, and clustering method independent for low noise and outliers levels.

The paper is organized as follows. In Section 2 the related work is discussed

including the issue of using other feature extraction techniques. Then an intro-

duction about the new algorithm EPLS, a combination of EEMD, PCA and LS80

is detailed in Section 3. Experiment settings are described in Section 4. Section

5 gives the experimental results. We conclude the contribution of our work in

Section 6.
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2. Related Work

Air quality time series study has significant influence on social coherence85

and national economic. Many studies have developed to analyze air quality

time series [25]. Mohammad [26] detects the change in climate time series

based on Bounded-Variation Clustering. Kassomenos et al. [27] used princi-

pal component analysis and regression analysis to quantify the contribution of

both combustion and non-combustion sources to the PM10 and PM2.5 levels in90

Athens. Many researchers have adopted ANNs to predict PM2.5 or other air

pollutant factors. Voukantsis et al. and Qingping Zhou et al. [28, 29] combined

ANNs with other algorithms like principle component analysis, correlation coef-

ficient analysis, to predict daily PM2.5 concentration. However, the original air

quality time series is always nonlinear with sharp transition and non-stationary95

with different frequency characteristics [30]. These approaches are various some

based on clustering and some based on forecasting. In this work, the target is

to analyze air quality time series upon clustering method. Numerous techniques

for time series clustering have been proposed. The most prevalent use of the

proposed techniques are based on feature extraction, both time and frequency100

domain. Two main challenges of feature-based time series clustering are typical:

(1) selecting an appropriate feature vector of the time series, and (2) choosing

a suitable similarity measures or distance between time series [31].

The operations to quantify time series properties are various. The basic

statistics values including location, trend, Gaussianity, outlier and noise are105

usually computed [32]. The properties of stationary, linear correlations and in-

formation theoretic measure are also universal standards. The wavelet methods,

properties of network derived from time series are the model fits features [33].

All of these different feature extraction techniques are all transferring time se-

ries X = (x1, x2, ..., xn) into some real numbers [1]. These real numbers form110

the feature vector, but there are hundreds of features. So it is a question to

select the best suitable features. Otherwise, the human related time series are

usually characterized with high level of noise and outlier [34]. The statistic val-

6
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ues based on time domain can not deal with such kind of time series, or the

straightforward clustering is incapable of performing well.115

Experiments suggest that not all of these distance measures are appropriate

for all time series [31]. This is probably because of the various characteristics

of time series, which results in some distance measures more suitable than oth-

ers. Time series clustering relies on distance measure to a high extent. The

theoretical study of time series similarity search is proposed by Argawal et al120

[35]. The Dynamic Time Warping (DTW), Euclidean distance (ED), Edit Dis-

tance for Real Sequence (EDR), HMM-based distance, Fourier coefficient based

similarity measure, and Longest Common Sub-Sequence (LCSS) are the most

popular distance measures that are used for time series data. ED is one of the

simplest measures applied in data mining. Although ED is widely used in many125

fields, some research points out that ED is not an appropriate measure for time

series analysis [31]. First, ED is only suitable for dealing with time series with

equal length; and that ED is highly susceptible to noise and outliers. DTW is

the most popular, which can deal with transformations such as local warping

and shifting, furthermore, it is capable to compare time series with different130

length [31]. However, its complexity is O(mn), where m and n are the length of

two time series, respectively. As for EDR, it has shown rather positive results

in previous work [36]. In some cases, EDR becomes more flexible and capable

when dealing with noisy data or outliers. In a word, a distance measure can

not apply in every field with better performance. Most studies pay attention135

to select appropriate distance measures for different time series, which is hard

and complex. In addition, there are several studies transferring raw time series

into a new time series. The new time series can be measured by simple distance

measures like ED, and thus has lower level of noise and outliers.

