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Abstract—The advancement of various research sectors such
as Internet of Things (IoT), Machine Learning, Data Mining,
Big Data, and Communication Technology has shed some light
in transforming an urban city integrating the aforementioned
techniques to a commonly known term - Smart City. With the
emergence of smart city, plethora of data sources have been
made available for wide variety of applications. The common
technique for handling multiple data sources is data fusion,
where it improves data output quality or extracts knowledge
from the raw data. In order to cater evergrowing highly com-
plicated applications, studies in smart city have to utilize data
from various sources and evaluate their performance based on
multiple aspects. To this end, we introduce a multi-perspectives
classification of the data fusion to evaluate the smart city ap-
plications. Moreover, we applied the proposed multi-perspectives
classification to evaluate selected applications in each domain of
the smart city. We conclude the paper by discussing potential
future direction and challenges of data fusion integration.

Index Terms—Data Fusion; Sensor Fusion;Urban Computing;
Smart City; Big Data; Internet of Things; Multi-Perspectives
Classification

I. INTRODUCTION

According to UN estimates [[1]], 68% of the world popu-
lation would be living in cities by 2050. Hence, managing
the existing resources and infrastructure to cater sustainable
urban living conditions for the growing needs of the urban
population has become ever more challenging. Fortunately, the
advancement in Information and Communication Technologies
(ICT), Internet of Things (IoT), Big Data, Data Mining, and
Data Fusion is gradually paving path for the emergence of
smart cities [2]-[4]. In this paper, we adopt the following
definition of smart city [5]:

“A city combining ICT and Web 2.0 technology with
other organizational, design and planning efforts to
de-materialize and speed up bureaucratic processes
and help to identify new, innovative solutions to
city management complexity, in order to improve
sustainability and livability”

The integration of aforementioned technologies into various
urban domains enables city managers to equip with the neces-
sary information for better planning and resource management.
Several cities around the world have already been leveraging
these technologies to improve the comfort, security, mobility,
health, and well-being of their citizens. To better evaluate rapid
progress and to recognize the efforts of urban planners, smart
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city ranking systems have been established. For instance, IESE
cities in motion index [6] has suggested 83 indicators to rank
165 cities over 80 countries. New York, London, and Paris are
the top three smart cities in 2018. Smart city projects in New
York [7] aim to consistently improve the quality of residents’
life, reduce the environmental impacts, increase the street
light efficiency, and enhance the water quality. Meanwhile,
the focus of Smart London Projects [8] is to collect city wide
data to provide world class connectivity, security, and smarter
streets to its residents. Digital transformation, sustainability,
and urbanization for improving citizen services are at the cores
of Paris Smart City Projects [9]. The following up of the
top smart city list includes Singapore and Tokyo, which are
some other notable smart cities in the world. In Singapore,
Smart Nation Project [10] has been proposed, which includes
e-payment systems, smart nation sensor platform, smart urban
mobility, and smart community initiatives, with the aim to
enhance the national digital identity of its citizens. On the
other hand, Tokyo [11] aims to become the greenest city
in Asia Pacific by improving the transportation and other
sectors of their economy. Local governments in several Chi-
nese cities [12], such as, Shenzhen, Shanghai, Hangzhou,
and Beijing are also shaping up their cities to facilitate
economic and social development to build high income smart
cities. In addition, there are several research institutes and
laboratories focusing on developing smart city applications,
which are currently leading the worldwide effort in smart
domains. These include MIT Senseable Lab [13|], Future Cities
Laboratory [14]], SINTEF Smart Cities [15]], SMART [16], etc.

Nowadays, communication technology is the backbone for
the smart city applications as it provides a channel for applica-
tions to transfer data effortlessly. The ongoing quest for novel,
more efficient, low-latency, and cost-effective communication
technologies and networks, such as, 5G [27]-[29], wireless
sensor networks (WSN) [30]-[32]], Low Power Wide Area
Network (LPWAN) [33]], [34], and Narrow Band IoT (NB-
IoT) [35]], [36] and their integration in smart city projects is
also relentless.

These advancement has made many data sources available
due to the potential of sensors collecting data with better
coverage and power efficiency of the communication platform.
With the large amounts of data becoming readily available in
a smart city, data mining techniques [|37]], [38]] are commonly
used in the collected data. It helps in identifying the essential
and important data sources in the smart city applications
such as monitoring, control, resource management, anomaly
detection, etc. With the availability of parallel data sources
in various smart city domains, data fusion techniques that
combine multiple data sources, lie at the heart of smart city
platform integration. The major objectives of data fusion are to
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TABLE I
LITERATURE REVIEW FOR DATA FUSION ON SMART CITY

Surveys
Khaledgi et al. [[17]]

Objectives and Topics Covered

Provides insights on the different types of data
fusion techniques by exploring their concept,
benefits, and challenges.

Castanedo [18|] Provides an overall view on the different data
fusion techniques and methods. The author
also reviewed common algorithms such as data
association, state estimation, and decision fu-

sion.

Alam. et al. [[19] Provides a comprehensive survey on the math-
ematical model used in data fusion for specific

ToT environments.

Wang et al. [20] Proposes an IoT architecture concept to survey
on the different sensor data fusion techniques
and also provides an overall view on their

evaluation framework.

Zheng [21] Discusses about differences on fusing sources
and varying techniques for cross domain data
fusion.

El et al. [22] Provides a survey on the intelligent transporta-

tion systems, which use data fusion techniques.

Esmaeilian et al. [23] Provides a throughout study on waste manage-
ment for smart city aspects with three cate-
gories: (1) infrastructure for the collection of
product lifecycle data, (2) new adapting busi-
ness model, and (3) waste upstream separation
techniques.

Da Xu et al. [24] Provides an overall view on the current state
of the industries for IoT and discusses key
enabling technologies such as communication

platforms, sensing technologies, and services.

Chen et al. [25] Reviews the building occupancy estimation
and detection techniques while providing a
comparison between different sensor types for
cost, detection and estimation accuracy, and

privacy issues.

Qin and Gu [26] Introduces the data fusion algorithms in IoT

domains and data acquisition characteristics.

address problematic data while enhancing the data reliability
and extracting knowledge from multiple data sources. The
existing survey papers related to smart city applications or
data fusion classification are summarized in Table [l Majority
of these review papers [18], [39]-[41] strictly focus on one
particular smart city domain or one genre of classification
perspective. In [19], Alam et al. have conducted a review
on data fusion technique based on mathematical model in
IoT environment. Alternately in [20], Wang et al. have de-
scribed the frameworks of data fusion within the smart city
application. Interested readers can follow these references for
additional technical details. However, there is only a handful
of limited work to provide a multi-perspectives approach for
data fusion problems in smart cities and this literature gap
further motivates our study.

Therefore, a different perspective to look at data fusion in
smart city domains is necessitated by the expanding scale and
scope of data sources, data collection techniques, and data
processing system architectures. In order to cater evergrowing
highly complicated applications, studies in smart city have to
utilize data from various sources and evaluate their perfor-
mance based on multiple aspects. To this end, we propose
multiple generic perspectives with the ability to cover the

entire depth and breadth of data fusion problems in smart city.
These perspectives include data fusion objectives, data fusion
techniques, data input and data output types, data sources, data
fusion scales, and platform architectures for data processing.
Utilizing proposed perspectives, we provide an overall view
of classification techniques found in the seven domains of
smart city applications such as: Smart Living, Smart Urban
Area Management, Smart Environment, Smart Industry, Smart
Economics, Smart Human Mobility, and Smart Infrastructure.
A simple illustration of seven application domains discussed
in this paper can be found in the Figure[I] In each domain, we
only select notable papers to demonstrate the universality and
effectiveness of our multi-perspective approach on evaluating
the data fusion techniques. Please note that we do not provide
a comprehensive review of all the smart city applications.
Afterwards, we talk about emerging data fusion trends in smart
cities, while outlining the best practices for deploying a smart
city application. In addition, data fusion challenges in different
smart city applications are also identified and discussed.

To summarize, our novel contributions in this paper are
three-fold as shown below:

« We propose a multi-perspectives classification to evaluate
common data fusion techniques in smart city applications.

« We provide an overview of smart city application domains
and discuss the common trend of data fusion techniques
in each domain utilizing proposed multi-perspectives
classification.

o We list down the future challenges and the ideal scenario
for deploying data fusion techniques in a smart city
application.

Overall, we believe that with these contributions, the readers
would have a quick grasp on the current data fusion trends in
smart city research without extensively going through all the
details.

The rest of the paper is organized as follows: in Sec-
tion [lIl we define the data fusion classification using multi-
perspectives to evaluate a smart city application. This lays a
foundation for evaluating the smart city applications leveraging
data fusion techniques. In Section different application
domains of smart city based on data fusion techniques are
evaluated using the proposed multi-perspectives classification
of data fusion. In addition, a brief overall view of the current
research trend of respective domain is presented. Subsequently
in Section we discuss the ideal data fusion scenario
along with potential research directions/opportunities based on
speculations of smart city applications from previous section.
Lastly, we conclude our works in Section E

II. DATA FUSION CLASSIFICATION USING
MULTI-PERSPECTIVES

In this section, we identify multiple generic perspectives
with the ability to cover the entire depth and breadth of data
fusion literature in smart city applications. We use smart city
single perspective data fusion review papers [19]], [26] and
non-smart city data fusion classification papers [18]], [39]-
[41] as references. In non-smart city literature, there are four
well-known data fusion classification techniques, which are
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Fig. 1. List of smart city applications domain, where data fusion is commonly applied (each domain is enclosed in the dotted pink box).

