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Abstract

Present measures of the degree of agreement in group decision-making using

hesitant fuzzy linguistic term sets allow consensus or agreement measurement

when decision makers’ assessments involve hesitance. Yet they do not discrim-

inate with different degrees of consensus among situations with discordant or

polarized assessments. The visualization of differences among groups for which

there is no agreement but different possible levels of disagreement is an impor-

tant issue in collective decision-making situations. In this paper, we propose

new collective and individual consensus measures that explicitly consider the

hesitance of the decision makers’ hesitance in giving an opinion and also the

gap between non-overlapping assessments, thus allowing the measurement of

the polarization present within the group’s opinions. In addition, an expert’s

profile is defined by considering the expert’s behavior in previous assessments

in group decision-making processes in terms of precision and dissension.
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nuria.agell@esade.edu (Núria Agell), monica.sanchez@upc.edu (Mónica Sánchez),
francisco.javier.ruiz@upc.edu (Francisco Javier Ruiz)

Preprint submitted to Information Fusion November 2, 2017

© 2018. This manuscript version is made available under the CC-BY- NC-ND 4.0
license http://creativecommons.org/licenses/by-nc- nd/4.0/



Introduction

Several studies have shown that, in general, people do not use purely quan-

titative models when expressing preferences and interests and are more com-

fortable using global or abstract forms, that can be understood as models based

on qualitative or linguistic information [1, 2, 3]. Analogously, in Group Decision-

Making (GDM) environments, the design of systems to facilitate decision-making

processes is considered suitable for describing alternatives to be made in terms

of non-numerical values and reflect the uncertainty inherent in human reason-

ing [4, 5, 6, 7, 8]. In the literature, this impreciseness has been modeled with

intervals or fuzzy values through a linguistic approach [9, 10, 11].

Rodŕıguez et al. in [9] introduced the Hesitant Fuzzy Linguistic Term Sets

(HFLTSs) over a well-ordered set of linguistic labels to deal with decision-

making situations through hesitant fuzzy linguistic assessments. In this way,

one can express not only the uncertainty but also the hesitance inherent in

human reasoning. There are several contributions in the literature that have

studied HFLTSs, their properties, aggregation functions, preference relations,

distances and so on [12, 13, 14, 15, 16]. These approaches have contributed

either from a theoretical point of view or by proposing different applications.

An algebraic extension of the set of HFLTSs is presented in [17] to take into

account the gap between non-overlapping assessments.

In recent times, consensus in GDM problems through HFLTSs has been

studied by several approaches [12, 18, 19, 20, 21, 22]. While some of them

focus on the aim of quantifying the level of agreement, some others focus on the

consensus reaching process. The problem is set, for all of them, with a group

of experts or Decision Makers (DMs) evaluating a set of several alternatives by

means of HFLTSs. Despite this, some differences emerge among the approaches

that try to quantify the consensus level. A first key difference between them

is that, while some approaches study, for each alternative, the consensus of an

expert with respect to the rest of the group [12, 20], others study the consensus

of the whole group on each alternative [18, 19, 21]. Both types of consensus
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approaches might be useful under different kinds of situations: while approaches

of the first type can be used to evaluate the relation of each expert with respect

to the group, approaches of the second type can be used to evaluate the available

alternatives. For instance, when in a GDM process the most dissenting decision

makers are asked to reconsider their opinion, a measure of the first kind should

be used. On the contrary, when everyone is asked to reconsider his or her

assessment on the most controversial alternative, a second type measure should

be used instead. In this paper, we propose a new measure of consensus that can

be adapted to the measurement of both individual and collective consensus.

The second main difference among approaches lies in whether the definition

of the measure of consensus is based on the concept of distance or on the concept

of similarity. On the one hand, the consensus level presented in [12] is a distance-

based measure. According to the distance that it is used in [12], if two opinions

do not overlap, the consensus level is always zero, regardless how far apart the

opinions are. This is because the distance used does not take into consideration

the gap between HFLTSs in the cases in which the intersection is the empty

set. In this paper we define more accurate agreement measures, based on the

distance presented in [13] that does take into consideration this gap. On the

other hand, the measures presented in [18, 19, 20, 21] are not distance-based

but similarity-based. The concept of similarity between HFLTSs is presented in

[18], and later used in [21], based on the comparison, between two experts, of

their preferences of a given alternative over another one and extended in [19] as

a comparison, between two experts, of their assessment of a specific alternative.

In any case, this similarity concept neither takes into consideration how distant

non-overlapping assessments are nor the level of hesitance used by the experts

when assessing an alternative. The measures presented in this paper solve these

issues by considering both the hesitance of the assessments and the gap between

them if they do not overlap.

Selecting or prioritizing suitable experts or DMs is a frequent problem in

GDM applications in real situations [23, 24]. This paper introduces the concepts

of preciseness and dissent of an expert assessing a set of alternatives. This allows
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the definition of an expert’s profile, which keeps track of how experts have made

his/her previous assessments with respect to how precise or how dissenting they

are. These profiles characterize the up-to-date behavior of experts in GDM

processes and can be useful for the task of selecting the appropriate experts to

form part of future committees or decision groups.

The rest of this paper is structured as follows: first, Section 1 presents a

summary of the basic concepts in the literature that are used throughout the

paper. A new degree of consensus for the whole group on each alternative is

introduced in Section 2 with a further comparison study with other similar

measures. Section 3 defines a different degree of consensus for an expert with

respect to the group and it is also compared with the similar existing measures.

A precision-dissension profile is presented in Section 4 to keep track of the

assessments of a DM within several groups. Finally, Section 5 presents the

main conclusion and lines of future research.

1. Theoretical framework

The aim of this section is to provide a summary of basic concepts related to

HFLTSs that appear throughout this paper. In particular, a special focus on

the distance between HFLTSs that is used in this work is required.

From this point onwards, let S denote a finite total ordered set of linguistic

terms, S = {a1, . . . , an} with a1 < · · · < an.

Definition 1. ([9]) A hesitant fuzzy linguistic term set (HFLTS) over S is a

subset of consecutive linguistic terms of S, i.e., {x ∈ S | ai ≤ x ≤ aj}, for some

i, j ∈ {1, . . . , n} with i ≤ j.

