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Abstract

The property of monotonicity, which requires a function to preserve a given
order, has been considered the standard in the aggregation of real numbers
for decades. In this paper, we argue that, for the case of multidimensional
data, an order-based definition of monotonicity is far too restrictive. We
propose several meaningful alternatives to this property not involving the
preservation of a given order by returning to its early origins stemming from
the field of calculus. Numerous aggregation methods for multidimensional
data commonly used by practitioners are studied within our new framework.
Keywords: Monotonicity; Aggregation; Multidimensional data; Centroid;
Spatial median.

1. Introduction

The concept of monotonicity originally arose from calculus but, probably
due to its intuitive nature, spread to other fields of science. In particular,
the study of monotonicity was later embraced by the field of order theory.
Admittedly, the concept of monotonicity is understood differently in each
of these domains: whereas in the field of calculus it is a property based on
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directional derivatives (or directional finite differences in case the function is
not differentiable), in the field of order theory it is a property based on the
preservation of some order. Due to the fact that both notions are equivalent
for functions of the type A : Rn → R for some n, they are most often used
interchangeably.

In the field of data aggregation [1–5], monotonicity is a largely ven-
erated property that has been typically understood in the second (order-
theoretical) sense, generalized to functions of the type A : Xn → X, for
a given poset (X,≤). Although most practitioners admittedly consider the
poset to simply be the unit interval [0, 1] with the usual natural order ≤,
aggregation on different types of poset (e.g., interval-valued data) has also
built upon the property of monotonicity [6, 7].
Definition 1. Consider a poset (X,≤). A function A : Xn → X is called
monotone (increasing)1 if, for any x,y ∈ Xn, the fact that2 x ≤n y implies
that A(x) ≤ A(y).

The most common class of aggregation functions is that of averaging
functions (often referred to as means) [3–5, 8]. Although the first known
definition of a mean [9] just required a function A : Xn → X to be idem-
potent, i.e., A(x, . . . , x) = x for any x ∈ X, the current understanding adds
the property of monotonicity.

Historically considered a standard, the property of monotonicity has re-
ceived some fierce criticism in recent years. For instance, many scholars point
out that the mode, which should arguably be one of the most natural ex-
amples of an aggregation function, is not monotone. For this very reason,
the property of weak monotonicity, which generalizes both translation equiv-
ariance and monotonicity for functions of the type A : Rn → R, has been
recently proposed [10]. Several studies on the conditions under which some
non-monotone functions (e.g., Gini means) are weakly monotone have been
addressed in [11, 12].
Definition 2. A function A : Rn → R is called weakly monotone if, for any
x ∈ Rn, any a > 0 and 1 = (1, . . . , 1) ∈ Rn, it holds that A(x + a1) ≥ A(x).

1The term ‘monotone’ actually refers to two types of behaviour: monotone increasing
(isotone) and monotone decreasing (antitone). However, for historical reasons, we adhere
to the term ‘monotone’ for referring to ‘monotone increasing’ throughout this paper.

2Given an order ≤ on a set X, the product order on Xm is defined as x ≤m y if xi ≤ yi,
for any i ∈ {1, . . . ,m}.
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Yet, one can argue that the above definition is much too weak.
Outside the field of aggregation theory, aggregation on different types of

mathematical structures has been addressed despite the lack of a natural
order on these structures. For instance, the aggregation of rankings has been
addressed in the field of social choice theory since (at the latest) the eigh-
teenth century [13–15]. Not only the aggregation of rankings has attracted
scientific attention, but also the aggregation of members of different families
of binary relations [16–18]. In most of these cases, the inclusion-based order
on the set of binary relations does not result in an interesting poset. The
aggregation of strings [19] has also been studied despite the lack of a mean-
ingful order on the set of strings. In most cases, these data fusion tasks are
performed as the minimization of a ‘distance’ or ‘penalty’ [20–22], as in the
prominently-studied case of penalty-based aggregation of real numbers [23–
25].

