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Abstract

In this paper we tackle distributed detection of a non-cooperative target with a Wireless Sensor Network
(WSN). When the target is present, sensors observe an unknown random signal with amplitude attenua-
tion depending on the distance between the sensor and the target (unknown) positions, embedded in white
Gaussian noise. The Fusion Center (FC) receives sensors decisions through error-prone Binary Symmet-
ric Channels (BSCs) and is in charge of performing a (potentially) more-accurate global decision. The
resulting problem is a one-sided testing with nuisance parameters present only under the target-present
hypothesis. We first focus on fusion rules based on Generalized Likelihood Ratio Test (GLRT), Bayesian
and hybrid approaches. Then, aimed at reducing the computational complexity, we develop fusion rules
based on generalizations of the well-known Locally-Optimum Detection (LOD) framework. Finally, all
the proposed rules are compared in terms of performance and complexity.

Keywords: Decision Fusion; Distributed Detection; GLRT; LOD; Bayesian approach; Target detection.

1. Introduction

1.1. Motivation and Related Works

Wireless sensor networks (WSNs) have attracted significant attention due to their potential in provid-
ing improved capabilities in performing detection and estimation [1, 2], reconnaissance and surveillance,
with a wide range of applications, comprising battlefield surveillance, security, traffic, and environmental
monitoring [3]. Distributed detection is among the fundamental tasks that a WSN needs to accomplish
which has been investigated in the recent years [4].
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Due to bandwidth and energy constraints, it is often assumed that each sensor quantizes its own
observation with a single bit before transmission to the FC. This may be the result of a dumb quantization
[5, 6] or represent the estimated decision regarding the detection event [7, 8, 9, 10]. In the latter case, the
decisions of individual sensors are collected by the FC and combined according to a specifically-designed
fusion rule aiming at improved detection performance. In [11], the optimum strategy to fuse the local
decisions at the FC has been obtained under the conditional independence assumption. The optimal
fusion rule in both Neyman-Pearson and Bayesian senses, which is derived from the likelihood ratio test
[12], is commonly referred to as Chair-Varshney (CV) rule. It amounts to a threshold detector on the
weighted sum of binary sensor detections, with each weight depending on sensor detection and false alarm
probabilities.

Unfortunately, the local detection probability is seldom known or difficult to estimate when the de-
tection event relates to revealing a target described by a spatial signature. In fact, in the latter case the
detection probability depends on the (unknown) constitutive parameters of the target to be detected,
such as the average power and the target location (see Fig. 1.1). Without the knowledge of the local
detection probabilities, the optimal fusion rule becomes impractical and an attractive alternative is the
so-called Counting Rule (CR) test, i.e. the FC counts the number of local detections in the WSN and
compares it with a threshold [13]. A performance analysis of the CR has been provided in [14] for a
WSN with randomly deployed sensors. Unfortunately, CR suffers from performance degradation when
trying to detect spatial events. Indeed, though CR is a very reasonable approach arising from different
rationales [4, 7, 8], it does not make any attempt to use information about the contiguity of sensors that
declare (potential) target presence. Therefore, based on these considerations, several studies have focused
on design of fusion rules filling the performance gap between the CV rule and the CR.

In [15] a two-step decision-fusion algorithm is proposed, in which sensors first correct their decisions
on the basis of neighboring sensors, and then make a collective decision as a network. It is shown that in
many situations relevant to random sensor field detection, the local vote correction achieves significantly
higher target detection probability than decision fusion based on the CR. Also, for the proposed approach,
an explicit formula for FC threshold choice (viz. false-alarm rate determination) was provided, based on
normal approximation of the statistic under the target-absent hypothesis. A simple and more accurate
alternative for threshold choice based on the beta-binomial approximation is proposed in [16]. In [17] the
Generalized Likelihood Ratio Test (GLRT) for the distributed detection of a target with a deterministic
Amplitude Attenuation Function (AAF) and known emitted power is developed, and its superiority is
shown in comparison to the CR. It is worth noticing that a similar model assuming a deterministic AAF
was employed to analyze the (approximate) theoretical performance of CR in [14]. Differently, a stochastic
AAF (subsuming the Rayleigh fading model) is assumed in [18] and [19], the latter being able to account
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for possible amplitude fluctuations. In the same works, also a scan statistic and Bayesian-originated
approaches were obtained and compared with existing alternatives. In both works, the average emitted
power of the target is however assumed known.

However, in many cases it is of practical importance to assume that also the (average) target emitted
power is not available at the FC, which well fits the case of an uncooperative target, i.e. there is no
preliminary agreement between target and sensors in order to exchange the information related to the
(average) emitted power or make it possible to be estimated. Examples of practical interest for an
uncooperative target are the primary user in a cognitive-radio system or an oil-spill source measured
by an underwater sensor network. To the best of authors’ knowledge, a few works have dealt with the
latter case. In [20], a GLRT was derived for the case of unknown target position and emitted power and
compared to the CR, the CV rule and a GLRT based on the awareness of target emitted power. It has
been shown that the loss incurred by the proposed GLRT is marginal when compared to the “power-
clairvoyant” GLRT. Differently, in [21] an asymptotic locally-optimum detector was obtained for a WSN
with (random) sensors positions following a Poisson point process. Remarkably, the aforementioned study
accounted for unknown emitted power. Unfortunately, the deterministic AAF there employed implicitly
assumed that FC has available the target position, thus limiting its applicability, though some numerical
analysis to investigate mismatched AAF performance was provided.

1.2. Summary of Contributions

In this paper, we focus on decentralized detection of a non-cooperative target with a spatially-
dependent emission (signature). We consider the practical setup in which the received signal at each
individual sensor is embedded in white Gaussian noise1 and affected by Rayleigh fading, with an AAF de-
pending on the sensor-target distance (viz. stochastic AAF). The Rayleigh fading assumption is employed
here to account for fluctuations of the transmitted signal due to multipath propagation. For energy- and
bandwidth-efficiency purposes, each sensor performs a local decision on the absence/presence of the target
and forwards it to a FC, which is in charge of providing a more accurate global decision. With reference
to this setup, the main contributions of the present work can be summarized as follows:

• We first review the scenario where the emitted power is available (thus the sole target position is
unknown) at the FC, in order to understand the basics of the problem under investigation and list
various alternatives employed in the open literature, such as GLRT [17] and Bayesian approaches.
Then we switch to the more realistic case of unknown target location and power, which is typical

1The Gaussian assumption for measurement noise is only made here for the sake of simplicity; generalization of the present
framework to non-Gaussian noise is possible and will be object of future studies.
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Figure 1.1: Distributed detection of a non-cooperative target with spatial signature: System model.
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in surveillance tasks. In this context we provide a systematic analysis of several detectors based
on: (i) GLRT [20], (ii) Bayesian approach and (iii) hybrid combinations of the two (for sake of
completeness).

• In order to reduce the computational complexity required by these approaches, we also develop two
novel sub-optimal fusion rules based on the locally-optimum detection framework [22]. The first
relies on Bayesian assumption for the sole target position, whereas the latter obviates the problem
by resorting to Davies rationale [23]. The design and the analysis of such practical rules and their
comparison to the aforementioned alternatives represents the main contribution of this work. We
underline that, since a uniformly most powerful test does not exist for our problem (because of
the unknown parameters), nothing can be said in advance on their relative performance. All the
aforementioned detectors are also compared in terms of computational complexity;

• The scenario at hand is then extended to the demanding case of imperfect reporting channels
(typical for battery-powered sensors implementing low-energy communications), modeled as Binary
Symmetric Channels (BSCs). The proposed fusion rules are then extended to take into account the
(additional) reporting uncertainty, under the assumption of known Bit-Error Probabilities (BEPs).

• Finally, simulation results are provided to compare all the considered rules in some practical sce-
narios and to underline the relevant trends.

1.3. Paper Organization and Manuscript Notation

The remainder of the paper is organized as follows: in Sec. 2 we describe the system model, with
reference to local sensing and FC modeling. In Sec. 3.1 we recall and discuss the problem of distributed
detection under the assumption of a known average target emitted power. Differently, Sec. 3.2 is devoted
to the development of fusion rules which deal with the additional uncertainty of unknown power. Then,
in Sec. 3.3 we extend the obtained fusion rules to the more general case of imperfect reporting channels
between the sensors and the FC. All the considered rules are compared in terms of complexity in Sec. 3.4.
Furthermore, in Sec. 4 a set of simulations is provided to compare the developed rules and assess the loss
incurred by non-availability of emitted power. Finally, some conclusions are drawn in Sec. 5. Proofs and
derivations are confined to a dedicated Appendix.