Following the concept of uncertain linguistic term introduced by Xu in [25],

in this paper we denote HFLTSs by linguistic intervals. Thus, for the rest of this

article, the HFLTS {x ∈ S | ai ≤ x ≤ aj} is denoted as [ai, aj ] or, if j = i, {ai}.
In addition, HS represents the set of all the possible HFLTSs over S including

the empty HFLTS, ∅.
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In order to define a suitable distance between two HFLTSs that takes into

consideration not just the intersection of them, but also the gap between them

if they do not intersect, an algebraic extension of the set H∗S = HS − {∅}
is presented in [17] as HS different than the extension presented in [14] that

includes HFLTS with non-consecutive linguistic terms from S. This algebraic

extension includes the concepts of the negative HFLTSs, −H∗S = {−H|H ∈
H∗S}, the zero HFLTSs, A = {α0, . . . , αn} and the positive HFLTSs, H∗S . The

graph of this set is presented in Figure 1.

{a1} {a2} {an−1} {an}

−{a1} −{a2} −{an−1} −{an}

[a1, a2] [an−1, an]

−[a1, a2] −[an−1, an]

[a1, an−1] [a2, an]

[a1, an]

[a1, a3] [an−2, an]

−[a1, a3] −[an−2, an]

−[a1, an−1] −[a2, an]

−[a1, an]

{a3}

−{a3}

{an−2}

−{an−2}

· · ·

· · · · · · · · ·

· · ·

α0 α1 α2 αn−2 αn−1 αn

Figure 1: Graph of the extended set of HFLTSs, HS .

In the frame of HS , an extended inclusion relation is introduced based on the

graph ofHS (Figure 1) and the usual inclusion relation between HFLTSs. Figure

2 shows, as an example, all the elements of HS included in [a1, a2] according to

the extended inclusion relation. Additionally, this extended inclusion relation

is used to extend the connected union and the intersection of HFLTSs to an

operation between elements of HS .

Definition 2. ([17]) Given H1, H2 ∈ HS , then:
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a) The extended connected union of H1 and H2, H1 t H2, is defined as

the least element that contains H1 and H2, according to the extended

inclusion relation.

b) The extended intersection of H1 and H2, H1 u H2, is defined as the

largest element being contained in H1 and H2, according to the extended

inclusion relation.

As an example, Figure 3 shows the extended connected union and the ex-

tended intersection of [a1, a2] and {a4}.

{a1} {a2} {a3} {a4} {a5}

[a1, a2]

Figure 2: Elements of HS included in

[a1, a2].

{a1} {a2} {a3} {a4} {a5}

[a1, a2]

[a1, a2] t {a4} = [a1, a4]

= −{a3}
[a1, a2] u {a4}

Figure 3: Extended connected union and

extended intersection of [a1, a2] and {a4}.

The negative and zero HFLTSs appear only as a result of the extended

intersection of two elements H1 and H2 from H∗S . If H1 uH2 = −[ai, aj ] with

i ≤ j, then there is a gap of [ai, aj ] between them. Whilst, if H1 u H2 = αi,

then H1 and H2 are consecutive, with one of them ending at ai and the other

one starting at ai+1.

Finally, given H ∈ HS , the width of H, W(H), is defined as the cardinal

of H if H ∈ H∗S , −card(−H) if H is a negative HFLTS or 0 if H is a zero

HFLTS. All these concepts are used to introduce the following distance between

HFLTSs:

Definition 3. ([17]) Let H1, H2 ∈ HS , then D(H1, H2) := W(H1 t H2) −
W(H1 uH2) provides a distance in HS .
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Remark 1. Notice that since the W operator is based on the concept of car-

dinal, it works under the assumption of a uniformly distributed set of linguistic

terms S. If this is not the case, the cardinal operator should be replaced in the

definition of width by a measure µ on HS , such that µ(H) represents the size

of the semantic content of H, for all H ∈ HS .

The distance provided by Definition 3 has three main advantages with re-

spect to other measures between HFLTSs existing in the literature [15]: first

of all, this new measure takes explicitly into consideration the gap between

two non-overlapping HFLTSs; secondly, it is simply computed even between

HFLTSs with different cardinalities and, finally, this measure satisfies the tri-

angle inequality and, therefore, it is a distance. From here on, all computations

of distances between HFLTSs appearing in this article are done based on this

definition. For this reason, and for the sake of comprehensiveness, let us present

the following example to illustrate all the foregoing concepts:

Example 1. Let a1 = very bad, a2 = bad, a3 = regular, a4 = good and

a5 = very good be 5 linguistic labels defining the set S = {a1, a2, a3, a4, a5}.
Then, three possible assessments by means of S are A = “below regular”,

B = “very good” and C = “neither very good nor very bad” and their corre-

sponding HFLTS by means of S are HA = [a1, a2], HB = {a5} and HC = [a2, a4]

respectively. The extended connected union and extended intersection of all the

possible pairs among HA, HB and HC are shown in Figure 4.

According to these results, D(HA, HB) = 5 − (−2) = 7, D(HA, HC) =

4− 1 = 3 and D(HB , HC) = 4− 0 = 4.

Remark 2. In order to ease future computations, it is important to note that,

as proved in [17], the presented distance is equivalent to the taxicab metric in the

graph of HS . Therefore, if H1 = [ai1 , aj1 ] and H2 = [ai2 , aj2 ], then D(H1, H2)

can be calculated as |i1 − i2| + |j1 − j2|. This fact can be easily seen in the

previous example and in Figure 1.

The next step in any GDM situation is to assess not just one single alter-

native, but a set of them. With the aim of dealing with this kind of situations,
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{a1} {a2} {a3} {a4}

HA tHB = [a1, a5]

HA uHB = −[a3, a4]
W(HA uHB) = −2

W(HA tHB) = 5

HB = {a5}
HA = [a1, a2]

(a) HA and HB .

{a1} {a5}{a3} {a4}

HA tHC = [a1, a4]

HA uHC = {a2}
W(HA uHC) = 1

W(HA tHC) = 4

HC = [a2, a4]
HA = [a1, a2]

(b) HA and HC .

{a1} {a2} {a3} {a4}

HB tHC = [a2, a5]

HB uHC = α4

W(HB uHC) = 0

W(HB tHC) = 4

HC = [a2, a4]

HB = {a5}

(c) HB and HC .

Figure 4: Extended connected union and extended intersection of two HFLTSs.

Montserrat-Adell et al. in [13] developed the concept of Hesitant Fuzzy Linguis-

tic Description (HFLD) of a set of alternatives Λ = {λ1, . . . , λr} as a function

FH on Λ such that for all λ ∈ Λ, FH(λ) ∈ H∗S . For the rest of this article, each

DM or expert is modeled by a HFLD.

Following this definition, the distance D between HFLTSs is extended to

a distance, DF , between HFLDs as the addition of the distances between the

corresponding HFLTSs for each alternative in Λ. Formally,

Definition 4. ([17]) Let F 1
H and F 2

H be two HFLDs of a set Λ = {λ1, . . . , λr}
by means of HS , with F 1

H(λi) = H1
i and F 2

H(λi) = H2
i , for all i ∈ {1, . . . , r}.

