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Abstract

Many of the existing machine learning algorithms, both supervised and unsupervised, depend on the quality of the
input characteristics to generate a good model. The amount of these variables is also important, since performance
tends to decline as the input dimensionality increases, hence the interest in using feature fusion techniques, able to
O produce feature sets that are more compact and higher level. A plethora of procedures to fuse original variables for
(Q\ producing new ones has been developed in the past decades. The most basic ones use linear combinations of the original
variables, such as PCA (Principal Component Analysis) and LDA (Linear Discriminant Analysis), while others find
manifold embeddings of lower dimensionality based on non-linear combinations, such as Isomap or LLE (Linear Locally

Embedding) techniques.

More recently, autoencoders (AEs) have emerged as an alternative to manifold learning for conducting nonlinear
feature fusion. Dozens of AE models have been proposed lately, each with its own specific traits. Although many of
them can be used to generate reduced feature sets through the fusion of the original ones, there also AEs designed with

other applications in mind.

The goal of this paper is to provide the reader with a broad view of what an AE is, how they are used for feature
fusion, a taxonomy gathering a broad range of models, and how they relate to other classical techniques. In addition, a
—iget of didactic guidelines on how to choose the proper AE for a given task is supplied, together with a discussion of the
software tools available. Finally, two case studies illustrate the usage of AEs with datasets of handwritten digits and

breast cancer.
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1. Introduction ANNs have been applied to several machine learning
tasks stly followd 3 ised h. As 3
The development of the first machine learning tech- 2s5%s, TOSLy 10TOWINE & SUDSTVISSC approaci. As was
. . mathematically demonstrated [5] in 1989, a multilayer feed-
niques dates back to the middle of the 20th century, sup- . h .
. . . o forward ANN (MLP) is an universal approximator, hence
ported mainly by previously established statistical meth- . . . . .
their usefulness in classification and regression problems.

ods. By then, early research on how to emulate the func-
tioning of the human brain through a machine was un-
derway. McCulloch and Pitts cell [I] was proposed back
in 1943, and the Hebb rule [2] that the Perceptron [3] is
founded on was stated in 1949. Therefore, it is not sur-
prising that artificial neural networks (ANNs), especially
since the backpropagation algorithm was rediscovered in
1986 by Rumelhart, Hinton and Willians [4], have become
one of the essential models.
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However, a proper algorithm able to train an MLP with
several hidden layers was not available, due to the vanish-
ing gradient [6] problem. The gradient descent algorithm,
firstly used for convolutional neural networks [7] and later
for unsupervised learning [8], was one of the foundations
of modern deep learning [9] methods.

Under the umbrella of deep learning, multiple tech-
niques have emerged and evolved. These include DBNs
(Deep Belief Networks) [10], CNNs ( Convolutional Neural
Networks) [11], RNNs (Recurrent Neural Networks) [12]
as well as LSTMs (Long Short-Term Memory) [13] or AEs
(autoencoders).

The most common architecture in unsupervised deep
learning is that of the encoder-decoder [14]. Some tech-
niques lack the encoder or the decoder and have to com-
pute costly optimization algorithms to find a code or sam-
pling methods to reach a reconstruction, respectively. Un-
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like those, AEs capture both parts in their structure, with
the aim that training them becomes easier and faster. In
general terms, AEs are ANNs which produce codifications
for input data and are trained so that their decodifications
resemble the inputs as closely as possible.

AEs were firstly introduced [I5] as a way of conducting
pretraining in ANNs. Although mainly developed inside
the context of deep learning, not all AE models are nec-
essarily ANNs with multiple hidden layers. As explained
below, an AE can be a deep ANN, i.e. in the stacked AEs
configuration, or it can be a shallow ANN with a single
hidden layer. See Section [2| for a more detailed introduc-
tion to AEs.

While many machine learning algorithms are able to
work with raw input features, it is also true that, for the
most part, their behavior is degraded as the number of
variables grows. This is mainly due to the problem known
as the curse of dimensionality [16], as well as the justifi-
cation for a field of study called feature engineering. En-
gineering of features started as a manual process, relying
in an expert able to decide by observation which variables
were better for the task at hand. Notwithstanding, auto-
mated feature selection [I7] methods were soon available.

Feature selection is only one of the approaches to re-
duce input space dimensionality. Selecting the best sub-
set of input variables is an NP-hard combinatorial prob-
lem. Moreover, feature selection techniques usually evalu-
ate each variable independently, but it is known that vari-
ables that separately do not provide useful information
may do so when they are used together. For this rea-
son other alternatives, primarily feature construction or
extraction [18], emerged. In addition to these two denom-
inations, feature selection and feature extraction, when
dealing with dimensionality reduction it is also frequent
to use other terms. The most common are as follows:

Feature engineering [19]. This is probably the broadest
term, encompassing most of the others. Feature engineer-
ing can be carried out by manual or automated means,
and be based on the selection of original characteristics or
the construction of new ones through transformations.

Feature learning [20)]. Tt is the denomination used when
the process to select among the existing features or con-
struct new ones is automated. Thus, we can perform
both feature selection and feature extraction through algo-
rithms such as the ones mentioned below. Despite the use
of automatic methods, sometimes an expert is needed to
decide which algorithm is the most appropriate depending
on data traits, to evaluate the optimum amount of vari-
ables to extract, etc.

Representation learning [20]. Although this term is some-
times interchangeably used with the previous one, it is
mostly used to refer to the use of ANNs to fully automate
the feature generation process. Applying ANNs to learn
distributed representations of concepts was proposed by

Hinton in [2I]. Today, learning representations is mainly
linked to processing natural language, images and other
signals with specific kinds of ANNs, such as CNNs [11].

Feature selection [29]. Picking the most informative sub-
set of variables started as a manual process usually in
charge of domain experts. It can be considered a special
case of feature weighting, as discussed in [23]. Although in
certain fields the expert is still an important factor, nowa-
days the selection of variables is usually carried out using
computer algorithms. These can operate in supervised or
unsupervised manner. The former approach usually relies
on correlation or mutual information between input and
output variables [24] 25], while the latter tends to avoid
redundancy among features [26]. Feature selection is over-
all an essential strategy in the data preprocessing [27] 22]
phase.

Feature extraction [28]. The goal of this technique is to
find a better data representation for the machine learning
algorithm intended to use, since the original representa-
tion might not be the best one. It can be faced both
manually, in which case the feature construction term is
of common use, and automatically. Some elemental tech-
niques such as normalization, discretization or scaling of
variables, as well as basic transformations applied to cer-
tain data typeql} are also considered within this field. New
features can be extracted by finding linear combinations of
the original ones, as in PCA (Principal Component Anal-
ysis) [29,[30] or LDA (Linear Discriminant Analysis) [31],
as well as nonlinear combinations, like Kernel PCA [32] or
Isomap [33]. The latter ones are usually known as manifold
learning [34] algorithms, and fall in the scope of nonlinear
dimensionality reduction techniques [35]. Feature extrac-
tion methods can also be categorized as supervised (e.g.
LDA) or non-supervised (e.g. PCA).

Feature fusion [36]. This more recent term has emerged
with the growth of multimedia data processing by machine
learning algorithms, especially images, text and sound.
As stated in [36], feature fusion methods aim to combine
variables to remove redundant and irrelevant information.
Manifold learning algorithms, and especially those based
on ANNSs, fall into this category.

Among the existing AE models there are several that
are useful to perform feature fusion. This is the aim of
the most basic one, which can be extended via several
regularizations and adaptations to different kinds of data.
These options will be explored through the present work,
whose aim is to provide the reader with a didactic review
on the inner workings of these distinct AE models and
the ways they can be used to learn new representations of
data.

The following are the main contributions of this paper:

Le.g. Take the original field containing a date and divide it into
three new variables, year, month and day.



A proposal of a global taxonomy of AEs dedicated
to feature fusion.

e Descriptions of these AE models including the nec-
essary mathematical formulation and explanations.

e A theoretical comparison between AEs and other
popular feature fusion techniques.

e A comprehensive review of other AE models as well
as their applications.

e A set of guidelines on how to design an AE, and
several examples on how an AE may behave when
its architecture and parameters are altered.

e A summary of the available software for creating
deep learning models and specifically AEs.

Additionally, we provide a case study with the well
known dataset MNIST [37], which gives the reader some
intuitions on the results provided by an AE with differ-
ent architectures and parameters. The scrips to reproduce
these experiments are provided in a repository, and their
use will be further described in Section [Gl

The rest of this paper is structured as follows. The
foundations and essential aspects of AEs are introduced
in Section including the proposal of a global taxon-
omy. Section [3] is devoted to thoroughly describing the
AE models able to operate as feature fusion mechanisms
and several models which have further applications. The
relationship between these AE models and other feature
fusion methods is portrayed in Section [} while applica-
tions of different kinds of AEs are described in Section [l
Section [6] provides a set of guidelines on how to design an
AE for the task at hand, followed by the software pieces
where it can be implemented, as well as the case study with
MNIST data. Concluding remarks can be found in Section
[7l Lastly, an Appendix briefly describes the datasets used
through the present work.