Notation - Lower-case bold letters denote vectors, with an being the nth element of a; upper-case
calligraphic letters, e.g. A, denote finite sets; E{·}, var{·}, (·)T , and ‖·‖ denote expectation, variance,
transpose and Euclidean norm operators, respectively; P (·) and p(·) denote probability mass functions
(pmfs) and probability density functions (pdfs), while P (·|·) and p(·|·) their corresponding conditional
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counterparts; N (µ, σ2) denotes a Gaussian pdf with mean µ and variance σ2; Q(·) is the complementary
cumulative distribution function (ccdf) of a standard normal random variable; finally the symbols ∝ and
∼ mean “statistically equivalent to” and “distributed as”, respectively.

2. System Model

We consider a scenario where K sensors are deployed in a surveillance area to monitor the absence
(H0) or presence (H1) of a target of interest having a spatial signature. The measurement model of
the generic sensor is described in Sec. 2.1. Then, we introduce the local decision procedure employed
(independently) by each sensor in Sec. 2.2. Finally, in Sec. 2.3 we describe the problem of fusing sensors
decisions at the FC.

2.1. Sensing Model

When the target is present in the surveillance area (i.e. H1), we assume that its radiated signal is
isotropic and experiences (distance-depending) path-loss, Rayleigh fading, and Additive White Gaussian
Noise (AWGN), before reaching individual sensors. In other terms, the sensing model for kth sensor
(k ∈ {1, . . . ,K}) under H1 is [19]

yk = ξk g(xT ,xk) + wk , (2.1)

where yk ∈ R is signal measured by kth sensor and wk ∼ N (0, σ2
w,k) denotes the corresponding mea-

surement noise. Furthermore, xT ∈ Rd denotes the unknown position of the target (in d-dimensional
coordinates), while xk ∈ Rd denotes the known kth sensor position (in d-dimensional coordinates). The
positions xT and xk uniquely determine the value of g(xT ,xk), generically denoting the AAF. Finally ξk
is a Gaussian distributed random variable, ξk ∼ N (0, σ2

s), modelling fluctuations in the received signal
strength at kth sensor. Due to spatial separation of the sensors, we assume that the noise contributions
wks and the fading coefficients ξks are both statistically independent. Depending on the peculiar scenario
being investigated, σ2

s will be assumed either known (Sec. 3.1) or unknown (Sec. 3.2).
Then, the measured signal yk is distributed under hypotheses H0 and H1 as

yk |H0 ∼ N (0, σ2
w,k), yk |H1 ∼ N

(
0, σ2

s g
2(xT ,xk) + σ2

w,k

)
, (2.2)

respectively. With reference to the specific AAF, two common examples [15, 19] are the power-law
attenuated model

g(xT ,xk) ,
1√

1 +
(
‖xT−xk‖

η

)α , (2.3)
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and the exponentially attenuated model

g(xT ,xk) ,

√√√√exp
(
−‖xT − xk‖2

η2

)
. (2.4)

In Eqs. (2.3) and (2.4) the parameter η controls the (approximate) spatial signature extent produced by
both AAFs, while α is a positive coefficient that dictates the rapidity of signal decay as a function of the
distance in the case of power-law AAF.

2.2. Local Decision Approach

We assume that sensors make their local decisions individually without collaboration. Then, each
sensor is faced to tackle the following composite hypothesis testing:H0 : yk = wk

H1 : yk = ξk g(xT ,xk) + wk
(2.5)

Indeed, although the sensor may be aware of its own position xk, the target position xT is clearly unknown,
independently from the availability of the average emitted power σ2

s . Nonetheless, for this specific sensing
model it can be shown that this difficulty can be elegantly circumvented. To this end, we consider a local
decision procedure based on the well-known Neyman-Pearson lemma [12]. More specifically, we consider
the local Log Likelihood-Ratio (LLR) of kth sensor, denoted with λk, whose explicit expression is:

λk , ln
[
p(yk|H1)
p(yk|H0)

]
= 1

2 ln
[

σ2
w,k

σ2
w,k + σ2

s g
2(xT ,xk)

]
+ σ2

s g
2(xT ,xk)

σ2
w,k

[
σ2
w,k + σ2

s g
2(xT ,xk)

] y2
k , (2.6)

Last equation reveals that the LLR is an increasing function of y2
k, irrespective of the target average

emitted power σ2
s and the target location xT . Therefore, by Karlin-Rubin theorem [24], the following

energy test

y2
k

Ĥ=H1

≷

Ĥ=H0

γk (2.7)

7



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

0.08

0.08

0.09

0.09

0.1

0.1

0.11

0.11

0.11

0.11

0.12

0.12

0.12

0.12

0.13

0.13

0.13

0.14

0.
14

0.14

0.15

0.15

0.16

0.16

x position [m]

y 
p

o
si

ti
o

n
 [

m
]

 

 
sensors
target

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

distance [m]

P
d,

k

 

 
η = 1, α = 2
η = 0.5, α = 2
η = 0.1, α = 2
η = 1, α = 4
η = 0.5, α = 4
η = 0.1, α = 4

Figure 2.1: Detection probability (Pd,k) field, for a fixed Pf,k = 0.05: Power-law AAF. Top plot shows
Pd,k vs. x (generic sensor position) for a target located at xT = [0.1 0.5]T ; bottom plot depicts Pd,k vs.
‖xT − x‖.
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Pd,k vs. x (generic sensor position) for a target located at xT = [0.1 0.5]T ; bottom plot depicts Pd,k vs.
‖xT − x‖.

9



is Uniformly Most Powerful2 (UMP) in a local sense. Also, γk is a suitable threshold chosen to ensure a
certain false-alarm rate at the sensor (in Neyman-Pearson approach) or to minimize the error-probability
(in the Bayesian framework). In view of the aforementioned considerations, in what follows we will assume
that each sensor implements its local UMP test based on its (local) measurement yk.

Furthermore, we observe that the performance of the energy test in Eq. (2.7) is easily obtained
explicitly, in terms of the detection (Pd,k , Pr{λk ≥ γk|H1}) and false-alarm (Pf,k , Pr{λk ≥ γk|H0})
probabilities as [12]

Pd,k = 2Q

√ γk
σ2
w,k + σ2

s g
2(xT ,xk)

 ; Pf,k = 2Q

√ γk
σ2
w,k

 . (2.8)

Two examples of a Pd,k field (that is, the detection probability vs. the generic sensor position x for fixed
target position and false-alarm probability) are depicted in the top plots of Figs. 2.1 and 2.2, for the
power-law and exponential AAFs, respectively, with reference to a 2-D square surveillance area of length
L = 1. Also, we assumed xT =

[
0.1 0.5

]T
, η = 0.5, α = 2, σ2

w,k = 1, σ2
s = 1 and Pf,k = 0.05 (from

which γk is easily deduced, cf. Eq. (2.8)). Similarly, in the bottom plots of Figs. 2.1 and 2.2, we have
showed the same Pd,k (with the same parameters as the top plots) as a function of the distance ‖xT − x‖
for different values of η ∈ {0.1, 0.5, 1} and α ∈ {2, 4} (in the case of power law AAF).

Without loss of generality, we assume that kth sensor decision, denoted as dk, follows the map dk = i

when hypothesis Hi is declared. Finally, for the sake of notational compactness, we define the vector
d ,

[
d1 · · · dK

]T
.

2.3. Decision Fusion

Each sensor then sends its decision dk to the FC, which employs a threshold-based decision test (we
interchangeably use the term “fusion rule”) on the basis of vector d, that is:

Λ(d)
Ĥ=H1

≷

Ĥ=H0

γ̄ , (2.9)

where γ̄ is the threshold chosen to ensure a certain global false-alarm rate at the sensor (in Neyman-
Pearson approach) or to minimize the global fusion error-probability (in the Bayesian framework) [12].

2We recall that in the case of composite hypothesis testing problems the uniformly most powerful test seldom exists [12].
In the latter case, alternative approaches such as the GLRT may be pursued.
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Global performance are accordingly evaluated in terms of (global) probability of false alarm (Pf,0 ) and
detection (Pd,0), defined as follows

Pf,0 , Pr(Λ > γ̄|H0), Pd,0 , Pr(Λ > γ̄|H1) . (2.10)

It is worth noticing that Pr(Λ > γ̄|Hi) generically describes both Pf,0 and Pd,0 (with i = 0 and i = 1,
respectively). The behavior of the global probability of detection (Pd,0) versus the global probability of
false alarm (Pf,0) is commonly denoted Receiver Operating Characteristic (ROC) [4].