In this paper, we focus on the aggregation of multidimensional data, fol-
lowing the generic direction started in [26] and further discussing different
monotonicity properties that could be of interest in this setting. More pre-
cisely, given n points in Rd, we would like to study aggregation methods that
output a single point in Rd as a result. This setting prominently appears
in many important disciplines, including data analysis and computational
statistics, see, e.g., [27, 28]. This is because most objects in data science are
represented in terms of feature vectors.

Already in [26] it was noted that several popular multidimensional aggre-
gation functions, like the Euclidean median or the Euclidean center, do not
fulfill a classical extension of the order-theoretic monotonicity (referred to as
componentwise monotonicity). However, this interesting problem was left as
a topic of further research, as the main attention of the paper was devoted
to the behaviour of different aggregation functions after being subjected to
various geometrical transformations, like the study of equivariances to or-
thogonal, translation, scaling, and other affine transformations. In [29], the
present authors pointed out an inherent difficulty in the aggregation of mul-
tidimensional data: if a weighted centroid is to be avoided, one must choose
either the (order-theoretic) monotonicity or a desirable behaviour with re-
gard to orthogonal transformations. In this paper, we go much further by
introducing new monotonicity properties for the aggregation of multidimen-
sional data that are fulfilled by more general classes than that of weighted
centroids. Such properties are especially important due to their interpretabil-
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ity and the fact that they assure a proper behaviour of the functions’ outputs
when the inputs are subjected to some basic geometrical transformations.

The remainder of the paper is set out as follows. In Section 2, we point
out several drawbacks of the classical order-theoretic monotonicity property
when dealing with multidimensional data. Four new potential definitions
of monotonicity are introduced in Section 3. These monotonicity properties
are compared to the simplistic componentwise monotonicity, resulting in the
introduction of the natural property of ultramonotonicity in Section 4. Some
prominent examples of ‘aggregation functions’ for multidimensional data are
discussed in Section 5 and classified within this newly introduced taxonomic
framework. Finally, in Section 6, we discuss the practical implications of our
findings and outline some ideas for further research.

2. An inherent difficulty in the aggregation of multidimensional
data

Assume we are dealing with n points x(i) = (x(i)
1 , . . . , x

(i)
d )T in Rd, where

i ∈ {1, . . . , n}. Note that, throughout this paper, we use the letter i for
indexing the different points (thus, i ∈ {1, . . . , n}) and the letter j for index-
ing the different dimensions/features (thus, j ∈ {1, . . . , d}). The goal is to
aggregate the n points x(1), . . . ,x(n) into a unique point (hereinafter referred
to as the aggregate) by means of a function A : Rd×n → Rd, as follows:

A
(
x(1), . . . ,x(n)

)
= A


x

(1)
1 · · · x

(n)
1

... . . . ...
x

(1)
d · · · x

(n)
d

 =


y1
...
yd

 .

In the unidimensional case (d = 1), this setting reduces to the classical
aggregation of real numbers and the monotonicity property is determined
by the classical order relation on R, as in Definition 1. However, in the
multidimensional case (d ≥ 2), it is unclear how to define the monotonicity
property. A first idea would be to consider the product order ≤d on Rd and
define monotonicity w.r.t. this order. This is illustrated in the left side of
Figure 1.

Unfortunately, this order-based monotonicity might be too restrictive.
Let us consider one of the most classical methods for aggregating multidi-
mensional data, the spatial median (also referred to as L1 median, geomet-
ric median, Euclidean median, Fermat–Weber point, among other names),
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Figure 1: Graphical interpretation of the property of monotonicity w.r.t. ≤d (left side)
and w.r.t. a rotated ≤d (right side). The black circles represent four initial data points,
whereas the white circles represent the new positions of the initial data points. The point
marked with the symbol × represents the initial aggregate and the green area indicates
the area in which the new aggregate must be found.

