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Abstract

Aggregation operators are an important tool in various scientific fields to determine the overall evaluation of an

alternative from individual values. So, it seems relevant to know as many features as possible of the operators used

in the aggregation processes. For this purpose, several indices have appeared in the literature, among which worth

mentioning are the orness degree, the Shapley value, and the veto and favor indices. However, closed-form expressions

of these indices are only known for few operators. The aim of this paper is to provide closed-form expressions of the

previously said indices for some specific cases of SUOWA operators (which are a special case of Choquet integral),

and to show the usefulness of these operators in a classical example given by Grabisch [M. Grabisch, Fuzzy integral

in multicriteria decision making, Fuzzy Sets and Systems 69 (1995) 279–298].
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1. Introduction

Aggregation operators are a powerful tool to aggregate values in several scientific fields. Among the large number

of existing operators, Choquet integral plays an important role due to its versatility (see, for instance, Grabisch [9, 11],

Grabisch and Roubens [17], Grabisch and Labreuche [14] and Yager [40]). In this regard, it is worth mentioning that

Choquet integral generalizes two well-known families of operators, the weighted means and the ordered weighted

averaging (OWA) operators (Yager [39]), which have been frequently used in the literature.

Weighted means and OWA operators are both defined through weighting vectors, but their role in the definition

of both families of functions is very different. Weighted means allow weighting each element (for instance, criteria

in a multicriteria decision making problem) in relation to their importance while OWA operators allow weighting the

values in accordance with their relative position. The need of both weightings in several fields has been reported by

some authors (see, for instance, Torra and Godo [37, pp. 160–161], Torra and Narukawa [38, pp. 150–151], Roy [32],

Yager and Alajlan [41] and Section 6 of this paper). This fact has prompted the emergence of specific functions to

deal with this class of problems.
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The approach generally followed in the literature is to consider functions parametrized by two weighting vectors,

one for the weighted mean and the other one for the OWA type aggregation, so that the weighted mean (or the OWA

operator) is recovered when the other weighting vector is (1/n, . . . , 1/n) (see Llamazares [20] for a study of some of

these families of functions). Weighted OWA (WOWA) operators, proposed by Torra [35], and the semi-uninorm based

ordered weighted averaging (SUOWA) operators, introduced by Llamazares [21], are two of the most interesting

solutions. This is due to the fact that WOWA and SUOWA operators can be represented by using the Choquet

integral with respect to normalized capacities. So, they are continuous, monotonic, idempotent, compensative and

homogeneous of degree 1 functions.

In addition to knowing that WOWA and SUOWA operators satisfy the above properties, it is also interesting

to know the behavior of these functions with respect to other characteristics. A first study has been carried out

by Llamazares [24] regarding some simple cases of weighting vectors, the capacities from which they are built,

the weights affecting the components of each vector, and the values they return. Another approach reported in the

literature is to provide additional information about operators by means of several indices: orness and andness degrees,

importance and interaction indices, tolerance indices, dispersion indices, etc. Some relevant indices are the following:

1. The orness, which measures the degree to which the aggregation is disjunctive.

2. The Shapley value, which expresses the global importance of each criterion.

3. The veto and favor indices, which measure the degree to which a criterion behaves like a veto (a criterion that

bounds the overall score from above) or a favor (a criterion that bounds the overall score from below).

These indices provide useful information about the behavior of aggregation functions but closed-form expressions

of them are only known for few operators. The aim of this paper is to provide closed-form expressions of the previ-

ously said indices for some specific cases of SUOWA operators. In this regard, some results given in this paper are

only valid when the weighting vector of the OWA type aggregation satisfies a certain condition. However, it is worth

noting that some useful weighting vectors satisfy that condition. For instance, those ones with nondecreasing weights,

which allow to characterize the Schur-concavity of OWA operators (see Bortot and Marques Pereira [3]1). Likewise,

nondecreasing weights also appear when the weights form a (nondecreasing) arithmetic progression, as in 2-additive

symmetric normalized capacities (see, for instance, Beliakov et al. [1, p. 86], and Bortot and Marques Pereira [2]) and

in some models proposed in the literature to determine the OWA weighting vector (see, for instance, Liu [19]).

Another interesting issue addressed in this paper concerns a classical example given by Grabisch [9], where

the usefulness of Choquet integral to model interaction among criteria is shown. We consider his example under

the perspective of SUOWA operators and illustrate how we can apply the results obtained in this paper to achieve

appropriate operators.

1Notice that in Proposition 2 in Bortot and Marques Pereira [3] nondecreasing weights allow to characterize Schur-convexity instead of Schur-

concavity because in the definition of OWA operators these authors consider that the components of x are ordered in a nondecreasing way.
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The remainder of the paper is organized as follows. In Section 2 we collect some well-known properties of

aggregation functions. Likewise, we recall the notions of semi-uninorms and uninorms and give some examples

of such functions. In Section 3 we do a brief survey of Choquet integral, embracing the weighted means, OWA

operators, and SUOWA operators. In Section 4 we present some usual indices in the context of Choquet integral.

Section 5 collects the main results of the paper. In Section 6 we show the usefulness of SUOWA operators in a

classical example given by Grabisch [9]. Finally, some concluding remarks are provided in Section 7.

2. Preliminaries

LetA be a finite set of alternatives and let N = {1, . . . , n} be a finite set of criteria in a multicriteria decision making

problem. Each alternative a ∈ A is associated with a vector xa = (xa
1, . . . , x

a
n) ∈ Rn, where xa

i represents the score of

a with respect to the criterion i. In many cases, the global score of each alternative is obtained through aggregation

operators which take into account the importance of the criteria. In this context, the following notation will be used

throughout the paper: given A ⊆ N, |A| denotes the cardinality of A; vectors are denoted in bold; η denotes the tuple

(1/n, . . . , 1/n) ∈ Rn. We write x ≥ y if xi ≥ yi for all i ∈ N. For a vector x ∈ Rn, [·] and (·) denote permutations such

that x[1] ≥ · · · ≥ x[n] and x(1) ≤ · · · ≤ x(n).

Some interesting properties of functions (F : Rn −→ R) are given next.