It is apparent that, under hypothesis H1, the pmf of d assumes the explicit expression represented by
the product of independent Bernoulli pmfs (since the decisions dk are conditionally independent, as an
immediate consequence of mutual independence of wks, ξks and of decoupled quantization process), that
is

P (d|H1) =
K∏
k=1

P (dk|H1) =
K∏
k=1

(Pd,k)dk(1− Pd,k)(1−dk) , (2.11)

and a similar expression holds for P (d|H0), when replacing Pd,k with Pf,k. The optimal decision statistic
in both Neyman-Pearson and Bayesian senses is represented by the (global) LLR, given by

ΛLLR , ln
[
P (d|H1)
P (d|H0)

]
=

K∑
k=1

ln
[
P (dk|H1)
P (dk|H0)

]

=
K∑
k=1

{
dk ln

[
Pd,k
Pf,k

]
+ (1− dk) ln

[
1− Pd,k
1− Pf,k

]}
, (2.12)

where Pd,k and Pf,k are defined in Eq. (2.8). Unfortunately, the LLR cannot be implemented as the Pd,ks
are usually unknown, since they depend on the constitutive parameters of the (unknown) target emission,
that is (i) the average power σ2

s and (ii) the target location xT . Therefore, it is apparent that Eq. (2.12)
should not be intended as a realistic element of comparison, but rather as an optimistic (upper) bound
on the achievable performance, based on a clairvoyant assumption.

On the other hand, from direct inspection of Eq. (2.8), we notice that Pd,k ≥ Pf,k ∀k ∈ K, as each
reasonable local decision procedure3 would achieve a ROC — operation point that is more informative
than an unbiased coin (i.e. above the chance line). Based on this observation, we may apply the well-
known Counting Rule (CR) [4], not requiring sensors local performance for its implementation. This rule

3In other terms, the applicability of CR to decision fusion is also valid in the case of local decision statistics at the sensors
based on sub-optimal approaches, as opposed to what is assumed in this manuscript.
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is widely used in DF (due to its simplicity and no requirements on system knowledge) and based on the
following statistic:

ΛCR ,
K∑
k=1

dk . (2.13)

The above rule, despite of its simplicity, has been obtained under different rationales in the literature
[4, 7, 8]. In fact, Eq. (2.13) can be obtained as follows:

• It is statistically equivalent to the LLR in Eq. (2.12), by assuming that the sensors have all equal
performance (i.e., Pd,k = Pd and Pf,k = Pf ) [4];

• It is statistically equivalent to the locally most-mean powerful test [25] in a partially-homogeneous
scenario (Pf,k = Pf ), assuming no other constraint than Pd,k ≥ Pf,k [8];

• It is the UMP invariant test for the permutation group [8];

• It is statistically equivalent to the GLRT and Rao test in a partially-homogeneous scenario (Pf,k =
Pf , when Pf < 1

2), assuming no other constraint than Pd,k ≥ Pf,k [8].

3. Practical Fusion Rules

3.1. Known Target Power

Initially, we assume that σ2
s is known and then the hypothesis testing problem can be summarized as:
H0 : σ2

s = 0

H1 : σ2
s > 0 (known) , xT (nuisance)

, (3.1)

that is, we are concerned with discriminating between two hypotheses where the nuisance parameters
(xT ) are present only under the (alternative) hypothesis H1. Such case has been analyzed in the works
[13, 19].
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GLRT
In [17] the authors proposed the use of a GLR statistic4, whose explicit log form for the considered

problem is

ΛG , ln
[maxxT P (d|H1;xT )

P (d|H0)

]
(3.2)

=
K∑
k=1

{
dk ln

[
Pd,k(x̂T )
Pf,k

]
+ (1− dk) ln

[
1− Pd,k(x̂T )

1− Pf,k

]}
, (3.3)

where x̂T denotes the Maximum Likelihood Estimate (MLE) of the target position, assuming that H1

holds, that is:
x̂T , arg max

xT
P (d|H1;xT ) . (3.4)

Clearly, the higher the estimation accuracy of xT , the higher the performance of GLR statistic. It is worth
noticing that x̂T cannot be obtained in closed form and therefore a grid search (or optimization routines)
should be devised (details on implementation are later provided in Sec. 3.4). Exploiting the parametric
independence of P (d|H0) on xT and the monotonic property of logarithm, the above expression can be
rewritten in terms of Eq. (2.12) as:

ΛG = max
xT

ΛLLR(xT ) , (3.5)

where ΛLLR(xT ) underlines the evaluation of LLR in Eq. (2.12) assuming that the target position equals
xT . The alternative form in (3.5) will be exploited to draw out interesting considerations when comparing
GLRT with other detectors.

Bayesian Approach
The pdf dependence on target’s position under H1 may be eliminated if a prior distribution on the

position itself is available (or can be safely assumed) and integrating the corresponding likelihood (see,
for example, [26] for the advantages provided by the Bayesian approach). Then, the explicit expression

4We recall that in general the GLRT requires the evaluation of the MLE of the unknown parameter set under both
hypotheses. However, referring to our specific case, the nuisance parameter xT is not observable under H0. Therefore, the
pdf of null hypothesis is completely specified and no MLE evaluation is required in the latter case.
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of the Bayesian LLR is given by [19]

ΛB , ln
[´

P (d|H1;xT ) p(xT )dxT
P (d|H0)

]

= ln
ˆ K∏

k=1

(
Pd,k(xT )
Pf,k

)dk (1− Pd,k(xT )
1− Pf,k

)(1−dk)

p(xT ) dxT , (3.6)

where the dependence of Pd,k on target position xT is underlined. It is interesting to notice that the
above expression can be rewritten as:

ΛB = ln
ˆ

exp (ΛLLR(xT )) p(xT ) dxT , (3.7)

where ΛLLR(xT ) has an analogous definition as that in Eq. (3.5).

3.2. Unknown Target Power

Differently, when σ2
s is assumed unknown, the resulting (composite) hypothesis testing generalizes to:

H0 : σ2
s = 0

H1 : σ2
s > 0 , xT (nuisance)

(3.8)

The above problem is recognized as a one-sided hypothesis testing with nuisance parameters that are
present only under the (alternative) hypothesis H1. In the rest of the paper, for the sake of notational
convenience, we will use the symbol θ to refer to the unknown average power σ2

s (with corresponding
notation θ0 for σ2

s = 0).

Discussion: Counting Rule (CR) and Clairvoyant LLR
It is worth noticing that, in the case of unknown power σ2

s , the CR can be still implemented, as it
does not require the knowledge of the Pd,ks (cf. Eq. (2.13)). Similarly, in the present scenario we will
refer to the statistic which has (unrealistic) knowledge of both xT and σ2

s as a clairvoyant LLR and thus
the same formula as in Eq. (2.12) can be applied. Apparently, in the considered scenario, the LLR will
represent an even looser benchmark on the performance of practical fusion rules.
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GLRT
The GLRT for this case was proposed and analyzed in [20]. Indeed, the explicit expression of the

(log-)GLR statistic is:

ΛG , ln
[

maxσ2
s ,xT

P (d|H1;xT , σ2
s)

P (d|H0)

]
(3.9)

=
K∑
k=1

dk ln

Pd,k
(
x̂T , σ̂2

s

)
Pf,k

+ (1− dk) ln

1− Pd,k
(
x̂T , σ̂2

s

)
1− Pf,k

 , (3.10)

where x̂T and σ̂2
s denote the ML estimates of the target position and (average) target power, assuming

that hypothesis H1 is true, that is:(
x̂T , σ̂2

s

)
, arg max

xT , σ2
s

P (d|H1;xT , σ2
s) . (3.11)

The above expression can be rewritten (similarly as in the case of known power, cf. Eq. (3.5)) in terms
of Eq. (2.12) as:

ΛG = max
xT ,σ2

s

ΛLLR(xT , σ2
s) , (3.12)

where ΛLLR(xT , σ2
s) is used to denote the LLR of Eq. (2.12) evaluated assuming the target position and

power corresponding to xT and σ2
s , respectively.