i.e., the point that minimizes the sum of Euclidean distances to the points
to be aggregated. This function has an undesirable behaviour. Not only
is it not ≤d-monotone, but it also fails the weaker condition of ≤d-non-
decreasingness3. For instance, let us recall the example given in [26]. Con-
sider x(1) = (0, 0)T , x(2) = (1,−5)T and x(3) = (20, 1)T . The spatial median
of x(1), x(2) and x(3) is given by A(x(1),x(2),x(3)) ≈ (1.961,−2.305)T , whereas
for x(3)′ = x(3) + (1980, 1)T , we get A(x(1),x(2),x(3)′) ≈ (1.946,−3.351)T ≤2
(1.961,−2.305)T ≈ A(x(1),x(2),x(3)).

Even if too restrictive, one could consider this order-based monotonicity
to be perfectly fine for certain types of multidimensional data for which all
components are independent and expected to be increasing all at the same
time. Yet, when the components are not independent (and this is often the
case when dealing with multidimensional data), it might be carrying the
wrong semantics – since there may be no associated notion of order. Note
that with this property it is possible that if all data points move ‘right’,
the aggregate moves ‘up’. As another illustrative example, let us consider

3Consider a poset (X,≤) and n ∈ N. A function A : Xn → X is called non-decreasing
if, for any x,y ∈ Xn, the fact that x ≤n y implies that A(y) 6≤ A(x).
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spatial data coming from satellite imagery, represented as points on a two-
dimensional rectangular map. There, we would not only expect the aggregate
to move to the top-right corner of the map whenever all data points move to-
wards this top-right corner, but we would also expect the same in all possible
directions. This is illustrated in the right side of Figure 1. In [29], we pro-
posed the notion of orthomonotonicity for solving this (potential) semantic
issue.

Definition 3. A function A : Rd×n → Rd is called orthomonotone if, for
any (x(1), . . . ,x(n)), (y(1), . . . ,y(n)) ∈ Rd×n and any orthogonal matrix4 O ∈
Rd×d, the fact that O x(i) ≤d O y(i) for any i ∈ {1, . . . , n}, implies that
OA(x(1), . . . ,x(n)) ≤d OA(y(1), . . . ,y(n)).

Unfortunately, the only idempotent functions satisfying such orthomono-
tonicity turned out to be weighted centroids [29]. In the upcoming section,
we will discuss new monotonicity properties that are satisfied by a broader
class of idempotent functions than that of weighted centroids.

3. A taxonomy of monotonicity properties for multidimensional
data

3.1. Definitions
In this section, we will introduce and analyze four natural monotonicity

properties (we refer to Section 5 for illustrative examples of functions satis-
fying each of these monotonicity properties). First, following the rationale
behind the introduction of weak monotonicity, we distinguish two different
settings concerning whether we allow one single point to be moved (S) or we
allow multiple points to be moved simultaneously (M). Second, following the
rationale behind the inner product-based property of monotonicity in func-
tional analysis5, we distinguish two different settings concerning whether we
allow the aggregate to preserve the direction in which the data points are
moving (P) or we allow the direction in which the aggregate moves to be
consistent with the direction in which the data points are moving (C). Thus,
we have four possible combinations of these settings that we will denote by

4An orthogonal matrix is a matrix O ∈ Rd such that OT = O−1.
5In the field of functional analysis, a function A : X → X on a Hilbert space X is

called monotone if 〈y − x,A(y)−A(x)〉 ≥ 0, for any x, y ∈ X.
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SP-, MP-, SC- and MC-monotonicity. In Figure 2, we illustrate all of these
properties, which will be formalized right after.

First, we consider SP-monotonicity, i.e., we allow one single point to
move in any direction, and we require the aggregate to move in this same
direction. For a graphical interpretation of this property, see the top left part
of Figure 2. We use the notation ~0 = (0, . . . , 0)T .