Dasarathy’s Classification [39], Whyte’s Classification [40],
Fusion Architecture’s Classification [18], and US Joint Di-
rectories of Laboratories (JDL) data fusion classification [41]].
Dasarathy’s Classification is based on the data input and output
types between data, where Whyte’s Classification focuses on
the relationship between the data. JDL focuses on classifying
the fusion process according to five processing levels. Mean-
while, the architecture-based classification only captures the
system design level and does not consider data relationships
and types. Most of the aforementioned classification of the
data fusion techniques are not suitable for evaluating the
applications of a smart city.

Our proposed data fusion classification approach for smart
city comprises of six different perspectives (also called cate-
gories): 1) data fusion objectives (O), ii) data fusion techniques
(1), iii) data input and output types (D), iv) data source
types (S), v) system scales (L), and vi) platform architectures
(P). Within each category, we further identify various sub-
categories (also called classes). Overall, there are 30 different
classes. The complete list of the adopted classification indi-
cating all the categories and their classes is shown in Table [[I}
Short reference codes (O,T,D,S,L,P) for each class are also
included in the table for further use in the paper. For example,
O1 refers to the data fusion objective category and problematic
data fusion class. Similarly, S3 refers to data source types
category and participatory class.

Note that, there could be potentially more than one per-
spectives (other than data sources, fusion scales, and platform
architecture) for smart city application depending on the
complexity and fusion objective itself. Below, we provide

TABLE 11
DATA FUSION CLASSIFICATIONS FOR SMART CITY APPLICATIONS USING
MULTI-PERSPECTIVES

Perspective/Category | Code | Classes

0Ol Fixing Problematic Data
. A 02 Improving Data Reliability

Data Fusion Objectives 03 Extracting Higher Level Information
04 Increasing Data Completeness
T1 Data Association
T2 State Estimation
T3 Decision Fusion
T4 Classification

Data Fusion Techniques TS5 Prediction / Regression
T6 Unsupervised Machine Learning
T7 Dimension Reduction
T8 Statistical Inference and Analytics
T9 Visualization
D1 Data in Data Out (DAI-DAO)
D2 Data In Feature Out (DAI-FEO)

Data Input and Output Types | D3 Feature in Feature Out (FEI-FEO)
D4 Feature in Decision Out (FEI-DEO)
D5 Decision in Decision Out (DEI-DEO)
S1 Physical Data Sources
S2 Cyber Data Sources

Data Source Types S3 Participatory Data Sources
S4 Hybrid Data Sources
L1 Sensor Level Fusion
L2 Building Wide Fusion

Data Fusion Scales L3 Inter-Building Fusion
L4 City Wide Fusion
L5 Inter-City Fusion (or Larger)
P1 Edge Computation

. P2 Fog / Mist Computation

Platform Architectures P3 Cloud Computation

P4 Hybrid Computation
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further details of all the perspectives and classes adopted in
this paper.

A. Data Fusion Objectives (O)

The data fusion techniques deployed in a smart city project
is influenced by the objective of applications. In this paper,
we have summarized the four objectives as follows:
« O1: Fixing Problematic Data
‘Problematic Data’ class refers to the case when the data
source is having quality issues such as, inconsistency,
imperfection, disparateness, etc. Data fusion could be
used as an easy approach to overcome such problems.
Examples of O1 can be found in [27], [42[-[44].
« 02: Improving Data Reliability
Data may suffer from reliability issues when it is col-
lected in a less ideal (less controlled) environment with
high presence of noise. In such situation, additional data
sources are required to add redundancy for increasing
data quality to enhance data reliability. Such situations
are identified as ‘Data Reliability’ class and [45]-[48]]
exhibits such pattern. In addition, security enhancement
through the data fusion also belongs to this category and
examples of such objectives can be found in [49]-[51].

« 03: Extracting Higher Level Information
Data mining advancement has contributed to many dif-
ferent architectures of data fusion in order to obtain
knowledge from multiple data sources. For instance, the
occupancy of a building can be detected using a com-
bination of few ambient sensors with data fusion, where
occupancy information cannot be directly inferred from
the raw data sources. We classify these approaches as
‘Higher Level Information Extraction’ class and examples
can be found in [52]-[54].

¢ O4: Increasing Data Completeness
In a situation of coverage limitations, an individual data
source is insufficient to provide complete details of the
desired output. Therefore, in ‘Data Completeness’ class,
data fusion is performed across multiple data sources
to obtain a complete picture of the overall system such
as [55]-[57].

B. Data Fusion Techniques (T)

In this category, we present the data fusion techniques in two
different information enrichment obtained after data fusion.
The T'1 until T'3 are the common data fusion techniques and
the further details can be found in [19]], [39]], where it describes
the lower level information being fused to generate identical
level of information. The techniques 7'4-T'8 are associated
with data mining [38[], [S8], where simple input data from
multiple sources is fused to generate higher level information
enrichment. Brief description of these classes is given below:

« T1: Data Association

Data association refers to data fusion technique that fuse
data based on similarity between at least two or more
data sources. Common techniques for data association
include Nearest Neighbors [59], Probabilistic Data As-
sociation [[60], and Multiple Hypothesis Test [61].

o T2: State Estimation
State estimation indicates the usage of multiple data
sources to achieve higher sate estimation accuracy. Com-
mon techniques under this category are Maximum Like-
lihood [62]], Kalman Filter [63]], Particle Filter [64]], and
Covariance Consistency Model [65].

« T3: Decision Fusion
Decision fusion is a technique that is used to fuse the
decisions made by various sub-components of a system
to achieve a certain overall objective. For instance, a robot
can fuse different decisions from the modules to perform
an actuation (direction, events, or actions). General tech-
niques include Bayesian inference [66], Dempster-Shafer
Inference [67]], and semantic approaches [68]].

« T4: Classification
Classification technique denotes methodology of group-
ing objects into different classes based on their unique
characteristics. In-depth details of generic classification
techniques can be found in [38]], [58].

o T5: Prediction
Prediction techniques are used to forecast output based
on single or multiple different data sources. Note that,
this covers simple methods such as regression and as
well as complicated methods such as forecast modeling.
Examples of such can be found in [69]-[71]

o T6: Unsupervised Machine Learning
Unsupervised machine learning tries to automate the
knowledge discovery without relying on the data la-
bels. Examples of such methods involves clustering [[72]],
anomaly detection [73]] and others [38]]. Note that, semi-
supervised machine learning approach [74] is also cate-
gorized under this class.

« T7: Dimension Reduction
Dimension reduction refers to the method of reducing
data sources’ dimensions for features extraction or vi-
sualization purposes. Examples of dimension reduction
techniques are Principal Component Analysis (PCA) [[75],
and others [38]. The aim is to preserve the characteristic
of the data sources while reducing the complexity of
processing high dimensional data.

« T8: Statistical Inference and Analysis
Statistical inference and analysis is used for outlining
certain information along with some common knowledge
/ hypothesis from the input data sources. Examples of
papers using such approaches can be found in [76], [[77]

« T9: Visualization
Visualization is a technique used for the presentation of
output to the end users via some platform. The end result
often requires human intervention. Examples of such
techniques can be referred to the following papers [78]—
[80].

C. Data Input and Output Types (D)

Dasarathy’s classification [39]] is based on input and output
of fusion technique to determine the relation between input
and output data. There are five classes in data input and output
perspective. Brief details are given below:
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« D1: Data In Data Out (DAI-DAO)
Data In Data Out (DAI-DAO) refers to the situation
when multiple raw data sources are fused to increase data
reliability and the output after fusion is still a raw data.

o D2: Data In Feature Out (DAI-FEO)
Data In Feature Out (DAI-FEO) refers to the situation
when multiple raw data sources are fused to extract some
unique feature of the observed system. The output feature
describes certain aspect of the system and it could be
further used for more feature extraction or to make certain
decisions.

o D3: Feature In Feature Out (FEI-FEO)
Feature In Feature Out (FEI-FEO) refers to the situation
when multiple unique features from different sensors
are combined to generate new features. This class is
commonly known as feature fusion.

o D4: Feature In Decision Out (FEI-DEO)
Feature In Decision Out (FEI-DEO) refers to the situ-
ation when certain features of the system are fused to
make certain decisions, e.g. actuation of various system
components.

o D5: Decision In Decision Out (DEI-DEO)
Decision In Decision Out (DEI-DEO) refers to the situa-
tion when different decision sources (maintenance status,
events, etc.) are combined to obtain a final output deci-
sion.

D. Data Source Types (S)

There are four types of generic data sources in smart city
applications and we categorize them based on the data sources
regardless of the communication medium. Details of each
category can be found as follows:

o S1: Physical Data Sources

The physical data sources are collected from sensors that
are being deployed to capture information of a particular
space, area, or even city wide. Examples of the phys-
ical sensors include temperature [81]], air quality [82],
camera [83]], ultrasonic [[84], LIDAR [85]], and etc. Note
that, we categorize smart city application based on the
data sources rather than the method they are acquired.
For instance, a temperature probe in a sensor nodes of
a wireless sensor network (WSN) transmits data through
gateway to cloud database is considered as physical data
source, S1.

e S2: Cyber Data Sources

Cyber data sources denote datasets which are commonly
obtained from the Internet domain such as social media
information [76]], [86], web access data [87], [88]], and
opinion based datasets [89]]. Social media information
involves major social media platforms such as Twitter,
Facebook, LinkedIn, Weibo, and others. Note that, usually
the data is acquired through data mining techniques.
Meanwhile, the web access data can be obtained from
web applications programming interface (API), such as
transportation tickets information and online customer
records. Apart from that, open datasets refer to data
from third party vendors such as telecom operator or a
company with readily available data.