2. Autoencoder essentials

AEs are ANNSE| with a symmetric structure, where
the middle layer represents an encoding of the input data.
AEs are trained to reconstruct their input onto the out-
put layer, while verifying certain restrictions which pre-
vent them from simply copying the data along the net-
work. Although the term autoencoder is the most popular
nowadays, they were also known as autoassociative neural
networks [38], diabolo networks [39] and replicator neural
networks [40].

In this section the foundations of AEs are introduced,
describing their basic architecture as ANNs as well as the
activation functions regularly applied in their layers. Next,

2Strictly speaking not all AEs are ANNs, but here our interest is
in those since they are the most common ones.

AEs are grouped into four types according to their archi-
tecture. This is followed by our proposed taxonomy for
AEs, which takes into account the properties these induce
in codifications. Lastly, a summary of their habitual ap-
plications is provided.

2.1. General structure

The basic structure of an AE, as shown in Fig. [T} in-
cludes an input x which is mapped onto the encoding y
via an encoder, represented as function f. This encoding
is in turn mapped to the reconstruction r by means of a
decoder, represented as function g.

OO

Figure 1: General autoencoder structure

This structure is captured in a feedforward neural net-
work. Since the objective is to reproduce the input data on
the output layer, both x and r have the same dimension. y,
however, can be higher-dimensional or lower-dimensional,
depending on the properties desired. The AE can also have
as many layers as needed, usually placed symmetrically in
the encoder and decoder. Such a neural architecture can
be observed in Fig.

Figure 2: A possible neural architecture for an autoencoder with a
2-variable encoding layer. W denotes weight matrices.

In this case the encoder is made up of three layers, in-
cluding the middle encoding one, while the decoder starts
in the middle one and also spans three layers.

2.2. Activation functions of common use in autoencoders

A unit located in any of the hidden layers of an ANN
receives several inputs from the preceding layer. The unit
computes the weighted sum of these inputs and eventually
applies a certain operation, the so-called activation func-
tion, to produce the output. The nonlinearity behavior of
most ANNs is founded on the selection of the activation
function to be used. Fig. [3] shows the graphical appear-
ance of six of the most popular ones.
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Figure 3: Common activation functions in ANNSs.

The activation functions shown in the first row are
rarely used on AEs when it comes to learning higher level
features, since they rarely provide useful representations.
An undercomplete AE having one hidden layer made up
of k linear activation units (Eq.[I) and that minimizes the
sum of squared errors is known to be equivalent to ob-
taining the k principal components of the feature space
via PCA [41H43]. AEs using binary/boolean activations
(Eq. |2) [44], [45] are mostly adopted for educational uses,
as McCulloch and Pitts [I] cells are still used in this con-
text. However, they also have some specific applications,
such as data hashing as described in subsection [5.4]

(1)
(2)
Note that square brackets denote Iverson’s convention [46]
and evaluate to 0 or 1 according to the truthiness of the
proposition.

Rectified linear units (ReLU, Fig. Eq. [3)) are popu-
lar in many deep learning models, but it is an activation
function that tends to degrade the AE performance. Since
it always outputs 0 for negative inputs, it weakens the pro-
cess of reconstructing the input features onto the outputs.
Although they have been successfully used in [47) 48], the
authors had to resort to a few detours. A recent alternative
which combines the benefits of ReLU while circumventing
these obstacles is the SELU function (Scaled Exponential
Linear Units, Fig. [31] Eq. [4]) [49]. There are already some
proposals of deep AEs based on SELU such as [50].

Srelu(2) = x[z > 0]

sselu(‘r) =A {

Slinear(x) =

Sbinary('r) = [.I > 0]

(3)
e T T= , where A >1  (4)
T x>0

Sigmoid functions are undoubtedly the most common
activations in AEs. The standard logistic function, popu-
larly known simply as sigmoid (Fig. Eq. , is probably
the most frequently used. The hyperbolic tangent (Fig.
Eq. @ is also a sigmoid function, but it is symmetric about
the origin and presents a steeper slope. According to Le-
Cun [51] the latter should be preferred, since its derivative
produces stronger gradients that the former.

S (2) = 0(2) = - — )
Stanh () = tanh(z) = Z:;% (6)

When designing AEs with multiple hidden layers, it
is possible to use different activation functions in some of
them. This would result in AEs combining the character-
istics of several of these functions.

2.8. Autoencoder groups according to network structure

AEs could be grouped according to disparate princi-
ples, such as their structure, the learning algorithm they
use, the loss function that guides the update of weights,
their activation function or the field they are applied. In
this section we focus on the first criterion, while the others
will be further covered in following sections.

As explained above, AEs are ANNs with a symmetrical
structure. The decoder and the encoder have the same
number of layers, with the number of units per layer in
reverse order. The encoding layer is shared by both parts.
Depending on the dimensionality of the encoding layer,
AEs are said to be:

o Undercomplete, if the encoding layer has a lower di-
mensionality than the input. The smaller number
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Figure 4: Autoencoder models according to their structure.

of units imposes a restriction, so during training the
AE is forced to learn a more compact representa-
tion. This is achieved by fusing the original features
according to the weights assigned through the learn-
ing process.

o Quvercomplete, otherwise. An encoding layer having
the same or more units than the input could allow
the AE to simply learn the identity function, copying
the input onto the output. To avoid this behavior,
usually other restrictions are applied as will be ex-
plained later.

Although the more popular AE configuration for di-
mensionality reduction is undercomplete, an overcomplete
AE with the proper restrictions can also produce a com-
pact encoding as explained in subsection

In addition to the number of units per layer, the struc-
ture of an AE is also dependent of the number of layers.
According to this factor, an AE can be:

e Shallow, when it only comprises three layers (input,
encoding and output). It is the simplest AE model,
since there is only one hidden layer (the encoding).

e Deep, when it has more than one hidden layer. This
kind of AE can be trained either layer by layer, as
several shallow stacked AEs, or as a deep ANN [52].

These four types of AEs are visually summarized in
Fig. Shallow AEs are on the top row and deep ones
in the bottom, while undercomplete AEs are on the left
column and overcomplete on the right one.

2.4. Autoencoder taxonomy

As stated before, a taxonomy of AEs can be built ac-
cording to different criteria. Here the interest is mainly on
the properties of the inferred model regarding the feature
fusion task. Conforming to this principle, we have elab-
orated the taxonomy shown in Fig. As can be seen,
there are four main categories in this taxonomy:

Lower dimensionality. High-dimensional data can be an
issue when using most classifiers and especially shallow
neural networks, since they do not perform any kind of
high-level feature learning and are then forced to optimize
a notable amount of parameters. This task may be eased
by just lowering the dimensionality of the data, and this
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Figure 5: Taxonomy: most popular autoencoders classified according to the charasteristics they induce in their encodings

is the aim of the basic AE, which is thoroughly explained
in Section [3.1} Decreasing the dimensionality of specific
types of data, such as images or sequences, can be treated
by domain specific AEs detailed in Section

Regularization. Sometimes, learned features are required
to present special mathematical properties. AEs can be
easily modified in order to reach encodings that verify
them. The main regularizations that can be applied to
AEs are portrayed in Section

Noise tolerance. In addition to different properties, a de-
sirable trait for the encoded space may be robustness in
the face of noisy data. Two distinct approaches to this
problem using AEs are gathered in Section |3.3

Generative model. The transformation from the original
feature space onto the encoded space may not be the main
objective of an AE. Occasionally it will be useful to map
new samples in the encoded space onto the original fea-
tures. In this case, a generative model is needed. Those
based in AEs are specified in Section [3.5]

2.5. Usual applications

The term autoencoder is very broad, referring to mul-
tiple learning models based on both fully-connected feed-
forward ANNs and other types of ANNs, and even models
completely unrelated to that structure. Similarly, the ap-
plication fields of AEs are also varied. In this work we pay
attention specifically to AEs whose basic model is that of
an ANN. In addition, we are especially interested in those
whose objective is the fusion of characteristics by means
of nonlinear techniques.

Reducing the dimensionality of a feature space using
AEs can be achieved following disparate approaches. Most
of them are reviewed in Section [3| starting with the basic
AE model, then advancing to those that include a regu-
larization, that present noise tolerance, etc. The goal is to
provide a broad view of the techniques that AEs rely on
to perform feature fusion.

Besides feature extraction, which is our main focus,
there are AE models designed for other applications such

as outlier detection, hashing, data compression or data
generation. In Sections [3.5] and some of these AEs
will be briefly portrayed, and in Section [5| many of their
applications will be shortly reviewed.