1. Symmetry: F(xσ(1), . . . , xσ(n)) = F(x1, . . . , xn) for all x ∈ Rn and for all permutation σ of N.

2. Monotonicity: x ≥ y implies F(x) ≥ F(y) for all x, y ∈ Rn.

3. Idempotency: F(x, . . . , x) = x for all x ∈ R.

4. Compensativeness (or internality): min(x) ≤ F(x) ≤ max(x) for all x ∈ Rn.

5. Homogeneity of degree 1 (or ratio scale invariance): F(rx) = rF(x) for all x ∈ Rn and for all r > 0.

SUOWA operators are defined by means of semi-uninorms (see Liu [18]), which are monotonic functions with a

neutral element in the interval [0, 1]. They were suggested as a generalization of uninorms by dispensing with the sym-

metry and associativity properties. In turn, uninorms were introduced by Yager and Rybalov [42] as a generalization

of t-norms and t-conorms.

Definition 1. Let U : [0, 1]2 −→ [0, 1].

1. U is a semi-uninorm if it is monotonic and possesses a neutral element e ∈ [0, 1]
(
U(e, x) = U(x, e) = x for all

x ∈ [0, 1]
)
.

2. U is a uninorm if it is a symmetric and associative
(
U(x,U(y, z)) = U(U(x, y), z) for all x, y, z ∈ [0, 1]

)
semi-

uninorm.

We denote by Ue (respectively, Ue
i ) the set of semi-uninorms (respectively, idempotent semi-uninorms) with

neutral element e ∈ [0, 1]. The structure of semi-uninorms and idempotent semi-uninorms has been studied by Liu

[18] (see a graphic representation in Llamazares [21]).
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The semi-uninorms employed in the definition of SUOWA operators have to meet two requirements: the neutral

element has to be 1/n and they have to belong to the following subset (see Llamazares [21]):

Ũ1/n =
{
U ∈ U1/n | U(1/k, 1/k) ≤ 1/k for all k ∈ N

}
.

Obviously U1/n
i ⊆ Ũ1/n. Moreover, it is easy to check that the smallest and the largest elements of Ũ1/n are,

respectively, the following semi-uninorms:

U⊥(x, y) =


max(x, y) if (x, y) ∈ [1/n, 1]2,

0 if (x, y) ∈ [0, 1/n)2,

min(x, y) otherwise,

and

U>(x, y) =



1/k if (x, y) ∈ Ik\Ik+1,where

Ik =
(
1/n, 1/k

]2 (
k ∈ N\{n}

)
,

min(x, y) if (x, y) ∈ [0, 1/n]2,

max(x, y) otherwise.

In the case of idempotent semi-uninorms, the smallest and the largest elements of U1/n
i are, respectively, the

following uninorms (which were given by Yager and Rybalov [42]):

Umin(x, y) =


max(x, y) if (x, y) ∈ [1/n, 1]2,

min(x, y) otherwise,

and

Umax(x, y) =


min(x, y) if (x, y) ∈ [0, 1/n]2,

max(x, y) otherwise.

In addition to the previous ones, several procedures to construct semi-uninorms have been introduced by Lla-

mazares [25]. One of them, which is based on ordinal sums of aggregation operators, allows us to get continuous

semi-uninorms. Two of the most relevant continuous semi-uninorms obtained are the following:

UTL (x, y) =


max(x, y) if (x, y) ∈ [1/n, 1]2,

max(x + y − 1/n, 0) otherwise,

and

UP̃(x, y) =


max(x, y) if (x, y) ∈ [1/n, 1]2,

nxy otherwise.
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Notice that by the continuity of UTL and UP̃ these semi-uninorms can be also written as2

UTL (x, y) =


max(x, y) if (x, y) ∈ (1/n, 1]2,

max(x + y − 1/n, 0) otherwise,

and

UP̃(x, y) =


max(x, y) if (x, y) ∈ (1/n, 1]2,

nxy otherwise.
(1)

The plots of all these semi-uninorms for the case n = 4 can be found in Llamazares [23].

3. Choquet integral

The Choquet integral was introduced in 1953 by Choquet [4], and due to its simplicity and versatility, it has had

since then a wide variety of applications (see, for instance, Grabisch et al. [16] and Grabisch and Labreuche [14]).

Choquet integral is based on the concept of capacity (see Choquet [4]), which was also introduced as fuzzy measure

by Sugeno [34]. The notion of capacity resembles that of probability measure but in the definition of the former

additivity is replaced by monotonicity. And a game is a generalization of a capacity where the monotonicity is ruled

out.

Definition 2.

1. A game υ on N is a set function, υ : 2N −→ R satisfying υ(∅) = 0.

2. A capacity (or fuzzy measure) µ on N is a game on N satisfying µ(A) ≤ µ(B) whenever A ⊆ B. In particular, it

follows that µ : 2N −→ [0,∞). A capacity µ is said to be normalized if µ(N) = 1.

Given a game, the monotonic cover is the smallest capacity that contains it (see Maschler and Peleg [29] and

Maschler et al. [30]).

Definition 3. Let υ be a game on N. The monotonic cover of υ is the set function υ̂ given by

υ̂(A) = max
B⊆A

υ(B).

The monotonic cover of a game satisfies the properties given next.

Remark 1. Let υ be a game on N. Then:

1. υ̂ is a capacity.

2. If υ is a capacity, then υ̂ = υ.

2These expressions of UTL and UP̃ will be used for obtaining the results shown in Subsections 5.2 and 5.3.
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3. If υ(A) ≤ 1 for all A ⊆ N and υ(N) = 1, then υ̂ is a normalized capacity.

Although the Choquet integral is usually defined as a functional (see, for example, Choquet [4], Murofushi and

Sugeno [31] and Denneberg [5]), in the discrete case, and once the capacity has been chosen, it can be seen as an

aggregation function over Rn (see, for instance, Grabisch et al. [15, p. 181]). This is the approach taken in this paper.

Moreover, by analogy with the original definition of OWA operators, we represent it by using nonincreasing sequences

of values (see Torra [36] and Llamazares [21]).

Definition 4. Let µ be a capacity on N. The Choquet integral with respect to µ is the function Cµ : Rn −→ R given

by

Cµ(x) =

n∑
i=1

µ(A[i])
(
x[i] − x[i+1]

)
, (2)

where A[i] = {[1], . . . , [i]}, and we use the convention x[n+1] = 0.

It is immediate to express the Choquet integral as follows:

Cµ(x) =

n∑
i=1

(
µ(A[i]) − µ(A[i−1])

)
x[i], (3)

where the weights of the components x[i] are explicitly shown (we use the convention A[0] = ∅). It is also worth

noting that the Choquet integral has very interesting properties (see, for instance, Grabisch et al. [15, pp. 192–196]).

Remark 2. Let µ be a capacity on N. Then Cµ is continuous, monotonic and homogeneous of degree 1. Moreover, it

is idempotent and compensative when µ is a normalized capacity.