S3: Participatory Data Sources

Participatory data sources include crowdsensing [90], [91]]
and crowdsourcing [92]], [93] data contributed by the
personal devices, e.g. mobile phones, wearable devices,
tablets, etc. of the users in smart city. Users provide the
data voluntarily or through some incentive mechanisms.
S4: Hybrid Data Sources

The hybrid data sources include data obtained from mixed
data sources [94], [95], e.g. by combining the participa-
tory and physical sensor data. As pointed in [21]], hybrid
data sources can achieve more insights as compared to
single data sources.

E. Data Fusion Scales (L)

The scale of data fusion is also an important classification
perspective. Please note that data fusion scale is based on
sensor coverage rather than sensor deployment. There are four
different classes, which are described below:

L1: Sensor Level Fusion

At the sensor scale, data from various physical sensors is
fused to form an output such as [53], [96]. For instance,
fusion of data collected by various smartphone sensors is
an example of data fusion at sensor level.

L2: Building Wide Fusion

At the building wide scale, data sources collected within
a premise or building is fused to form an output. For
instance, fusion of building energy and building security
data to develop a building management system [97]-[99]
is an example of data fusion at building level.

L3: Inter-Building Fusion

In the inter-building scale, the data sources collected over
several buildings are fused to form an output, where
the scale of deployment normally includes small area.
For example, data sources of several buildings within
a university are used to generate a particular output is
considered as inter-building scale. Other examples of this
data fusion scale also can be found in [100]], [101].

L4: City Wide Fusion

In the case of city wide fusion, data sources that involve
whole city’s area as input for the data fusion architecture
fall under this class such as [[102]]-[[104]]. For instance, the
study of citizen behavior involves fusion of data gathered
in different areas of the city is considered city wide data.
L5: Inter-City Fusion (or larger)

At the inter-city fusion (or larger) scale, data from large
areas involving one or more cities or terrains (mountains,
sea, forests, etc.) is fused to form an output. Examples of
this scale involve comparing one smart city to another city
or data of a city outskirts and its surrounding areas. More
examples of inter-city fusion (or larger) can be referred
to [43], [105]], [106].

FE. Platform Architectures (P)

The architecture of computational platform involved in data
fusion is another important classification perspective. In this
category, we identify four generic classes:
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« P1: Edge Computation Platform
In edge computation platform, data sources are processed
and fused at the edge (i.e. very close to the physical
location, where data is actually collected). Edge computa-
tion devices include micro-controller, computing devices
(Raspberry pi), computers, etc. Such architecture can
be found in works such as [96], [99]], [101]. With this
architecture, communication overheads and latency can
be significantly reduced.

« P2: Fog Computation Platform
In fog computation platform, data sources are processed
and fused at the middle layer, i.e. between the edge and
the cloud. In this architecture, data is periodically or
continuously sampled at the edge (without processing)
and is then forwarded to a gateway (that acts as a
fog device). At the gateway, computing resources are
provided for data processing. Both fog computing and
edge computing platforms provide similar benefits of
offloading computation as shown in [[102], [107], [108].
However, fog computing architecture should be preferred
when it is difficult to find stable power sources at the
edge.

¢ P3: Cloud Computation Platform
In cloud computation platform, data sources are pro-
cessed and fused in the cloud. This is the most common
technique practiced by industry and research institutes
for processing big data. Examples of this architecture
being used are [56], [87]], [109]. The advantages of cloud
computing architecture includes ready access to the data
and both online and offline for further processing or fus-
ing. The disadvantages include increased communication
overheads and costs.

o P4: Hybrid Computation Platform
In hybrid computation platform, processing is distributed
among two or more layers (edge, fog and cloud) as shown
in [[105]], [110], [111]. In this architecture, depending on
the available resources or application objectives, some
low level data fusion and processing is done at the edge
or fog, while high level information is extracted in the
cloud.

III. SMART CITY APPLICATIONS OVERVIEW

Smart city applications tend to have extremely diverse
requirements, which contribute to a large variety of different
techniques and requirements as stated previously in Section 2
for different domains. Thus, it is necessary to evaluate the
smart city applications from a more generic perspectives rather
than one specific perspective. In this section, we select smart
city applications with data fusion techniques from different
domains listed in Figure |1} and evaluate them based on multi-
perspectives from the Section [[I} Note that, there exist some
literatures that are cross-disciplinary, which may involve more
than one domain. In order to address the cross-disciplinary
smart city applications, we have grouped them into their
closest relevant domain. In each application domain, we out-
line sub-domains and present works related to data fusion
techniques. Using the proposed data fusion classification based

on multi-perspectives, we discuss the common data sources
and fusion techniques, along with the current research trends
in each domain.

A. Smart Living

Smart living concerns with the life of the urban citizens and
revolves around the concept of improving live-ability in urban
area. In the literature, the general objectives of utilizing the
smart living domain involve data being used to extract higher
level information or increasing the data completeness. In
addition, smart city applications in this domain often leverage
the cloud or hybrid platform architecture. In this domains, we
have studied three different aspects of smart living, namely, (1)
Smart Health, (2) Smart Home, and (3) Smart Community.

1) Smart Health: Healthcare is a crucial component in ev-
eryday life concerning medical and public practices using de-
vices as defined by Lee and Co-authors [144], [[145]]. The rapid
development of technology (e.g. smartphones and their in-
built sensing devices such as heart rate sensors) provides more
opportunities to adopt technology in healthcare applications
pervasively. For telehealth application in smart city, Hossain
et al. [112] have used electroencephalographic (EGG) signals
and voice to monitor a specific user’s health with the support
of cloud technology and doctor’s advices. In [[113]], work has
shown to monitor elderly at home based on fuzzy fusion model
using behavioral and acoustical environment data. Similarly,
Noury [146] also monitors the activities and fall detection of
elderly through fuzzy logic by fusing accelerometer, vibration,
and orientation sensor. In [91]], Marakkalage et al have used
crowd-sensing data from a smartphone application (location,
noise, light, etc.) and introduced sensor fusion based envi-
ronment classification (SFEC) to profile elderly people for
understanding their daily lifestyle. In addition, Dawar and
Kehtarnavaz in [52] have implemented a Convolution Neural
Network (CNN) to combine both depth camera and wearable
devices to detect the transition of movements to fall. Apart
from that, Hondori et al. [111] have proposed using sensor
fusion between depth images and inertia to perform tele-
rehab in the home. The main challenge occurs in pervasive
smart healthcare data fusion is discussed in [[147[] as the need
of a higher accuracy to improve sensing robustness against
uncertainty and unreliable integration.

2) Smart Home: The concept of Smart Homes plays
an important role nowadays in contemporary urban areas.
According to Jiang et al. [148], the definition of a smart
home provides the capability of controlling, monitoring, and
accessed appliances & services through implementation of
ICT. There are currently many big players in developing
the smart home appliances such as Amazon, Google, Apple,
IBM, Intel, Microsoft, Xiaomi, and others. The challenge
faced by manufacturers are related with service integration and
formulating software ontology platform. These are necessary
for implementing the services through different vendors and
allow for a better integration. Meanwhile in [114], physi-
cal sensors (soil moisture) and cyber (weather, traffic) have
been fused to control home appliances such as alarm clock
and water sprinkle. The study of user daily activity is yet
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TABLE 111
L1ST OF SMART CITY APPLICATIONS USING DATA FUSION TECHNIQUE(S)
Domain Sources [0 S D T L P Remarks
[152] 3 I 2 4 1 4 Smart Healthcare
[112] 3 1 | 4 4 4 Voice Pathology Detection
[T13] 3 3 4 3 2 4 Smart Home Healthcare Monitoring
[TT0] 3 1 2 4 1 4 Daily Activity Classification
Smart [45] 2 1 2 4 2 4 Smart Home Activity Recognition
Livin [LL1] 3 1 3 4 2 4 Tele-Rehabilitation
g [114] 4 4 4 3 2 4 Smart Home Control System
/9] 3 4 3 9 4 4 Intelligent Video Surveillance
[L15] 3 34 4.5 4,5 5 3 Distance Learning
[116] 3 2 3 1 4 3 Smart Community
194] 4 4 4 5 2 3 Building Management
[LL7] 4 1 2 2 1 1 Fire Detection System
Smart [L18] 3 3 4 3 5 3 Lean Government
Urban Area 143] 1 1 1 1 5 1 Urban Planning with Satellite Images
Management 1951, 1119] 3 4 1,2 8.9 4 3 Urban Space Utilization Detection
156] 4 3 1 9 4 3 Fault Reporting Platform
[[/6] 3 4 3 8,9 5 3 Landscape Rating Systems
[106] 3 1 1 9 5 3 City Environment Monitoring
[[/8] 3 1 2 2,9 1 1 City Building Map Modeling
Smart [120] 3 4 4 4 5 1 Forest Types Classification
Environment [46] 2 1 1 1 5 1 Long Term Landscape Monitoring
[121]] 4 1 4 4 5 1 Forest Species Classification
[122] 3 4 2 4 1 1 Waste Water Treatment
[102] 4 1 2.3 2.9 4 2 Urban Solid Waste Management
196, 1123] 4 I 24 2.4 | I Fault Detection
[124], [125) 34 1 34 5 1 1 Tools Life Prediction
G- 198] 2 4 4.5 3 2 1 Decision Support in Manufacturing
Industr [51) 2 1 2.4 2,3 1 1 Autonomous Robots and Security
Stry [126] 3 1 2.4 4,7 1 1 Seafood Freshness Classification
[127], 1128 3.4 1 2.4 24,5 1 1 Agriculture Plant Disease Classification
187] 4 2,3 1,3 1, 5 3 Customer Profiling
[129] 4 4 1.4 5 5 3 Consumer Awareness
Smart [107] 4 4 1 9 5 2 Blockchain and Supply Chain
Economics [130] 34 4 24 1,58 5 3 Supply Chain Management
) 177 3 2.3 2.3 8 4 3 Tourist Behavior Analysis
157] 4 4 2.3 4 3 Travel Recommendation System
[131] 3 1,2,3 2 1.4 4 1,3 Tourist Tracking Application
1132), 1133] 2.3 1 1 5.1 4 3 Outdoor Positioning
[134], [135] 2.4 1 1 1,2 2 3 Indoor Positioning
[136], [137) 4 1 4 5.1 42 3 Location-based Services
Smart Human [103] 3 3 2 1 4 3 Obtaining Origin-Destination Matrices
Mobilit [54] 3 3 2 4 4 3 Identifying Transportation Modes
Y [138] 3 3 2 1 2 3 Monitoring Visitors Inside a Building
[109] 4 1 4 3 4 3 Traffic Signal Controlling
[139] 3 3 2 1 4 3 Analyzing Public Transport Services
| 140) 4 1 4 4 1 3 Autonomous Vehicle Controlling
[55]], 188] 3.4 1 2.4 5 4.1 1 Smart Grid and Power Utilities
(101, [141) 3 14 1 4.5 3 1 Solar Farm
[105] 3 3 2 5 4 Smart Metering
Smart 127], 142 1,2 1 1 1,2 1 1,3 Communication (5G)
Infrastructure 147, [438) 2 1 1 1,5 1 1 Communication (WSN)
[142] 4 1 2,3 4 1 1 Drone Detection
[143] 3 4 1,2 2 4 3 Smart Parking System
199] 4 1 2 2 1 Bridge Monitoring Platform
[104] 3 1 2,3 4,5 4 3 Water Distribution System