3. Autoencoders for feature fusion

As has been already established, AEs are tools origi-
nally designed for finding useful representations of data by
learning nonlinear ways to combine their features. Usually,
this leads to a lower-dimensional space, but different modi-
fications can be applied in order to discover features which
satisfy certain requirements. All of these possibilities are
discussed in this section, which begins by establishing the
foundations of the most basic AE, and later encompasses
several diverse variants, following the proposed taxonomy:
those that provide regularizations are followed by AEs pre-
senting noise tolerance, generative models are explained af-
terwards, then some domain specific AEs and finally two
variations which do not fit into any previous category.

3.1. Basic autoencoder

The main objective of most AEs is to perform a feature
fusion process where learned features present some desired
traits, such as lower dimensionality, higher sparsity or de-
sirable analytical properties. The resulting model is able
to map new instances onto the latent feature space. All
AEs thus share a common origin, which may be called the
basic AE [53].

The following subsections define the structure of a basic
AE, establish their objective function, describe the train-
ing process while enumerating the necessary algorithms for
this task, and depict how a deep AE can be initialized by
stacking several shallow ones.

8.1.1. Structure

The structure of a basic AE, as shown in the previ-
ous section, is that of a feed forward ANN where layers
are of symmetrical amount of units. Layers need not be
symmetrical in the sense of activation functions or weight
matrices.



The simplest AE consists of just one hidden layer, and
is defined by two weight matrices and two bias vectors:

y=f(z)
r=g(y) =

sy (W 4 b)), (7)
s2(WPy + b)), (8)

where s; and sy denote the activation functions, which
usually are nonlinear.

Deep AEs are the natural extension of this definition
to a higher number of layers. We will call the composi-
tion of functions in the encoder f, and the composition of
functions in the decoder g.

3.1.2. Objective function
AEs generally base their objective function on a per-
instance loss function £ : R? x R? — R:

=> L,

zeS

T (W, b; S) (g0 f)(@)) (9)
where f and g are the encoding and decoding functions
determined by the weights W and biases b, assuming acti-
vation functions are fixed, and S is a set of samples. The
objective of an AE is thus to optimize W and b in order
to minimize J.

For example, a typical loss function is the mean squared
error (MSE):

Laise(u,v) = Ju— o3 - (10)

Notice that multiplying by constants or performing the
square root of the error induced by each instance does not
alter the process, since these operations preserve numerical
order. As a consequence, the root mean squared error
(RMSE) is an equivalent loss metric.

When a probabilistic model is assumed for the input
samples, the loss function is chosen as the negative log-
likelihood for the example z given the output (go f)(x) [54].
For instance, when input values are binary or modeled as
bits, cross-entropy is usually the preferred alternative for
the loss function:

d

Zuk logvg + (1 — ug) log(1 —vg) . (11)
k=1

Leg(u,v)

3.1.3. Training

Usual algorithms for optimizing weights and biases in
AEs are stochastic gradient descent (SGD) [55] and some
of its variants, such as AdaGrad [56], RMSProp [57] and
Adam [58]. Other applicable algorithms which are not
based on SGD are L-BFGS and conjugate gradient [59].

The foundation of these algorithms is the technique of
gradient descent [60]. Intuitively, at each step, the gradi-
ent of the objective function with respect to the parame-
ters shows the direction of steepest slope, and allows the
algorithm to modify the parameters in order to search for
a minimum of the function.

In order to compute the necessary gradients, the back-
propagation algorithm [4] is applied. Backpropagation
performs this computation by calculating several interme-
diate terms from the last layer to the first.

AEs, like many other machine learning techniques, are
susceptible to overfitting of the training data. To avoid
this issue, a regularization term can be added to the ob-
jective function which causes a weight decay [61]. This
improves the generalization ability and encourages smaller
weights that produce good reconstructions. Weight decay
can be introduced in several ways, but essentially consists
in a term depending on weight sizes that will attempt to
limit their growth. For example, the resulting objetive
function could be

= L(z

zeS

T (W, b; S) NHAY wi  (12)

where w; traverses all the weights in W and A is a param-
eter determining the magnitude of the decay.

Further restrictions and regularizations can be applied.
A specific constraint that can be imposed is to tie the
weight matrices symmetrically, that is, in a shallow AE,
to set W) = (W®)T and the natural extension to deep
AEs. This allows to optimize a lower amount of param-
eters, so the AE can be trained faster, while maintaining
the desired architecture.

8.1.4. Stacking

When AEs are deep, the success of the training process
relies heavily on a good weight initialization, since there
can be from tens to hundreds of thousands of them. This
weight initialization can be performed by stacking succes-
sive shallow AEs [54], that is, training the AE layer by
layer in a greedy fashion.

The training process begins by training only the first
hidden layer as the encoding of a shallow AE, as shown by
the network on the left of Fig.[6] After this step, the second
hidden layer is trained, using the first hidden layer as input
layer, as displayed on the right. Inputs are computed via a
forward pass of the original inputs through the first layer,
with the weights determined during the previous stage.
Each successive layer up to the encoding is trained the
same way.

After this layer-wise training, initial weights for all lay-
ers preceding and including the encoding layer will have
been computed. The AE is now “unrolled”, i.e. the rest
of layers are added symetrically with weight matrices re-
sulting from transposing the ones from each corresponding
layer. For instance, for the AE trained in Fig. [6] the un-
rolled AE would have the structure shown in Fig.

Finally, a fine-tuning phase can be performed, optimiz-
ing the weights by backpropagating gradients through the
complete structure with training data.

3.2. Regularization

Encodings produced by basic AEs do not generally
present any special properties. When learned features are



Figure 6: Greedy layer-wise training of a deep AE with the archi-
tecture shown in Fig Units drawn in black designate layers of
the final AE, and gray ones indicate layers that are not part of the
unrolled AE during the fine-tuning phase.

required to verify some desirable traits, some regulariza-
tions may be achieved by adding a penalization for certain
behaviors 2 to the objetive function:

=> Lz,

€S

T (W, b; ) () + AW, b; S) . (13)

3.2.1. Sparse autoencoder

Sparsity in a representation means most values for a
given sample are zero or close to zero. Sparse represen-
tations are resembling of the behavior of simple cells in
the mammalian primary visual cortex, which is believed
to have evolved to discover efficient coding strategies [62].
This motivates the use of transformations of samples into
sparse codes in machine learning. A model of sparse cod-
ing based on this behavior was first proposed in [63].

Sparse codes can also be overcomplete and meaningful.
This was not necessarily the case in basic AEs, where an
overcomplete code would be trained to just copy inputs
onto outputs.

When sparsity is desired in the encoding generated by
an AE, activations of the encoding layer need to have low
values in average, which means units in the hidden layer
usually do not fire. The activation function used in those
units will determine this low value: in the case of sigmoid
and ReLU activations, low values will be close to 0; this
value will be -1 in the case of tanh, and —A« in the case
of a SELU.

The common way to introduce sparsity in an AE is to
add a penalty to the loss function, as proposed in [64] for
Deep Belief Networks. In order to compare the desired
activations for a given unit to the actual ones, these can
be modeled as a Bernoulli random variable, assuming a
unit can only either fire or not. For a specific input z, let

pi = |S| Zfz (14)

zeS

be the average activation value of an unit in the hidden
layer, where f = (f1, f2, ... fc) and ¢ is the number of units
in the encoding. p; will be the mean of the associated
Bernoulli distribution.

Let p be the desired average activation. The Kullback-
Leibler divergence [65] between the random variable de-
fined by unit 4 and the one corresponding to the desired
activations will measure how different both distributions
are [66]:

~plg 1L (15)

. P
KL(pl|p:) = plog — + (1
Pi — Pi
Fig. [7|shows the penalty caused by Kullback-Leibler diver-
gence for a hidden unit when the desired average activa-
tion is p = 0.2. Notice that the penalty is very low when
the average activation is near the desired one, but grows
rapidly as it moves away and tends to infinity at 0 and 1.
The resulting penalization term for the objective func-
tion is
Qsar(W, b;.5) ZKL pllpi) (16)
where the average activation value p; depends on the pa-
rameters of the encoder and the training set S.

Kullback-Leibler divergence

KL(plIP)
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Figure 7: Values of Kullback-Leibler divergence for a unit with av-
erage activation p;.

There are other modifications that can lead an encoder-
decoder architecture to produce a sparse code. For exam-
ple, applying a sparsifying logistic activation function in
the encoding layer of a similar energy-based model, which
forces a low activation average [67], or using a Sparse
Encoding Symmetric Machine [68] which optimizes a loss
function with a different sparsifying penalty.

3.2.2. Contractive autoencoder

High sensitivity to perturbations in input samples could
lead an AE to generate very different encodings. This is
usually inconvenient, which is the motivation behind the



contractive AE. It achieves local invariance to changes in
many directions around the training samples, and is able
to more easily discover lower-dimensional manifold struc-
tures in the data.