Definition 4. For a given direction ~u ∈ Rd\{~0}, a function A : Rd×n → Rd is
called ~u-SP-monotone if, for any

(
x(1), . . . ,x(n)

)
∈ Rd×n, any i ∈ {1, . . . , n}

and any step size t ≥ 0, there exists k ≥ 0 such that:

A
(
x(1), . . . ,x(i) + t~u, . . . ,x(n)

)
− A

(
x(1), . . . ,x(i), . . . ,x(n)

)
= k ~u.

Definition 5. A function A : Rd×n → Rd is called SP-monotone if it is
~u-SP-monotone with respect to all directions ~u ∈ Rd\{~0}.

Second, we consider MP-monotonicity, i.e., we allow all points to move
in the same direction with the same step size, and we require the aggregate
to move in this same direction (possibly with a different step size). For a
graphical interpretation of this property, see the top right part of Figure 2.

Definition 6. For a given direction ~u ∈ Rd\{~0}, a function A : Rd×n → Rd

is called ~u-MP-monotone if, for any
(
x(1), . . . ,x(n)

)
∈ Rd×n and any step size

t ≥ 0, there exists k ≥ 0 such that:

A
(
x(1) + t~u, . . . ,x(n) + t~u

)
− A

(
x(1), . . . ,x(n)

)
= k ~u.

Definition 7. A function A : Rd×n → Rd is called MP-monotone if it is
~u-MP-monotone with respect to all directions ~u ∈ Rd\{~0}.

Third, we consider SC-monotonicity, i.e., we allow one single point to
move in any direction, and we require the direction in which the aggregate
moves to be consistent with the direction in which the data point is moving
(i.e., the angle between both directions belongs to [−π

2 ,
π
2 ]). For a graphical

interpretation of this property, see the bottom left part of Figure 2. Note
that the fact that the angle between two vectors ~u and ~v belongs to [−π

2 ,
π
2 ]

is equivalent to the dot product of ~u and ~v being positive, since

~u · ~v = ~uT~v =
d∑
j=1

uj vj = ‖~u‖ ‖~v‖ cos(θ) ,

where θ represents the angle between ~u and ~v.
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Figure 2: Graphical comparison of the different monotonicity properties defined in this
section. The black circles represent four initial data points, whereas the white circles
represent the new positions of (some of) the initial data points. The point marked with
the symbol × represents the initial aggregate and the dashed arrow represents the direction
in which we are considering the monotonicity. The red area indicates the area to which
the aggregate must not go.
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Definition 8. For a given direction ~u ∈ Rd\{~0}, a function A : Rd×n → Rd is
called ~u-SC-monotone if, for any

(
x(1), . . . ,x(n)

)
∈ Rd×n, any i ∈ {1, . . . , n}

and any step size t ≥ 0, it holds that(
A
(
x(1), . . . ,x(i) + t~u, . . . ,x(n)

)
− A

(
x(1), . . . ,x(i), . . . ,x(n)

) )
· ~u ≥ 0 .

Definition 9. A function A : Rd×n → Rd is called SC-monotone if it is
~u-SC-monotone with respect to all directions ~u ∈ Rd\{~0}.

Fourth, we consider MC-monotonicity, i.e., we allow all points to move in
the same direction with the same step size, and we require the direction in
which the aggregate moves to be consistent with the direction in which the
data points are moving. For a graphical interpretation of this property, see
the bottom right part of Figure 2.

Definition 10. For a given direction ~u ∈ Rd\{~0}, a function A : Rd×n → Rd

is called ~u-MC-monotone if, for any
(
x(1), . . . ,x(n)

)
∈ Rd×n and any step size

t ≥ 0, it holds that(
A
(
x(1) + t~u, . . . ,x(n) + t~u

)
− A

(
x(1), . . . ,x(n)

) )
· ~u ≥ 0 .

Definition 11. A function A : Rd×n → Rd is called MC-monotone if it is
~u-MC-monotone with respect to all directions ~u ∈ Rd\{~0}.