Bayesian Approach
In order to follow a purely Bayesian approach, we need eliminate both the dependence on target’s posi-

tion and average emitted power (under H1) by assigning prior distributions to them both and integrating
the corresponding likelihood. Thus, the closed form of the Bayesian LLR is given by [19]

ΛB , ln
[´

P (d|H1;xT , σ2
s) p(xT ) p(σ2

s) dxT dσ2
s

P (d|H0)

]
(3.13)

= ln
ˆ K∏

k=1

(
Pd,k(xT , σ2

s)
Pf,k

)dk (1− Pd,k(xT , σ2
s)

1− Pf,k

)(1−dk)

p(xT ) p(σ2
s) dxT dσ2

s . (3.14)

As previously shown, the above expression can be similarly rewritten as:

ΛB = ln
ˆ

exp
(
ΛLLR(xT , σ2

s)
)
p(xT ) p(σ2

s) dxT dσ2
s , (3.15)
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where ΛLLR(xT , σ2
s) has an analogous definition as in Eq. (3.12).

Hybrid GLRT/Bayesian approaches
Other approaches can be obtained by mixing the two previous philosophies. For example, assuming

a prior distribution to the target position and treating the average emitted power σ2
s as an unknown and

deterministic parameter, leads to the following decision statistic:

ΛGB1 , ln
[

maxσ2
s

´
P (d|H1;xT , σ2

s) p(xT )dxT
P (d|H0)

]
(3.16)

= ln max
σ2
s


ˆ K∏

k=1

(
Pd,k(xT , σ2

s)
Pf,k

)dk (1− Pd,k(xT , σ2
s)

1− Pf,k

)(1−dk)

p(xT ) dxT

 . (3.17)

The above statistic can be re-expressed as

ΛGB1 = max
σ2
s

ln
ˆ

exp(ΛLLR(xT , σ2
s)) p(xT ) dxT , (3.18)

with ΛLLR(xT , σ2
s) having the usual interpretation. Alternatively, we can pursue a dual approach, by

assuming a prior distribution for σ2
s and treating the target position xT as unknown and deterministic.

In the latter case, the following decision statistic can be obtained:

ΛGB2 , ln
[

maxxT

´
P (d|H1;xT , σ2

s) p(σ2
s) dσ2

s

P (d|H0)

]
(3.19)

= ln max
xT


ˆ K∏

k=1

(
Pd,k(xT , σ2

s)
Pf,k

)dk (1− Pd,k(xT , σ2
s)

1− Pf,k

)(1−dk)

p(σ2
s) dσ2

s

 . (3.20)

The dual statistic can be similarly rewritten as

ΛGB2 = max
xT

ln
ˆ

exp(ΛLLR(xT , σ2
s)) p(σ2

s) dσ2
s . (3.21)

(Hybrid) Bayesian Locally-Optimum Detection Approach
In this case, we depart from naive Bayesian and GLRT approaches. More specifically, our aim is to

exploit the one-sided nature (when referring to σ2
s) of the hypothesis testing considered (cf. Eq. (3.8)).

However, the problem here is complicated by the presence of the nuisance parameter xT under the
hypothesis H1. To this end, in order to get rid of the dependence on xT , we consider it as an unknown
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random parameter and assign a prior distribution p(xT ). Then, we consider the averaged pdf under H1:

P (d|H1; θ) =
ˆ
P (d|H1;xT , θ) p(xT ) dxT , (3.22)

where we have used the common variable θ in the place of σ2
s . Once we have averaged out the dependence

on xT , we can apply the usual Locally-Optimum Detector (LOD), exploiting the one-sided problem [22].
Its implicit form is given by:

ΛBLOD ,

∂ ln[P (d|H1;θ)]
∂θ

∣∣∣
θ=θ0√

I(θ0)
, (3.23)

where I(θ0) represents the Fisher Information (FI) evaluated at θ0, that is:

I(θ) , E
{(

∂ ln [P (d|H1; θ)]
∂θ

)2}
. (3.24)

Evaluation of the terms contained in (3.23) provides the explicit form of ΛBLOD, shown hereinafter (the
detailed derivation is given in the Appendix):

ΛBLOD =

∑K
k=1

dk−Pf,k
Pf,k(1−Pf,k)pw

(√ γk
σ2
w,k

) √
γk(

σ2
w,k

)3/2

´
g2(xT ,xk) p(xT )dxT√∑K

k=1
1

Pf,k(1−Pf,k) p
2
w

(√ γk
σ2
w,k

)
γk(

σ2
w,k

)3
(´
g2(xT ,xk) p(xT ) dxT

)2 . (3.25)

The so-called “Bayesian-LOD” (or B-LOD) statistic can be also rewritten in a more compact form. To
this end, we define the following quantities:

νk(dk) ,
dk − Pf,k

Pf,k(1− Pf,k)
pw

√ γk
σ2
w,k

 √
γk(

σ2
w,k

)3/2 , (3.26)

ψk ,
1

Pf,k(1− Pf,k)
p2
w

√ γk
σ2
w,k

 γk(
σ2
w,k

)3 . (3.27)

Exploiting Eqs. (3.26) and (3.27) into (3.25), we obtain the equivalent expression:

ΛBLOD =
∑K
k=1 νk(dk)

´
g2(xT ,xk) p(xT ) dxT√∑K

k=1 ψk
(´
g2(xT ,xk) p(xT ) dxT

)2 . (3.28)
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Generalized LOD based on Davies approach
A different approach to exploiting the one-sided nature of the problem under investigation consists in

adopting the detection approach proposed by Davies [23]. The aforementioned approach allows to extend
score-based tests to the case of nuisance parameters present under the sole H1, as these tests require the
ML estimates of nuisances under H0 (which thus cannot be obtained). The building rationale of Davies
approach is summarized as follows.

When xT is known in (3.8), the problem reduces to a simple one-sided testing. In the latter case, the
LOD seems a reasonable decision procedure for the problem. However, since in practice xT is unknown, a
family of statistics is rather obtained by varying xT . Hence, to overcome this technical difficulty, Davies
proposed the use of the maximum of the family of the statistics, following a “GLRT-like” approach. In
what follows, we will refer to the employed decision test as Generalized LOD (G-LOD), to underline the
use of LOD as the inner statistic employed in Davies approach.

The implicit form of the G-LOD is given by [23]:

ΛGLOD , max
xT

∂ ln[P (d|H1;xT ,θ)]
∂θ

∣∣∣
θ=θ0√

I(θ0,xT )
, (3.29)

where the symbol I(θ,xT ) is used to denote the FI assuming xT known, that is:

I(θ,xT ) , E
{(

∂ ln [P (d|H1;xT , θ)]
∂θ

)2}
. (3.30)

The derivation of the inner term in Eq. (3.29) is provided in Appendix. The explicit form is given as:

ΛGLOD = max
xT

∑K
k=1

dk−Pf,k
Pf,k(1−Pf,k) pw

(√ γk
σ2
w,k

) √
γk g

2(xT ,xk)(
σ2
w,k

)3/2√∑K
k=1

1
Pf,k(1−Pf,k) p

2
w

(√ γk
σ2
w,k

)
γk g4(xT ,xk)(

σ2
w,k

)3

. (3.31)

The G-LOD can be also expressed in the compact form

ΛGLOD = max
xT

∑K
k=1 νk(dk) g2(xT ,xk)√∑K

k=1 ψk g
4(xT ,xk)

, (3.32)

by exploiting the same definitions as the B-LOD in Eqs. (3.26) and (3.27), respectively.
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3.3. Imperfect Reporting Channels

The previous sections assumed that binary data dk from the WSN could be transmitted to the FC
without any distortion. In this section, we consider an imperfect link scenario where the one-bit quantized
data are sent to the FC over (independent) BSCs, in order to account for limited transmit energy and
possible failures of the sensors. We observe that the BSC model arises when separation between sensing
and communication layers is performed in the design phase (namely a “decode-then-fuse” approach [27,
28]).

More specifically, we assume that the FC observes a noisy binary-valued signal d̂k from kth sensor,
that is:

d̂k =

dk with probability (1− Pe,k)

1− dk with probability Pe,k
(3.33)

Here Pe,k denotes the BEP on the kth link. Throughout this paper we make the reasonable assumption
Pe,k ≤ 1

2 and we hypothesize that Pe,k values can be safely estimated by the FC (that is they are known).
This is for example the case when coherent detection or non-coherent detection with orthogonal symbols
is performed over a fading channel, as soon as the corresponding Signal-To-Noise Ratio (SNR) can be
obtained, e.g. [7, 29, 30]. Then, we similarly collect the received (noisy) decisions as d̂ ,

[
d̂1 · · · d̂K

]T
.