Sensitivity for small changes in the input can be mea-
sured as the Frobenius norm |||z of the Jacobian matrix
of the encoder Jy:
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The higher this value is, the more unstable the encodings
will be to perturbations on the inputs.

A regularization is built from this measure into the
objective function of the contractive AE:

Qoas(W,b;.8) = [l7¢(@)]13 - (18)
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A particular case of this induced contraction is the us-
age of L2 weight decay with a linear encoder: in this situa-
tion, the only way to produce a contraction is to maintain
small weights. In the nonlinear case, however, contraction
can be encouraged by pushing hidden units to the satu-
rated region of the activation function.

The contractive AE can be sampled [69], that is, it
can generate new instances from the learned model, by
using the Jacobian of the encoder to add a small noise to
another point and computing its codification. Intuitively,
this can be seen as moving small steps along the tangent
plane defined by the encoder in a point on the manifold
modeled.

3.8. Noise tolerance

A standard AE can learn a latent feature space from a
set of samples, but it does not guarantee stability in the
presence of noisy instances, nor it is able to remove noise
when reconstructing new samples. In this section, two
variants that tackle this problem are discussed: denoising
and robust AEs.

3.3.1. Denoising autoencoder

A denoising AE or DAE [70] learns to generate robust
features from inputs by reconstructing partially destroyed
samples. The use of AEs for denoising had been intro-
duced earlier [71], but this technique leverages the denois-
ing ability of the AE to build a latent feature space which
is more resistant to corrupted inputs, thus its applications
are broader than just denoising.

The structure and parameters of a denoising AE are
identical to those of a basic AE. The difference here lies in a
stochastic corruption of the inputs which is applied during
the training phase. The corrupting technique proposed in
[70], as illustrated by Fig. [8] is to randomly choose a fixed
amount of features for each training sample and set them
to 0. The reconstructions of the AE are however compared

Figure 8: Illustration of the training phase of a denoising AE. For
each input sample, some of its components are randomly selected
and set to 0, but the reconstruction error is computed by comparing
to the original, non-corrupted data.

to the original, uncorrupted inputs. The AE will be thus
be trained to guess the missing values.

Formally, let ¢(Z|z) be a stochastic mapping perform-
ing the partial destruction of values described above, the
denoising AE recieves & ~ ¢(Z|x) as input and minimizes

Toas(W,b;9) = Eargala) [£(z, (g0 f)(E)] - (19)
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A denoising AE does not need further restrictions or
regularizations in order to learn a meaningful coding from
the data, which means it can be overcomplete if desired.
When it has more than one hidden layer, it can be trained
layer-wise. For this to be done, uncorrupted inputs are
computed as outputs of the previous layers, these are then
corrupted and provided to the network. Note that after
the denoising AE is trained, it is used to compute higher-
level representations without corrupting the input data.

The training technique allows for other possible cor-
ruption processes, apart from forcing some values to 0 [72].
For instance, additive Gaussian noise

&~ N(z, %), (20)

which randomly offsets each component of x with the same
variance, or salt-and-pepper noise, which sets a fraction of
the elements of the input to their minimum or maximum
value, according to a uniform distribution.

3.3.2. Robust autoencoder

Training an AE to recover from corrupted data is not
the only way to induce noise tolerance in the generated
model. An alternative is to modify the loss function used
to minimize the reconstruction error in order to dampen
the sensitivity to different types of noise.

Robust stacked AEs [73] apply this idea, and manage to
be less affected by non-Gaussian noise than standard AEs.
They achieve this by using a different loss function based



on correntropy, a localized similarity measure defined in

7).

(21)
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and o is a parameter for the kernel K.

Correntropy specifically measures the probability den-
sity that two events are equal. An advantage of this met-
ric is it being less affected by outliers than MSE. Robust
AEs attempt to maximize this measure (equivalently, min-
imize negative correntropy), which translates in a higher
resilience to non-Gaussian noise.

2o (22)

3.4. Domain specific autoencoders

The following two AEs are based on the standard type,
but are designed to model very specific kinds of data, such
as images and sequences.

Convolutional autoencoder [75]. Standard AEs do not ex-
plicitly consider the 2-dimensional structure when process-
ing image data. Convolutional AEs solve this by making
use of convolutional layers instead of fully connected ones.
In these, a global weight matrix is used and the convolution
operation is applied in order to forward pass values from
one layer to the next. The same matrix is flipped over
both dimensions and used for the reconstruction phase.
Convolutional AEs can also be stacked and used to initial-
ize CNNs [76], which are able to perform classification of
images.

LSTM autoencoder [77]. A basic AE is not designed to
model sequential data, an LSTM AE achieves this by plac-
ing Long-Short-Term Memory (LSTM) [78] units as en-
coder and decoder of the network. The encoder LSTM
reads and compresses a sequence into a fixed-size repre-
sentation, from which the decoder attempts to extract the
original sequence in inverse order. This is especially useful
when data is sequential and large, for example video data.
A further possible task is to predict the future of the se-
quence from the representation, which can be achieved by
attaching an additional decoder trained for this purpose.

3.5. Generative models

In addition to the models already described, which es-
sentially provide different mechanisms to reduce the di-
mensionality of a set of variables, the following ones also
produce a generative model from the training data. Gen-
erative models learn a distribution in order to be able to
draw new samples, different from those observed. AEs
can generally reconstruct encoded data, but are not nec-
essarily able to build meaningful outputs from arbitrary
encodings. Variational and adversarial AEs learn a model
of the data from which new instances can be generated.
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Variational autoencoder [79]. This kind of AE applies a
variational Bayesian [80] approach to encoding. It assumes
that a latent, unobserved random variable y exists, which
by some random process leads to the observations, x. Its
objective is thus to approximate the distribution of the
latent variable given the observations. Variational AEs re-
place deterministic functions in the encoder and decoder
by stochastic mappings, and compute the objective func-
tion in virtue of the density functions of the random vari-
ables:

Lyvag (0, ¢;x)
KL(g4(y[%)llpo(¥)) — Eq, (y1x) [log po(x|y)]

where ¢ is the distribution approximating the true latent
distribution of y, and 6, ¢ are the parameters of each dis-
tribution. Since variational AEs allow sampling from the
learned distribution, applications usually involve generat-
ing new instances [81], [82].

(23)

Adversarial autoencoder [83]. Tt brings the concept of Gen-
erative Adversarial Networks [84] to the field of AEs. It
models the encoding by imposing a prior distribution, then
training a standard AE and, concurrently, a discriminative
network trying to distinguish codifications from samples
from the imposed prior. Since the generator (the encoder)
is trained to fool the discriminator as well, encodings will
tend to follow the imposed distribution. Therefore, adver-
sarial AEs are also able generate new meaningful samples.

Other generative models based on similar principles are
Variational Recurrent AEs [85], PixelGAN AEs [86] and
Adversarial Symmetric Variational AEs [87].

3.6. Other autoencoders farther from feature fusion

As can be seen, AEs can be easily altered to achieve
different properties in their encoding. The following are
some AEs which do not fall into any previous category.

Relational autoencoder. Basic AEs do not explicitly con-
sider the possible relations among instances. The rela-
tional AE [88] modifies the objective function to take into
account the fidelity of the reconstruction of relationships
among samples. Instead of just adding a penalty term, the
authors propose a weighted sum of the sample reconstruc-
tion error and the relation reconstruction error. Notice
that this is not the only variation named “relational au-
toencoder” by its authors, different but identically named
models are commented in sections [3.7] and [l

Discriminative autoencoder. Introduced in [89], the dis-
criminative AE uses the class information of instances in
order to build a manifold where positive samples are gath-
ered and negative samples are pushed away. As a conse-
quence, this AE performs better reconstruction of positive
instances than negative ones. It achieves this by optimiz-
ing a different loss function, specifically the hinge loss func-
tion used in metric learning. The main objective of this
model is object detection.



3.7. Autoencoder-based architectures for feature learning

The basic AE can also be used as building block or in-
spiration for other, more complex architectures dedicated
to feature fusion. This section enumerates and briefly in-
troduces the most relevant ones.

(a) AE tree. Triangles represent decision trees.

(b) Dual AE. The encodings are coupled by an additional
penalty term, represented as a diamond.

(I

[

(c¢) Recursive AE (left), unfolded recursive AE (right)

Figure 9: Illustrations of autoencoder-based architectures. Each
rectangle represents a layer, dark gray fill represents an input, light
gray represents output layers and white objects represent hidden lay-
ers.

Autoencoder trees [90] (Fig. are encoder-decoder
architectures, inspired by neural AEs, where the encoder
as well as the decoder are actually decision trees. These
trees use soft decision nodes, which means they propagate
instances to all their children with different probabilities.