3. Mode decomposition, Component analysis and Projection (EPLS)140

This project aims at developing a domain-independent, accurate, and scal-

able feature extraction method. The target of this time-frequency method is to

7
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find a base vector for a time series dataset. Then all the time series is mapped

to the base vector, and a new set of time series can be obtained. The extracted

features from time series is to serve as inputs for machine learning algorithms.145

EPLS as a way of dealing with features extraction, the outline of which is shown

below. Firstly, all time series in a dataset are pooled into aggregation and EEMD

algorithm is applied to this aggregation. Then a dimension reduction operation

is carried out for a more significant set of vectors. Finally, all time series from a

dataset are projected to the obtained vectors. There are three stages for imple-150

menting the EPLS algorithm including mode decomposition stage, dimension

reduction and projection, as Fig.1 shows.

3.1. Mode Decomposition

Given dataset including n time series X = (x1, x2, ..., xn), where each time

series in X is a vector of length m, that is, xi = (xi1, xi2, ..., xim). Hence, all155

the n time series is aggregated as follows

R =
n∑

i=1

xi (1)

R is the representation of a dataset. The input of EEMD algorithm is R

time series. EEMD algorithm consists of sifting an ensemble of white noise-

added signal and treats the mean as the final true result [37]. Compared with

Empirical Mode Decomposition (EMD), EEMD algorithm adds white noise to160

provide a uniform reference frame in the time-frequency space; thus the added

noise collates the portion of the signal of comparable scale in one Intrinsic

Mode Function (IMF). The EEMD algorithm overcomes two problems: the

end effect and the stoppage criteria from EMD algorithm [38]. EEMD signal

decomposition technique is utilized to decompose R into num IMFs.165

R =
num∑

j=1

imfj (2)

where subSeries imfj = (imfj1, imfj2, imfj3, ..., imfjm) corresponds to a time-

frequency component. SubSeries imf1, imf2, ..., imfnum is relevant, and is or-

8
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Mode decomposition stage

Aggregation: Decomposition:

Dimension reduction

Projection stage

Feature vectors A

num*m

( )
-1TA= X F

Figure 1: The procedure flow of EPLS
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dered in descending order of frequency. In this process, there are no time-

frequency components discarded.

3.2. Dimension reduction170

SubSeries (2) have relative high dimension, and some components can be

linear relevant. These feature will prevent projecting stage from getting better

results. Principal Component Analysis(PCA) is a standard tool in modern data

analysis for diverse fields (from neuroscience to computer graphics) [39]. PCA

is a simple, non-parametric method for extracting relevant information from175

confusing data sets. In this process, PCA is applied in dimension reduction and

obtaining totally new orthogonal vectors. The main idea of PCA is to project

the m − dimension features into k − dimension features (k < m), and the

k − dimension features are orthogonal vectors.

Applying PCA technique in subSeries (2) in following steps: (1) To compute180

the mean of R of every column, then compute the new value D(m*num) which

represents the original time series minus mean value

D(m ∗ num) =

num∑

j=1

(imfj −meanj)T (3)

(2) To compute covariance matrix; (3) To obtain eigenvalues and eigen-

vectors from covariance matrix; (4) To order eigenvalues in descending or-

der, and pick up the biggest k eigenvalues to construct eigenvector matrix-185

EigenV ectors(num∗k); (5) To project sample vector R into picked eigenvector

matrix

F (m ∗ k) = D(m ∗ num) · EigenV ectors(num ∗ k) (4)

So far, the original sample is changed from num−dimension to k−dimension
and the dimension reduction is realized. F (m ∗ k) is the result after apply-

ing PCA algorithm .This procedure ensures that only the components which190

correspond to the most typical and irrelevant time-frequency patterns of the

aggregate are selected. Meanwhile, PCA technique removes the noise and re-

dundancy. Additionally, vector F (m ∗ k) is standardized, i.e.

10
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F̂j =
2 ∗ (Fj − Fjmin)

Fjmax − Fjmim
− 1, j = 1, 2, ..., k. (5)

where Fjmin is the minimum value of Fj, and Fjmax is the maximum value,

F̂j ∈ [−1, 1]. The orthogonality, standardization and the linear independence195

ensure that, F̂ can be regarded as basic vectors consisting of retained compo-

nents for next projection stage[40].

3.3. Least Squares Projection

In this step, a set of features from the original time series dataset X will

be obtained. Least squares (LS) is applied to project the original X dataset200

on to basic vectors F̂ . But it is not exactly same with classical LS technique.