another important aspect to understand urban citizen well-
being. In [45]], Hong et al. have combined series of life
activities to understand the lifestyle pattern depends on the
equally weighted sum operation and Dempster-Shafer theory.
Also, similar study on the user daily activity patterns can
be found in [110]. Combination of house environmental sen-
sor (infrared, door contact, temperature, hygrometry sensor,
microphone) and wearable devices (kinematic sensors) using
support vector machine (SVM) can be used to identify the user
activity patterns. In addition, the modeling of human behavior
in a smart home [149] in order to generate learning situation
models have proven the efficiency of context-aware services.
In addition, smart home security is yet another study field for
many researchers [150]—[[152] due to increased usage of IoT
devices in normal household. The research challenges is to
develop the applications for the smart houses while retaining
the privacy and security of the end user.

3) Smart Community: According to Smart Communities
Guidebook [153], a smart community is described as “a geo-
graphical area ranging in size from neighborhood to a multi-
county region whose residents, organizations, and governing
institutions are using information technology to transform their

region in significant ways”. There is only a handful of cities
focus on this aspect as majority are still in the stage of
transforming from facility to community welfare. First world
countries such as USA, Canada, Australia, European Union,
and Singapore shown in [154] have started up initiatives
to create smart communities. Information fusion for smart
community video surveillance system is performed in [[79] to
aid neighborhood in terms of security. The combination of the
different modal surveillance camera provides a vast amount
of visual information extraction such as video summarization
for highlighting certain events. A distance learning framework
is proposed in [115], which enables personalized learning to
cater what is best for each individual user. It uses data fusion
to understand user environment and their activities by means
of hybrid data sources. Real-time community monitoring also
helps to prevent emergency situations and it ensures the
safety of community citizens. A good example for a smart
community application in large-scale is the Social Credit
System in China [[155]]. It is a state-owned system to collect
data from both public (traffic cameras, transit data etc.) and
private (online shopping, fitness trackers etc.) data sources to
monitor and analyze user behaviour to generate a single “credit
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score” for each person, which helps in community well-being.
The techniques fuse these data sources and remains a back
box to the general public. However, the effect on user privacy
with the rise of “data state” remains a debate for some [156].
A mature citizen should be on alert and always responds to
any potential threat, while spreading the awareness to build a
safer community in the urban city.

B. Smart Urban Area Management

Smart urban area management denotes the managing of
urban area using ICT. Sub-domains in this regime composed
of urban planning, governance, and smart buildings. For an
application to fit into this definition, the minimum scale would
be at the building level (e.g. a building management system).
The main trend of data fusion techniques being applied in
this domain mostly consists of objectives of extracting higher
level information or increasing the data completeness. The end
product of data fusion include visualization of information for
respective authorities.

1) Smart Governance: In smart governance, managing a
city is considered as a complex task as the integration of
different domains and services is proven to be challenging.
Transparent services integration is an example of why many
governance authorities are having difficulties to sort it out. It is
hard to strike a balance in developing a transparent governance
policy with consideration of sensitive information. Therefore,
there is only limited study materials available to the best of our
knowledge. Janssen and Estevez [[118]] have proposed a cen-
tralized platform for cutting down government staff by shifting
existing organization to rely on integration of platforms. The
disaster response management is also considered as another
vital element for a smart city to carry out any potential counter
measurements towards disaster as shown in [[157]. Apart from
that, urban reporting system [56]] has collected report from the
city wide region on the faulty infrastructure so that immediate
actions can be taken to remedy the situation. It uses cloud
technology and focuses on the display of fused data report,
which it also describes the location and types of infrastructure.
Example of research challenges is to remove any potential fake
report to prevent misuse of the reporting platform. Another
example of smart governance that involves city safety can be
found in [[158]], where it can act as an emergency aid applica-
tion (light pulse on emergency through mesh network) while
providing energy efficient lighting to urban area. Moreover,
there are cities also working on governance platform such
as New York [7], Singapore [10], Tokyo [11], Oslo [159],
and others. The potential research opportunity is to propose
consensus protocols within the city for better integration of
services.

2) Smart Urban Planning: Urban planning plays an im-
portant role in developing the city economy by taking ac-
count of well-being of the urban residents. Traditionally in
urban planning, aerial photography and statistical data sources
(building size, population number, public amenities, etc.) are
combined to understand the current development state of the
city. The downside of such method is data sources frequently
lacks of fine details, which resulting the output result is not

representative. To address such issue, Cheng and Toutin [43]]
have combined various satellite and aerial images to generate
details for the exiting urban structures. Alternately, low power
sensors are capable to provide a larger coverage with lower
deployment cost, which give researchers the opportunity to
study different points of interest in the urban area. In [81]], [95]],
[119], a bottom up urban planning method is implemented,
where sensors are installed in a designated region to capture
space utilization. From the collected data, urban planners
can study public space utilization pattern using an integrated
portal. Here, a hybrid processing method is proposed, where
the data processing and fusion occur in different stages of
data pipeline. In addition, a large variety of data sources can
be used for urban planning such as physical sensors [160],
photography [76], [161]], or hybrid data sources [85]]. Despite
wide variety of data sources, human interpretation is required
when it comes to make decision on a proposed urban design.
The need of full automated planning system would further
benefit the urban planners to combine different data sources
in order to achieve a more ideal city planning.

3) Smart Building: Urban building management provides
building owner a platform to understand building’s energy
consumption rate while automating building resources man-
agement. It has been extensively studied in [25]], [[162]-[164]]
and the current trend is to optimize the building resources
such as hot water systems, electrical consumption, and heating
ventilation & air conditioning (HVAC). In [94], Aftab et al.
have combined four different parameters to predict building
occupancy to control HVAC using low-cost embedded sys-
tems. Some other works such as [97], [[165], [166] also have
the same objectives but using different types of data sources.
The potential solution for better building management system
is to rely on fusing weather, human feedback, and electricity
price to fine tune the building resources in order to maximize
human comfort, while minimizing the energy consumption.
Apart from that, fire alarm system is considered another im-
portant features of the smart building management system. Luo
and Su [117]] have fused three different data sources (flame,
smoke, and temperature sensor) to detect any potential fire
outbreak and reduce false alarms. In addition, a notification-
based system is implemented to notify the property owner and
manager in case of emergency. In future, potential building
safety features may include a group of robots to deal with fire
hazards and double duty as building security patrols.

C. Smart Environment

Smart environment studies the surrounding of a given area
of interest, which covers the internal and external surrounding
of a city. From the literature, we observed that majority of
the data sources consist of physical and hybrid data sources,
while the data scale often represent a large spatial coverage.
Nowadays, the most common surrounding effects studied in
the smart city include urban heat island (UHI), green house
effect, and global warming. In addition, we have grouped
urban waste management under this domain because it also
has an environmental impact.
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1) Landscape Monitoring: The main challenge of land-
scape monitoring in smart city is the sensing coverage of
the data sources. To address such issue, two different sens-
ing approaches have been used such as relying on mobile
sensing or satellite-based data. Mobile sensing [106], [167]
offers greater sensing capability by leveraging the mobility
of moving objects (vehicles or humans). The mobile sensing
technique provides a large spatial coverage, but it is not
suitable for real-time applications unless there are multiple
data sources to compensate the lack of spatial resolution
concurrently. The output type of this mobile sensing includes
combination of different spatial data in order to complete
the data sources before proceed to data processing stage.
Mobile sensing works such as [82]], [[168] utilized different
data sources to complete spatial resolution and visualized the
ambient changes across the city. The common characteristic
of aforementioned works is feature extraction, which they
visualize the processed features from the raw data sources.
Majority of data input and output types in this domain are
DAI-DAO and DAI-FEO since physical sensors are the com-
mon data sources. Using the satellite-based data sources, Shen
et al. [46] have studied the UHI effect in a city using data
sources collected over 26 years. The UHI index changes are
measured through the combination of Landsat and MODIS
images data. Mobile sensing offers a lower deployment cost,
where it sacrifice the spatial resolution given there is limited
number of sensors. Also, it has a lower coverage compared to
satellite data sources. In contrast, satellite data has a wider
coverage of spatial resolution but it frequently needs data
enhancement and lacks of finer details.