Remark 12. Note that both the magnitude and the sign of the direction ~u
do not matter for defining any of the above monotonicity properties w.r.t. ~u.
Formally, for any function A : Rd×n → Rd and any direction ~u ∈ Rd\{~0},
the following results hold:

(i) A is ~u-SP-monotone if and only if it is (c~u)-SP-monotone for any c 6= 0.

(ii) A is ~u-MP-monotone if and only if it is (c~u)-MP-monotone for any
c 6= 0.

(iii) A is ~u-CP-monotone if and only if it is (c~u)-SC-monotone for any c 6= 0.

(iv) A is ~u-MC-monotone if and only if it is (c~u)-MC-monotone for any
c 6= 0.
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3.2. Relations between the new notions
An important (and straightforward) conclusion concerning the relation-

ships between the above monotonicity properties is provided in the following
proposition.

Proposition 13. For any function A : Rd×n → Rd and any direction ~u ∈
Rd\{~0}, the following results hold:

(i) If A is ~u-SP-monotone, then it is ~u-MP-monotone.

(ii) If A is ~u-SP-monotone, then it is ~u-SC-monotone.

(iii) If A is ~u-MP-monotone, then it is ~u-MC-monotone.

(iv) If A is ~u-SC-monotone, then it is ~u-MC-monotone.

The following theorem follows as a corollary from the proposition above.
This result was already anticipated in Figure 2.

Theorem 14. For any function A : Rd×n → Rd, the following results hold:

(i) If A is SP-monotone, then it is MP-monotone.

(ii) If A is SP-monotone, then it is SC-monotone.

(iii) If A is MP-monotone, then it is MC-monotone.

(iv) If A is SC-monotone, then it is MC-monotone.

3.3. Interaction with rotations
When dealing with multidimensional data, one often applies orthogonal

transformations to an input data set (for example, when performing Principal
Component Analysis). Let us recall that the dot product is invariant under
orthogonal transformations, i.e., for any ~u and ~v and any orthogonal matrix
O, it holds that O~u ·O~v = (O~u)T (O~v) = ~uTOTO~v = ~uTO−1O~v = ~u · ~v.
Typical examples of orthogonal transformations are rotations and reflections.

A function A is called orthogonal equivariant if A(OX) = OA(X) for
every orthogonal matrix O and, in particular, it is called rotation equivari-
ant if A(RX) = RA(X) for every rotation matrix R. Please note that all
functions obtained as minimizers of penalty functions based on the Euclidean
distance (e.g. the spatial median, the centroid and the Euclidean center from
the functions in Section 5) trivially are orthogonal equivariant [26].
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If a function is rotation equivariant, then one of the above monotonic-
ity properties holding with respect to one direction implies that this same
monotonicity property holds with respect to all directions.

Proposition 15. For any rotation equivariant function A : Rd×n → Rd, the
following results hold:

(i) A is SP-monotone if and only if it is ~u-SP-monotone with respect to
at least one direction ~u ∈ Rd\{0}.

(ii) A is MP-monotone if and only if it is ~u-MP-monotone with respect to
at least one direction ~u ∈ Rd\{0}.

(iii) A is SC-monotone if and only if it is ~u-SC-monotone with respect to
at least one direction ~u ∈ Rd\{0}.

(iv) A is MC-monotone if and only if it is ~u-MC-monotone with respect to
at least one direction ~u ∈ Rd\{0}.

Proof. (i) Consider ~u ∈ Rd\{0} and assume that A is ~u-SP-monotone. Con-
sider any (x(1), . . . ,x(n)) ∈ Rd×n, any i ∈ {1, . . . , n} and any t ≥ 0, and
~v = R~u for some rotation matrix R. It holds that

A
(
x(1), . . . ,x(i) + t~v, . . . ,x(n)

)
− A

(
x(1), . . . ,x(i), . . . ,x(n)

)
= R

(
A
(
R−1x(1), . . . ,R−1x(i) + tR−1R~u, . . . ,R−1x(n)

)
−A

(
R−1x(1), . . . ,R−1x(i), . . . ,R−1x(n)

))
= R k ~u = k ~v ,

for some k ≥ 0 due to the fact that A is ~u-SP-monotone. Thus, A is SP-
monotone.