Particularly, the projection procedure is to quantify the correlation among basic

vectors, original observation and LS sense value

XT ·A = F ⇒ A = (XT )−1F (6)

where X = (xi, x2, ..., xn) is a matrix of size n ∗ m which represents the

original dataset; F̂T = (f̂1, f̂2, ..., f̂k) with size m ∗ k corresponds to the stan-205

dardized basic vectors; ati = (ai1, ai2, ..., aik) represents the feature vector based

on xt
i = (xi1, xi2, ..., xim).

Finally, orthotropic feature vectors (at1, a
t
2, ..., a

t
n) corresponds to all n time

series is obtained. This time-frequency feature vector can represent the original

time series dataset to some extent, and in more representative and significant210

way. Clustering and classification on this dataset result in the grouping together

of time series with similarity time-frequency patterns.

4. Experimental Settings

In this section, we give a detailed introduction to experimental settings for

the synthetic dataset generation and results evaluation metrics.215

11
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4.1. Synthetic dataset generation

The synthetic dataset in this study are based on two basic adding sinusoidal

function

λ1(t) = sin(
2πt

T
) +

1

2
sin(

4πt

T
− 2) +

1

3
sin(

4πt

T
− 2) + (7)

1

3
cos(

8πt

T
− 2) + sin(

10πt

T
− 6)

λ2(t) =
2

3
sin(

2πt

T
) +

1

2
cos(

12πt

T
− 1) + (8)

1

6
cos(

4πt

T
− 7) + sin(

4πt

T
− 9)

where T is a half of the series length and t = 1, 2, ..., L. The objective of

mixing many sinusoidal forms is to obtain time series with many peaks. This220

type of database is relied on Mori’s work [10], and the level of noise, outliers

is not fixed. The idea is to evaluate the influence for clustering technique on

different time series characteristics. In this process, the noise is introduced

separately in each series of the database by adding random values issued from

a norm distribution of mean 0. The standard deviation (σ) of this distribution225

is defined by the level of noise normalized by maximum (max) and minimum

(min) values of the series:

σ =
noiselevel
max−min (9)

During the dataset generation, the level of noise has four different values (0, 2, 4, 6),

and the level 6 represents the highest noise. Meanwhile, the level of outliers is

setted in the same way. The format of this synthetic dataset is CSV, and there230

are 4800 samples in the dataset. Because this dataset is generated by special

expressions, the data is grouped into 5 classes. The selected outlier level will

represent the proportion of point in the series that will become outliers. Given a

specific outlier level, the corresponding number of points are selected randomly

from the series and interchanged with points randomly chosen from other series235

in order to convert them into outliers.

12
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Figure 2: The comparison of Air quality sequence and ECG sequence

4.2. Characteristics of air quality data

Air quality time series contains large amounts of linear and non-linear pat-

terns, which are difficult to analyze [41]. Many studies have been carried out on

the basis of air quality data [42, 41]. In this research, the air quality data con-240

sists of 31 provincial capitals in China(excluding Hong Kong, Macao, Taiwan).

To verify the performance of EPLS, we choose PM2.5 and PM10 as sample. The

database encompasses 709 data sample from January 01, 2014 to December 10,

2015 [43].

We have mentioned that our EPLS has the ability to deal with high noise and245

outlier aiming at nonlinear and non-stationary time series. From Figure 2 we can

see, our PM2.5 from Air quality database shows sharp rise, drop and without

salient time-frequency patterns[44]. In comparison, the ECG sequence from

well-known ECGFiveDays [45] database exhibits strong regularity, seasonality

without much mixed frequency characteristic. But the patterns are found out250

obviously, we do not quantify it based on selected targets.

13



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

4.3. Results evaluation metrics

Three metrics are introduced to evaluate the performance of these clustering

results, which are the Accuracy metric [46], the Fmeasure and the RandIndex.

All the metrics are described as follows:255

Accuarcy =
1

N

N∑

i=1

L̂i = Li (10)

where N is the total number of instances in the experiment set, Li the true

set of specified labels for instances i and L̂i is the clustering labels for the same

instance.