Remark 3. Let µ1 and µ2 be two capacities on N. Then µ1 ≤ µ2 if and only if Cµ1 ≤ Cµ2 .

In the following subsections we recollect the most important particular cases of Choquet integral: weighted means,

OWA operators and SUOWA operators.

3.1. Weighted means and OWA operators

Weighted means and OWA operators (introduced by Yager [39]) are both defined in terms of weight distributions

that add up to 1.

Definition 5. A vector q ∈ [0, 1]n is a weighting vector if
∑n

i=1 qi = 1.

Definition 6. Let p be a weighting vector. The weighted mean associated with p is the function Mp : Rn −→ R given

by

Mp(x) =

n∑
i=1

pixi.

Definition 7. Let w be a weighting vector. The OWA operator associated with w is the function Ow : Rn −→ R given

by

Ow(x) =

n∑
i=1

wix[i].
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It is well known that weighted means and OWA operators are Choquet integrals with respect to normalized capac-

ities (see, for instance, Fodor et al. [8], Grabisch [9, 10] or Llamazares [21]).

Remark 4.

1. If p is a weighting vector, then the weighted mean Mp is the Choquet integral with respect to the normalized

capacity µp(A) =
∑

i∈A pi.

2. If w is a weighting vector, then the OWA operator Ow is the Choquet integral with respect to the normalized

capacity µ|w|(A) =
∑|A|

i=1 wi.

So, according to Remark 2, weighted means and OWA operators are continuous, monotonic, idempotent, com-

pensative and homogeneous of degree 1. Moreover, OWA operators are also symmetric given that the values of the

variables are previously ordered in a nonincreasing way.

3.2. SUOWA operators

SUOWA operators were introduced by Llamazares [21] as a useful tool for problems where both the importance of

values and the importance of criteria have to be taken into account. They are a particular case of the Choquet integral

where their capacities are the monotonic cover of certain games, which are constructed through semi-uninorms with

neutral element 1/n and the values of the capacities associated with the weighted means and the OWA operators.

Specifically, the definition of these games is given next.

Definition 8. Let p and w be two weighting vectors and let U ∈ Ũ1/n.

1. The game associated with p, w and U is the set function υU
p,w : 2N −→ R defined by

υU
p,w(A) = |A|U

(
µp(A)
|A|

,
µ|w|(A)
|A|

)
if A , ∅, and υU

p,w(∅) = 0.

2. υ̂U
p,w, the monotonic cover of the game υU

p,w, will be called the capacity associated with p, w and U.

Notice that υU
p,w(A) ≤ 1 for all A ⊆ N and υU

p,w(N) = 1. Therefore, according to the third item of Remark 1, υ̂U
p,w is

always a normalized capacity.

Definition 9. Let p and w be two weighting vectors and let U ∈ Ũ1/n. The SUOWA operator associated with p,w

and U is the function S U
p,w : Rn −→ R given by

S U
p,w(x) =

n∑
i=1

six[i],

where si = υ̂U
p,w(A[i])− υ̂U

p,w(A[i−1]) for all i ∈ N, υ̂U
p,w is the capacity associated with p,w and U, and A[i] =

{
[1], . . . , [i]

}
(with the convention that A[0] = ∅).
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According to expression (2), the SUOWA operator associated with p,w and U can also be written as

S U
p,w(x) =

n∑
i=1

υ̂U
p,w(A[i])

(
x[i] − x[i+1]

)
. (4)

By the choice of υ̂U
p,w we have S U

p,η = Mp and S U
η,w = Ow for any U ∈ Ũ1/n. Moreover, by Remark 2 and

given that υ̂U
p,w is a normalized capacity, SUOWA operators are continuous, monotonic, idempotent, compensative and

homogeneous of degree 1.

It is worthy of note that SUOWA operators preserve the order of the corresponding semi-uninorms. As an imme-

diate consequence of this fact, we know the bounds of SUOWA operators when we consider generic semi-uninorms

or idempotent semi-uninorms.

Proposition 1 (Llamazares [21]). Let p and w be two weighting vectors. Then the following holds:

1. If U1,U2 ∈ Ũ
1/n and U1 ≤ U2, then S U1

p,w ≤ S U2
p,w.

2. If U ∈ Ũ1/n, then S U⊥
p,w ≤ S U

p,w ≤ S U>
p,w.

3. If U ∈ U1/n
i , then S Umin

p,w ≤ S U
p,w ≤ S Umax

p,w .

4. Indices for Choquet integrals

Aggregation operators are often used to calculate the overall evaluation of an alternative with respect to several

criteria. So, it seems very interesting to know the behavior of the operator employed for that task. For this purpose,

several indices have been suggested in the literature to provide information on various characteristics of operators:

orness and andness degrees, importance and interaction indices, tolerance indices, dispersion indices, etc. In this

section we focus on the following indices: orness degree, Shapley value, and veto and favor indices; making special

emphasis on their representation in the case of Choquet integrals.

The notion of orness allows us to measure the degree to which the aggregation is like an or operation (i.e. dis-

junctive), and it can be seen as a measure of global tolerance of criteria. This concept was proposed by Dujmović [7]

in the analysis of the root-mean-powers and, in an independent way, by Yager [39] in the study of OWA operators.

Afterwards, and by employing the concept of average value, Marichal [26] suggested an orness measure for Choquet

integrals.

Definition 10. Let µ be a normalized capacity on N.

1. The average value of Cµ is defined by

E(Cµ) =

∫
[0,1]n
Cµ(x) dx.

2. The orness degree of Cµ is defined by

orness(Cµ) =
E(Cµ) − E(min)

E(max) − E(min)
.
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The orness of Cµ can be expressed in terms of µ.

Remark 5 (Marichal [27]). Let µ be a normalized capacity on N. Then

orness(Cµ) =
1

n − 1

n−1∑
t=1

1(
n
t

) ∑
T⊆N
|T |=t

µ(T ).

It is worthy of note that the degree of orness preserves the usual order between Choquet integrals (see Grabisch

et al. [15, p. 354]).

Remark 6. Let µ1 and µ2 be two normalized capacities on N. If Cµ1 ≤ Cµ2 (which, by Remark 3, is equivalent to

µ1 ≤ µ2), then orness(Cµ1 ) ≤ orness(Cµ2 ).

The Shapley value was introduced by Shapley [33] in the context of cooperative games as a solution to the problem

of distributing the amount µ(N) among the players. It can be interpreted as a kind of average value of the contribution

of element j alone in all coalitions.