Then, the distance DF between F 1
H and F 2

H is defined as:

DF (F 1
H , F

2
H) =

r∑
t=1

D(H1
t , H

2
t ).

Finally, the distance DF is used to propose a central opinion (or centroid)

of a group of DMs about a set of alternatives Λ as the HFLD that minimizes

the addition of distances to the opinion of each expert.

Definition 5. ([17]) Let Λ be a set of r alternatives, G a group of k DMs and

F 1
H , . . . , F

k
H the HFLDs of Λ provided by the DMs in G. Then, a centroid of the

group is:

FCH = arg min
Fx

H∈(H∗S)r

k∑
i=1

DF (F xH , F
i
H).
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Notice that this centroid does not have to be unique and this might lead

us to some issues when working with the centroid. To fix this problem, let us

consider the following remark.

Remark 3. In order to ease the calculation of the centroid, it is proved in [17]

that, for each specific alternative λ ∈ Λ, if F pH(λ) = [aip , ajp ] for p ∈ {1, . . . , k},
then the set of all the HFLTS associated to the centroid of the group for λ is:

{[ai, aj ] ∈ H∗S | i ∈M(i1, . . . , ik), j ∈M(j1, . . . , jk)},

whereM( ) is the set that contains just the median of the index values if k is odd

or any integer number between the two central index values sorted from smallest

to largest if k is even. Therefore, if k is odd, the centroid is unique, while if k is

even, the controid might be not unique. Henceforth, to avoid possible problems

with a non-unique centroid, when there are more than one possible centroid of

the group, the one with a highest cardinality, which can be understood as the

most hesitant one, is considered as FCH (λ). Thus, FCH (λ) = [ai∗ , aj∗ ], where

i∗ = min (M(i1, . . . , ik)) and j∗ = max (M(j1, . . . , jk)).

Example 2. Let G be a group of 5 DMs assessing a set of alternatives Λ =

{λ1, . . . , λ4} by means of HFLTSs over the set S = {a1, . . . , a5} from Example

1, and let F 1
H , F

2
H , F

3
H , F

4
H , F

5
H be the HFLDs modeling their corresponding

assessments shown in the Table 1. Then, the centroid of the group, FCH , can

be easily computed by median calculations as stated in Remark 3 providing the

results shown in the same table.

Note that, contrary to some other common aggregation operators such as

the union, the centroid of the group is robust with respect to extreme hesitances

in one expert. When aggregating with the union, a big hesitance in the opinion

of one of the experts implies a big hesitance in the central opinion. That is not

the case with the centroid from Definition 5. This can be seen, for instance, in

alternative λ1, where the assessment of one of the experts is [a1, a5], but the

centroid is [a2, a3]. That it to say that a large hesitance of a DM does not

necessarily imply a lack of precision of the centroid.
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F 1
H F 2

H F 3
H F 4

H F 5
H FC

H

λ1 [a1, a2] {a2} [a1, a5] [a4, a5] [a2, a3] [a2, a3]

λ2 [a2, a4] {a3} [a1, a5] [a3, a4] [a2, a3] [a2, a4]

λ3 [a4, a5] {a5} [a4, a5] [a1, a2] [a4, a5] [a4, a5]

λ4 {a3} {a3} [a2, a3] [a3, a4] {a3} {a3}

Table 1: Centroid of the group G for Λ from Example 2.

Note that, since in this example there are 5 DMs, which is an odd number,

the centroid of the group obtained from Definition 5 is unique.

2. Collective consensus

In this section, a new degree of consensus of the whole group on a specific

alternative or a set of alternatives is introduced based on the distance proposed

in [17]. This new measure seeks to quantify the level of agreement within a

group of DMs on a specific alternative or a set of alternatives. A further study

on the properties of the introduced measure and a comparison with the similar

existing measures in the literature are also presented in this section. Finally, an

example is provided to illustrate the commented properties.

2.1. A collective degree of consensus

The idea of this new degree of consensus arises with the need of finding a

measure that depends neither on the number of DMs assessing the alternatives

nor on the number of linguistic labels used in S. Thus, the degree of consensus

presented in this section is a normalization of the addition of distances between

the centroid of the group and each of the HFLDs given by the DMs. In order

to define this normalization, the first step is to study the maximum value that

this addition of distances can take.
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Lemma 1. Let F 1
H , F

2
H be two HFLDs of the set of alternatives Λ = {λ1, . . . , λr}

by means of S = {a1, . . . , an}. Then,

DF (F 1
H , F

2
H) ≤ r · (2n− 2).

Proof. According to Definition 3, the most distant HFLTSs are H1 = {a1} and

H2 = {an}. In this case, H1 t H2 = [a1, an] and H1 u H2 = −[a2, an−1].

Thus, D(H1, H2) = W([a1, an]) −W(−[a2, an−1]) = n − (−(n − 2)) = 2n − 2.

Consequently, the most distant HFLDs are those that for all the alternatives,

the corresponding two HFLTSs used by each HFLD are the most distant ones.

In such case,

DF (F 1
H , F

2
H) =

r∑
i=1

(2n− 2) = r · (2n− 2).

Therefore, Lemma 1 can be used to find an upper bound for the addition of

distances between the centroid of a group and each of the DMs of the assessing

group.

Proposition 1. Let F 1
H , . . . , F

k
H be the HFLDs of a group of k DMs of the set

of alternatives Λ = {λ1, . . . , λr} by means of S = {a1, . . . , an}, and let FCH be

the centroid of the group. Then,

k∑
i=1

DF (FCH , F
i
H) ≤ k · r · (n− 1).

Proof. If k is even, the worst-case scenario is given when, for each of the alterna-

tives k/2 of the DMs have assessed it with {a1}, and the other k/2 of the DMs

have assessed it with {an}. In such case, calculating the corresponding medians,

we get that any HFLD could be considered as the centroid of the group given

that all of them give the same addition of distances, but, according to Remark

3, FCH (λi) = [a1, an] for i = 1, . . . , r, then:

k∑
i=1

DF (FCH , F
i
H) =

k

2
· r · (n− 1) +

k

2
· r · (n− 1) = k · r · (n− 1).
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If k is odd, the worst-case scenario is met when, for each of the alternatives,

bk/2c of the DMs have assessed it with {a1} and bk/2c of the DMs have assessed

it with {an}, regardless what is the last HFLTS. If so, based on the median

calculations, the centroid of the group is equal, for each alternative, to this last

HFLTS, and the addition of distances is equal to (k− 1) · r · (n− 1). Choosing,

for example, the last HFLTS to be {a1} for all the alternatives, then:

k∑
i=1

DF (FCH , F
i
H) =

(⌊
k

2

⌋
+ 1

)
· 0 +

⌊
k

2

⌋
· r · (2n− 2)

= (k − 1) · r · (n− 1) ≤ k · r · (n− 1).