(iii) Consider ~u ∈ Rd\{0} and assume that A is ~u-SC-monotone. Con-
sider any (x(1), . . . ,x(n)) ∈ Rd×n, any i ∈ {1, . . . , n} and any t ≥ 0, and
~v = R~u for some rotation matrix R. It holds that(
A
(
x(1), . . . ,x(i) + t~v, . . . ,x(n)

)
− A

(
x(1), . . . ,x(i), . . . ,x(n)

))
· ~v

= R−1
(
A
(
x(1), . . . ,x(i) + t~v, . . . ,x(n)

)
− A

(
x(1), . . . ,x(i), . . . ,x(n)

))
·R−1~v

=
(
A
(
R−1x(1), . . . ,R−1x(i) + t~u, . . . ,R−1x(n)

)
−A

(
R−1x(1), . . . ,R−1x(i), . . . ,R−1x(n)

))
· ~u ≥ 0 ,
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due to the fact that A is ~u-SC-monotone and the dot product is rotation
invariant. Thus, A is SC-monotone.

Statements (ii) and (iv) can be proven in a very similar manner.

3.4. New monotonicity properties as generalizations of the unidimensional
(weak) monotonicity

Note that SP-monotonicity and SC-monotonicity coincide if d = 1 and
reduce to the classical monotonicity in the setting of real numbers.

Proposition 16. For any unidimensional function A : Rn → R, the follow-
ing results are equivalent:

(i) A is monotone in the sense of Definition 1.

(ii) A is SP-monotone.

(iii) A is SC-monotone.

Proof. (i)⇒(ii) Consider any direction ~u ∈ R\{0}, any (x(1), . . . , x(n)) ∈ Rn,
any i ∈ {1, . . . , n} and any t ≥ 0. If ~u > 0, then it follows that

A(x(1), . . . , x(i) + t~u, . . . , x(n))− A(x(1), . . . , x(n)) ≥ 0 ,

or, equivalently,

A(x(1), . . . , x(i) + t~u, . . . , x(n))− A(x(1), . . . , x(n)) = k~u ,

for some constant k ≥ 0.
Similarly, if ~u < 0, then it follows that

A(x(1), . . . , x(i) + t~u, . . . , x(n))− A(x(1), . . . , x(n)) ≤ 0 ,

or, equivalently,

A(x(1), . . . , x(i) + t~u, . . . , x(n))− A(x(1), . . . , x(n)) = k~u ,

for some constant k ≥ 0.
(ii)⇒(iii) Follows from Theorem 14.
(iii)⇒(i) Consider (x(1), . . . , x(n)), (y(1), . . . , y(n)) ∈ Rn such that x(i) ≤

y(i) for any i ∈ {1, . . . , n}. Thus, for ~u = 1 and any i ∈ {1, . . . , n}, we can
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find ti ≥ 0 such that x(i) + ti~u = y(i). From the SC-monotonicity of A, it
follows that(

A(y(1), . . . , y(n))− A(x(1), . . . , x(n))
)
· ~u

=
(
A(y(1), . . . , y(n))− A(y(1), . . . , y(n−1), x(n))

+ . . .+ A(y(1), x(2), . . . , x(n))− A(x(1), . . . , x(n))
)
· ~u

≥ 0 ,

due to the linearity of the dot product.

Additionally, MP-monotonicity and MC-monotonicity coincide if d = 1
and reduce to the classical weak monotonicity in the setting of real numbers.

Proposition 17. For any unidimensional function A : Rn → R, the follow-
ing results are equivalent:

(i) A is weakly monotone in the sense of Definition 2.

(ii) A is MP-monotone.

(iii) A is MC-monotone.

Proof. The proof is similar to that of Proposition 16.