Definition 11. Let j ∈ N and let µ be a normalized capacity on N. The Shapley value of criterion j with respect to µ

is defined by

φ(µ, j) =
∑

T⊆N\{ j}

(n − t − 1)!t!
n!

(
µ(T ∪ { j}) − µ(T )

)
.

Remark 7 (Marichal [28]). It is easy to check that the Shapley value of criterion j with respect to a normalized

capacity µ can be written as

φ(µ, j) =
1
n

n−1∑
t=0

1(
n−1

t

) ∑
T⊆N\{ j}
|T |=t

(
µ(T ∪ { j}) − µ(T )

)
.

The concepts of veto and favor were introduced in the context of social choice functions by Dubois and Koning [6]

(where “favor” was called “dictator”) and, afterwards, by Grabisch [12] in the field of multicriteria decision making.

Definition 12. Let j ∈ N and let µ be a normalized capacity on N.

1. j is a veto for Cµ if Cµ(x) ≤ x j for any x ∈ Rn.

2. j is a favor for Cµ if Cµ(x) ≥ x j for any x ∈ Rn.

So, when criterion j is a veto and the score of j is small, then the global score will be small too. Analogously, if

criterion j is a favor and the score of j is large, then the global score will be large too.

Since veto and favor criteria are infrequent in practice, it seems relevant to define indices measuring the degree

with which a criterion behaves like a veto or a favor.
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Definition 13 (Marichal [27]). Let j ∈ N and let µ be a normalized capacity on N. The veto and favor indices of

criterion j with respect to µ are defined by

veto(Cµ, j) = 1 −
1

n − 1

∑
T⊆N\{ j}

1(
n−1

t

)µ(T ),

favor(Cµ, j) =
1

n − 1

∑
T⊆N\{ j}

1(
n−1

t

)µ(T ∪ { j}) −
1

n − 1
.

The veto index, veto(Cµ, j), is more or less the degree to which the decision maker demands that criterion j is

satisfied. Analogously, the favor index, favor(Cµ, j), is the degree to which the decision maker considers that a good

score along criterion j is sufficient to be satisfied.

Remark 8 (Marichal [28]). It is easy to check that the veto and favor indices of criterion j with respect to a normalized

capacity µ can be written as

veto(Cµ, j) = 1 −
1

n − 1

n−1∑
t=1

1(
n−1

t

) ∑
T⊆N\{ j}
|T |=t

µ(T ), 3

favor(Cµ, j) =
1

n − 1

n−1∑
t=0

1(
n−1

t

) ∑
T⊆N\{ j}
|T |=t

µ(T ∪ { j}) −
1

n − 1
.

Likewise, it is also possible to establish a relationship among veto, favor and Shapley value of a criterion.

Remark 9 (Marichal [27]). Let j ∈ N and let µ be a normalized capacity on N. Then,

veto(Cµ, j) + favor(Cµ, j) = 1 +
nφ(µ, j) − 1

n − 1
.

5. Indices for SUOWA operators

The indices that we have seen in the previous section provide a useful information about Choquet integrals. How-

ever, closed-form expressions of these indices are only known for few operators (see, for instance, Marichal [27] and

Grabisch et al. [15, pp. 353, 364, 375]). In Table 1 we gather the orness, the Shapley values, and the veto and favor

indices for weighted means and OWA operators.4

The aim of this section is to show some interesting results about these indices in the case of SUOWA operators.

For instance, as an immediate consequence of Proposition 1 and Remark 6 we get the following outcomes about the

orness.

3Notice that the summation begins in t = 1 because when t = 0 we have T = ∅ and, therefore, µ(T ) = 0.
4Note that in this paper we consider the original definition of OWA operators given by Yager [39], where the components of x are ordered in a

nonincreasing way. For this reason, the orness, and the veto and favor indices of OWA operators do not match with those shown by Marichal [27]

and Grabisch et al. [15], where the components are ordered in a nondecreasing way.
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Table 1: Some indices for weighted means and OWA operators.

Indice Mp Ow

orness(Cµ) 1
2

1
n−1

∑n
i=1(n − i)wi

φ(µ, j) p j
1
n

veto(Cµ, j) 1
2 +

np j−1
2(n−1)

1
n−1

∑n
i=1(i − 1)wi

favor(Cµ, j) 1
2 +

np j−1
2(n−1)

1
n−1

∑n
i=1(n − i)wi

Remark 10. Let p and w be two weighting vectors. Then the following holds:

1. If U1,U2 ∈ Ũ
1/n and U1 ≤ U2, then

orness
(
S U1

p,w
)
≤ orness

(
S U2

p,w
)
.

2. If U ∈ Ũ1/n, then

orness
(
S U⊥

p,w
)
≤ orness

(
S U

p,w
)
≤ orness

(
S U>

p,w
)
.

3. If U ∈ U1/n
i , then

orness
(
S Umin

p,w
)
≤ orness

(
S U

p,w
)
≤ orness

(
S Umax

p,w
)
.

In Propositions 3 and 4 we show some useful properties of the indices when we consider convex combination of

semi-uninorms and the games associated with the semi-uninorms are normalized capacities. Then, the orness, the

Shapley values, and the veto and favor indices of the SUOWA operator associated with the constructed semi-uninorm

can be straightforward obtained by using the same convex combination of the indices of the SUOWA operators asso-

ciated with the initial semi-uninorms. These outcomes are obtained from the following result.5

Proposition 2 (Llamazares [25]). Let p and w be two weighting vectors, let U1, . . . ,Um ∈ Ũ
1/n such that υU1

p,w, . . . , υ
Um
p,w

be normalized capacities, let λ be a weighting vector, and let U =
∑m

i=1 λiUi. Then, for any subset T of N,

υU
p,w(T ) =

m∑
i=1

λiυ
Ui
p,w(T ),

and υU
p,w is a normalized capacity.

Proposition 3. Let p and w be two weighting vectors, let U1, . . . ,Um ∈ Ũ
1/n such that υU1

p,w, . . . , υ
Um
p,w be normalized

capacities, let λ be a weighting vector, and let U =
∑m

i=1 λiUi. Then,

orness
(
S U

p,w

)
=

m∑
i=1

λi orness
(
S Ui

p,w

)
.

5Notice that a similar result to that of Proposition 3 was given without proof by Llamazares [22] for the case of two semi-uninorms.
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Proposition 4. Let p and w be two weighting vectors, let U1, . . . ,Um ∈ Ũ
1/n such that υU1

p,w, . . . , υ
Um
p,w be normalized

capacities, let λ be a weighting vector, and let U =
∑m

i=1 λiUi. Then, for each j ∈ N,

φ
(
υU

p,w, j
)

=

m∑
i=1

λiφ
(
υUi

p,w, j
)
,

veto
(
S U

p,w, j
)

=

m∑
i=1

λi veto
(
S Ui

p,w, j
)
,

favor
(
S U

p,w, j
)

=

m∑
i=1

λi favor
(
S Ui

p,w, j
)
.