Corollary 1. Under the same conditions as in Property 1, in the particular

case where r = 1, just one single alternative to be assessed, the upper bound

results to be k · (n− 1).

The upper bounds provided in Proposition 1 and Corollary 1 for the total

addition of distances between the centroid of the group and all the HFLD of

the group enables us to proceed with the normalization that leads us to the

definition of a measure of agreement within the group, in a similar way to

[12, 19], as follows:

Definition 6. Let F 1
H , . . . , F

k
H be the HFLDs given by a group G of k DMs

about the set of alternatives Λ = {λ1, . . . , λr} by means of S = {a1, . . . , an}
and let FCH the centroid of the group, being Hi

j = F iH(λj) for i ∈ {1, . . . , k, C}.
Then, the degree of consensus of G on λj is defined as:

δλj
(G) = 1−

k∑
i=1

D(HC
j , H

i
j)

k · (n− 1)
.

Analogously, the degree of consensus of G on Λ is defined as:

δΛ(G) = 1−

k∑
i=1

DF (FCH , F
i
H)

k · r · (n− 1)
.
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Note that, by Proposition 1, 0 ≤ δΛ(G) ≤ 1. The closer to 0 δΛ(G) is, the

closer to its maximum value the addition of distances is, which implies a lot of

disagreement. On the contrary, the closer to 1 δΛ(G) is, the smaller the addition

of distances is, and that means a high level of agreement. The same reasoning

is valid for the degree of consensus of one specific alternative.

Notice also that, the upper bound given by Proposition 1 can be reached

only when k is even. Thus, if k is odd, the degree of consensus cannot be zero.

This fact is coherent given that situations with maximum disagreement arise

when half of the experts assess an alternative with the worst linguistic label and

the other half do it with the best linguistic label. Obviously, this situation is

only possible with an even number of opinions.

Property 1. Let G be a group of k DMs assessing a set of alternatives Λ =

{λ1, . . . , λr} by means of S = {a1, . . . , an}. Then,

δΛ(G) =

r∑
j=1

δλj
(G)

r
.

Proof. Let F 1
H , . . . , F

k
H be the HFLDs given by the DMs and FCH the centroid

of the group, being Hi
j = F iH(λj) for i ∈ {1, . . . , k, C}. Then,

r∑
j=1

δλj
(G)

r
=

r∑
j=1

1−
k∑

i=1
D(HC

j ,H
i
j)

k·(n−1)

r
=
r −

k∑
i=1

r∑
j=1

D(HC
j ,H

i
j)

k·(n−1)

r

= 1−

k∑
i=1

DF (FCH , F
i
H)

k · r · (n− 1)
= δΛ(G).

This property states the consistency between the degree of consensus on each

alternative and on the whole set of alternatives.

2.2. Comparison with existing measures

This section presents a comparison of the degree of consensus defined in

Section 2.1 with similar existing measures. Out of all the agreement measures
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for GDM by means of HFLTSs summarized in the Introduction, the ones defined

as a degree of consensus on the alternatives are those presented by Rodriguez et

al. in [18] and by Wu et al. in [19] and in [21]. When calculating the agreement

on an alternative λj , there is a main difference between these two measures: the

first and third degrees are defined based on the preference of said alternative

over another alternative λk,∀k 6= j, while the second one is based just on the

assessment of λj , regardless the assessment of the rest of alternatives. This

leads us to the automatic conclusion that the most similar measure to the one

presented in this paper is the second one. For this reason, we proceed with a

further study to compare the results provided by both measures.

To begin with, let us summarize the measure presented in [19]. Wu et al.

defined the consensus level within all the DMs for an alternative as the average

of all the similarity degrees between any pair of DMs about this alternative.

This similarity degree is based on what they call the mean (or expected value)

of a HFLTS, which is just the center of the HFLTS in the case of a set S with

uniform and symmetric linguistic labels. Translated to the notation used in this

paper, in which Hi = [axi , ayi ] for i ∈ {1, . . . , k} are the assessments given by

a group of k DMs about an alternative λ by means of S = {a1, . . . , an}, the

consensus level within all the DMs for λ defined in [19] can be calculated as

caλ =

k∑
i=1

k∑
j>i

1−

∣∣∣xj+yj
2 − xi+yi

2

∣∣∣
(n− 1)


 k

2

 . (1)

Remark 4. The fact that this measure ignores the width of the HFLTSs and,

in the case with uniform and symmetric linguistic labels, is based just on the

mean of the HFLTSs, implies that the hesitance of each expert is not taken

into consideration. Therefore, the similarity degree of two experts assessing an

alternative with HFLTSs with the same expected value but with different levels

of hesitance would be 1, the maximum.

On the other hand, the degree of consensus presented in Section 2.1 can be
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rewritten in a similar way as shown in the following lemma:

Lemma 2. Let H1, . . . ,Hk be the assessments of a group G of k DMs about

an alternative λ, and let HC be the centroid of G for λ, where Hi = [axi , ayi ]

for i ∈ {1, . . . , k, C}. Then,

δλ(G) = 1−

k∑
i=1

|xi − xC |+ |yi − yC |

k · (n− 1)
.

Proof. The proof is straightforward by Definition 6 and Remark 3.

In order to compare the two consensus measures, we first need the following

definition:

Definition 7. Let H1, . . . ,Hk be a collection of HFLTSs over S, where Hi =

[axi
, ayi ] for i ∈ {1, . . . , k}. Then,

(a) Hi is lower than Hj , Hi 4 Hj , if xi ≤ xj and yi ≤ yj .

(b) H1, . . . ,Hk are sorted if H1 4 H2 4 . . . 4 Hk.

(c) H1, . . . ,Hk are sortable if there exists a permutation of them which is

sorted.

Property 2. Let H1, . . . ,Hk be the assessments of a group G of k DMs about

an alternative λ. Then,

δλ(G) ≤ caλ

and the equality is met when H1, . . . ,Hk are sortable and the k − 2 central

opinions are the same.