3.5. Further results
Another typical transformation when dealing with multidimensional data

is that of translation. A function A is called translation equivariant if A(X+
t) = A(X) + t for any t ∈ Rd. Note that MP-monotonicity obviously is a
weaker condition than translation equivariance.

Proposition 18. Any translation equivariant function A : Rd×n → Rd is
MP-monotone.

Note that SP-monotonicity w.r.t. d pairwise orthogonal directions ~v1,
. . . , ~vd ∈ Rd\{0} is enough to assure that SC-monotonicity holds (with re-
spect to all directions). We refer to d pairwise orthogonal directions ~v1, . . . ,
~vd ∈ Rd\{0} as an orthogonal basis (of Rd) and, additionally, as an or-
thonormal basis (of Rd) in case all directions are of unit length. Note that an
orthonormal basis of Rd can be written in terms of an orthogonal matrix O
in which the columns of O represent the basis vectors. We recall that, given
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any direction ~u ∈ Rd\{0}, it is always possible to construct an orthonormal
basis ~v1, . . . , ~vd such that ~v1 = ~u. A typical way of doing this is by means
of the Gram–Schmidt process (see [30, 31] for the original works or [32] for
a historical review).

Proposition 19. For any function A : Rd×n → Rd and any pairwise or-
thogonal directions ~v1, . . . , ~vd ∈ Rd\{0}, if A is ~vj-SP-monotone for any
j ∈ {1, . . . , d}, then it is SC-monotone.

Proof. Assume without loss of generality that all ~v1, . . . , ~vd are unitary.
Consider any direction ~u = ∑d

j=1 λj~vj, any
(
x(1), . . . ,x(n)

)
∈ Rd×n, any

i ∈ {1, . . . , n} and any step size t ≥ 0. We define ~wj = ∑j
`=1 λ`~v` for any

j ∈ {1, . . . , d}. It holds that(
A
(
x(1), . . . ,x(i) + t~u, . . . ,x(n)

)
− A

(
x(1), . . . ,x(i), . . . ,x(n)

) )
· ~u

=
(
A
(
x(1), . . . ,x(i) + t~wd, . . . ,x(n)

)
− A

(
x(1), . . . ,x(i) + t~wd−1, . . . ,x(n)

)
+ . . .+ A

(
x(1), . . . ,x(i) + t~w1, . . . ,x(n)

)
− A

(
x(1), . . . ,x(i), . . . ,x(n)

) )
· ~u

=
(
k1 sgn(λ1)~v1 + . . .+ kd sgn(λd)~vd

)
· ~u

=
(∗)

d∑
j=1

kj sgn(λj)λj =
d∑
j=1

kj |λj| ≥ 0,

since all kj are nonnegative constants arising from the ~vj-SP-monotonicity
of A and in (∗) we use that the dot product is invariant under orthogonal
transformations.

Remark 20. Note that the above result might not be true if the direc-
tions ~v1, . . . , ~vd are not pairwise orthogonal. For instance, consider A(x(1),
x(2),x(3)) = (Med(x1 − x2) + Med(x2),Med(x2))T , which is SP-monotone
w.r.t. the directions ~v1 = (1, 0)T and ~v2 = (1, 1)T . If we consider x(1) =
(3, 4)T , x(2) = (6, 3)T , x(3) = (8, 5)T and ~u = (−2, 1)T and t = 1, then
one can easily verify that A(x(1) + t~u,x(2),x(3)) = (7, 4)T whereas A(x(1) +
t~u,x(2),x(3)) = (8, 5)T . Thus, A is not ~u-SC-monotone (and, thus, not SC-
monotone).

The above remark serves as the source of inspiration for the following
lemma.
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Lemma 21. For any function A : Rd×n → Rd, any invertible matrix P ∈
Rd×d and any direction ~u ∈ Rd\{0}, if A is ~u-SP-monotone, then the func-
tion F : Rd×n → Rd defined by F (x(1), . . . ,x(n)) = PA(P−1x(1), . . . ,P−1x(n))
is P~u-SP-monotone.