In the following subsections we give explicitly the orness, the Shapley values, and the veto and favor indices

for some particular cases of SUOWA operators. More specifically, we analyze the operators S Umin
p,w , S Umax

p,w , S
UTL
p,w , and

S UP̃
p,w for some specific cases of p and w. In the case of the weighting vector w, the usual condition that we demand

is
∑ j

i=1 wi ≤ j/n (or
∑ j

i=1 wi < j/n) for all j ∈ N. Notice that some useful weighting vectors satisfy the previous

conditions. For instance, those ones with nondecreasing weights satisfy the condition
∑ j

i=1 wi ≤ j/n.

Lemma 1 (Llamazares [25]). Let w be a weighting vector such that w1 ≤ w2 ≤ · · · ≤ wn. Then w = η or
∑ j

i=1 wi < j/n

for all j ∈ {1, . . . , n − 1}.

The following statements on the orness of OWA operators will be used later.

Proposition 5. Let w be a weighting vector.

1. If
∑ j

i=1 wi < j/n for all j ∈ N, then orness(Ow) < 0.5.

2. If
∑ j

i=1 wi ≤ j/n for all j ∈ N, then orness(Ow) ≤ 0.5.

3. If
∑ j

i=1 wi > j/n for all j ∈ N, then orness(Ow) > 0.5.

4. If
∑ j

i=1 wi ≥ j/n for all j ∈ N, then orness(Ow) ≥ 0.5.

5.1. The uninorms Umin and Umax

In the sequel we establish bounds for the orness of S Umin
p,w and S Umax

p,w . In the case of Umin, the following proposition,

where a bound for the SUOWA operator S Umin
p,w is given, will be useful.

Proposition 6 (Llamazares [25]). Let w be a weighting vector such that
∑ j

i=1 wi < j/n for all j ∈ N. Then, for all

weighting vector p, we have

1. υUmin
p,w is a normalized capacity on N, and for any T ⊆ N such that |T | = t ≥ 1,

υUmin
p,w (T ) = min

(∑
i∈T

pi,

t∑
i=1

wi

)
.

2. For all x ∈ Rn, S Umin
p,w (x) ≤ min

(
Mp(x),Ow(x)

)
, and, consequently, S Umin

p,w ≤ Ow.
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As an immediate consequence of the second item of Proposition 6, Remark 6 and the first item of Proposition 5,

we get the following result.

Corollary 1. Let w be a weighting vector such that
∑ j

i=1 wi < j/n for all j ∈ N. Then, for all weighting vector p, we

have

orness
(
S Umin

p,w
)
≤ orness(Ow) < 0.5.

A similar result can be found for the uninorm Umax and weighting vectors w such that
∑ j

i=1 wi > j/n for all j ∈ N.

Corollary 2. Let w be a weighting vector such that
∑ j

i=1 wi > j/n for all j ∈ N. Then, for all weighting vector p, we

have

orness
(
S Umax

p,w
)
≥ orness(Ow) > 0.5.

5.2. The semi-uninorm UTL

We begin by showing the capacity associated with the semi-uninorm UTL when the weighting vectors p and w

fulfill some additional properties.

Proposition 7 (Llamazares [24]). Let p and w be two weighting vectors such that
∑ j

i=1 wi ≤ j/n for all j ∈ N and

mini∈N pi + mini∈N wi ≥ 1/n. Then, for any T ⊆ N such that |T | = t ≥ 1,

υ
UTL
p,w (T ) =

∑
i∈T

pi +

t∑
i=1

wi −
t
n
,

and υ
UTL
p,w is a normalized capacity on N.

The following propositions allow us to know the orness, the Shapley values and the veto and favor indices when

we consider the semi-uninorm UTL and the weighting vectors p and w satisfy the required properties.

Proposition 8. Let p and w be two weighting vectors such that
∑ j

i=1 wi ≤ j/n for all j ∈ N and mini∈N pi +mini∈N wi ≥

1/n. Then,

orness
(
S

UTL
p,w

)
= orness(Ow) ≤ 0.5.

Proposition 9. Let p and w be two weighting vectors such that
∑ j

i=1 wi ≤ j/n for all j ∈ N and mini∈N pi +mini∈N wi ≥

1/n. Then, for each j ∈ N,

φ
(
υ

UTL
p,w , j

)
= p j,

veto
(
S

UTL
p,w , j

)
=

np j − 1
2(n − 1)

+ 1 − orness
(
S

UTL
p,w

)
,

favor
(
S

UTL
p,w , j

)
=

np j − 1
2(n − 1)

+ orness
(
S

UTL
p,w

)
.

Notice that:

1. The orness of S
UTL
p,w coincides with that of Ow.
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2. The Shapley values of criterion j with respect to the capacities υ
UTL
p,w and µp are equal (see Table 1).

3. The expressions given for the veto and favor indices of criterion j with respect to the capacity υ
UTL
p,w are also

valid when we consider the capacity µp (see Table 1).

5.3. The semi-uninorm UP̃

We first show the capacity associated with the semi-uninorm UP̃ when the weighting vectors p and w fulfill some

additional properties.

Remark 11. Let w be a weighting vector such that
∑ j

i=1 wi ≤ j/n for all j ∈ N. Since
(∑ j

i=1 wi

)
/ j ≤ 1/n for all

j ∈ N, then, by expression (1), for any weighting vector p and any T ⊆ N such that |T | = t ≥ 1, we have

υ
UP̃
p,w(T ) = tUP̃


∑
i∈T

pi

t
,

t∑
i=1

wi

t

 =
n
t

∑
i∈T

pi

  t∑
i=1

wi

 .
Notice that, in general, the game υ

UP̃
p,w is not a capacity. For instance, consider the weighting vectors p =

(0.4, 0.2, 0.4) and w = (1/3, 0, 2/3). Then,

υ
UP̃
p,w({1}) = 0.4 > 0.3 = υ

UP̃
p,w({1, 2}).

However, we can guarantee that the game υUP̃
p,w is a capacity when the weighting vector w is a nondecreasing

sequence of weights.

Proposition 10. Let w be a weighting vector such that w1 ≤ w2 ≤ · · · ≤ wn. Then, for any weighting vector p, υUP̃
p,w is

a normalized capacity on N.