To calculate the Fmeasure and RandIndex, the following quantities should

be considered : Let |TP | (True Positive ) represents the number of pairs which260

belongs to one cluster in X (ground truth) and are clustered into Y . The |TN |
(True Negative) is the number of pairs, each neither belongs to the same cluster

in X, nor clustered into Y . Then |FN | (False Negative) as the error clustering

which is the number of pairs belonging to one cluster in X, but not clustered

into Y . On contrary, |FP | (False Positive) is the number of pairs which belongs265

to one cluster in X, but are clustered into Y [47]. The second metric is the

Fmeasure, which is formulated by,

Fmeasure =
2 · precision · recall
precision+ recall

(11)

Fmeasure is well established to assess the quality of clustering. In which,

Precision indicates that how many items in the same cluster are clustered into

the same class :270

Precision =

√
|TP |

|TP |+ |FP | (12)

The Recall represents the number of objects in the same class(in ground

truth) are clustered into the same cluster.

Recall =

√
|TP |

|TP |+ |FN | (13)

14
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The third performance metric we have chosen is the RandIndex described

as [48]:

RandIndex =

√
|TP |+ |TN |

|TP |+ |TN |+ |FP |+ |FN | (14)

Intuitively, |TP |+ |TN | can be considered as the number of agreements between275

X and Y and |FP |+ |FN | as the number of disagreements between X and Y .

5. Experiment Results

The clustering results are presented in this section. To assess the perfor-

mance of EPLS, the synthetic time series and air quality dataset are applied.

We compare the result from four aspects: (1) the adaption for different cluster-280

ing; (2) time-frequency pattern mining; (3) different distance for database; (4)

spatial patterns for air quality data. The results are described in detail.

All experiments are carried out on a desktop computer with following config-

urations: CPU (Intel Core i7-4770, 3.40GHz); RAM (32GB), Operating System

(Windows 7 Professional). The experiments are executed based on Matlab 2014a285

and RStudio.

5.1. Synthetic database clustering

As Section 4 shows, this synthetic databse consist of 4× 4 dataset based on

different noise level and outliers level. In every dataset, there are five classes

which separated by different shift, p and so on. The dataset is named af-290

ter PurityMN , and M represents the noise level, N represents the outliers

level. Results of the synthetic experiments are shown in Table 1. The EPLS

and kMeans-R are all relied on Euclidean Distance (ED). EPLS is clustering

the results of EPLS feature vectors, otherwise raw time series is clustering by

kMeans-R. The performance of the methods presented in this section are mea-295

sured by the Fmeasure and RandIndex. A score of 1 indicates best clustering

performance, with 0 corresponding to maximal mixing between the clusters.

The results illustrate that EPLS outperforms raw time series clustering over

the 16 datasets. To illustrate why EPLS appears to be performing so well

15
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Table 1: Comparison of clustering results based on synthetic dataset.

Purity00 Purity02 Purity04 Purity06

EPLS kMeans-R EPLS kMean-R EPLS kMeans-R EPLS kMeans-R

RandIndex 0.94 0.68 1.00 0.67 0.82 0.51 0.95 0.55

F-measure 0.97 0.79 1.00 0.78 0.89 0.57 0.97 0.67

Purity20 Purity22 Purity24 Purity26

EPLS kMeans-R EPLS kMean-R EPLS kMeans-R EPLS kMeans-R

RandIndex 1.00 0.57 0.96 0.56 0.90 0.71 0.98 0.51

F-measure 1.00 0.69 0.98 0.68 0.95 0.82 0.98 0.59

Purity40 Purity42 Purity44 Purity46

EPLS kMeans-R EPLS kMean-R EPLS kMeans-R EPLS kMeans-R

RandIndex 0.96 0.69 0.92 0.56 0.92 0.58 0.95 0.55

F-measure 0.98 0.80 0.96 0.64 0.96 0.71 0.97 0.65

Purity60 Purity62 Purity64 Purity66

EPLS kMeans-R EPLS kMean-R EPLS kMeans-R EPLS kMeans-R

RandIndex 0.92 0.50 0.94 0.58 0.91 0.56 0.91 0.52

F-measure 0.96 0.54 0.97 0.70 0.95 0.68 0.95 0.59

in producing accurate time-frequency features for noisy time series with high300

level outliers, the effects of varying the outliers level and noise level are also