A dual-autoencoder architecture [91] (Fig.[0b]) attempts
to learn two latent representations for problems where
variables can be treated as instances and viceversa, e.g.
predicting customers’ recommendations of items. These
two representations are linked by an additional term in the
objective function which minimizes their deviation from
the training data.

The relational or “cross-correlation” AE defined in [92)
incorporates layers where units are combined by multipli-
cation instead of by a weighted sum. This allows it to
represent co-ocurrences among components of its inputs.
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A recursive AE [93] (Fig. is a tree-like architecture
built from AEs, in which new pieces of input are intro-
duced as the model gets deeper. A standard recursive AE
attempts to reconstruct only the direct inputs of each en-
coding layer, whereas an unfolding recursive AE [94] recon-
structs all previous inputs from each encoding layer. This
architecture is designed to model sentiment in sentences.

4. Comparison to other feature fusion techniques

AEs are only several of a very diverse range of feature
fusion methods [36]. These can be grouped according to
whether they perform supervised or unsupervised learning.
In the first case, they are usually known as distance metric
learning techniques [95]. Some adversarial AEs, as well as
AEs preserving class neighborhood structure [96], can be
sorted into this category, since they are able to make use of
the class information. However, this section focuses on the
latter case, since most AEs are unsupervised and therefore
share more similarities with this kind of methods.

A dimensionality reduction technique is said to be con-
veg if it optimizes a function which does not have any local
optima, and it is nonconvex otherwise [97]. Therefore, a
different classification of these techniques is into convex
and nonconvex approaches. AEs fall into the nonconvex
group, since they can attempt to optimize disparate ob-
jective functions, and these may present more than one
optimum. AEs are also not restrained to the dimensional-
ity reduction domain, since they can produce sparse codes
and other meaningful overcomplete representations.

Lastly, feature fusion procedures can be carried out by
means of linear or nonlinear transformations. In this sec-
tion, we aim to summarize the main traits of the most
relevant approaches in both of these situations, and com-
pare them to AEs.

4.1. Linear approaches

Principal component analysis is a statistical technique
developed geometrically by Pearson [29] and algebraically
by Hotelling [30]. It consists in the extraction of the princi-
pal components of a vector of random variables. Principal
components are linear combinations of the original vari-
ables in a specific order, so that the first one has maximum
variance, the second one has maximum possible variance
while being uncorrelated to the first (equivalently, orthogo-
nal), the third has maximum possible variance while being
uncorrelated to the first and second, and so on. A modern
analytical derivation of principal components can be found
in [98].

The use of PCA for dimensionality reduction is very
common, and can lead to reasonably good results. It is
known that AEs with linear activations that minimize the
mean quadratic error learn the principal components of
the data [42]. From this perspective, AEs can be regarded
as generalizations of PCA. However, as opposed to PCA,
AEs can learn nonlinear combinations of the variables and
even overcomplete representations of data.



Fig. [10] shows a particular occurrence of these facts in
the case of the MNIST dataset [37]. Row 1 shows several
test samples and the rest display reconstructions built by
PCA and some AEs. As can be inferred from rows 2 and 3,
linear AEs which optimize MSE learn an approximation of
PCA. However, just by adjusting the activation functions
and the objective function of the neural network one can
obtain superior results (row 4). Improvements over the
standard AE such as the robust AE (row 5) also provide
higher quality in their reconstructions.
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Figure 10: Row 1 shows test samples, second row corresponds to
PCA reconstructions, the third one shows those from a linear AE
optimizing MSE, row 4 displays reconstructions from a basic AE
with tanh activation and cross-entropy as loss function, and last row
corresponds to a robust AE.

A procedure similar to PCA but from a different the-
oretical perspective is Factor Analysis (FA) [99], which
assumes a set of latent variables or factors which are not
observable but are linearly combined to produce the ob-
served variables. The difference between PCA and FA is
similar to that between the basic AE and the variational
AE: the latter assumes that hypothetical, underlying vari-
ables exist and cause the observed data. Variational AEs
and FA attempt to find the model that best describes these
variables, whereas the basic AE and PCA only aim for a
lower-dimensional representation.

Linear Discriminant Analysis (LDA) [100] is a super-
vised statistical method to find linear combinations of fea-
tures that achieve good separation of classes. It makes
some assumptions of normality and homoscedasticity over
the data, and projects samples onto new coordinates that
best discriminate classes. It can be easily seen that AEs
are very different in theory to this method: they usually
perform unsupervised learning, and they do not neces-
sarily make previous assumptions of the data. In con-
trast, AEs may not find the best separation of classes but
they might encode further meaningful information from
the data. Therefore, these techniques may be convenient,
each in very different types of problems.

4.2. Nonlinear approaches

Kernel PCA [32] is an extension of PCA which applies
kernel methods in order to extract nonlinear combinations
of variables. Since principal components can be computed
by projecting samples onto the eigenvectors of the covari-
ance matrix, the kernel trick can be applied in order to
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calculate the covariance matrix of the data in a higher-
dimensional space, given by the kernel function. There-
fore, kernel PCA can compute nonlinear combinations of
variables and overcomplete representations. The choice of
kernel, however, can determine the success of the method
and may behave differently with each problem, and hence
AEs are a more general and easily applicable framework
for nonlinear feature fusion.

Multidimensional Scaling (MDS) [101] is a well known
technique and a foundation for other algorithms. It con-
sists in finding new coordinates in a lower-dimensional
space, while maintaining relative distances among data
points as accurately as possible. For this to be achieved,
it computes pairwise distances among points and then es-
timates an origin or zero point for these, which allows to
transform relative distances into absolute distances that
can be fitted into a real Euclidean space. Sammon map-
ping [102] modifies the classical cost function of MDS, in
an attempt to similarly weigh retaining large distances as
well as small ones. It achieves better preservation of lo-
cal structure than classic MDS, at the cost of giving more
importance to very small distances than large ones.

The approach of MDS to nonlinear feature fusion is
opposite to that of AEs, which generally do not directly
take into account distances among pairs of samples, and
instead optimize a global measure of fitness. However, the
objective function of an AE can be combined with that
of MDS in order to produce a nonlinear embedding which
considers pairwise distances among points [103].

Isomap [33] is a manifold learning method which ex-
tends MDS in order to find coordinates that describe the
actual degrees of freedom of the data while preserving dis-
tances among neighbors and geodesic distances between
the rest of points. In addition, Locally Linear Embedding
(LLE) [104] has a similar goal, to learn a manifold which
preserves neighbors, but a very different approach: it lin-
early reconstructs each point from its neighbors in order
to maintain the local structure of the manifold.

Both of these techniques can be compared to the con-
tractive AE, as it also attempts to preserve the local be-
havior of the data in its encoding. Denoising AEs may also
be indirectly forced to learn manifolds, when they exist,
and corrupted examples will be projected back onto their
surface [(2]. However, AEs are able to map new instances
onto the latent space after they have been trained, a task
Isomap and LLE are not designed for.

Laplacian Eigenmaps [105] is a framework aiming to re-
tain local properties as well. It consists in constructing an
adjacency graph where instances are nodes and neighbors
are connected by edges. Then, a weight matrix similar to
an adjacency matrix is built. Last, eigenvalues and eigen-
vectors are obtained for the Laplacian matrix associated
to the weight matrix, and those eigenvectors (except 0)
are used to compute new coordinates for each point. As
previously mentioned, AEs do not usually consider the lo-
cal structure of the data, except for contractive AEs and
further regularizations which incorporate measures of local



properties into the objective function, such as Laplacian
AEs [106].

A Restricted Boltzmann Machine (RBM) [107], intro-
duced originally as harmonium in [108], is an undirected
graphical model, with one visible layer and one hidden
layer. They are defined by a joint probability distribu-
tion determined by an energy function. However, com-
puting probabilities is unfeasible since the distribution is
intractable, and they have been proved to be hard to sim-
ulate [I09]. Instead, Contrastive Divergence [110] is used
to train an RBM. RBMs are an alternative to AEs for
greedy layer-wise initialization of weights in ANNs includ-
ing AEs. AEs, however, are trained with more classical
methods and are more easily adaptable to different tasks
than RBMs.

5. Applications in feature learning and beyond

The ability of AEs to perform feature fusion is use-
ful for easing the learning of predictive models, improving
classification and regression results, and also for facilitat-
ing unsupervised tasks that are harder to conduct in high-
dimensional spaces, such as clustering. Some specific cases
of these applications are portrayed within the following
subsections, including:

e Classification: reducing or transforming the train-
ing data in order to achieve better performance in a
classifier.

e Data compression: training AEs for specific types of
data to learn efficient compressions.

e Detection of abnormal patterns: identification of dis-
cordant instances by analyzing generated encodings.

e Hashing: summarizing input data onto a binary vec-
tor for faster search.

e Visualization: projecting data onto 2 or 3 dimensions
with an AE for graphical representation.

e Other purposes: further applications of AEs.