In the following propositions we show that for the studied weighting vectors, the orness of S UP̃
p,w coincides with

that of Ow, and we also give closed-form expressions for the Shapley values, and the veto and favor indices.

Proposition 11. Let w be a weighting vector such that
∑ j

i=1 wi ≤ j/n for all j ∈ N. If p is a weighting vector such

that υUP̃
p,w is a normalized capacity on N, then:

orness
(
S UP̃

p,w
)

= orness(Ow) ≤ 0.5.

Proposition 12. Let w be a weighting vector such that
∑ j

i=1 wi ≤ j/n for all j ∈ N. If p is a weighting vector such

that υUP̃
p,w is a normalized capacity on N, then, for each j ∈ N,

φ
(
υ

UP̃
p,w, j

)
=

1
n − 1

1 − p j + (np j − 1)
n∑

i=1

 n∑
t=i

1
t

 wi

 ,
veto

(
S UP̃

p,w, j
)

= 1 −
n

n − 1
(1 − p j) orness

(
S UP̃

p,w
)
,

favor
(
S UP̃

p,w, j
)

= 1 − veto
(
S UP̃

p,w, j
)

+
n

(n − 1)2

·

1 − p j + (np j − 1)
n∑

i=1

 n∑
t=i

1
t

 wi

 − 1
n − 1

.
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We finish this section by collecting in Table 2 the orness, the Shapley values, and the veto and favor indices for

the SUOWA operators S
UTL
p,w and S UP̃

p,w. Notice that these values are valid when the hypothesis of Propositions 8, 9, 11,

and 12 are fulfilled.

Table 2: Some indices for S
UTL
p,w and S

UP̃
p,w.

Indice S
UTL
p,w S UP̃

p,w

orness(Cµ) 1
n−1

∑n
i=1(n − i)wi

1
n−1

∑n
i=1(n − i)wi

φ(µ, j) p j
1

n−1

(
1 − p j + (np j − 1)

∑n
i=1

(∑n
t=i

1
t

)
wi

)
veto(Cµ, j) np j−1

2(n−1) + 1 − orness
(
S

UTL
p,w

)
1 − n

n−1 (1 − p j) orness
(
S UP̃

p,w
)

favor(Cµ, j) np j−1
2(n−1) + orness

(
S

UTL
p,w

)
1 − veto

(
S UP̃

p,w, j
)

+ 1
n−1

(
nφ

(
υ

UP̃
p,w, j

)
− 1

)

6. Discussion

In this section we are going to show the usefulness of SUOWA operators in a classical example given by Grabisch

[9] (see also Grabisch [11] and Marichal [27]). Consider the problem of evaluating students in a high school with

respect to three subjects: mathematics (M), physics (P), and literature (L). Usually, this is done by a simple weighted

mean, whose weights are the coefficients of importance of the different subjects. Suppose that the school is more

scientifically than literary oriented, so that weights could be, for example, proportional to 3, 3, and 2, respectively

(that is, p = (3/8, 3/8, 2/8) = (0.375, 0.375, 0.25)). Then the global evaluation given by the weighted mean Mp to

three students A, B, and C are collected in the fifth column of Table 3 (marks are given on a scale from 0 to 20).

Table 3: Global evaluation by using Mp and Cµ.

Student M P L Mp Cµ

A 18 16 10 15.25 13.9

B 10 12 18 12.75 13.6

C 14 15 15 14.625 14.9

If the school wants to favor well equilibrated students without weak points then student C should be considered

better than student A, who has a severe weakness in literature. However, as it has been pointed out by Marichal [27],

no weight vector p = (p1, p2, p3) satisfying p1 = p2 > p3 is able to favor student C.

To solve this problem, Grabisch [9] introduces the Choquet integral for aggregating the marks. A simple calcula-
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tion allows us to see that the order C � A is obtained when the normalized capacity µ satisfies

µ({P,L}) > 2 µ({M}) + 6 µ({M,P}) − 4.

The normalized capacity considered by Grabisch [9] is defined by:

µ({M}) = 0.45, µ({P}) = 0.45, µ({L}) = 0.3,

µ({M,P}) = 0.5, µ({M,L}) = 0.9, µ({P,L}) = 0.9.

According to Grabisch [11], this capacity allows to keep unchanged the initial ratio of weights (3, 3, 2) (given that

0.45/0.3 = 3/2), and avoids some overlap effect between mathematics and physics (since, usually, students good at

mathematics are also good at physics). By using this capacity, the score obtained by student C is larger than that

obtained by student A (the global evaluation given by Cµ to the three students A, B, and C is collected in the sixth

column of Table 3).

Although this capacity allows us to get the desired student, it does not satisfy some of the initial purposes:

1. The orness of Cµ is 3.5/6 = 0.583 (see Marichal [27]). However, if the school wants to favor well equili-

brated students, the students’ score should be calculated through an operator closer to the minimum than to the

maximum; that is, its orness should be smaller than 0.5.

2. The Shapley value of L is larger than the Shapley value of M and P: φ(µ,L) = 0.416, and φ(µ,M) = φ(µ,P) =

0.2916 (see Grabisch [11] and Marichal [27]). Given that the Shapley value reflects the overall importance of

each subject, the Shapley value of M and P should be larger than that of L. In fact, it seems that the appropriate

Shapley values of M, P and L should be 0.375, 0.375, and 0.25, respectively (notice that these ones are the

Shapley values of the capacity associated with the weighted mean Mp when p = (0.375, 0.375, 0.25)).

In order to favor well equilibrated students, one possibility would be to use the minimum or an OWA operator

close to it; that is, whose orness be smaller than 0.5. But, in this case, the Shapley value of M, P, and L is equal to 1/3

(see Table 1) and the initial purpose of giving more important to M and P than L is not satisfied.

An alternative way of tackling this problem is by using SUOWA operators. In this way we can combine the fact

that the school is more scientifically than literary oriented (through the weighting vector p) with the idea of favoring

well equilibrated students (by means of the weighting vector w). So, given that the initial ratio of weights is (3, 3, 2),

we can consider p = (0.375, 0.375, 0.25). On the other hand, given that the school wants to favor well equilibrated

students, we can take, for instance, w = (0.2, 0.3, 0.5).

In Table 4 we show the capacities associated with the analyzed semi-uninorms: Umin, Umax, UTL and UP̃. It is

worth noting that the games considered in this example, υUmin
p,w , υUmax

p,w , υ
UTL
p,w , and υUP̃

p,w, are in fact capacities.