It is apparent that, under hypothesisH1, the pmf of d̂ still assumes a similar (to the noise-free reporting
channels case) expression given by the product of independent Bernoulli pmfs (since the reporting channels
are assumed to act independently), that is:

P (d̂|H1) =
K∏
k=1

P (d̂k|H1) =
K∏
k=1

(ρ1,k)d̂k (1− ρ1,k)(1−d̂k) , (3.34)

where ρ1,k , [(1− Pe,k)Pd,k + Pe,k(1− Pd,k)]. Also, a similar expression holds for P (d̂|H0), when re-
placing ρ1,k with ρ0,k , [(1− Pe,k)Pf,k + Pe,k(1− Pf,k)]. We remark that Pd,k and Pf,k retain the same
definition of Eq. (2.8).

Discussion: Counting Rule (CR) and Clairvoyant LLR
First, it is worth noticing that, the CR rule can be still applied in the case of error-prone reporting

channels, as long as ρ1,k ≥ ρ0,k. Such condition is satisfied as long as the reasonable conditions Pd,k ≥ Pf,k
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and Pe,k ≤ 1/2 hold, respectively. Secondly, the (clairvoyant) LLR is given by

ΛLLR , ln
[
P (d̂|H1)
P (d̂|H0)

]
=

K∑
k=1

ln
[
P (d̂k|H1)
P (d̂k|H0)

]

=
K∑
k=1

{
d̂k ln

[
ρ1,k
ρ0,k

]
+ (1− d̂k) ln

[
1− ρ1,k
1− ρ0,k

]}
. (3.35)

As in the case of error-free reporting channels, the clairvoyant LLR requires knowledge of both xT and
σ2
s and additionally of BEPs Pe,k. Also, we recall that the additionally uncertainty arising from the BSCs

should not affect the relative loss in performance incurred by the proposed rules in comparison to the
LLR, as they will all rely on the availability of Pe,k. The sole exception is represented by the CR, which
does not rely on Pe,ks for its implementation (it only requires Pe,k ≤ 1/2).

GLRT
In the present scenario, the explicit expression of the (log-)GLR statistic generalizes to:

ΛG , ln
[

maxσ2
s ,xT

P (d̂|H1;xT , σ2
s)

P (d̂|H0)

]
(3.36)

=
K∑
k=1

d̂k ln

ρ1,k
(
x̂T , σ̂2

s

)
ρ0,k

+ (1− d̂k) ln

1− ρ1,k
(
x̂T , σ̂2

s

)
1− ρ0,k

 , (3.37)

where x̂T and σ̂2
s denote the usual ML estimates of the target position and (average) emitted reference

power, assuming that H1 is true. Also, we have adopted the notation ρ1,k(xT , σ2
s) to underline the

dependence on xT and σ2
s via Pd,k(xT , σ2

s). Finally, we remark that the above expression can be similarly
rewritten in terms of the clairvoyant LLR in (3.35) as Eq. (3.12).

Bayesian Approach
In the case of imperfect reporting channels, the explicit expression of the (purely) Bayesian LLR

generalizes to:

ΛB , ln
[´

P (d̂|H1;xT , σ2
s) p(xT ) p(σ2

s) dxT dσ2
s

P (d̂|H0)

]
(3.38)

= ln
ˆ K∏

k=1

(
ρ1,k(xT , σ2

s)
ρ0,k

)d̂k
×
(

1− ρ1,k(xT , σ2
s)

1− ρ0,k

)(1−d̂k)

p(xT ) p(σ2
s) dxT dσ2

s . (3.39)
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As previously shown, the above expression can be similarly rewritten as in Eq. (3.15), exploiting the LLR
definition provided in (3.35).

Hybrid GLRT/Bayesian approaches
Hybrid GLRT/Bayesian approaches are straightforwardly extended as follows. For example, assuming

a prior for the target position xT and treating σ2
s as deterministic provides:

ΛGB1 , ln

maxσ2
s

´
P
(
d̂|H1;xT , σ2

s

)
p(xT )dxT

P
(
d̂|H0

)
 (3.40)

= ln max
σ2
s

ˆ 
K∏
k=1

(
ρ1,k(xT , σ2

s)
ρ0,k

)d̂k (1− ρ1,k(xT , σ2
s)

1− ρ0,k

)(1−d̂k)
 p(xT ) dxT (3.41)

The above statistic can be re-expressed in terms of the LLR similarly as Eq. (3.18). Alternatively,
assuming a prior distribution for σ2

s and treating the target position xT as unknown deterministic, the
complementary hybrid statistic generalizes to:

ΛGB2 , ln

maxxT

´
P
(
d̂|H1;xT , σ2

s

)
p(σ2

s) dσ2
s

P
(
d̂|H0

)
 (3.42)

= ln max
xT

ˆ 
K∏
k=1

(
ρ1,k(xT , σ2

s)
ρ0,k

)d̂k (1− ρ1,k(xT , σ2
s)

1− ρ0,k

)(1−d̂k)

p(σ2
s) dσ2

s

 (3.43)

As usual, the above statistic can be re-expressed in terms of LLR similarly as Eq. (3.21).

(Hybrid) Bayesian Locally-Optimum Detection Approach
To approach the detection problem through the common LOD approach, we first consider the averaged

pdf under H1:
P
(
d̂ |H1; θ

)
=
ˆ
P
(
d̂ |H1;xT , θ

)
p(xT ) dxT . (3.44)

The implicit form of the LOD is thus given by:

ΛBLOD ,

∂ ln
[
P
(
d̂ |H1;θ

)]
∂θ

∣∣∣∣
θ=θ0√

I(θ0)
, (3.45)
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where I(θ0) represents the usual FI evaluated at θ0, that is:

I(θ) , E


∂ ln

[
P
(
d̂ |H1; θ

)]
∂θ

2 . (3.46)

The explicit form of ΛBLOD is shown as follows (the derivation is left to the reader for the sake of brevity):

ΛBLOD =

∑K
k=1

d̂k−ρ0,k
ρ0,k(1−ρ0,k) (1− 2Pe,k) pw

(√ γk
σ2
w,k

) √
γk(

σ2
w,k

)3/2

(´
g2(xT ,xk) p(xT ) dxT

)
√∑K

k=1
1

Pf,k(1−Pf,k) p
2
w

(√ γk
σ2
w,k

)
γk(

σ2
w,k

)3
(´
g2(xT ,xk) p(xT ) dxT

)2 . (3.47)

Similarly, by exploiting the following generalized definitions

ν̂k(d̂k) ,
d̂k − ρ0,k

ρ0,k (1− ρ0,k)
(1− 2Pe,k) pw

√ γk
σ2
w,k

 √
γk(

σ2
w,k

)3/2 , (3.48)

ψ̂k ,
1

ρ0,k (1− ρ0,k)
(1− 2Pe,k)2 p2

w

√ γk
σ2
w,k

 γk(
σ2
w,k

)3 , (3.49)

the B-LOD can be also expressed in a similar compact form:

ΛBLOD =
∑K
k=1 ν̂k(d̂k)

´
g2(xT ,xk) p(xT ) dxT√∑K

k=1 ψ̂k
(´
g2(xT ,xk) p(xT ) dxT

)2 . (3.50)

Generalized LOD based on Davies approach
The implicit form of LOD based on Davies approach is given by [23]:

ΛGLOD , max
xT

∂ ln
[
P
(
d̂ |H1;xT ,θ

)]
∂θ

∣∣∣∣
θ=θ0√

I(xT , θ0)
, (3.51)

where the symbol I(xT , θ) is used to denote the FI assuming xT known, that is:

I(xT , θ) , E


∂ ln

[
P (d̂|H1;xT , θ)

]
∂θ

2 . (3.52)
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The derivation of the inner term in Eq. (3.51) is left to the reader for sake of brevity. The explicit form
is given as:

ΛGLOD = max
xT

∑K
k=1

d̂k−ρ0,k
ρ0,k(1−ρ0,k) (1− 2Pe,k) pw

(√ γk
σ2
w,k

) √
γk g

2(xT ,xk)(
σ2
w,k

)3/2√∑K
k=1

(1−2Pe,k)2

ρ0,k(1−ρ0,k) p
2
w

(√ γk
σ2
w,k

)
γk g4(xT ,xk)(

σ2
w,k

)3

. (3.53)

Similarly, G-LOD can be also expressed in the compact form:

ΛGLOD = max
xT

∑K
k=1 ν̂k(d̂k) g2(xT ,xk)√∑K

k=1 ψ̂k g
4(xT ,xk)

, (3.54)

by exploiting the same definitions as the B-LOD in Eqs. (3.48) and (3.49), respectively.