Proof. For this proof, let us assume Hi = [axi
, ayi ] for i ∈ {1, . . . , k, C}. Thus,

beginning with Equation 1,

caλ =

k∑
i=1

k∑
j>i

1−

∣∣∣xj+yj
2 − xi+yi

2

∣∣∣
(n− 1)


 k

2


15



=

 k

2

− 1

2 · (n− 1)
·
k∑
i=1

k∑
j>i

(|xj + yj − xi − yi|) k

2



= 1−

k∑
i=1

k∑
j>i

|xj + yj − xi − yi|

k · (k − 1)

2
· 2 · (n− 1)

≥ 1−

k∑
i=1

k∑
j>i

|xj − xi|+ |yj − yi|

k · (k − 1) · (n− 1)

= 1−

k∑
i=1

k∑
j>i

|xj − xC − xi + xC |+ |yj − yC − yi + yC |

k · (k − 1) · (n− 1)

≥ 1−

k∑
i=1

k∑
j>i

|xj − xC |+ |xi − xC |+ |yj − yC |+ |yi − yC |

k · (k − 1) · (n− 1)

= 1−

k∑
i=1

(k − 1) · |xi − xC |+ (k − 1) · |yi − yC |

k · (k − 1) · (n− 1)

= 1−
(k − 1)

(
k∑
i=1

|xi − xC |+ |yi − yC |
)

k · (k − 1) · (n− 1)

= 1−

k∑
i=1

|xi − xC |+ |yi − yC |

k · (n− 1)
= δλ(G).

Additionally, for the first inequality to be an equality (xj −xi) and (yj − yi)
have to have the same sign for any j > i, which means that H1, . . . ,Hk have

to be sorted. Since the order of the DMs is not important, it is enough for

H1, . . . ,Hk to be sortable. On the other hand, for the equality to be met in

the second inequality, (xi − xC) and (xj − xC) have to have opposite signs or

be zero for any j > i, and analogously for (yi − yC) and (yj − yC). Given that,

because of the previous condition, we can assume H1, . . . ,Hk to be sorted, this

happens only if x2 = . . . = xk−1 = xC and y2 = . . . = yk−1 = yC .
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The reason why δλ(G) ≤ caλ is explained by the fact that caλ does not take

into account the hesitance of the experts and, therefore, for some alternatives

the consensus level is higher that what it would be expected.

Additionally, if these degrees of consensus are applied to to end-users of a

product instead of a set of experts, then the number of DMs might be very large,

and the time complexity of calculating the consensus level for an alternative

becomes a crucial point. Given that the degree of consensus presented in [18] and

in [21] compute the similarity between each pair of DMs about the preference of

the studied alternative over all the other ones one by one, its time complexity

is O(rk2), where k is the number of DMs within the group and r is the number

of alternatives to be assessed. The consensus level in [19] studies the similarity

between each pair of DMs on a specific alternative, without comparing it with

the rest of alternatives. Thus, its time complexity is O(k2). On the contrary, the

degree of consensus presented in Section 2.1 only makes one comparison with

the central opinion. Therefore, its time complexity is O(1) once the centroid of

the group for the studied alternative is computed. Since this centroid, as staten

before, is based on the median calculation, which is known to be done in linear

time, the time complexity of δλi
(G) is O(k).

Table 2 summarizes the main characteristics of the different collective degrees

of consensus using HFLTSs.

2.3. An illustrative example on collective consensus

For an easier understanding of the introduced degree of consensus, in this

subsection we present a clarifying example to illustrate its computation. The

same example is also used to point out its properties commented in Section 2.2

with respect to similar existing measures.

Example 3. Following Example 2, where G is a group of 5 DMs assessing a

set of alternatives Λ = {λ1, . . . , λ4} by means of HFLTSs over the set S =

{a1, . . . , a5}, with the assessments provided in Table 1, we can now proceed to

compute the degree of consensus on each of the alternatives in Λ as shown in
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Year 2015 2016 2016 2017

Groupal consensus X X X X

Individual consensus

Distance-based X

Similarity-based X X X

Preference similarity X X

Alternative similarity X

Pairwise comparison X X X

Central opinion comparison X

Considers gap X

Considers hesitance X

Time complexity a,b O(rk2) O(k2) O(rk2) O(1) + TC
a TC stands for the time complexity of calculating the central opinion.

b For the overall degree of consensus of a set of r alternatives, all times are

multiplied by r.

Table 2: Comparison of the presented collective degrees of consensus.

Table 3, where Di
j stands for D(HC

j , H
i
j), as well as the degree of consensus for

the whole set Λ.

In order to illustrate the properties presented in Section 2.2, we can now

use the methodology introduced by Wu et al. in [19] to calculate their degree

of consensus on each alternative λj , caj , for j = 1, . . . 4. To this end, the

first step is to calculate the similarity matrix for each alternative, showing,

in a scale from 0 to 1, the agreement between each pair of experts on the

corresponding alternative. These similarity coefficients are calculated as one

minus the difference between the middle points of the corresponding HFLTSs

over n − 1, where n is the cardinality of S (n = 5 in this example). These

similarity matrices are shown in Figure 5.
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D1
j D2

j D3
j D4

j D5
j

5∑
i=1

Di
j δλj (G)

λ1 2 1 3 4 0 10 0.5

λ2 0 2 2 1 1 6 0.7

λ3 0 1 0 6 0 7 0.65

λ4 0 0 1 1 0 2 0.9

Λ 2 4 6 12 1 25 0.6875

Table 3: Degree of consensus on each alternative and on the set Λ.



− 0.875 0.625 0.25 0.75

− 0.75 0.375 0.875

− 0.625 0.875

− 0.5

−


(a) λ1



− 1 1 0.875 0.875

− 1 0.875 0.875

− 0.875 0.875

− 0.75

−


(b) λ2

− 0.875 1 0.25 1

− 0.875 0.125 0.875

− 0.25 1

− 0.25

−


(c) λ3



− 1 0.875 0.875 1

− 0.875 0.875 1

− 0.75 0.875

− 0.875

−


(d) λ4

Figure 5: Similarity matrices for each alternative.

Once these matrices are calculated, the next step to get caj is, for each

alternative, to compute the average of the similarity between each pair of ex-

perts. Table 4 presents a comparison of the results of δλj
(G) and caj on each

alternative.

As staten in Property 2, δλj
(G) ≤ caj for all the alternatives, being the

equality met in alternatives λ3 and λ4. In Table 1, it can be seen that, for λ3, the

assessments are sortable as F 4
H(λ3) 4 F 1

H(λ3) = F 3
H(λ3) = F 5

H(λ3) 4 F 2
H(λ3),

while for λ4, they are sortable as F 3
H(λ4) 4 F 1

H(λ4) = F 2
H(λ4) = F 5

H(λ4) 4

F 4
H(λ4). On the contrary, the assessments for alternatives λ1 and λ2 are not
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δλj (G) caj

λ1 0.5 0.65

λ2 0.7 0.9

λ3 0.65 0.65

λ4 0.9 0.9

Table 4: δλj
and caj for the alternatives in Λ.

sortable, for instance F 3
H(λ1) and F 5

H(λ1) or F 1
H(λ2) and F 3

H(λ2), and, therefore,

δλj
(G) < caj .