Notice also that the capacity υUP̃
p,w keeps the initial ratio (3, 3, 2) among the values υUP̃

p,w({M}), υUP̃
p,w({P}) and υUP̃

p,w({L})

(given that 0.225/0.15 = 3/2).
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Table 4: Capacities associated to Umin, Umax, UTL and UP̃.

Set υUmin
p,w υUmax

p,w υ
UTL
p,w υ

UP̃
p,w

{M} 0.2 0.375 0.2416 0.225

{P} 0.2 0.375 0.2416 0.225

{L} 0.2 0.2 0.116 0.15

{M,P} 0.5 0.75 0.583 0.5625

{M,L} 0.5 0.5 0.4583 0.46875

{P,L} 0.5 0.5 0.4583 0.46875

{M,P,L} 1 1 1 1

Table 5: Global evaluation by using S Umin
p,w , S Umax

p,w , S
UTL
p,w , and S

UP̃
p,w.

Student S Umin
p,w S Umax

p,w S
UTL
p,w S UP̃

p,w

A 13.4 15.25 13.983 13.825

B 12.2 12.2 11.616 11.8375

C 14.5 14.5 14.4583 14.46875

The global evaluation given by the SUOWA operators S Umin
p,w , S Umax

p,w , S
UTL
p,w , and S UP̃

p,w to the students A, B and C is

collected in Table 5. Note that we get the desired order C � A in all cases except when the operator is S Umax
p,w .

In relation to the orness of the analyzed operators, in the four cases is less than 0.5. In fact, we get

orness
(
S Umin

p,w

)
= orness

(
S

UTL
p,w

)
= orness

(
S UP̃

p,w
)

= 0.35,

orness
(
S Umax

p,w

)
= 0.45.

Note that the orness of operators whose value is 0.35 can be easily obtained taking into account that orness(Ow) =

0.35, the fifth item of Proposition 8 in Llamazares [25], and Propositions 8 and 11 in this paper.

With respect to the Shapley values, the condition

φ
(
υU

p,w,M
)

= φ
(
υU

p,w,P
)
≥ φ

(
υU

p,w,L
)

is obtained in the four cases analyzed in this paper (the Shapley values, and the veto and favor indices associated with

υUmin
p,w , υUmax

p,w , υ
UTL
p,w , and υUP̃

p,w are collected in Tables 6–9).
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Table 6: Shapley values, and veto and favor indices associated to υUmin
p,w .

M P L

φ
(
υUmin

p,w , j
)

0.3 0.3 0.3

veto
(
S Umin

p,w , j
)

0.65 0.65 0.65

favor
(
S Umin

p,w , j
)

0.35 0.35 0.35

Table 7: Shapley values, and veto and favor indices associated to υUmax
p,w .

M P L

φ
(
υUmax

p,w , j
)

0.40416 0.40416 0.1916

veto
(
S Umax

p,w , j
)

0.60625 0.60625 0.4375

favor
(
S Umax

p,w , j
)

0.5 0.5 0.35

Table 8: Shapley values, and veto and favor indices associated to υ
UTL
p,w .

M P L

φ
(
υ

UTL
p,w , j

)
0.375 0.375 0.25

veto
(
S

UTL
p,w , j

)
0.68125 0.68125 0.5875

favor
(
S

UTL
p,w , j

)
0.38125 0.38125 0.2875

Notice that in the case υ
UTL
p,w the Shapley values are φ

(
υU

p,w,M
)

= φ
(
υU

p,w,P
)

= 0.375 and φ
(
υU

p,w,L
)

= 0.25, which

seem the most suitable values as we have said. Moreover, given that orness
(
S

UTL
p,w

)
< 0.5 and this operator provides

the order C � A, it seems that S
UTL
p,w is a good choice for aggregating the marks of the students.

To finish this section, we are going to show how to obtain a SUOWA operator with a specific degree of orness (or

a specific Shapley value of a criterion). Notice that, by the third item of Remark 10, for any idempotent semi-uninorm

U we get

0.35 ≤ orness
(
S U

p,w
)
≤ 0.45.

Suppose now that we seek an idempotent semi-uninorm U with orness
(
S U

p,w
)

= 0.4. By Proposition 3, and given
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Table 9: Shapley values, and veto and favor indices associated to υ
UP̃
p,w.

M P L

φ
(
υ

UP̃
p,w, j

)
0.3614583 0.3614583 0.277083

veto
(
S UP̃

p,w, j
)

0.671875 0.671875 0.60625

favor
(
S UP̃

p,w, j
)

0.3703125 0.3703125 0.309375

that 0.4 = 0.5 · 0.35 + 0.5 · 0.45, it is sufficient to consider Uam = 0.5 Umin + 0.5 Umax, that is:

Uam(x, y) =


min(x, y) if (x, y) ∈

[
0, 0.3

]2
,

max(x, y) if (x, y) ∈
[
0.3, 1

]2
\
{(

0.3, 0.3
)}
,

(x + y)/2 otherwise.

Analogously, suppose we seek an idempotent semi-uninorm U with φ
(
υU

p,w,L
)

= 0.25. Given that φ
(
υUmin

p,w ,L
)

= 0.3

and φ
(
υUmax

p,w ,L
)

= 0.1916, and 0.25 = 7/17 ·0.3+10/17 ·0.1916, then, by Proposition 4, the idempotent semi-uninorm

U = 7/17 Umin + 10/17 Umax fulfills the requirement.

7. Concluding remarks

The application of the discrete Choquet integral in multicriteria decision making has been proposed by several

authors throughout the last years (see, for instance, Grabisch [9, 11], Grabisch and Roubens [17], Grabisch and

Labreuche [14], and the references therein). This is due mainly to the discrete Choquet integral allows to take into

account the interaction that often exists among the criteria (the classical example proposed by Grabisch [9] and

reproduced in Section 6 highlights this fact). However, the use of the discrete Choquet integral requires the initial

choice of a capacity, and this choice is not always obvious (see Grabisch et al. [13]). In some contexts (for instance,

in the example of Section 6) it is possible to model the problem using a “mixture” of weighted means and OWA

operators: the weighted mean type aggregation allows to take into account the importance of each criterion whereas

the OWA type aggregation allows to reflect the attitudinal character of the decision maker in the decision process.

Knowing the behavior of functions is essential for choosing an appropriate operator, and several indices have been

suggested in the literature for this purpose. Among them, the orness degree and the Shapley values are crucial to know

the degree to which the aggregation is disjunctive and the global importance of each criterion. Nevertheless, closed-

form expressions of these indices are only know for few operators (basically, weighted means and OWA operators).