3.4. Summary of the Considered Rules and their Practical Implementation

In this section, we provide a summarizing comparison of the considered rules, focusing on the com-
putational complexity (a performance comparison is then provided in Sec. 4). To this end, in Tab. 1 we
report the explicit form of the considered fusion rules, as well as the corresponding complexity required
for their implementation.

First of all, we observe that CR (cf. Eq. (2.13)) and B-LOD (cf. Eq. (3.50)) require the lowest
complexity (that is O(K)), as only a sum of K terms needs to be evaluated (indeed the integrations
of B-LOD in (3.50) can be performed off-line). Secondly, all the remaining rules require optimizations
(GLRT and G-LOD), integrations (Bayesian approach) or both of them (viz. hybrid approaches). In
this case, the complexity evaluation in Tab. 1 subsumes that a grid search or integration is performed,
similarly as in [17, 19, 20]. Additionally, when dealing with prior pdfs, we employ non-informative priors
with the intent of underlining useful analogies among proposed rules. Nonetheless, grid implementation
(and corresponding complexity evaluation) still applies to the case of informative priors.

More specifically, after assuming that xT and σ2
s belong to limited sets SxT ⊂ Rd and Sσ2

s
⊂ R+,

respectively, the space (xT , σ2
s) is then discretized into:

• NxT position bins in the d-dimensional space, each one associated to a center bin position, say xT [i],
i ∈ {1, . . . NxT };

• Nσ2
s
variance (power) bins, each one to associated to a center bin variance, say σ2

s [j], j ∈ {1, . . . Nσ2
s
}.

Grid implementation of GLRT: Starting from the alternative form of Eq. (3.12), we approximate the
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GLRT via the following grid search:

ΛG ≈ max
i=1,...NxT

max
j=1,...,N

σ2
s

ΛLLR(xT [i] , σ2
s [j]) ; (3.55)

where we recall that ΛLLR(xT [i] , σ2
s [j]) represents the expression of the clairvoyant LLR statistic obtained

by evaluating the Pd,ks by replacing xT and σ2
s with xT [i] and σ2

s [j], respectively, into (2.8).
Grid implementation of Bayesian approach: First, we approximate the double integral in (3.15)

through the Riemann sums as follows:

ΛB ≈ ln

NxT∑
i=1

N
σ2
s∑

j=1
exp

{
ΛLLR(xT [i], σ2

s [j]) + ln ri + ln r̄j
} , (3.56)

where ri and r̄j are the the mass probabilities associated to bins i and j of xT and σ2
s , through p(xT ) and

p(σ2
s), respectively. In other words, ri , Pr{xT ∈ I(xT [i])} and r̄j , Pr{σ2

s ∈ I(σ2
s [j])}, where I(xT [i])

and I(σ2
s [j]) denote the extent of ith and jth bins of the grid employed. This approximation admits a

more intuitive form when the prior pdfs are assumed non-informative (viz. uniform). Indeed, in the latter
case, the above approximation specializes into:

ΛB ≈ r r̄ ln

NxT∑
i=1

N
σ2
s∑

j=1
exp(ΛLLR(xT [i], σ2

s [j]))

 , (3.57)

∝ ln

NxT∑
i=1

N
σ2
s∑

j=1
exp(ΛLLR(xT [i], σ2

s [j]))

 . (3.58)

The right-hand side is in the form of the well-known log-sum-exp combination, which can be also inter-
preted as a “soft-max” function. Therefore it is apparent that GLR approximation in (3.55) shows a clear
connection with the Bayesian approach in (3.58), as also observed in [19] for the case of random sensor
deployment.

Grid implementation of hybrid approaches: Remarkably, the hybrid fusion rules of Sec. 3.3 admit
similar approximations as the pure GLR and Bayesian decision statistic. Indeed, ΛGB1 in (3.18) is
approximated (assuming a uniform pdf for p(xT )) as

ΛGB1 ≈ max
j=1,...,N

σ2
s

ln
NxT∑
i=1

exp(ΛLLR(xT [i], σ2
s [j])) , (3.59)
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Fusion Rule Explicit Expression Computational Complexity

GLR maxxT ,σ2
s

ΛLLR(xT , σ2
s) O

(
K ·NxT ·Nσ2

s

)
(Grid)

Bayesian ln
´

exp(ΛLLR(xT , σ2
s)) p(xT ) p(σ2

s)dxT dσ2
s O

(
K ·NxT ·Nσ2

s

)
(Grid)

Hybrid Approach 1 maxσ2
s

ln
´

exp(ΛLLR(xT , σ2
s)) p(xT ) dxT O

(
K ·NxT ·Nσ2

s

)
(Grid)

Hybrid Approach 2 maxxT ln
´

exp(ΛLLR(xT , σ2
s)) p(σ2

s) dσ2
s O

(
K ·NxT ·Nσ2

s

)
(Grid)

Bayesian LOD
∑K

k=1 ν̂k(d̂k)
´
g2(xT ,xk) p(xT )dxT√∑K

k=1 ψ̂k(
´
g2(xT ,xk) p(xT ) dxT )2

O(K)

Counting Rule
∑K
k=1 d̂k O(K)

Generalized LOD maxxT

∑K

k=1 ν̂k(d̂k) g2(xT ,xk)√∑K

k=1 ψ̂k g
4(xT ,xk)

O (K ·NxT ) (Grid)

Table 1: Comparison of decision statistics; ΛLLR(xT ) and ΛLLR(xT , σ2
s) are defined through Eq. (2.12).

while ΛGB2 in (3.21) is approximated (assuming a uniform pdf for p(σ2
s)) as:

ΛGB2 ≈ max
i=1,...NxT

ln
N
σ2
s∑

j=1
exp(ΛLLR(xT [i], σ2

s [j])) . (3.60)

The above expressions underline the soft-max approach with respect to one variable and a max approach
with respect to the other. Clearly, the computational complexity of all these methods is based on the
evaluation of the statistic at the grid points, thus implying O

(
K ·NxT ·Nσ2

s

)
.

Grid implementation of G-LOD: Finally, the G-LOD can be approximated in a similar way by dis-
cretizing only the search space of xT as:

ΛGLOD ≈ max
i=1,...NxT

∑K
k=1 ν̂k(d̂k) g2(xT [i],xk)√∑K

k=1 ψ̂k g
4(xT [i],xk)

. (3.61)

Therefore, its complexity is given by O (K ·NxT ) and provides a dramatic reduction in complexity with
respect to other rules based on grid implementation.
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Figure 4.1: Regular deployment of WSN in the case of K = 49 (blue “�” markers) and K = 64 (red
“◦” markers) sensors. The area delimited by magenta dashed line refers to informative prior setup, i.e.
SxT , [0.35, 0.65]× [0.35, 0.65].

4. Simulation Results

In this section we compare the performance of the considered rules through numerical results. To
this end, we consider a 2-D scenario (xT ∈ R2) where a WSN is employed to detect the presence of a
target within the region [0, 1]× [0, 1], which represents the considered surveillance area. The sensors are
arranged according to a regular square grid covering the surveillance area, as shown in Fig. 4.1, where
two cases concerning K = 49 and K = 64 sensors are illustrated.

With reference to the sensing model, for simplicity we assume the same measurement variance for all
the sensors, i.e. σ2

w,k = σ2
w. Also, without loss of generality, we set σ2

w = 1. Differently, with reference to
the AAF, we will both consider both the cases of (i) power-law and (ii) exponential AAFs, with parameter
values: η = 0.2 (viz. approximate target extent); α = 4 (power-law AAF decay exponent). Finally, we
define the local sensing SNR as SNR , 10 log10

σ2
s

σ2
w
. The local false-alarm rate for every sensor is set to
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Pf,k = 0.05 (the corresponding decision threshold γk is obtained by inverting relationship in Eq. (2.8)).
When not otherwise specified, we assume ideal reporting channels, i.e. Pe,k = 0, k ∈ K.