2) Urban City Modeling: The surrounding natural re-
sources of an urban city such as mountains and forests are
considered as important assets of a city. The most common
data sources in modeling the city area are satellite images,
which as stated before, it requires data enhancement such as
[169], [170] before using it. Therefore, prior work of data
fusion [171] was focused on improving the satellite images
quality. Only until recently, the emergence of machine learning
algorithms and faster computers have created new ways to
extract large variety of satellite image features. For instance
in [[120] and [[121], forest types classification have been
conducted in order to understand the variety of tree species in
a specific region of interest. Both methods involve region-wide
data sources and classification techniques, which are used to
identify the tree species based on the forest types. With a lower
deployment cost, small satellite (smallsat) and nano satellite
(nanosat) could improve spatial coverage to generate a better
data sources. Smart city applications leveraging satellite data
will also beneficial from these deployment.

3) Waste Management: With astonishing rate of garbage
being generated daily, waste management for an urban city
can be rather challenging. Thus, it is essential to handle the
waste efficiently to improve on sustainability of a city. An
example of such effort could be found in [23], where they
have proposed three new aspects of a smart waste management
system such as: (1) infrastructure to overlook the overall life
cycle of the product, (2) new business models revolving the
product life cycle for preventing any waste generation, and (3)

intelligent sensor networks for waste management facilities.
In [102f], Catania and Ventura have combined the proximity
reading and weight sensor from garbage bin to estimate the
garbage capacity of a typical household. Afterwards, rubbish
categories collected from user mobile devices and garbage
trucks are combined to keep track of residential participation
in recycling scheme. On the other hand, waste water treatment
helps to manage liquid waste of urban city before discharging
to river or reuse. Chang et al. [122] have combined landsat
and MODIS dataset in order to trace the water pollution level
of a lake. On top of that, a web portal has been deployed to
visualize and monitor the water pollution region over the time.
Currently, many researchers are working together to develop
an efficient waste management system since there is only
limited resources available on earth. The goal is to adopt the
3R (Reduce, Reuse, and Recycle) concept with the help of
ICT to improve city resource sustainability.

D. Smart Industry

With the upcoming Industry 4.0 standards [[172] touted
as the gold standard of the future, various industries have
been experiencing transformation with automation and data
driven approaches. The majority of smart industry applications
often leverage data collected from physical sensors while data
fusion techniques are often performed at sensor or building
level. Here, smart industry can be divided into three sub-
domains, which are Smart Manufacturing, Smart Maintenance,
and Smart Agriculture.

1) Smart Manufacturing: Smart manufacturing denotes the
factory that depends on ICT to optimize the manufacturing
process by increasing the production throughput. In [98],
De Vin et al. have proposed a simulation tool to test out
the management decision support by fusing undisclosed data
entries and manufacturing process events. Similar to the
aforementioned approach, decision based fusion can also be
seen in [173]], [[174], which combines different machinery
sensors data and data warehouse entries. The data fusion
integration also considers supply chain demand in order to
further optimize the manufacturing process. The challenge
in this domain is to develop a self-optimizing manufacturing
process while delivering the products to meet the demand of
supply chain. Therefore, smart manufacturing frequently has a
high correlation with the supply chain and attempts to deliver
the market needs. In addition, the robotics usage in the smart
manufacturing domain is nothing new. Guo et al. [51] have
proposed an anomaly detection to combat potential security
aspects in the robots using sensor fusion technique such as
state estimation.

2) Smart Maintenance: The reliability and stability of the
equipment and machinery is vital to all the industries to
ensure smooth operation in production. Without the guarantee
of smooth operation, any downtime can cost damages to
reputation and also loses profit. Thus, preventive maintenance
has been studied in [124], [125], [175], [[176] and attempts
to predict the remaining useful life (RUL) of a machine
accurately. By accurately predicting the RUL, maintenance
can be carried out on time to save cost only when needed.
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The common data fusion techniques for predicting RUL are
neural network (NN) based model such as CNN and Deep
NN (DNN). Please note that, common data source in this
sub-domain is physical data source such as machine states,
sensors readings, and related parameters. Nonetheless on the
fault detection domain, machine fault detection can be found
in [96], [123]], where they describe the problem of fault
diagnosis and apply data fusion techniques to overcome. State
estimation and classification have been used to detect the
current state of the machinery. The data sources share some
similarity with the preventive maintenance, where lower level
of data information is preferred. This yields a faster fault
detection when compared to a complex data pipeline. The
research challenge here is to develop a generic and a flexible
maintenance system for different scale of applications adhering
to the goal of accurate fault detection.

3) Smart Agriculture: In order to produce sustainable food
resources in smart city, smart farming [177]], [178] has become
a trend to meet the food supply demand in a smart city. There
are two different sub-domains in smart farming such as land
and sea agriculture. In the land agriculture aspect, planting
crops using controlled environment has shed some light in
fulfilling the city needs of fresh supplies. However, plant
disease remains a potential threat to a highly-dense plantation
crop framing. In [127], Moshou et al. have classified the plant
disease infection through Self Organizing Map (SOM) by
fusing the spectral reflection and fluorescence imaging data.
This helps to isolate infected crops while it focuses on the
production of healthy plants. Apart from that, electromagnetic
induction sensors, vegetarian index, water stress level, and
radiance data are combined in [179] to better determine the
partition of the crop field. Similar work also can be found
in [128], where Khanum et al. propose an ontology-based
fuzzy logic to classify plant disease. The research gaps in
this domain involve improving live stock management as well
as optimizing smart farm. On the other hand, sea agriculture
is responsible for supplying the seafood supplies in a city.
Obtaining fresh seafood supplies in an urban city sometimes
can be rather difficult due to various factors such as delivery,
city location, weather, seasonal pricing, etc. Therefore, a fresh
seafood supply in a city is often not guaranteed. In order to
address such issue, Huang et al. [126] have provided a solution
by integrating two types of cameras for seafood freshness
inspection. Camera and near infrared spectroscopy are fused
through PCA and use NN to classify the freshness index. The
research gaps in this domain involve developing large scale
fish breeding and also wide varieties of seafood product such
as calm, mussels, abalone, etc. A potential solution such as
smart fish breeding with IoT has been proposed in [180],
where it suggests using a moving pod to breed fishes while
transporting them to destination in a particular destination
simultaneously.

E. Smart Economics

Smart economics can be defined as the generic commercial
activities in an urban city ranging from supply chain, logistic,
finance center, to tourism. All these activities yield potential

commercial value to a city, which it depends on the unilateral
or bilateral trading relationship. In this subsection, we discuss
smart economics in three major sub-domains, namely, (1)
Smart Commerce, (2) Smart Supply Chain, and (3) Smart
Tourism.

1) Smart Commerce: Today, modern e-commerce platforms
use multi modal data sources to reach and better understand
their customers. This helps e-commerce vendors to give better
product recommendations for their customers and it helps
customers to make their decisions easily. Fusing customer data
such as mobility, credit card purchases, and social media inter-
actions is commonly used in modern recommender systems.
In [87], Breur introduced the fusion of customer behavior
data and market research data to obtain a holistic picture of
the customer. Investors can leverage financial data to make
investment decisions, as Hassan et al. [181] have introduced
a fusion model of Hidden Markov Model (HMM), NN, and
Genetic Algorithm (GA) for stock market prediction. Improv-
ing the consumer awareness is conducted in [129], by fusing
real world (weather, geographical) and cyber world (Twitter,
Facebook) data. The proposed system has two levels of fusion,
which relies on hierarchical-based processing architecture. The
data combined bottom level input and fed it into upper level
for further processing to achieve its objectives.

2) Smart Supply Chain: In a smart supply chain, it often
involves sources and destination tracking in order to un-
derstand the flow / processing of the objects. As discussed
in [[182], supply chain management and logistic are the fun-
damental of modern supplies on fulfilling the needs of an
urban city. For instance in food supply chain, three tiers
information fusion framework is proposed in [[I30]] such as:
(1) to accelerate data processing, (2) shelf life prediction, and
(3) real-time supply chain planning. The proposed hierarchical
information fusion architecture (HIFA) includes a process that
is intelligently transforming the sensor’s data sources into
usable decision-making information. Recently, combination of
blockchain technology has paved a new way for revolution-
izing the existing supply chain. In [[107]], Tian has shown
the integration of blockchain and supply chain in the agri-
food supply application. It aids consumers to trace the origin
of food using Radio Frequency Identification (RFID) along
with database or WSN. The information also includes food
origin to help consumers to identify the brand authenticity
and avoids consuming counterfeit products. The research gap
in this sub domain concerns with the implementation of smart
supply and it needs the involvement from various commercial
organizations. The consensus and national regulations are also
parts of the critical factors of smart supply implementation.

3) Smart Tourism: The advancement of transportation tech-
nology has granted accessibility for the humans to move
around the globe with ease. This phenomenon has caused rapid
expansion of the tourism commercial values contributed to a
city side income. Since then, Internet resources such as travel
blogs and recommendation systems have influenced public
to venture different locations. For instance, recommendation
system [57] has been developed to recommend the place to
travel based on user’s information such as socioeconomic (e.g.
age, education, and income) and psychological and cognitive
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(experience, personality, involvement, and so forth) groups.
User choices are used as feedback to further fine-tune the
recommendation system using Rocchio’s method. Apart from
that, Miah et al. [77] have combined social media-generated
big data (geo-tagged photos of tourist attraction places) to
predict tourist behavioral patterns. Alternately, Viswanath et
al. [131] used a smartphone based mobile application to
passively track tourist location data and obtain user ratings for
tourist attraction places to better understand the preferences
of tourists when they visit tourist attractions. The potential
research development for smart travel is to focus on using
a smartphone application for improving travel experience by
relying on real-time translation and augmented reality (AR)
navigation.