considered. From Table 1 we can see, the results of EPLS is always higher than

0.9 in both RandIndex and Fmeasure. Particularly, when the data are noisy with

high outliers level, we can also get perfect results based on EPLS. Compared

with EPLS, the results of raw time series clustering is not so perfect. Firstly, all305

the results are not stable, for they are affected seriously by noise and outliers.

Secondly, with the increasing of noise level, the performance of kMeans-R show

a trend of descending. As the same way, outliers level affects the performance of

kMeans-R. These indicate the EPLS has the ability to avoid noise and outliers.

Analyzing the theory of EPLS, we get a set of orthogonal basic vectors with310

several dimensions by applying EEMD algorithm and PCA. This characteristic

makes EPLS perform well for clustering.
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Figure 3: Time-frequency pattern of synthetic time series

5.2. Time-frequency pattern Mining

To some extent, EPLS is effective for clustering and can get stationary per-

formance regardless of the influence of outliers and noise level. In addition to315

this, EPLS can reveal the time-frequency patterns as Fig.3 shows. The ag-

gregation data is based on λ1(t) which consists of four frequencies, during the

generation of dataset, some noise and outliers is added into this group. So this

data has high noise and outliers level (both 6 level). Traditional approaches can

not well adapt to this dataset, and obtain potential time-frequency patterns.320

This data has high noise and outliers level (both 6 level). Fig.3(e,f,g) represent

the frequency spectrum of time series, and the red dots are the principal fre-

quency corresponding to IMF1, IMF2, IMF3. From Fig.3 (a) we can see, the

EEMD technique can reveal the frequency characteristic during the data is noisy

with high outliers level. It is notable that EEMD can decompose the time series325

into some sequences with relative single frequency (see Fig.3 (b,c,d)). From the

spectrogram (Fig.3 (e,f,g)) we can see, the first three high frequency IMFs con-

sist of 100Hz, 80Hz, 40Hz, and 20Hz. So the EPLS algorithm has the ability

to get better clustering results and reveal the time-frequency characteristic of
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Figure 4: Results based on different distance measures ( Red represents the EPLS feature

clustering, and blue is the original clustering )

time series.330

5.3. The comparison of different distance measures

The high dimensionality, non-stationary, high feature correlation, and large

amount of noise, outlier that characterize time series present difficult challenges

for clustering. EPLS is proposed to overcome these difficulties. The distance

selection of distance measures is probably due to the natural characteristics of335

database. In a word, time series clustering relies on similarity metrics to a

large extent. In this experiment, ED, cDTW and Shape SBD distance measures

are taken into account. We evaluate the results from three aspects, accuracy,

RandIndex and Fmeasure.

This experiment is carried out based on kMeans clustering methods com-340

bined with ED, cDTW and SBD [6] distance measures. The results are shown

in Fig.4. When conducting experiments based on Air quality time series, we can

see that EPLS feature clustering is superior to raw time series clustering. For

accuracy, RandIndex and Fmeasure measures, ED performs best and cDTW fol-

lows. But there is no significant difference among these three distance measures345

based on EPLS, the Fmeasure is above 95%. We can figure out that for raw

Air quality time series, ED is the best suitable distance measure. When com-

paring the results based on EPLS feature, we can see that ED, cDTW and SBD

distance measures all achieve high performance. The low dimensional pattern

makes EPLS feature clustering distance independent to some extent.350
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5.4. The adaption of different clustering methods based on Air quality data

To evaluate the performance of EPLS based on Air quality database, Hi-

erarchical clustering [49], Spectral clustering [49] and k-Shape [6] clustering

methods are applied. The performance are evaluated by Accuracy, Fmeasure

and RandIndex in this section.355

Table 2: Performance comparison of different clustering methods based on Air quality data

Raw data EPLS feature vector

kMeans Hierarchical Spectral kShape kMeans Hierarchical Spectral kShape

Accuracy 74.19% 77.42% 93.55% 90.32% 100.00% 98.76% 82.26% 96.77%

RandIndex 73.76% 64.46% 50.03% 49.39% 100.00% 97.65% 55.58% 93.65%

F-measure 73.76% 65.66% 64.41% 62.31% 100.00% 98.76% 71.49% 95.69%

As table 2 shows, our EPLS feature-based clusterings outperforms tradi-

tional clustering methods based on Air quality data. For raw data clustering,

kMeans performs well with a score above 70%, and the hierarchical follows.