In this paper we have provided closed-form expressions of the orness degree, the Shapley values, and the veto and

favor indices for some specific cases of SUOWA operators, which allow us to deal with decision problems where both
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weighted mean and OWA type aggregations are necessary. A natural line of research is to extend the results obtained

in Section 5 to other SUOWA operators and/or indices proposed in the literature.
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Appendix A. Proofs

Proof of Proposition 3. According to Remark 5 and Proposition 2, we have

orness
(
S U

p,w

)
=

1
n − 1

n−1∑
t=1

1(
n
t

) ∑
T⊆N
|T |=t

 m∑
i=1

λiυ
Ui
p,w(T )


=

m∑
i=1

λi

 1
n − 1

n−1∑
t=1

1(
n
t

) ∑
T⊆N
|T |=t

υUi
p,w(T )


=

m∑
i=1

λi orness
(
S Ui

p,w

)
.

Proof of Proposition 4. The proofs are similar to that of Proposition 3 (taking into account that
∑m

i=1 λi = 1) and,

therefore, they are omitted here.

Proof of Proposition 5. We only prove the first statement, since the proofs of the remaining statements are similar.

Given a weighting vector w such that
∑ j

i=1 wi < j/n for all j ∈ N, we have

orness(Ow) =
1

n − 1

n−1∑
i=1

(n − i)wi =
1

n − 1

n−1∑
j=1

j∑
i=1

wi

<
1

n − 1

n−1∑
j=1

j
n

= 0.5.

In some of the remaining proofs we will use the following remarks.

Remark 12. Let p be a weighting vector. If t ≥ 1, then

∑
T⊆N
|T |=t

∑
i∈T

pi =

(
n − 1
t − 1

) n∑
i=1

pi =

(
n − 1
t − 1

)
=

(
n
t

)
t
n
,
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and, for any j ∈ N,

∑
T⊆N\{ j}
|T |=t

∑
i∈T

pi =

(
n − 2
t − 1

) n∑
i=1
i, j

pi =

(
n − 2
t − 1

)
(1 − p j)

=

(
n − 1

t

)
t(1 − p j)

n − 1
.

Remark 13. Let w be a weighting vector. Then

1
n − 1

n−1∑
t=1

t∑
i=1

wi =
1

n − 1

n−1∑
i=1

(n − i)wi = orness(Ow).

Before we give the proof of Proposition 8, we previously establish the following lemma.

Lemma 2. Let p and w be two weighting vectors such that
∑ j

i=1 wi ≤ j/n for all j ∈ N and mini∈N pi+mini∈N wi ≥ 1/n.

If t ≥ 1, then ∑
T⊆N
|T |=t

υ
UTL
p,w (T ) =

(
n
t

) t∑
i=1

wi,

and, for any j ∈ N,

∑
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υ
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(
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t
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−

1
n

)
t +

t∑
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 .
Proof. By Proposition 7 and Remark 12, we have∑

T⊆N
|T |=t

υ
UTL
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∑
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∑
i∈T

pi +
∑
T⊆N
|T |=t

t∑
i=1

wi −
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t
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(
n
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)
t
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+

(
n
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(
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wi,

and ∑
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υ
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Proof of Proposition 8. By Remarks 5 and 13, and Lemma 2 we have
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(
S

UTL
p,w

)
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1
n − 1
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1(
n
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) ∑
T⊆N
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υ
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p,w (T ) =

1
n − 1

n−1∑
t=1

t∑
i=1

wi

= orness(Ow) ≤ 0.5,

where the last inequality is obtained by the second item of Proposition 5.
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In some of the remaining proofs we will make use of the following remark.

Remark 14. Let p and w be two weighting vectors such that
∑ j

i=1 wi ≤ j/n for all j ∈ N and mini∈N pi + mini∈N wi ≥

1/n. By Proposition 7, for any j ∈ N and T ⊆ N \ { j} with |T | = t we get

υ
UTL
p,w (T ∪ { j}) − υ

UTL
p,w (T ) = p j + wt+1 −

1
n
.

Proof of Proposition 9. Let j ∈ N. By Remarks 7 and 14 we have
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UTL
p,w , j) =

1
n

n−1∑
t=0

1(
n−1

t

) ∑
T⊆N\{ j}
|T |=t

(
p j + wt+1 −

1
n

)

=
1
n

n−1∑
t=0

(
p j + wt+1 −

1
n

)
= p j.

By Remarks 8 and 13, Lemma 2, and Proposition 8 we have

veto
(
S

UTL
p,w , j

)
= 1 −

1
n − 1

n−1∑
t=1

1(
n−1

t

) ∑
T⊆N\{ j}
|T |=t

υ
UTL
p,w (T )

= 1 −
1

n − 1

(1 − p j

n − 1
−

1
n

) n−1∑
t=1

t +

n−1∑
t=1

t∑
i=1

wi


= 1 −

1 − np j

2(n − 1)
− orness(Ow)

=
np j − 1
2(n − 1)

+ 1 − orness
(
S

UTL
p,w

)
.

Lastly, by Remark 9 we get
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S

UTL
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= 1 − veto

(
S
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UTL
p,w , j) − 1
n − 1

= −
np j − 1
2(n − 1)

+ orness
(
S

UTL
p,w

)
+

np j − 1
n − 1

=
np j − 1
2(n − 1)

+ orness
(
S

UTL
p,w

)
.

Proof of Proposition 10. Let us see the monotonicity of υUP̃
p,w. For this, it is sufficient to show that υUP̃

p,w(T ) ≤ υUP̃
p,w

(
T ∪

{ j}
)

for any T  N such that |T | = t ≥ 1, and j ∈ N \ T . By Lemma 1 and Remark 11 we have
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which is true given that, by hypothesis, w1 ≤ w2 ≤ · · · ≤ wn and, consequently,
∑t

i=1 wi ≤ twt+1.
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The following lemma will be used in some of the remaining proofs.

Lemma 3. Let w be a weighting vector such that
∑ j

i=1 wi ≤ j/n for all j ∈ N. If t ≥ 1, then,
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Proof. By Remarks 11 and 12, we have
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Proof of Proposition 11. By Remarks 5 and 13, and Lemma 3 we have
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where the last inequality is obtained by the second item of Proposition 5.

Proof of Proposition 12. Given j ∈ N, by Remarks 8 and 13, Lemma 3, and Proposition 11 we have
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Likewise, taking into account Remarks 11 and 12, for any t ≥ 1 we get
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Notice that this expression is also valid when t = 0, given that by Remark 11,∑
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Lastly, by Remark 9 we have
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