F. Smart Human Mobility

Human mobility has been an important research area as
commuting and traveling play big roles in modern life. With
the help of advanced ICT, plentiful data sources related
to human mobility have been collected and accessible to
researchers, which yields deeper insights into the nature of
human mobility as well as better improvement strategies
for transportation systems. Smart human mobility, therefore,
means collecting, managing, and analyzing (fusing) various
data sources related to different aspects of residents’ move-
ment in order to better understand and improve the way people
move. Depending on the purpose of different applications,
smart human mobility domain can be further divided into three
sub-domains:(1) Smart Location-Based Services, (2) Human
Mobility Understanding, and (3) Smart Transportation Sys-
tems.

1) Smart Location-Based Services: This sub-domain aims
to get the accurate position of individuals and further to
provide services, such as route planning and navigation, to
help them travel efficiently and comfortably, in both outdoor
and indoor environments. For outdoor positioning, Global
Positioning System (GPS) has been the most accurate, reliable
and dominant technology since it was allowed for civilian
use in 1980s [183]], [[184]. Less-accurate non-GPS positioning
approaches, such as wifi-based localization and cell-tower
triangulation, are sometimes used instead of (or together with)
GPS, because they consume less energy [132], [[133]. For
indoor positioning, since GPS does not work well indoors,
other positioning approaches have been proposed. The data
collection technologies used for these approaches mainly in-
clude Wi-Fi (WLAN), inertial measurement unit (IMU), RFID
tags, Bluetooth, global system for mobile communications
(GSM), frequency modulation (FM), and ultra-wide band
(UWB) [185], [[186]. Meanwhile, multiple data sources are
often fused to achieve more accurate localization results [[134]],
[135]). Once accurate locations are obtained, either indoors
or outdoors, location-based services (e.g. route planning and
navigation) can be provided to end users by fusing the location
sequences with other information sources such as geographic
information system (GIS) data, real-time traffic data, and
user preference data [136f, [[137], [187]-[190]. Since the
outdoor positioning and location-based services have been well

developed and commercialized, the current research trend in
this field is mainly focused on improving the performance
(accuracy, deployment cost, and energy cost) of indoor systems
and services.

2) Human Mobility Understanding: Positioning systems
not only enable the location-based services for individuals but
also provide data sources for further monitoring and under-
standing human mobility in a larger and more comprehensive
scale. By aggregating and analyzing (fusing) the location data
of residents along with GIS data of the environment, various
aspects of human mobility can be monitored and the hidden
patterns can be obtained. As summarized in [100], the most
common subjects of monitoring and understanding human mo-
bility include distance and duration distributions [191], origin-
destination matrices [103], individual activity-based mobil-
ity patterns [[192], transportation mode identification [54],
and densities and flows within a building (or a cluster of
buildings) [[138]], [193]]. Results obtained from these subjects
provide clues for improving transportation system [[194], urban
planning [[195]], and communication network [196]]. Typical
studies in this sub-domain usually fuse one data source of
people’s movement trajectories with the environment informa-
tion, such as GIS data of the city or floor plan of a building.
Although this type of approach has produced much deeper
insights compared with traditional approach relied on survey
data, there is a trend to fuse multiple data sources related to
people’s movement and obtain a more comprehensive picture
of human mobility [[197], [198]. Moreover, social media data
sources. such as Tweets, also bring in more information
regarding the mobility status in cities due to the combination
of spatio-temporal data and descriptive text [86], [199].

3) Smart Transportation Systems: Another large part of
smart mobility is the improvement of transportation systems,
which mainly comes from three aspects: relieving traffic
congestion, improving public transportation, and introducing
new transport systems. To relieve traffic congestion, effective
light control plays an important role. While existing light
control systems are usually based on hand-crafted rules and
do not adjust to the rapid dynamics of traffic flows, intelligent
light control approaches have been proposed using different
data sources, data fusion techniques, and decision making
(optimization and control) algorithms [109], [200].

Challenges in this aspect mainly come from the implemen-
tation of such intelligent light control approaches. Improve-
ment of the public transportation system is mainly conducted
through the network and schedule optimization [201]. Al-
though these two topics have been thoroughly discussed in the
literature, new insights related to the public transit system (e.g.
origin-destination matrices and service level obtained from big
data) [[139]], [202] and more advanced transport modeling tools
enabled by big data [203]] have brought new opportunities.

Even if the existing transportation manner has been opti-
mized, there are still problems that cannot be solved, such as
last mile issue and driving accidents. Therefore, new transport
systems, such as bike sharing systems and autonomous vehi-
cle systems, are introduced. Advanced ICT and data fusion
techniques are the core of the realization of these systems.
For a bike sharing system, data fusion and analysis helps
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to understand how the system works and evaluate different
operational strategies [204], [205[]. As for the autonomous
vehicle system, the control of an autonomous vehicle itself is a
complex data fusion process, fusing various data sources about
the vehicle and the road by advanced machine learning and
control algorithms [140]], [206]. Security plays an important
role in the autonomous vehicles deployment to ensure relia-
bility of the autonomous driving. Examples of such techniques
can be found in [50], [207].

G. Smart Infrastructure

In a smart city, infrastructure aims to provide convenience
for the public by supplying resources (electricity, gas, and
water) or providing services (public facility or communication
systems). Here, we outline four different sub-domains for
discussion, which are (1) Smart Grid, (2) Smart Energy, (3)
Smart Facility, and (4) Smart Communication.

1) Smart Grid: The electrical grid provides an intermediate
platform for relaying the electricity from the power plant to
residential and industrial area. The common goal in this sub-
domain is to provide reliable and stable electricity supply with
the integration of ICT, which is commonly known as smart
grid. Smart grid has been extensively studied in [S55]], [208]]—
[210] and the goal is to address on load and demand balancing
of electricity in a particular area, building, or even household.
Common technique applied in this sub-domain is forecasting,
and example of such application can be found in [55], which
it combines the information received from residential meters
and predicts the electricity consumption load. Wang et al. [88]
have proposed a different approach, where the concept of
multi agent systems (MAS) is used to predict building energy
consumption by denoting each meter as an agent. The common
goal is to use a higher information extraction technique such
as prediction, where it allows grid operators to forecast the
grid demand to ensure sufficient electricity load. Test bed
currently is the common method for testing out the smart grid
use case and has been studied in [211]. Another common
research topic is security and reliability of the smart grid
system. Li et al. [49] have proposed a secure state estimation,
which it can be used to address single sensor or multi-sensor
scenarios. Similar works addressing smart grid security also
can be found in [212], [213]. On the other hand, advanced
metering infrastructure (AMI) has been studied along with
the smart grid to ensure the electrical metering is tamper-
proof while able to accurately measure energy consumption.
For instance, work in [214] uses the clustering algorithm to
identify energy theft accurately while reducing potential false
positives. Meanwhile, work in [105] has presented a real-
time price estimation by fusing local power and global power
consumption to understand real-time electric load of the grid.
In future, prosumers (producer and consumer) will emerge in
the smart grid market and sole distributor paradigm will be
no longer valid. This scenario greatly increase the difficulty
of the energy demand and load when accounting the energy
as a live market

2) Smart Energy: The search for clean energy resources
has been an ongoing effort for many researchers in order to

cut down the dependency on the fossil fuels. Therefore, the
clean energy research direction mostly focuses on renewable
energy, which propose to go for a green and less carbon
footprint energy producing approach. Nowadays, the most
common renewable energy sources emerged in the market are
solar farm [[101], [[141]] and wind power [215]], [216]. Solar
energy is generated based on the conversion of the sunlight
into electricity, but the energy harvesting technique suffers
from limited energy harvesting time. Thus, solar irradiance
prediction is crucial to ensure maximum energy throughput in
the solar farm within the limited time. Huang et al. [141] have
proposed to use data driven algorithms such as ABB, SVM,
BRT, and Lasso, in which the information from neighboring
solar plants are combined to accurately predict the solar
irradiance. Meanwhile in [217], Jung and Broadwater have
implemented a statistical model to fuse wind speed, direction,
temperature from forecast station and online measurement to
determine the total power output of the wind farm. Most of the
aforementioned methods focus on improving efficiency of the
existing energy harvesting methodology. Future research on
the clean energy relies on various data and energy sources in
order to construct a high efficiency energy harvesting model.

3) Smart Facility: Smart facility denotes access of physical
facility that provides services to the public such as parking
facility, water supply, etc. The most vital facility in a smart
city would be water treatment center as clean water is an
important necessity for the urban citizens. Any potential
leakage or downtime of water supply in a city would be proven
troublesome. Mounce et al. [104] propose a water leakage
detection using classification technique, which combines all
the district water meter data. Similar concept can be applied on
other resources such as gas pipe leakage detection or electricity
theft in smart grid. In the public facility, the wear and tear
of structures can be a major issue due to the frequent rate
of public usage. Hence in [99], Park et al. have combined
multi-metric sensors to estimate the bridge displacement.
Through this, a rough estimation of the structural health can
be determined. Alternately, Khoa et al. [218] have proposed a
tensor decomposition approach using the facility data sources
in order to understand the facility usage details. In addition,
the emergence of data centers providing various functionalities
to the smart city applications such as [219]-[221] also one of
the focuses for the ongoing efforts of smart city. There is also
a few domains that is highly correlated with smart facility such
as Smart Maintenance and Governance [56], where integration
of a web portal is used to report potential damages.