5.1. Classification

Using any of the AE models described in Section [3| to
improve the output of a classifier is something very com-
mon nowadays. Here only a few but very representative
case studies are referenced.

Classifying tissue images to detect cancer nuclei is a
very complicated accomplishment, due to the large size of
high-resolution pathological images and the high variance
of the fundamental traits of these nuclei, e.g. its shape,
size, etc. The authors of [I11] introduce a method, based
on stacked DAEs to produce higher level and more com-
pact features, which eases this task.

Multimodal/Multiview learning [I12] is a rising tech-
nique which also found considerable support in AEs. The
authors of [I13] present a general procedure named Orthog-
onal Autoencoder for Multi- View. It is founded on DAEs
to extract private and shared latent feature spaces, with an
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added orthogonality constraint to remove unnecessary con-
nections. In [IT4] the authors propose the MSCAE (Mul-
timodal Stacked Contractive Autoencoder), an application-
specific model fed with text, audio and image data to per-
form multimodal video classification.

Multilabel classification [II5] (MLC) is another grow-
ing machine learning field. MLC algorithms have to pre-
dict several outputs (labels) linked to each input pattern.
These are usually defined by a high-dimensional feature
vector and a set of labels as output which tend to be
quite large as well. In [IT16] the authors propose an AE-
based method named C2AE (Canonical Correlated Au-
toEncoder), aimed to learn a compressed feature space
while establishing relationships between the input and out-
put spaces.

Text classification following a semi-supervised approach
by means of AEs is introduced in [II7]. A model called
SSVAE (Semi-supervised Sequential Variational Autoen-
coder) is presented, mixing a Seq2Seq [11§] structure and
a sequential classifier. The authors state that their method
outperforms fully supervised methods.

Classifiers based on AEs can be grouped in ensembles
in order to gain expressive power, but some diversity needs
to be introduced. Several means of doing so, as well as
a proposal for Stacked Denoising Autoencoding (SDAE)
classifiers can be found in [IT9]. This method has set a
new performance record in MNIST classification.

5.2. Data compression

Since AEs are able to reconstruct the inputs given to
them, an obvious application would be compressing large
amounts of data. However, as we already know, the AE
output is not perfect, but an approximate reconstruction
of the input. Therefore, it is useful only when lossy com-
pression is permissible.

This is the usual scenario while working with images,
hence the popularity of the JPEG [120] graphic file format.
It is therefore not surprising that AEs have been success-
fully applied to this task. This is the case of [121], where
the performance of several AE models compressing mam-
mogram image patches is analyzed. A less specific goal
can be found in [122]. It proposes a model of AE named
SWTA AE (Stochastic Winner-Take-All Auto-Encoder),
a variation of the sparse AE model, aimed to work as a
general method able to achieve a variable ratio of image
compression.

Although images could be the most popular data com-
pressed by means of AEs, these have also demonstrated
their capacity to work with other types of information as
well. For instance:

o In [123] the authors suggest the use of AEs to com-
press biometric data, such as blood pressure or heart
rate, retrieved by wearable devices. This way bat-
tery life can be extended while time transmission of
data is reduced.



e Language compression is the goal of ASC (Autoen-
coding Sentence Compression), a model introduced
in [124]. Tt is founded on a variational AE, used
to draw sentences from a language modeled with a
certain distribution.

e High-resolution time series of data, such as measure-
ments taken from service grids (electricity, water,
gas, etc.), tend to need a lot of space. In [125]
the APRA (Adaptive Pairwise Recurrent Encoder)
model is presented, combining an AE and a LSTM
to successfully compress this kind of information.

Lossy compression is assumed to be tolerable in all
these scenarios, so the approximate reconstruction process
of the AE does not hinder the main objective in each case.

5.8. Detection of abnormal patterns

Abnormal patterns are samples present in the dataset
that clearly differ from the remaining ones. The distinc-
tion between anomalies and outliers is usually found in
the literature, although according to Aggarwal [126] these
terms, along with deviants, discordants or abnormalities,
refer to the same concept.

The telemetry obtained from spacecrafts is quite com-
plex, made up of hundreds of variables. The authors of
[1277] propose the use of basic and denoising AEs for fac-
ing anomaly detection taking advantage of the nonlinear
dimensionality reduction ability of these models. The com-
parison with both PCA and Kernel PCA demonstrates the
superiority of AEs in this task.

The technique introduced in [12§] aims to improve the
detection of outliers. To do so, the authors propose to
create ensembles of AEs with random connections instead
of fully connected layers. Their model, named RandNet
(Randomized Neural Network for Outlier Detection), is
compared against four classic outlier detection methods
achieving an outstanding performance.

A practical application of abnormal pattern detection
with AEs is the one proposed in [129]. The authors of this
work used a DAE, trained with a benchmark dataset, to
identify fake twitter accounts. This way legitimate follow-
ers can be separated of those that are not.

5.4. Hashing

Hashing [I30] is a very common technique in comput-
ing, mainly to create data structures able to offer constant
access time to any element (hash tables) and to provide cer-
tain guarantees in cryptography (hash values). A special
family of hash functions are those known as Locality Sen-
sitive Hashing (LSH) [131]. They have the ability to map
data patterns to lower dimensional spaces while maintain-
ing some topological traits, such as the relative distance
between these patterns. This technique is very useful for
some applications, such as similar document retrieval. AEs
can be also applied in these same fields.
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Salakhutdinov and Hinton demonstrated in [132] how
to perform what they call semantic hashing through a
multi-layer AE. The fundamental idea is to restrict the
values of the encoding layer units so that they are binary.
In the example proposed in this study that layer has 128
or 20 units, sequences of ones and zeroes that are inter-
preted as an address. The aim is to facilitate the retrieval
of documents, as noted above. The authors show how this
technique offers better performance than the classic TF-
IDF [133] or LSH.

Although the approach to generate the binary AE is
different from the previous one, since they achieve hashing
with binary AEs helped by MAC (Method of Auziliary
Coordinates) [134], the proposal in [I35] is quite similar.
The encoding layer produces a string of zeroes and ones,
used in this case to conduct fast search of similar images
in databases.

5.5. Data visualization

Understanding the nature of a given dataset can be
a complex task when it posesses many dimensions. Data
visualization techniques [I36] can help analyze the struc-
ture of the data. One way of visualizing all instances in
a dataset is to project it onto a lower-dimensional space
which can be represented graphically.

A particular useful case of AEs are those with a 2 or
3-variable encoding [137]. This allows the generated cod-
ifications of samples to be displayed in a graphical repre-
sentation such as the one in Fig.
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Figure 11: Example visualization of the codifications of a Cancer
dataset generated with a basic AE with weight decay.

The original data [138] has 30 variables describing each
pattern. Each data point is linked to one of two potential
cancer diagnosis (classes), Benign and Malignant. These
have been used in Fig. to better show the separation
between the two classes, but the V1 and V2 variables have
been produced by the AE in an unsupervised fashion. Dif-
ferent projections could be obtained by adjusting the AE
parameters.



5.6. Other applications of autoencoders

Beyond the specific applications within the four previ-
ous categories, which can be considered as usual in terms
of the use of AEs, these find to be useful in many other
cases. The following are just a few specific examples.

Holographic images [139] are a useful resource to store
information in a fast way. However, retrieval of data has
to face a common obstacle as is image degradation by the
presence of speckle noise. In [I40] an AE is trained with
original holographic images as well as with degraded im-
ages, aiming to have a decoder able to reconstruct deteri-
orated examples. The denoising of images is also the goal
of the method introduced in [I41], although in this case
they are medical images and the AE method is founded
on convolutional denosing AEs.

The use of AEs to improve automatic speech recog-
nition (ASR) systems has been also studied in late years.
The authors of [I42] rely on a DAE to reduce the noise and
thus perform speech recognition enhancement. Essentially,
the method gives the deep DAE noisy speech samples as
inputs while the reference outputs are clean. A similar
procedure is followed in [143], although in this case the
problem present in the speech samples is reverberation.
ASR is specially challenging when faced with whispered
speech, as described in [144]. Once more, a deep DAE is
the tool to improve results from classical approaches.

The procedure to curate biological databases is very
expensive, so usually machine learning methods such as
SVD (Singular Value Decomposition) [145] are applied to
help in the process. In [41] this classical approach is com-
pared with the use of deep AEs, reaching as conclusion
that the latter is able to improve the results.

The authors of [146] aim to perform multimodal fusion
by means of deep AEs, specifically proposing a Multimodal
Deep Autoencoder (MDA). The goal is to perform human
pose recovery from video [I47]. To do so, two separate
AEs are used to obtain high-level representations of 2D
images and 3D human poses. Connecting these two AEs,
a two-layer ANN carries out the mapping between the two
representations.