Additionally, alternatives λ2 and λ4 are a clear example for Remark 4. Again,

in Table 1, it can be seen that the HFLTSs used by the experts to assess the

two alternatives have the same mean, but the level of hesitance of the answers

is different in the two cases. Given that there is much more hesitance on λ2,

it seems intuitive that the degree of consensus on this alternative is lower than

the one on λ4, where there is much more coincidence of opinions. Table 4 shows

that ca2 = ca4 given that this measure does not take into account the hesitance

of the experts while δλ2
(G) < δλ4

(G).

This leads us to the conclusion that, under the HFLTSs-based GDM frame-

work, δλj (G) provides a measure of the consensus of a group of experts on a set

of alternatives closer to common-sense reasoning.

3. Individual consensus

This section studies the idea of consensus within a group of DMs as the

agreement of an expert with respect to the group instead of the agreement of

the whole group on an alternative as in Section 2. To this end, a convenient

degree of consensus is defined for each expert. Even though there are some other

measures already defined in the literature, the convenience of a new measure

is explained by the fact that the previous ones present some issues like not

considering the hesitance of the assessments or not considering the gap between
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non-overlapping assessments. Additionally, this degree is compared with similar

already existing measures and also exemplified to point out its properties.

3.1. An individual degree of consensus

As in Definition 6, this new measure is thought to be on a scale from 0 to

1 independently from the number of linguistic labels used in S and the number

of DMs in the group. The degree of consensus presented in this section is a

normalization of the distance between the opinion of the expert and the centroid

of the group as follows:

Definition 8. LetG be a group of DMs, ε1, . . . , εk, assessing a set of alternatives

Λ = {λ1, . . . , λr} by means of HFLTSs over S = {a1, . . . , an}, and let F iH and

FCH be the HFLDs of εi for i = 1, . . . , k and the centroid of the group respectively,

with Hi
j = F iH(λj) for i ∈ {1, . . . , k, C}. Then, the degree of consensus of εi

with respect to G on λj is defined as:

δGλj
(εi) = 1−

D(HC
j , H

i
j)

2n− 2
.

Analogously, the degree of consensus of εi with respect to G on Λ is defined as:

δGΛ (εi) = 1− DF (FCH , F
i
H)

r · (2n− 2)
.

By Lemma 1, the upper bound for the distance between two HFLTSs is

2n − 2 and the one for the distance between two HFLDs is r · (2n − 2). Thus,

it can be easily seen that both δGλj
(εi) and δGΛ (εi) range between 0 and 1. The

closer to 1 these coefficients are, the more similar the opinion of εi is to the

centroid, while the closer to 0 the more dissidence there is.

Note that this degree of consensus is 1 only when the opinion of the expert

coincides with the centroid of the group and it is 0 if and only if the opinion of

the expert is {a1} and the centroid is {an} or vice versa.

Property 3. Let G be a group of DMs, ε1, . . . , εk, assessing a set of alternatives

Λ = {λ1, . . . , λr} by means of S = {a1, . . . , an}. Then, for i = 1, . . . , k,

δGΛ (εi) =

r∑
j=1

δGλj
(εi)

r
.
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Proof. Let F 1
H , . . . , F

k
H be the HFLDs given by the DMs and FCH the centroid

of the group, being Hi
j = F iH(λj) for i ∈ {1, . . . , k, C}. Then,

r∑
j=1

δGλj
(εi)

r
=

r∑
j=1

1− D(HC
j ,H

i
j)

(2n−2)

r
=
r −

r∑
j=1

D(HC
j ,H

i
j)

(2n−2)

r

= 1− DF (FCH , F
i
H)

r · (2n− 2)
= δGΛ (εi).

In the same way than Property 1, this property provides consistency to the

definition of the degree of consensus of an expert with respect to a group on an

alternative and on a set of alternatives.

3.2. Comparison with existing measures

As staten before, the degree of consensus for experts introduced in Section

3.1 is similar to some of the measures presented in the literature. The aim of

this section is to compare the degree of consensus defined in Section 3.1 with

the most similar existing ones.

From the agreement measures by GDM by means of HFLTSs presented in

the Introduction, those defined as degrees of consensus for an expert are the

ones introduced by Dong et al. in [12] and by Wu et al. in [20].

On the one hand, Dong et al. defined the consensus level of εi on an alterna-

tive based on the intersection and the union of the opinion of εi and a central

opinion as:

CLi =
card(Hi ∩HC)

card(Hi ∪HC)
, (2)

being Hi the opinion of εi and HC the central opinion. The main issue with

this consensus level is that, in the case of an empty intersection between the

opinion of the expert and the central opinion, the result is always 0, without

taking into consideration how far Hi is from HC . The reason that explains this

is the fact that CLi is based on a distance between HFLTSs, that contrarily

to the one from Definition 3, does not take into account the gap between two

HFLTSs with null intersection.
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Because of this reason, we have considered more interestingly to proceed

with a further study to compare the results provided by the consensus measure

for experts introduced in [20] with the one given by the degree of consensus for

experts presented in this article.

In order to carry on this comparison, we first need to introduce the con-

sensus level proposed by Wu et al. It is based on the same idea of similarity

than caj in Equation 1, but in this case, between the opinion of the expert

and a central opinion. In this case, we use the centroid from Definition 5 as

central opinion. Therefore, if F iH(λ) = [axi , ayi ] is the opinion of expert εi on

λ and FCH (λ) = [axC
, ayC ] is the centroid of the group on λ, then the degree of

consensus presented by Wu et al. is defined as:

SM i
λ = 1−

∣∣xi+yi
2 − xC+yC

2

∣∣
n− 1

, (3)

where n is the cardinal of S. Additionally, they defined the overall consensus

level for expert εi on the set of alternatives Λ = {λ1, . . . , λr}, SMi, as the

average of SM i
1, . . . , SM

i
r.

On the other hand, the following lemma rewrites the degree of consensus

from Section 3.1 in a similar way.

Lemma 3. Let G be a group of DMs, ε1, . . . , εk, whose assessments about

alternative λ are Hi = [axi , ayi ] for i = 1, . . . , k, and let HC = [axC
, ayC ] be the

centroid of the group for λ. Then,

δGλ (εi) = 1− |xi − xC |+ |yi − yC |
(2n− 2)

.

Proof. The proof is straightforward from Definition 8 and Remark 2.

With the foregoing lemma, we can proceed to compare the two measures.