4) Smart Communication: Communication in an urban city
remains an essential infrastructure for various application
platforms to communicate with each other. Not all com-
munication platforms and standards are designed equally as
each of them serve different purposes. Therefore, different
standards and protocols to meet varying requirements have
been established. Currently, the upcoming 5G technology [28]],
[222] has promised to bring integration of 5G interface with
support for older generation spectrum such as LTE and Wi-Fi
in order to provide seamless user experience. The common
data source in 5G standards is raw signal, and that is the
reason why data fusion only happens at the edge level. For
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example, Huang et al. [27]] and Rappaport et al. [222] have
fused raw signals that are divided through multiple antenna
during transmission. The receivers will receive multiple signal
sources and reconstruct the original information being trans-
ferred. Further discussion of the energy efficient trade-off in
wireless communication technology can be found in [223],
[224]. In the IoT domain, wireless sensor network (WSN) is
considered a common communication platform because of its
wide coverage and low power consumption. WSN is built on
top of nodes’ network, which is smaller than a wireless ad hoc
network. Hence, multiple nodes can be combined for encod-
ing and decoding the packets received. Kreibich et al. [47]]
and Luo et al. [48|] have proposed approaches to improve
communication between WSN focusing on the communication
mechanism between nodes. The main objective is to focus on
the reliability of communication channel while maintaining
the coverage (from relay to sink nodes) and also low power
consumption. The research significance of communication is
undoubtedly a necessity in smart city as it benefits all domains
leveraging communication technology. The main goal is to
design efficient and reliable communication protocols to meet
different requirements of applications. Alternately, low power
communication is yet another goal for IoT in order to achieve
long sensing operation.

IV. CHALLENGES AND OPEN RESEARCH DIRECTIONS

After outlining the applications of the smart city that use
data fusion, we discuss the potential aspects to improve the
data fusion in the smart city applications observed from
previous section. These aspects include potential categories
or perspectives that are not discussed in Section |[I| and As
shown in Figure [2] we identify four major research directions,
which are (1) data quality, (2) data representation, (3) data
privacy and security, and (4) data fusion technique.

A. Data Quality

Quality of the data sources directly determine the quality of
output results since processing module follows the “garbage
in and garbage out” theorem in fusing data sources. Thus, we
discuss two aspects to improve the data sources in the smart
city applications, which are sensing coverage and sensing
longevity.

1) Sensing Coverage: Sensing coverage is one of the
important factors to determine the quality of data sources.
Insufficient data coverage will generate a result that is not
representative, and often it implies more sensors need to be
installed to increase the sensing coverage. This indirectly
affects the deployment cost since more physical hardware is
required to compensate the sensing coverage. Apart from that,
it also affects the design of communication architecture be-
cause more physical sensors are required to transmit data, and
thus potentially congests the communication platform. These
factors are common obstacles for a large-scale deployment in
smart city applications and getting worse when increasing the
deployment scale. There are two commonly used approaches
to address the aforementioned issues, which are crowdsensing
and mobile sensing platform.

As shown in [225]], crowdsensing is one of the most cost-
efficient method as personal mobile devices such as smart-
phones. Smartphones offer wide variety of sensors such as
vibration, magnetic field, IMU, GPS, and others. The problems
with crowdsensing are related to user privacy intrusion and
high battery consumption when actively collecting data. User
privacy is a challenge in collecting data as regulations in
many countries have been facilitated to prevent applications
to collect any sensitive information. This issue will be further
discussed in user privacy and security sub-section. Another
problems with crowdsensing are the unavailability of geolo-
cations information or random distribution of geographical
located data. These scenarios lead to inconsistent data quality.
Potential way to resolve this limitation is to collect data at a
fixed time and location only when needed, where incentive is
provided for valid participants. Also, the trade-off problem of
the mobile sensing can be further found in [226]. Through this
method, only qualified data will be included as data sources,
while invalid information will be automatically filtered.

Using similar concept as crowdsensing, mobile sensing has
offered the same data sensing approach but only follows
designated route to collect data. The idea is to leverage the
mobility of the transportation (normally public transports,
cabs, and garbage trucks) to conduct data collection, where
the vehicles are traveling across the city. Example of mobile
sensing platform can be found in [[106], where garbage trucks
on duty will collect the ambient data across different parts of
the city weekly. An identical concept can also be implemented
with the public transport systems, since majority of them
follow fixed schedules. The challenge with the mobile sensing
is that spatial resolution of the data may not have a finer
detail when compared to crowdsensing due to fixed data
collection schedule. The main cause is due to the limited
accessibility of the vehicles in certain areas (pedestrian path
and residential area). Potential workaround of this limitation
would be combining the mobile sensing and crowdsensing
data sources to generate data that covers large area within the
urban city. Services integration also plays an important role
in supplying platforms alternate data sources to perform data
enrichment. By simulating the different IoT services in smart
city as shown in [227], potential limitation or bottlenecks of
smart services can be avoided in order to design a better smart
city application.

2) Data Sensing Longevity: Long term data collection
offers different aspects of knowledge discovery as data is
able to cover more detail in a larger temporal resolution. The
advancement of miniaturization has greatly reduced the power
consumption of the sensors and IoT devices while maintaining
the same sensing performance. As a result, combining both
energy harvesting techniques and low energy devices are
able to create a long self-sustaining sensing approach. This
breakthrough allows physical sensors to run independently
without the need of external power sources.

In order to preserve the longevity of physical sensors’
sensing capability, energy harvesting is one of the common
approach in large area networks. It allows sensors to draw
energy from solar energy, vibration, or temperature difference.
The most widely available energy harvesting technique is solar
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Fig. 2. Open Research Directions for Data Fusion in Smart City Applications.

panels and it can be easily obtained. Solar panel is affected by
the presence of solar irradiance, where the energy harvested
varies throughout the different time of the day. Contrast to
solar farm, the goal here is to conserve as much energy, while
maintaining the sensing capability of the physical sensors.
The most notable influence would be the energy management
architecture as well as the battery capacity and the solar panel
efficiency. Apart from that, although temperature difference
and sensor vibration are capable of harvesting energy but it is
limited to certain use case and not suitable for general usage.

Alternately, potential replacement of the traditional energy
harvesting technique is wireless power transfer. As shown
in [228], [229], this method offers power to be transferred
wirelessly without battery and energy harvesting module. Cur-
rently, there are different types of wireless power transfer tech-
nologies such as inductive coupling, capacitive coupling, mag-
netodynamics coupling, microwaves, and light-waves. Each
of them has their limitation such as inductive coupling only
has limited range of transferring energy. That being said,
this technology is still relatively new, and it requires further
investigation in order to guarantee its minimum working
efficiency for smart city applications.

Other than using external power sources, low power sensing
for carrying out the sensing tasks. In order to drive different
smart city applications, various standards have been proposed
for LPWAN, such as LoRaWAN by LoRa Alliance and NB-
IoT Release 13 by 3GPP. LoRaWAN focuses on the long range
IoT connectivity for industrial applications while the NB-IoT
focuses on the indoor coverage, low cost, long battery life, and
stable communication in high density communication channel.
The main reason to use low power sensing approach is due
to the high compatibility with large scale deployment relying
on the low bit rate communication channel usage. However,
standardization of these protocols remains a challenge in
LPWAN due to the possibly of using unlicensed spectrum,
where organizations may choose not to follow the agreed
spectrum. In future, low power communication will ensure
the long term sensing capability of physical sensors in the
smart city applications and therefore will improve data sources
quality.

B. Data Representation

A high speed Internet connection provides easy access
to many genres of data sources and creates opportunity to
study wide variety of different data sources. However, large
variety of data sources frequently indicate the incompatibility
of data formats. The problem becomes more obvious when

Y |
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there is no standardization on the data format. To tackle such
problem, data ontology is the building block to represent the
data sources to connect different sources of data for seamless
services integration. If the format of the data source cannot
be interpreted, it will be marked as useless for the platform
integrator. Therefore, semantic web has been proposed as an
extension to WWW web services utilizing Resource Descrip-
tion Framework (RDF) to provide standard data exchange
formats. It opens the path to create different solutions for
the IoT applications and it supports the Open Government
Data (OGD) principles [230]. To date, there are few common
ontology languages have been developed such as Delivery
Context (DCN) [231]], Web Ontology Language (OWL) [232],
Resource Description Framework Schema (RDFS) [233]], Se-
mantic Sensor Network (SSN) [234], and others. Majority
of the ontology languages only focus on one application
domain because they are not suitable for representing the
metadata from other domains. This causes data segmentation
in the smart city applications, where further increases the gap
between different smart city domains. Thus, DBpedia [235] is
designed to address the aforementioned issue using public and
private stocks of semantic web. DBpedia has provided solu-
tions for the ontology software as it offers different classes and
types that are available on the Wikipedia. That being said, not
all applications adopt the idea of DBpedia and there is a frac-
tion of applications remain conservative using proprietary data
representation. Apart from that, Message Queuing Telemetry
Transport (MQTT) [236] v3.1 protocol has been introduced
as one of the protocols to address ontology problems between
brokers. It offers machine to machine (M2M) communication
by providing lightweight publish and subscribe messaging
services, where network bandwidth limitation is one of the
main constraint. It is possible to combine the aforementioned
technologies in order to generate a better data integration
for data fusion purposes across different domains. Therefore,
the future agenda for the ontology language is to encourage
integration of different levels of data sources using different
system architecture such as edge, fog, and cloud computing.

C. Privacy and Security

1) Privacy: Collecting urban residents’ data in a smart city
application can be challenging due the nature of sensitive data
that can be misused if poorly managed. As privacy issue has
been discussed extensively by the authors in [116], [237],
[238]], misuse of private information may lead to catastrophic
events such as information theft, or identity fraud. Currently in
Europe, General Data Protection Regulation (GDPR) as dis-
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cussed in [239], [240] has been proposed to better address the
data privacy concern of the Internet. In other countries, there
are also similar efforts to enforce data privacy protection such
as Canada’s Personal Information Protection and Electronic
Documents Act (PIPEDA), China’s China Data Protection
Regulations (CDPR), Singapore’s Personal Data Protection
Act (PDPA), Japan’s Personal Information Protection Com-
mission (PIPC), etc. Meanwhile in USA, Health Insurance
Portability and Accountability Act of 1996 (HIPAA), the
Children’s Online Privacy Protection Act of 1998 (COPPA),
and the Fair and Accurate Credit Transactions Act of 2003
(FACTA) have been introduced to improve with the informa-
tion flow efficiency across agencies. This is also a part of
the efforts to prevent sensitive information being available for
unauthorized parties.