Tagging digital resources, such as movies and products
[148] or even questions in forums [149], helps the users
in finding the information they are interested in, hence
the importance in designing tag recommendation systems.
The foundation of the approach in [I50] is an AE vari-
ation named RSDAE (Relational Stacked Denoising Au-
toencoder). This AE works as a graphical model, combin-
ing the learning of high-level features with relationships
among items.

AEs are also scalable to diverse applications with big
data, where the stacking of networks acquires notable im-
portance [I51]. Multi-modal AEs and Tensor AEs are
some examples of variants developed in this field.
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6. Guidelines, software and examples on autoen-
coder design

This section attempts to guide the user along the pro-
cess of designing an AE for a given problem, reviewing
the range of choices the user has and their utility, then
summarizing the available software for deep learning and
outlining the steps needed to implement an AE. It also
provides a case study with the MNIST dataset where the
impact of several parameters of AEs is explored, as well as
different AE types with identical parameter settings.

6.1. Guidelines

’ Choices when designing AEs ‘

Loss function

Main term

Architecture

| Activations
(o]
S
| (o]
| (eei0]

Cross-entropy

I
il

Correntropy

‘ Convolutional ‘ —‘ Regularizations ‘ —‘ Linear ‘
Sparsity ]

Contraction

Weight decay

Figure 12: Summary of choices when designing an AE

When building an AE for a specific task, it is conve-
nient to take into consideration the modifications studied
in Section [3] There is no need to choose just one of those,
most of them can actually be combined in the same AE.
For instance, one could have a stacked denoising AE with
weight decay and sparsity regularizations. A schematic
summary of these can be viewed in Fig. [12}

Architecture. Firstly, one must define the structure of the
AE, especially the length of the encoding layer. This is a
fundamental step that will determine whether the train-
ing process can lead it to a good codification. If the
length of the encoding is proportionally very low with re-
spect to the number of original variables, training a deep
stacked AE should be considered. In addition, convo-
lutional layers are generally better performant with im-
age data, whereas LSTM encoders and decoders would be
preferable when modeling sequences. Otherwise, fully con-
nected layers should be chosen.

Activations and loss function. Activation functions that
will be applied within each layer have to be decided ac-
cording to the loss function which will be optimized. For
example, a sigmoid-like function such as the logistic or



tanh is generally a reasonable choice for the encoding layer,
the latter being usually preferred due to its greater gradi-
ents. This does not need to coincide with the activation in
the output layer. Placing a linear activation or ReLU at
the output can be sensible when using mean squared error
as reconstruction error, while a logistic activation would
be better combined with the cross-entropy error and nor-
malized data, since it outputs values between 0 and 1.

Regularizations. On top of that, diverse regularizations
may be applied that will lead the AE to improve its en-
coding following certain criteria. It is generally advisable
to add a small weight decay in order to prevent it from
overfitting the training data. A sparse codification is use-
ful in many cases and adds more flexibility to the choice of
structure. Additionally, a contraction regularization may
be valuable if the data forms a lower-dimensional manifold.

As seen in previous sections, AEs provide high flexibil-
ity and can be further modified for very different applica-
tions. In the case that the standard components do not fit
the desired behavior, one must study which of those can
be replaced and how, in order to achieve it.

6.2. Software

There exists a large spectrum of cross-platform, open
source implementations of deep learning methods which
allow for the construction and training of AEs. This sec-
tion summarizes the most popular frameworks, enumer-
ates some specific implementations of AEs, and provides
an example of use where an AE is implemented on top of
one of these frameworks.

6.2.1. Available frameworks and packages

Tensorflow [157]. Developed by Google, Tensorflow has
been the most influential deep learning framework. It is
based on the concept of data flow graphs, where nodes
represent mathematical operations and multidimensional
data arrays travel through the edges. Its core is written in
C++ and interfaces mainly with Python, although there
are APIs for Java, C and Go as well.

Caffe [153]. Originating at UC Berkeley, Caffe is built in
C++ with speed and modularity in mind. Models are de-
fined in a descriptive language instead of a common pro-
gramming language, and trained in a C++ program.

Torch [I54)]. Tt is a Lua library which promises speed and
flexibility, but the most notorious feature is its large ecosys-
tem of community-contributed tutorials and packages.

MXNet [155)]. This project is currently held at the Apache
Incubator for incoming projects into the Apache Founda-
tion. It is written in C++ and Python, and offers APIs in
several additional languages, such as R, Scala, Perl and Ju-
lia. MXNet provides flexibility in the definition of models,
which can be programmed symbolically as well as imper-
atively.

16

Keras [156]. Keras is a higher-level library for deep learn-
ing in Python, and can rely on Tensorflow, Theano, MXNet
or Cognitive Toolkit for the underlying operations. It sim-
plifies the creation of deep learning architectures by pro-
viding several shortcuts and predefined utilities, as well as
a common interface for several deep learning toolkits.

In addition to the previous ones, other well known deep
learning frameworks are Theano [I57], Microsoft Cognitive
Toolkit (CNTKED and Chainer El

Setting various differences apart, all of these frame-
works present some common traits when building AEs.
Essentially, the user has to define the model layer by layer,
placing activations where desired. When establishing the
objective function, they will surely include the most usual
ones, but uncommon loss functions such as correntropy or
some regularizations such as contraction may need to be
implemented additionally.

Very few pieces of software have specialized in the con-
struction of AEs. Among them, there is an implementation
of the sparse AE available in packages Autoencoder [I5§]
and SAENET [159] of the CRAN repository for R, as well
as an option for easily building basic AEs in HQCE The
yadhﬂ library for Python implements denoising AEs and
several ways of stacking AEs.

6.2.2. Example of use

For the purposes of the case study in Section[6.3] some
simple implementations of different shallow AEs have been
developed and published on a public code repository under
a free software licensd’] In order to use these scripts, the
machine will need to have Keras and Tensorflow installed.
This can be achieved from a Python package manager,
such as pip or pipenv, or even general package managers
from some Linux distributions.

In the provided repository, the reader can find four
scripts dedicated to AEs and one to PCA. Among the
first ones, autoencoder.py defines the Keras model for
a given AE type with the specified activation for the en-
coding layer. For its part, utils.py implements regular-
izations and modifications in order to be able to define
basic, sparse, contractive, denoising and robust AEs.

Executable scripts are mnist.py and cancer.py. The
first trains any AE with the MNIST dataset and outputs
a graphical representation of the encoding and reconstruc-
tion of some test instances, whereas the latter needs the
Wisconsin Breast Cancer Diagnosis (WDBC) dataset in
order to train an AE for it. To use them, just call the
Python interpreter with the script as an argument, e.g.
python mnist.py.

Shttps://docs.microsoft.com/cognitive-toolkit/
4https://chainer.org/

Shttp://docs.h20.ai
Shttps://deep-learning-tensorflow.readthedocs.io/
“https://github.com/fdavidcl/ae-review-resources
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In order to modify the learned model in one of these
scripts, the user will need to adjust parameters in the con-
struction of an Autoencoder object. The following is an
example which will define a sparse denoising AE:

dsae = Autoencoder(

input_dim = 784, encoding_dim = 36,

weight_decay = False, sparse = True,
contractive = False, denoising = True,
robust = False, activation = "tanh"

)

Other numerical parameters for each AE type can be fur-
ther customized inside the build method. The training
process of this AE can be launched via a MNISTTrainer
object:

MNISTTrainer (dsae) .train(
optimizer = "adam", epochs = 50,
loss = losses.binary_crossentropy
) .predict_test()

Finally, running the modified script will train the AE and
output some graphical representations.

The Autoencoder class can be reused to train AEs
with other datasets. For this, one would need to imple-
ment funtionality analogous to the MNISTTrainer class,
which loads and prepares data, which is provided to the
AE model to be trained. A different example can be found
in the CancerTrainer class for the WDBC dataset.

6.3. Case study: handwritten digits

In order to offer some insight into the behavior of the
main kinds of AE that can be applied to the same problem,
as well as some of the key points in their configuration, we
can study the resulting codifications and reconstructions
when training them with the well known dataset of hand-
written digits MNIST [37]. To do so, we have trained
several AEs with the 60 000 training instances, and have
obtained reconstructions for the first test instance of each
class. Input values, originally ranging from 0 to 255, have
been scaled to the [0, 1] interval.

By default, the architecture of every AE has been as
follows: a 784-unit input layer, a 36-unit encoding layer
with tanh activation and a 784-unit output layer with sig-
moid activation. They have been trained with the RM-
SProp algorithm for a total of 60 epochs and use binary
cross-entropy as their reconstruction error, except for the
robust AE which uses its own loss function, correntropy.
They are all provided identical weight initializations and
hyperparameters.