With reference to grid-based approaches (cf. Sec. 3.4), those employed for xT and σ2
s are the following:

• Target position xT : the search (resp. integration) space corresponds to the surveillance area, i.e.
SxT = [0, 1]× [0, 1]. The x-and y-coordinates grid spacings are given by (1/Nx), where Nx = 100 is
chosen here;

• Target average emitted power σ2
s : the search (resp. integration) space is chosen as

Sσ2
s

=
[
(1− ρs) · σ2

s,true , (1 + ρs) · σ2
s,true

]
, (4.1)

where σ2
s,true denotes the emitted power true value and ρs = 1

10 , which provides a relative 20%

uncertainty with respect to σ2
s,true. The grid spacing is given by 2ρsσ2

s,true
Nσ

, where Nσ = 10 is chosen
here;

In what follows we compare the considered rules through their corresponding ROCs based on Monte
Carlo simulations, obtained with 105 runs. The ROC performance reported refer to a scenario where xT

is uniformly randomly generated at each run within the surveillance area SxT .
First, in Fig. 4.2 we report the ROCs for both the cases of power-law AAF (subfigure (a)) and

exponential AAF (subfigure (b)) in a WSN with K = 49 sensors arranged as in Fig. 4.1 (blue “�”
markers). First of all, it is apparent that B-LOD and CR achieve almost the same performance in this
scenario. Therefore, the prior information on xT is too vague and does not provide itself a relevant gain
w.r.t. “blind assumption” of CR, which also arises from different founding rationales (cf. Sec. 2.3).
Differently, all the other rules achieve a significant performance improvement over CR. Moreover, purely
Bayesian and GLRT approaches, as well as the hybrid ones, roughly achieve the same performance under
both power-law and exponential AAFs. Interestingly, G-LOD achieves a worth performance gain w.r.t.
CR, especially in the case of an exponential AAF. This is motivated by a faster signal decay (viz. a
more “sensitive” spatial signature), which is effectively exploited by the maximization required for G-
LOD implementation (see Eq. (3.54)). Also, from inspection of the figures, G-LOD suffers from a slight
performance loss when compared to remaining grid-based approaches. However, such loss is balanced by
a significant lower complexity required, thus confirming its attractiveness.

Differently, in Fig. 4.3 we report similar ROCs for the case of a more informative prior availability
on xT . More specifically, we assume that xT ∈ SxT , [0.35, 0.65] × [0.35, 0.65] (see Fig. 4.1), i.e. the
target can be located (when present) within a smaller square than the WSN deployment region (see Fig.
4.1). By looking at the figure, similar considerations can be also drawn in this setup, except for the ROC
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(b) Exponential AAF.

Figure 4.2: Pd,0 vs. Pf,0 for all the presented rules; WSN with K = 49 sensors, SNR = 10 dB, Pe,k = 0
(ideal reporting channels).

performance achieved by B-LOD. Indeed, in the latter case, the exploitation of the more informative
prior pdf p(xT ) available (i.e. a uniform one on a smaller area) overcomes the blind nature behind
CR derivation. Therefore, when accurate information on target potential position is available, B-LOD
represents an interesting alternative rule, since its complexity grows only linearly with the number of
sensors K (cf. Tab. 1).

Then, in Figs. 4.4 and 4.5 we illustrate performance for the previous two setups (common and
informative setups) in the case of K = 64 sensors (i.e. a more densely deployed WSN), arranged as shown
in Fig. 4.1 (red “◦” markers). It is apparent that all rules benefit from an increase of the number of
sensors. Nonetheless, analogous trends as the case K = 49 can be observed.

Finally, in Figs. 4.6 and 4.7 we show ROCs for the previous setups (assuming K = 64) in the case
of imperfect reporting channels. More specifically, for simplicity we assume the same BEP for all the
sensors, i.e. Pe,k = Pe, k ∈ K, and we set Pe = 0.1. From both figures it is apparent a general degradation
of performance due to imperfect reporting channels. Additionally, it can be observed a general decrease of
the performance spread for the considered rules. The reason is that a non-zero BEP tends to smooth the
spatial signature of the AAF. Additionally, the equal BEP assumption leads to a similar relative confidence
of each sensor local decision. Therefore the relative performance loss incurred by CR decreases.

Finally, in Tabs. 2 and 3, we report a comparison of all the presented rules in terms of Pd,0 (assuming
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Figure 4.3: Pd,0 vs. Pf,0 for all the presented rules (informative prior setup); WSN with K = 49 sensors,
SNR = 10 dB, Pe,k = 0 (ideal reporting channels).
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Figure 4.4: Pd,0 vs. Pf,0 for all the presented rules; WSN with K = 64 sensors, SNR = 10 dB, Pe,k = 0
(ideal reporting channels).
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Figure 4.5: Pd,0 vs. Pf,0 for all the presented rules (informative prior setup); WSN with K = 64 sensors,
SNR = 10 dB, Pe,k = 0 (ideal reporting channels).

K = 64 and SNR = 10 dB) for the relevant scenario of Pf,0 = 10−2, in both the previously considered cases
of uninformative and informative prior (p(xT )), respectively. As an example, in Tab. 2 when Pe,k = 0
and the assumed AAF follows the exponential law, G-LOD is able to provide a 26% improvement of the
detection rate with respect to B-LOD and CR.

5. Conclusions and Future Directions

In this paper we tackled distributed detection of a non-cooperative target. Sensors measure an un-
known random signal (embedded in Gaussian noise) with an AAF depending on the distance between the
sensor and the target (unknown) positions. Each local decision, based on (local) energy detection, is then
sent to a FC for improved detection performance. The focus of this work has concerned the development
of practical fusion rules at the FC. To this end, we first focused on the scenario where the emitted power is
available at the FC and analyzed fusion rules based on GLRT and Bayesian approaches. Then we moved
to the more realistic case of unknown target location (xT ) and power (σ2

s). Such case is typical when
detecting non-cooperative targets. The present problem has been formally cast as a one-sided hypothesis
testing with nuisance parameters (i.e. xT ) which are present only under H1 (viz. target-present hypoth-
esis). For the resulting hypothesis testing, we analyzed several fusion rules based on: (i) GLRT, (ii)
Bayesian approach and (iii) hybrid combinations of the two. All these rules have been shown to achieve
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Figure 4.6: Pd,0 vs. Pf,0 for all the presented rules; WSN with K = 64 sensors, SNR = 10 dB, Pe,k = 0.1
(imperfect reporting channels).
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Figure 4.7: Pd,0 vs. Pf,0 for all the presented rules (informative prior setup); WSN with K = 64 sensors,
SNR = 10 dB, Pe,k = 0.1 (imperfect reporting channels).
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Fusion Rule Pow-Law, Exp-Law, Pow-Law, Exp-Law,
Pe,k = 0 Pe,k = 0 Pe,k = 0.1 Pe,k = 0.1

ΛG 0.87 0.83 0.49 0.50
ΛB 0.87 0.83 0.5 0.51

ΛGB1 0.87 0.83 0.5 0.51
ΛGB2 0.87 0.83 0.49 0.50
ΛBLOD 0.75 0.55 0.38 0.23
ΛCR 0.77 0.55 0.38 0.23

ΛGLOD 0.81 0.81 0.44 0.44

Table 2: Global detection probability (Pd,0) comparison for the presented rules (global false-alarm rate is
set to Pf,0 = 10−2). WSN with K = 64 sensors, SNR = 10 dB.

Fusion Rule Pow-Law, Exp-Law, Pow-Law, Exp-Law,
Pe,k = 0 Pe,k = 0 Pe,k = 0.1 Pe,k = 0.1

ΛG 0.99 0.99 0.83 0.83
ΛB 0.99 0.99 0.84 0.85

ΛGB1 0.99 0.99 0.83 0.85
ΛGB2 0.99 0.99 0.84 0.83
ΛBLOD 0.98 0.94 0.78 0.64
ΛCR 0.97 0.90 0.72 0.47

ΛGLOD 0.98 0.98 0.78 0.78

Table 3: Global detection probability (Pd,0) comparison for the presented rules (global false-alarm rate is
set to Pf,0 = 10−2). WSN with K = 64 sensors (informative prior setup), SNR = 10 dB.
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similar performance in all the scenarios being considered. Unfortunately, they all require a grid-based
implementation on the Cartesian product of optimization (integration) space of xT and σ2

s . Then, with
the intent of reducing the computational complexity required by all these approaches, we proposed other
two (sub-optimal) fusion rules built upon the LOD framework [22] and based on the following specific
rationales:

• B-LOD: xT is treated as a random parameter with a prior pdf p(xT ), while σ2
s is tackled under the

LOD framework;

• G-LOD: A generalized version of LOD (based on [23]), arising from maximization (w.r.t. nuisance
parameter xT ) of a family of LOD decision statistics obtained by assuming xT known;

The aforementioned rules present reduced complexity with respect to the previous rules, all requiring a
grid-based search or integration with respect to both xT and σ2

s . More specifically, B-LOD retains a linear
complexity in the number of sensors (as the simple CR), while G-LOD is based on a (reduced) grid search
which only requires optimization w.r.t. xT . Additionally, G-LOD has been shown to outperform CR in
all the considered cases and to incur in a moderate performance loss with respect to other rules requiring
grid implementation on both parameters. Differently, B-LOD has been shown to provide a significant
gain over CR only when the prior pdf of xT is informative enough.