Majority of the policies and regulations emphasize on the
users’ consent for collecting personal data and this can be
problematic as not all platforms provide ample security for
data storage. With insufficient security measurements, the data
collected may be compromised, which may lead to tainted
reputation and loss of public faith. For instance, Facebook
and Cambridge Analytica scandal [241] has shown potential
misuse of user data collected. With that in mind, potential right
of accessing data sources could be revoked if the data source
is not handled properly by the right person. Hence, privacy
and security should be the responsibility for both platforms
and users. A thorough review has been conducted in [242],
which works on the IoT requirements to address privacy issues.
Potential solution for the aforementioned problem is to use
hybrid data fusion technique in a smart city application. The
idea here is to locally fuse the sensitive information (user
identity, phone number, bank account number) into generic
information, before uploading to the cloud for further process-
ing. The benefits of such approach are two-folds, which are the
ability to offload computational cost and to preserve sensitive
information at the physical sensor only. In addition, we can
leverage machine learning approaches such as [243]], [244] to
generate synthetic datasets with identical data characteristic
for study purpose. This eliminates the chances of private data
been leaked out and encourage the openness of datasets to be
studied by different researchers and data scientists. To draw a
clear line between generic and sensitive data remains a debate
among researchers. In future, the data fusion can be applied
at the lower level to remove any potential sensitive data.

2) Security: According to Kitchin [245]], there are two
general security concerns in the smart city applications, which
are security of technology/infrastructure (data center, services,
and system architecture) and data security (data generation,
storage, and communication).

The security of the technology and infrastructure highly
relies on the design architecture of the system being deployed.
Depending on the application requirements, it varies from tra-
ditional client server architecture to decentralized architecture.
The main objective is to deploy a hack-proof/exploit-less sys-
tem architecture. Alternately, there are also ways of improving
security of system architecture such as incentive/bounty for re-
porting flaws, simulating injection attacks, security assessment
from third party, etc. Nowadays, the security enhancement

focuses towards continuous effort as the technology has been
changing rapidly. For instance, security works in [[246]—-[24§|]
have proposed different strategies to enhance the security
of the smart city application’s architecture by focusing on
the common security standards/practices/protocols. This shows
that as the number of smart city applications increase rapidly,
system architectures implemented with the security design
in mind become apparent with good practices and standard
architecture design. Subsequently, regular security assessment
and auditing also pave way for a safer smart city applications
deployment.

Meanwhile, data security also contributes to the significant
part of smart city applications ecosystem from generation,
storage, and communication. The common method to combat
such issue is leveraging encryption techniques, where it en-
codes the data so that only the authorized parties have access
to it. For instance in [249], Wang et al. have introduced an
attribute based encryption scheme, which it allows fine-grained
access control, scalable key management, and flexible data
distribution. In addition, encryption also can be used in the
communication platform between IoT devices in smart city
application as shown in [250], [251] to prevent information
hijacking.

Despite constant effort of cyber security researchers devel-
oping new security schemes, the numbers of data breaches
and cyber threats increase every year according to David
et al. [252]]. The main culprit of such occurrence is due to
negligence of data security practices/implementation. Security
often appears to be an afterthought in deployment of a smart
city application. Thus, in order to combat such threat, the
smart city application should comply with security standards
as shown in [253]] to mitigate the chances of becoming a
victim.

D. Data Fusion Techniques

Extracting knowledge from a smart city application fre-
quently involves data mining techniques in order to fuse
different data sources. Lower tier data fusion techniques have
been well explored in [39] and the current research trend
focuses more on the machine learning approach. The main
reason why machine learning approach has gained so much
attention is due to its capability of handling high dimensional
data. The problem of high dimensional data is also known as
curse of dimensionality as described by Bellman [254]. In this
context, we discuss two research trends on applying machine
learning techniques in data fusion as follows:

1) Explainable Deep Neural Network: Lately, supervised
machine learning techniques focus on the DNN, where the
in-depth reviews of the recent development can be found
in [255]-[257]]. Major research efforts aim to increase the
explainability of the model such as NN, CNN, and DNN rather
than using them as black box models. To this end, explainable
Al (XAID) [258] is the new motivation for data scientists to
explore the interpretable learning paradigm of the modeling in
order to provide a semantic meaning behind modeling logic.
This new learning process has driven three big fields in the
deep learning domains, which are (1) Deep Explanation, (2)
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Interpretable Model, and (3) Model Induction. To develop a
deep explanation on the model interpretation, the cognitive
layers will act as an intermediate layer between learning and
explanation layer in order to cast the learned abstractions,
policies, and clusters information into an explainable format.
Subsequently, the interpretable model such as Bayesian learn-
ing [259] can be built to explain the uncertainties required
when developing the deep learning models to learn the choices
of a learning process. Alternate approach has proposed to use
subspace approximation with an adjusted bias technique [[260]
to build interpretable CNN, which uses feed forward design
to better explain the model’s choice in allocating certain
hyper-parameters. Meanwhile, model induction refers to the
technique used for inferring the model’s decision and learning
progress. Through a thorough understanding of the model,
parameters can be fine-tuned to increase the learning optimiza-
tion rate in a long-term application deployment. Hence, the
search of XAl is an important milestone for the data scientists,
which can be used to explain the learning process and the
decision machine learning made. An example of potential
use case would be trying to understand the reason behind
(also known as reasoning in some literatures) the predictive
maintenance decision machine learning rather than performing
maintenance due to the result of predictive algorithm.

2) Unsupervised Data Fusion: In the smart city applica-
tions, collecting the ground truth could be proven challenging
due to the uncertainties and errors in the collected data sources.
Hence, obtaining labels or data annotation are another prob-
lems with certain data sources. Despite the rapid development
of advanced modeling tools like DNN, it still requires labels
and data annotation in order to achieve objectives of extracting
higher information. There are a few approaches that address
the lack of labels such as manual annotation, crowd labeling,
software annotation, and pattern labeling. However, manual
annotation only works well with a small dataset while other
approaches do not guarantee the correctness of end result. This
shows a big research gap to seek a better way to label data
sources accurately.

Research works such as Zhou et al. [261]], [262] have at-
tempted to fix unlabeled data by transforming them into useful
features to achieve certain objectives. Traditionally, raw data
is required to be preprocessed into something meaningful, but
it still suffers from the need of data cleansing and amputation.
The simplest method would be to solely depend on the filtering
technique. However, aggressive filtering may remove large
amount of raw data resulting potential loss of knowledge.
Another simple solution is to increase the number of reli-
able data sources to be fused to create potential annotation.
Increasing data sources often indicates an increment of the
overall deployment cost. Alternative solution to the increased
deployment cost is to use transfer learning [263]], where the
knowledge from existing domain can be transferred to other
domain to learn from it.

3) Emergence of Hybrid Model: The emergence of the
hybrid models has become common due to wide variety of
data sources available. It allows different levels of data sources
(high, low, or both) to combine in order to create potential
insights in a particular domain. It also helps to solve the

data privacy problem along with machine learning technique,
which has opened up many opportunities for researchers
and data scientist to study on these big data collected. One
example of the hybrid model is shown as follows: an urban
planning system has different data sources as input such as
human comfort factor index (environmental ambient sensors),
positive urban city factor (feedback data on urban area such
as greenery, surrounding amenities, recreational parks, and
others), and cyber data (social media input) to design a
fully automated urban planning system by fulfilling predefined
criteria. The result from the data fusion needs to be explainable
as discussed in the previous XAI for understanding choices
made by the automation software. In this example, different
tiers of data sources are fused using data sources types
(D1, D2) and the result is some features. Eventually, these
features will be combined to generate a potential plan for city
through computation modeling (D3, D4). By joining different
data sources, simulation can be used concurrently to verify
the performance of urban planning system before deploying
to the city. In future, implementation of the hybrid model
will become a general trend due to wide availability of the
data sources and processing platforms. As mentioned in the
discussion, data ontology is another key factor to allow data
sources to be connected from different platforms to provide
knowledge for the smart city applications.

V. CONCLUSION

This paper presents an overall view of the data fusion tech-
niques found in the smart city applications. Easy accessibility
of the data sources has paved way for data fusion in different
smart city applications in various forms. The increasing trends
of data fusion in the smart city applications create the need
for a new evaluation method. Therefore, we propose a multi-
perspectives classification for the smart city applications that
involve data fusion techniques. The data fusion classification
based on multi-perspectives introduced in this paper are: (1)
Fusion Objectives, (2) Fusion Techniques, (3) Data Input
and Output Types, (4) Data Source Types, (5) Data Fusion
Scales, and (6) System Architecture. Using the proposed multi-
perspectives, we evaluated some selected works in the smart
city applications and we also discussed the research trend for
each domain respectively. Next, we also discuss four open
research directions of data fusion in a smart city application
such as data quality, data representation, data privacy &
security, and data fusion technique. Overall, we are certain
that generic nature of the multi-perspectives classification is
able to perform well with various smart city applications for
different domains that leverage the data fusion techniques. In
addition, an in-depth analysis can be further extended onto
individual domain to study the common requirements and
techniques applied, which we do not include in this paper due
to limited paper length. A successful smart city application is
built on top of the data (also known as data-driven architecture)
and data fusion has provided a wide variety of techniques
to improve the input data for an application. Therefore, data
fusion has opened the path for various applications to gain
insights about the city. This also holds the key for a smart
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city to further understand and improve the domains that it is
lacking.
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