Firstly, the performance impact of the encoding length
and the optimizer is studied. Next, changes in the be-
havior of a standard AE due to different activation func-
tions are analyzed. Lastly, the main AE models for fea-
ture fusion are compared sharing a common configuration.
Scripts that were used to generate these results were im-
plemented in Python, with the Keras library over the Ten-
sorflow backend.
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6.3.1. Settings of encoding length

As discussed previously, the number of units in the en-
coding layer can determine whether the AE is able to learn
a useful representation. This fact is captured in Fig.
where an encoding of 16 variables is too small for the shal-
low AE to be successfully trained with the default con-
figuration, but a 36-variable codification achieves reason-
ably good reconstructions. The accuracy of these can be
improved at the cost of enlarging the encodings, as can
be seen with the 81 and 144-variable encodings. Square
numbers were chosen for the encoding lengths for easier
graphical representation, as will be seen in Section
but any other length would have been as valid.

BAESdGENHMERN

oJole)
EE0
REO
rlole)
clcle)
]l
SE0
NN e
ojule)
Ba0

BN ESdGEGENHMER

Figure 13: First row: test samples; Remaining rows: reconstruc-
tions obtained with 16, 36, 81 and 144 units in the encoding layer,
respectively.

6.3.2. Comparison of optimizers

As introduced in Section [3.1.3] AEs can use several op-
timization methods, usually based on SGD. Each variant
attempts to improve SGD in a different way, habitually
by accumulating previous gradients in some way or dy-
namically adapting parameters such as the learning rate.
Therefore, they will mainly differ in their ability to con-
verge and their speed in doing so.

The optimizers used in these examples were baseline
SGD, AdaGrad, Adam and RMSProp. Their progressive
improvement of the objective function through the train-
ing phase is compared in Fig. It is easily observed
that SGD variants vastly improve the basic method, and
Adam obtains the best results among them, being closely
followed by AdaGrad. The speed of convergence seems
slightly higher in Adam as well.

In addition, Fig. provides the reconstructions gen-
erated for some test instances for a basic AE trained with
each of those optimizers. As could be intuitively deduced
by the convergence, or lack thereof, of the methods, SGD
was not capable of finding weights which would recover
any digit. AdaGrad, for its part, did improve on SGD but
its reconstructions are relatively poor, whereas Adam and
RMSProp display superior performance, with little differ-
ence between them.

6.3.3. Comparison of activation functions
Activation functions play an important role in the way
gradients are propagated through the network. In this
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Figure 14: Evolution of the loss function when using several opti-
mizers.

case, we apply four widely used activations in the encod-
ing layer of a basic AE and compare how they affect its
reconstruction ability. Some example results can be seen
in Fig. [16]

Sigmoid and hyperbolic tangent are functions with sim-
ilar properties, but in spite of this they produce remark-
ably dissimilar results. Reconstructions are poor when
using sigmoidal activation, while tanh achieves represen-
tations much closer to the original inputs.

With respect to ReLLU and SELU, the observed results
are surprisingly solid and almost indistinguishable. They
perform slightly better than tanh in the sense that recon-
structions are noticeably sharper. Their good performance
in this case may be due to the nature of the data, which
is restricted to the [0, 1] interval and does not necessarily
show the behavior of these activations in general.

6.3.4. Comparison of the main AE models

It can be interesting to study the different traits the
codifications may acquire when variations on the basic AE
are introduced. The reconstructions produced by six dif-
ferent AE models are shown in Fig.

The basic AE (Fig. and the one with weight decay
(Fig. both generate recognizable reconstructions, al-
though slighly blurry. They however do not produce much
variability among different digits in the encoding layer,
which means they are not making full use of its 36 dimen-
sions. The weight decay corresponds to Eq. [12[ with A set
to 0.01.

The sparse AE has been trained according to Eq.
with an expected activation value of —0.7. Its reconstruc-
tions are not much different from those of the previous
ones, but in this case the encoding layer has much lower
activations in average, as can be appreciated by the darker

representations in Fig. Most of the information is
therefore tightly condensed in a few latent variables.

The contractive AE achieves other interesting proper-
ties in its encoding: it has attempted to model the data as
a lower dimensional manifold, where digits that seem more
similar will be placed closer than those which are very un-
alike. As a consequence, the 0 and the 1 shown in Fig.
have very differing codifications, whereas the 3 and the 8
have relatively similar ones. Intuitively, one would need
to travel larger distances along the learned manifold to go
from a 0 to a 1, than from a 3 to an 8.

The denoising AE is able to eliminate noise from test
instances, at the expense of losing some sharpness in the
reconstruction, as can be seen in Fig. Finally, the
robust AE (Fig. achieves noticeably higher clarity in
the reconstruction and more variance in the encoding than
the standard AEs.

7. Conclusions

As Pedro Domingos states in his famous tutorial [T9],
and as can be seen from the large number of publications
on the subject, feature engineering is the key to obtain
good machine learning models, able to generalize and pro-
vide decent performance. This process consists in choosing
the most relevant subset of features or combining some
of them to create new ones. Automated fusion of fea-
tures, specially when performed by nonlinear techniques,
has demonstrated to be very effective. Neural network-
based autoencoders are among the approaches to conduct
this kind of task.

This paper started offering the reader with a general
view of which an AE is, as well as its essential founda-
tions. After introducing the usual AE network structures,
a new AE taxonomy, based on the properties of the in-
ferred model, has been proposed. Those AE models mainly
used in feature fusion have been explained in detail, high-
lighting their most salient characteristics and comparing
them with more classical feature fusion techniques. The
use of disparate activation functions and training methods
for AEs has been also thoroughly illustrated.

In addition to AEs for feature fusion, many other AE
models and applications have been listed. The number of
new proposals in this field is always growing, so it is easy
to find dozens of AE variants, most of them based on the
fundamental models described above.

This review is complemented by a final section propos-
ing guidelines for selecting the most appropriate AE model
based on different criteria, such as the type of units, loss
function, activation function, etc., as well as mentioning
available software to put this knowledge into practice. Em-
pirical results on the well known MNIST dataset obtained
from several AE configurations, combining disparate acti-
vation functions, optimizers and models, have been com-
pared. The aim is to offer the reader help when facing this
type of decision.
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Figure 15: Test samples and reconstructions obtained with different optimizers.
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Figure 16: Test samples and reconstructions obtained with different activation functions.
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Figure 17: Reconstructing test samples with different AE models. First row of each figure shows test samples, second row shows activations
of the encoding layer and third row displays reconstructions. Encoded values range from -1 (black) to 1 (white).
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Appendix A. Description of used datasets

Appendix A.1. Breast Cancer Diagnosis (Wisconsin)

The well known dataset of diagnosis of breast cancer
in Wisconsin (WDBC) [I38] is briefly used in Section
to provide a 2-dimensional visualization example.

This dataset consists of 569 instances corresponding to
patients, each of which present 30 numeric input features
and one of two classes that identify the type of tumor:
benign or malignant. The dataset is slightly imbalanced,
exhibiting a 37.3% of instances associated to the malignant
class, while the remaining 62.7% correspond to benign tu-
mors. The data have been normalized for the training
process of the basic AE that generated the example.

Originally, features were extracted from a digitized im-
age of a fine-needle aspiration sample of a breast mass,
and described ten different traits of each cell nucleus. The
mean, standard error and largest value of these features
are computed, resulting in the 30 input attributes for each
patient, gathered in the published dataset.

WDBC is usually relied on as an example dataset and
most classifiers generally obtain high accuracy: the au-
thors of the original proposal already achieved 97% of clas-
sification accuracy in cross-validation. However, it presents
some issues when applying AEs: its small imbalance may

8 Available at http://doi.org/10.18434/T4HO1C.
9A collection of methods applied to MNIST and their results is
available at http://yann.lecun.com/exdb/mnist/|
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cause instances classified as benign to contribute more to
the loss function, inducing some bias in the resulting net-
work, which may reconstruct these more accurately than
the rest. Furthermore, it is composed of relatively few in-
stances, which may not be sufficient for some deep learning
techniques to be able to generalize.

Appendiz A.2. MNIST

MNIST [37] is a widely used dataset within deep learn-
ing research. It is regularly chosen as a benchmark for new
techniques and neural architectures. It has been the base
of our case study in Section [6.3]

The dataset consists of 60 000 instances, divided into a
50 000-instance set for training and the remaining 10 000
for test. each corresponding to a 28x28-sized image of a
handwritten digit, from 0 to 9. The values of this 28x28
matrix or 784-variable input represent the gray level of
each pixel, and therefore range from 0 to 255, but they
have been rescaled to the [0, 1] interval in our examples.

This dataset is actually a modified subset of a previous
work from NISTﬂ for character recognition. The original
images used only black or white pixels, whereas in MNIST
they have been anti-aliased.

MNIST has been used as benchmark for a large variety
of deep learning proposals, since it is reasonably easy to ex-
tract higher-level features out of simple grayscale images,
and it provides a high enough amount of training data.
State-of-the-art work?l achieves an error rate of around
0.2% [119, [160].
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