Property 4. Let G be a group of DMs, ε1, . . . , εk, whose assessments about

alternative λ are H1, . . . ,Hk respectively. Then,

δGλ (εi) ≤ SM i
λ

and the equality is met when Hi and HC are sortable, being HC the centroid

of group G for λ.
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Proof. For this proof, let us assume Hi = [axi , ayi ] for i ∈ {1, . . . , k}. Thus,

beginning with Equation 3,

SM i
λ = 1−

∣∣xi+yi
2 − xC+yC

2

∣∣
n− 1

= 1−
1
2 |xi + yi − xC − yC |

n− 1

= 1− |xi − xC + yi − yC |
2n− 2

≥ 1− |xi − xC |+ |yi − yC |
2n− 2

= δGλ (εi).

In addition, for the inequality to be an equality, xi− xC and yi− yC must have

the same sign or at least one of them has to be 0, which is equivalent to xi ≤ xC
and yi ≤ yC , i.e. Hi 4 HC , or xi ≥ xC and yi ≥ yC , i.e. HC 4 Hi. Therefore,

Hi and HC have to be sortable.

Corollary 2. Let G be a group of k DMs assessing a set of alternatives Λ.

Then, for any expert εi, i ∈ {1, . . . , k}, δGΛ (εi) ≤ SMi. In addition, the equality

is met when, for any alternative λj ∈ Λ, F iH(λj) and FCH (λj) are sortable, being

F iH and FCH the HFLDs of εi and the centroid of the group respectively.

Proof. The proof is straightforward from Properties 3 and 4 and the definition

of SMi.

In an analogous way to Property 2 in Section 2, this property and its corollary

show that the degree of consensus for experts introduced in Section 3.1 can

capture differences among situations in which the measure presented in [20]

cannot.

Lastly, referring to the time complexity, measures presented in [12] and in

[20] have the same time complexity than the one presented in Section 3.1, which

is a constant time plus the time of computing the central opinion for λj . Using

the centroid from Definition 5, which is computed in linear time as commented

in the previous section, the time complexity for δGλj
(εi) is O(k) where k is the

number of DMs within the group.

Table 5 summarizes the main characteristics of the presented individual con-

sensus measures.

24



D
o
n
g

et
a
l.

[1
2
]

W
u

et
a
l.

[2
0
]

M
o
n
ts

er
ra

t-

A
d
el

l
et

a
l.

Year 2015 2016 2017

Groupal consensus

Individual consensus X X X

Distance-based X X

Similarity-based X

Preference similarity

Alternative similarity X

Pairwise comparison

Central opinion comparison X X X

Considers gap X

Considers hesitance X X

Time complexity a,b O(1) + TC O(1) + TC O(1) + TC
a TC stands for the time complexity of calculating the central opinion.

b For the overall degree of consensus of a set of r alternatives, all times are

multiplied by r.

Table 5: Comparison of the presented individual degrees of consensus.

3.3. An illustrative example on individual consensus

For the seek of clarifying the calculation of the degree of consensus for each

expert, let us present an example. In the same example, the foregoing properties

can also be checked.

Example 4. Following Example 2, where G is a group of 5 DMs assessing a

set of alternatives Λ = {λ1, . . . , λ4} by means of HFLTSs over the set S =

{a1, . . . , a5}, with the assessments provided in Table 1, we can now use the

presented methodology to compute the degree of consensus for each expert. For

instance,

δGλ1
(ε1) = 1− D(HC

1 , H
1
1 )

2n− 2
= 1− D([a2, a3], [a1, a2])

2n− 2
= 1− 2

8
= 0.75.
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Following the same steps for all the experts and alternatives, we get the results

shown in Table 6.

δGλj
(εi) ε1 ε2 ε3 ε4 ε5

λ1 0.75 0.875 0.625 0.5 1

λ2 1 0.75 0.75 0.875 0.875

λ3 1 0.875 1 0.25 1

λ4 1 1 0.875 0.875 1

Λ 0.9375 0.875 0.8125 0.625 0.96875

Table 6: Degrees of consensus δGλj
(εi) and δGΛ (εi).

Analogously, we can calculate the consensus level presented in [20] following

Equation 3, as for instance,

SM1
1 = 1−

∣∣ 1+2
2 − 2+3

2

∣∣
n− 1

= 1− |−1|
4

= 0.75.

In the same way, we can compute all the consensus levels as shown in Table 7.

SM i
j ε1 ε2 ε3 ε4 ε5

λ1 0.75 0.875 0.875 0.5 1

λ2 1 1 1 0.875 0.875

λ3 1 0.875 1 0.25 1

λ4 1 1 0.875 0.875 1

Λ 0.9375 0.9375 0.9375 0.625 0.96875

Table 7: Consensus levels SM i
j and SMi.

Property 4 can be easily checked by comparing results from Tables 6 and

7. It is clear that δGλj
(εi) = SM i

j except for expert ε2 on alternative λ2 and

expert ε3 on alternatives λ1 and λ2, where δGλj
(εi) < SM i

j . In this three cases,

the opinion of the expert is not sortable with the centroid of the group, while

in any other case, it is.

Notice also that, in the cases where the two consensus measures are different,

the one presented in [20] is greater given the fact that it only cares about the
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center of the HFLTS without taking into consideration either the hesitance of

the DMs or the existing gaps between opinions. For this reason, for instance,

SM2
2 = SM3

2 = 1, even if the opinions of experts ε2 and ε3 are not the same

than the centroid of the group for alternative λ2. This leads us to a situation

in which, experts ε1, ε2 and ε3 share the same overall consensus level, SM1 =

SM2 = SM3, but, comparing F 1
H , F 2

H and F 3
H with respect to FCH , it seems

quite intuitive that their coincidence with the central opinion should not be the

same. By contrast, in Table 6 we can see that this problem is fixed given that

δGΛ (ε3) < δGΛ (ε2) < δGΛ (ε1).

4. A precision-dissension profile

Sometimes, when choosing DMs to assess a set of alternatives, a more precise

expert is preferable to a more hesitant one. Sometimes a more dissenting expert

is interesting to open a door to innovation, or sometimes it is just the other

way around. The aim of this section is to present an expert’s profile that keeps

track of how experts have done their previous assessments to know how precise

or how dissenting they are.

This profile might be useful to whoever has to choose among several decision

makers to be part of a GDM situation because he or she can know beforehand

the main characteristics of each expert’s assessments. For instance, if we want

to have a committee where common decisions are easily taken, we will choose un

certain decision makers whose opinions are always close to the average opinion,

which means a low precision and a low dissension. On the contrary, if we prefer

a committee where polarized opinions are strongly defended, we should choose

determined decision makers whose opinions tend to be far away from the central

opinion, which means a high precision as well as a high dissension.