But in comparison, the Spectral and kShape clustering methods show a relative

unsatisfactory results. The evaluation metrics are all inferior to 70%, and the360

RandIndex metrics are 50% and so for Spectral and kShape methods. When

these four clustering methods are applied to EPLS feature vector, we can see a

clear boost in performance. Firstly, we can divide the results into four groups

by clustering methods.We can see that EPLS-based kMeans obtains a 100%

performance over all the three metrics, compared with traditional kMeans the365

performance increased by 25%. The same as hierarchical and kShape, they all

get Accuracy, RandIndex and Fmeasure values above 95%. Although the results

of EPLS-based Spectral is not so undesirable, it is a little better than traditional

Spectral. These traditional clustering methods can achieve high performance in

some cases, but for air quality data their performance is not so great. Because370

traditional clustering methods is not very good at handling dataset with high

dimensionality, high level of noise and outlier[2, 10]. Therefore, our EPLS shows

good performance for its noise and outlier immunity, and can transfer time se-

ries from N-dimension space to relatively low dimensional space for computing

conveniently.375
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Figure 5: Clustering results based on Air quality databases. (a) EPLS clustering result; (b)

AQI clustering result.

5.5. The clustering results of spatial time series

In this section, we explain the spatial feature of EPLS in view of air quality

index division. We divide the air quality into five levels (from one level to

five level): Good, Moderate, Lightly Polluted, Moderately Polluted and Heavily

Polluted. In fact, there are six grades accurately, but in this project we just380

discuss five grades. So the results have one or two merges.

From Fig.5 we can see, the air quality have different distribution from (a) to

(b). Sub-figure (a) cluster air quality databases relying on EPLS, and sub-figure

(b) is raw time series clustering. By contrast, some differences can be pointed

out. Compared with raw time series, EPLS emerges one level and two level, and385

the major difference is between XinJiang province and HeiLongJiang province.

EPLS is more likely to partition air quality grades considering spatial feature,

and it divides geographically closed cities into one grade. This is explainable,

usually closed cities have similar air regime. EPLS can discover this regional

similarity to a certain extent. From a macro point of view, we can see that390

Hebei as the center of severe pollution, the air quality becoming better in a

radiating outward distribution. This situation is obvious both in Fig.5(a) and

Fig.5(b). In a word, our EPLS is meaningful when applied to analyzing air

quality. Especially, EPLS can discover this regional similarity to a certain extent

and greatly reduce the storage resource.395
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6. Conclusion and future work

In this paper, we focus on the feature extraction from time series. A novel

algorithm named EPLS is proposed for PM2.5 time series feature extraction.

The EPLS algorithm can obtain a set of feature vectors for data mining tech-

niques. The positive results obtained from experiments demonstrate that when400

comparing with other clustering methods and distance measures, EPLS is a

little superior to cluster time series. Meanwhile, EPLS can decompose non-

stationary time series into some sub-series with relative single frequency pattern,

even those have high noise and outlier level. By constructing orthogonal basis

vectors with PCA, the dimension of original time series is sharply reduced. The405

above features greatly reveal the potential patterns , and provides convenience

for computing. Also, the low dimension of time series reduces the distance

measure dependency issues..

Time series has the properties of shift, noise, skewness, dimension, and so

on. The first recommended future research work is to compare other clustering410

methods in various time series. Another proposal for future work includes time

series classification. EPLS algorithm are supposed to be used in classification

and clustering. Classification based on EPLS is attractive in many fields, and

extra advantages of EPLS can be discovered.
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