All the considered rules have been extended to the case of imperfect reporting channels, modeled as
BSCs with corresponding BEPs Pe,k assumed known at the FC. It has been demonstrated that only a
slight modification of their expressions is required in order to account for this additional uncertainty,
whereas it has been observed that non-zero BEPs tend to smooth the spatial signature determined by the
AAF and thus to reduce the gain obtained by all the rules exploiting spatial information of the target
w.r.t. CR.

Future works will include the design and analysis of fusion rules based on soft-decisions (i.e. multi-
bit quantization) from the sensors, as well as the problem of detecting time-evolving (diffusive) sources
with possibly moving sensors. Both the cases of cooperative and uncooperative targets are of interest.
Furthermore, the case of uncertain sensors positions will be tackled in comparison to the well-known
concept of scan statistics [18]. Finally, robust design of fusion rules accounting for uncertainties at the
reporting channels (i.e. unknown BEPs) will be also considered.
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Appendix

Derivation of Bayesian LOD

In this Appendix, we derive the explicit expression of the LOD [22] based on a prior distribution assump-
tion for the target position xT , that is based on Eq. (3.22). To this end, starting from the implicit form
in (3.45), we first concentrate on obtaining the closed form of ∂ ln[P (d|H1;θ)]

∂θ . The latter term is obtained
recalling that:

ln [P (d|H1; θ)] = ln
[ˆ K∏

k=1
Pd,k(xT , θ)dk [1− Pd,k(xT , θ)](1−dk) p(xT ) dxT

]
. (5.1)

The derivative of the log-pdf can be thus obtained in closed form as:

∂ ln [P (d|H1; θ)]
∂θ

=
´ ∂P (d|H1;xT ,θ)

∂θ p(xT ) dxT´ ∏K
k=1 Pd,k(xT , θ)dk [1− Pd,k(xT , θ)](1−dk) p(xT ) dxT

, (5.2)

where we have interchanged the order of derivative and integration at the numerator. Also, the derivative
within the integral in (5.2) at the numerator can be evaluated in explicit form as:

∂P (d|H1;xT , θ)
∂θ

=
(

K∏
k=1

Pd,k(xT , θ)dk [1− Pd,k(xT , θ)](1−dk)
)

×
K∑
k=1

dk − Pd,k(xT , θ)
Pd,k(xT , θ) [1− Pd,k(xT , θ)]

∂Pd,k(xT , θ)
∂θ

. (5.3)

For the considered model in Eq. (2.8), the derivative of the Pd,k w.r.t. θ is given explicitly as:

∂Pd,k(xT , θ)
∂θ

= 2 ∂

∂θ
Q

√ γk
σ2
w,k + θ g2(xT ,xk)

 (5.4)

= pw

√ γk
σ2
w,k + θ g2(xT ,xk)

 √
γk g

2(xT ,xk)[
σ2
w,k + θ g2(xT ,xk)

]3/2 . (5.5)

Evaluating the derivative of the log-pdf in (5.2) at θ = θ0 (which corresponds to null hypothesis H0, see
Eq. (3.8)), leads to

∂ ln [P (d|H1; θ)]
∂θ

∣∣∣∣
θ=θ0

=

´ ∂P (d;H1,xT ,θ)
∂θ

∣∣∣
θ=0

p(xT ) dxT∏K
k=1(Pf,k)dk(1− Pf,k)(1−dk)

, (5.6)
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where, exploiting (5.3), we obtain:

∂P (d|H1;xT , θ)
∂θ

∣∣∣∣
θ=θ0

=
(

K∏
k=1

(Pf,k)dk [1− Pf,k](1−dk)
)

K∑
k=1

dk − Pf,k
Pf,k (1− Pf,k)

∂Pd,k(xT , θ)
∂θ

∣∣∣∣
θ=θ0

, (5.7)

and in turn (cf. Eq. (5.5))

∂Pd,k(xT , θ)
∂θ

∣∣∣∣
θ=θ0

= pw

√ γk
σ2
w,k

 √γk g2(xT ,xk)(
σ2
w,k

)3/2 . (5.8)

Then, exploiting the appropriate substitutions, we obtain:

∂ ln [P (d|H1; θ)]
∂θ

∣∣∣∣
θ=θ0

=
K∑
k=1

dk − Pf,k
Pf,k (1− Pf,k)

pw

√ γk
σ2
w,k

 √
γk(

σ2
w,k

)3/2

(ˆ
g2(xT ,xk) p(xT ) dxT

)
. (5.9)

Now we show how to obtain the explicit form of the FI evaluated at θ0. First, we start from the common
definition:

I(θ0) = EP (d|H0)


(
∂ ln [P (d|H1; θ)]

∂θ

∣∣∣∣
θ=θ0

)2
 . (5.10)

Since the elements dk, k = 1, . . .K, are uncorrelated it holds that:

I(θ0) =
K∑
k=1

E
{

(dk − Pf,k)2
}

P 2
f,k (1− Pf,k)2 p2

w

√ γk
σ2
w,k

 γk(
σ2
w,k

)3

(ˆ
g2(xT ,xk) p(xT ) dxT

)2
. (5.11)

Evaluating the expectation inside the above equation, provides the explicit form of I(θ0):

I(θ0) =
K∑
k=1

1
Pf,k (1− Pf,k)

p2
w

√ γk
σ2
w,k

 γk(
σ2
w,k

)3

(ˆ
g2(xT ,xk) p(xT ) dxT

)2
. (5.12)

Substitution of closed forms of Eqs. (5.9) and (5.12) into the implicit form in (3.23), provides the explicit
expression reported in Eq. (3.25).

Derivation of Generalized LOD

In this Appendix, we derive the explicit expression of the G-LOD proposed by Davies. To this end, we
concentrate on finding the explicit form of LOD fusion rule [22] assuming xT known. Once obtained, the

35



explicit expression will clearly depend on xT . Such expression will be then plugged in the maximization
of Eq. (3.29) to obtain the final statistic. First, we observe that:

∂ lnP (d|H1;xT , θ)
∂θ

=
K∑
k=1

dk − Pd,k(xT , θ)
Pd,k(xT , θ) [1− Pd,k(xT , θ)]

∂Pd,k(xT , θ)
∂θ

, (5.13)

where ∂Pd,k(xT ,θ)
∂θ is defined as in Eq. (5.5). Setting θ = θ0, the above term reduces to:

∂ lnP (d|H1;xT , θ)
∂θ

∣∣∣∣
θ=θ0

=
K∑
k=1

dk − Pf,k
Pf,k(1− Pf,k)

pw

√ γk
σ2
w,k

 √γk g2(xT ,xk)(
σ2
w,k

)3/2 , (5.14)

where we exploited the definition in Eq. (5.5). Similarly, exploiting (conditional) independence of the
decisions dk, k = 1, . . .K, we obtain:

I(xT , θ) =
K∑
k=1

Ik(xT , θ) , (5.15)

where we have denoted with Ik(xT , θ) the contribution of kth to the FI, that is:

Ik(xT , θ) = E
{(

∂ ln [P (dk|H1;xT , θ)]
∂θ

)2}
(5.16)

=
E
{

[dk − Pd,k(xT , θ)]2
}

Pd,k(xT , θ)2 [1− Pd,k(xT , θ)]2
(
∂Pd,k(xT , θ)

∂θ

)2
(5.17)

= 1
Pd,k(xT , θ) [1− Pd,k(xT , θ)]

(
∂Pd,k(xT , θ)

∂θ

)2
(5.18)

where, in obtaining the last line we have explicitly evaluated the expectation in Eq. (5.17). Then,
substitution θ → θ0 in I(xT , θ) provides:

I(xT , θ0) =
K∑
k=1

Ik(xT , θ0) (5.19)

=
K∑
k=1

1
Pf,k [1− Pf,k]

p2
w

√ γk
σ2
w,k

 γk g
4(xT ,xk)(
σ2
w,k

)3 . (5.20)

Exploiting Eqs. (5.20) and (5.14) into (3.29), provides the final expression in (3.31).
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