To this end, we present two numerical descriptors that characterize the as-

sessment of a decision maker. Firstly, similarly to the notion of determinacy

presented in [26], we introduce the concept of preciseness of an expert assessing

a set of alternatives as a discrete version of determinacy. Both the preciseness
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and the determinacy seek to quantify the certainty of an expert but, while the

determinacy is based on areas calculated as fuzzy integrals, the preciseness is

based on the number of linguistic labels from S that the experts uses.

Definition 9. Let εi be a DM assessing a set of alternatives Λ = {λ1, . . . , λr}
by means of HFLTSs over S = {a1, . . . , an}, and let F iH be his HFLD about Λ,

being Hi
j = F iH(λj). Then, the preciseness of εi on Λ is defined as:

πΛ(εi) =

r∑
j=1

n−card(Hi
j)

n−1

r
.

Note that, given that card(Hi
j) is between 1 and n for any j ∈ {1, . . . , r},

πΛ(εi) ranges from 0 to 1, being 0 when card(Hi
j) = n for any j and being 1

when card(Hi
j) = 1 for any j. Thus, the closer to 1 πΛ(εi) is, the more precise

εi has been with his assessments. Whilst, if πΛ(εi) is close to 0, it means that

there is more hesitance in the assessments of εi about Λ.

Secondly, we also introduce the concept of dissent of an expert with respect

to a group as follows:

Definition 10. Let ε1, . . . , εk be a groupG of DMs assessing a set of alternatives

Λ = {λ1, . . . , λr} by means of HFLTSs over S = {a1, . . . , an}, and let F iH be the

HFLD of εi for i = 1, . . . , k and FCH the centroid of the group. Then, the dissent

of εi on Λ with respect to G is defined as:

σGΛ (εi) = 1− δGΛ (εi).

Notice that, again, σGΛ (εi) moves between 0 and 1 for any i ∈ {1, . . . , k}.
The smaller σGΛ (εi) is, the closer the opinion of the expert εi and the central

opinion are, being exactly 0 if F iH = FCH .

With these two measures, a profile for each expert assessing a set of alter-

natives can be defined as:

Definition 11. Let ε1, . . . , εk be a group G of DMs assessing a set of alterna-

tives Λ = {λ1, . . . , λr} by means of HFLTSs over S = {a1, . . . , an}. Then, the

precision-dissension profile of εi on Λ with respect to G is defined as:

φGΛ (εi) = (πΛ(εi), σ
G
Λ (εi)).
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For the seek of a better understanding, let us present the following example

illustrating the previous concepts.

Example 5. Following Example 2, with the assessments about the set of alter-

natives Λ shown in Table 1, the preciseness and the dissent of each expert can

be calculated, as, for instance,

πΛ(ε1) =
5−2

4 + 5−3
4 + 5−2

4 + 5−1
4

4
= 0.75

and

σGΛ (ε1) = 1− 0.9375 = 0.0625,

given that δGΛ (ε1) was already calculated in Example 4. Thus,

φGΛ (ε1) = (0.75, 0.0625).

Repeating this process for all the experts, we get the results shown in Table 8.

ε1 ε2 ε3 ε4 ε5

πΛ(εi) 0.75 1 0.375 0.75 0.8125

σGΛ (εi) 0.0625 0.125 0.1875 0.375 0.03125

φGΛ (εi) (0.75, 0.0625) (1, 0.125) (0.375, 0.1875) (0.75, 0.375) (0.8125, 0.03125)

Table 8: Preciseness and dissent of each expert on Λ.

It can be seen that ε2 has a preciseness of 1 given that he has assessed all

the alternatives with just one linguistic label without hesitation. In contrast,

ε3 has a very low preciseness due to a a big hesitance on his assessments. For

instance, he has assessed two alternatives with all the possible linguistic labels.

On the other hand, ε4 has the highest dissent of the whole group. This

fact can be corroborated by having a look at Figure 6, which is a graphical

representation of the assessments provided in Table 1, where it is clear than F 4
H is

the most distant assessment to the central opinion in almost all the alternatives.

On the contrary, F 1
H and F 5

H are equal to the central opinion in almost all the

alternatives, and that is why ε1 and ε5 have the lowest dissent of the group.
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{a1} {a2} {a3} {a4} {a5} {a1} {a2} {a3} {a4} {a5}

{a1} {a2} {a3} {a4} {a5} {a1} {a2} {a3} {a4} {a5}

F 1
H FC

H

λ1 λ2

λ3 λ4

F 2
H F 3

H F 4
H F 5

H

Figure 6: HFLDs modeling the DMs’ assessments and the centroid from Example 2.

Finally, if an expert has assessed more than one set of alternatives within

several groups, the information of each different situation can be combined as

follows:

Definition 12. Let ε be a DM that has assessed the sets of alternatives Λ1, . . . ,Λm

within the groups G1, . . . , Gm respectively. Then:

(a) The preciseness of ε is defined as πm(ε) =

m∑
l=1

πΛl
(ε)

m .

(b) The dissent of ε is defined as σm(ε) =

m∑
l=1

σ
Gl
Λl

(ε)

m .

(c) The precision-dissension profile of ε is defined as Φm(ε) = (m,πm(ε), σm(ε)).

With Φm(ε) one can know the characteristics of the assessments of expert ε

regarding precision and dissension after evaluating m different sets of alterna-

tives within their respective groups.

5. Conclusions and future work

Based on the weak points of existing consensus measures for GDM by means

of HFLTSs, two consensus measures are defined in this paper in order to capture
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differences among situations in which the previous measures are not able to make

a difference.

On the one hand, a consensus level is defined for the whole group on a specific

alternative as a normalization of the addition of distances from a central opinion

to the opinion of each expert of the group, and an analogous definition is given

for a set of several alternatives instead of just one of them. On the other hand,

the consensus level is defined for each expert with respect to the rest of the

group based on the distance between his/her opinion and the central opinion

for both one specific alternative and a set of alternatives.

Additionally, a study is carried out to compare the presented measures with

the similar existing ones and concludes that the measures presented in this

paper are more accurate in situations in which existing measures consider the

level of agreement to be the same but where common sense suggests they should

be different. Moreover, the comparison study also shows that the collective

degree of consensus presented in this paper has a lower time complexity than

the existing measures.

Lastly, a profile of an expert is presented to keep track of the precision and

dissension in his/her assessments with a view to using this information for future

experts selection processes.

Future work will focus on two main directions. From a theoretical point of

view, a dynamical study will be carried out on both the consensus-reaching pro-

cess and the precision-dissension profile of DMs in several GDM processes. In

particular, the proposed consensus measures will be used to measure polariza-

tion in this kind of scenarios. From a practical point of view, all the introduced

concepts are already being implemented in a real case example framed in the

city tourism management field.
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