Proof. Consider any
(
x(1), . . . ,x(n)

)
∈ Rd×n, any i ∈ {1, . . . , n} and any step

size t ≥ 0. It holds that

F
(
x(1), . . . ,x(i) + tP ~u, . . . ,x(n)

)
− F

(
x(1), . . . ,x(i), . . . ,x(n)

)
= PA(P−1x(1), . . . ,P−1x(i) + tP−1P~u, . . . ,P−1x(n))
−PA(P−1x(1), . . . ,P−1x(i), . . . ,P−1x(n))

= kP ~u ,

for some k ≥ 0 due to the fact that A is ~u-SP-monotone.

Remark 22. Note that the above result also holds for all other monotonicity
properties.

Interestingly, any function defined as the componentwise extension6 of
some d monotone unidimensional functions is SP-monotone with respect to
the directions given by the canonical basis. A more general result follows as
a corollary by additionally considering Lemma 21.

Theorem 23. For any function A : Rd×n → Rd, it holds that A is ~ej-
SP-monotone for any j ∈ {1, . . . , d} (where {~ej}dj=1 represents the canonical
basis) if and only if A

(
x(1), . . . ,x(n)

)
j

= Aj
(
x(1)
j , . . . ,x(n)

j

)
for some d mono-

tone unidimensional functions Aj : Rn → R (with j ∈ {1, . . . , d}).

Proof. We take part of the proof of Theorem 5 in [29] and make use of the
following characterization provided in [26] (Proposition 15): A is a com-
ponentwise extension of d monotone unidimensional functions if and only
if for any (x(1), . . . ,x(n)), (y(1), . . . ,y(n)) ∈ Rd×n and any j ∈ {1, . . . , d}, it
holds that x(i)

j ≤ y
(i)
j for any i ∈ {1, . . . , n} implies A(x(1), . . . ,x(n))j ≤

A(y(1), . . . ,y(n))j. Consider (x(1), . . . ,x(n)), (y(1), . . . ,y(n)) ∈ Rd×n and j ∈

6A function A : Rd×n → Rd is called the componentwise extension of a unidimensional
function f : Rn → R if A(x(1), . . . ,x(n))j = f(x(1)

j , . . . ,x(n)
j ), for any j ∈ {1, . . . , d}. Simi-

larly, we can consider a componentwise extension of d different unidimensional functions fj ,
i.e., A(x(1), . . . ,x(n))j = fj(x(1)

j , . . . ,x(n)
j ).
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{1, . . . , d} such that x(i)
j ≤ y

(i)
j for any i ∈ {1, . . . , n}. For any i ∈ {1, . . . , n},

we define z
(i)
j = x

(i)
j and z

(i)
` = y

(i)
` for any ` 6= j. From the ~ej-SP-

monotonicity, it follows that A(x(1), . . . ,x(n))j = A(z(1), . . . , z(n))j and
A(z(1), . . . , z(n))j ≤ A(y(1), . . . ,y(n))j. We combine both facts and apply
the aforementioned characterization to conclude that A is a componentwise
extension of d monotone unidimensional functions. The converse implication
is straightforward.

Corollary 24. For any function A : Rd×n → Rd and any linearly indepen-
dent directions ~v1, . . . , ~vd ∈ Rd\{0}, it holds that A is ~vj-SP-monotone for
any j ∈ {1, . . . , d} if and only if A

(
x(1), . . . ,x(n)

)
= P−1(

A1
(
(Px(1))1, . . . , (Px(n))1

)
, . . . , Ad

(
(Px(1))d, . . . , (Px(n))d

))T
for some d

monotone unidimensional functions Aj : Rn → R (with j ∈ {1, . . . , d}) and
P being the matrix with ~vj as j-th column.

Thus, two propositions follow as corollaries of the preceding results.

Proposition 25. If a function A : Rd×n → Rd is such that A
(
x(1), . . . ,x(n)

)
j

=

Aj
(
x(1)
j , . . . ,x(n)

j

)
for some d monotone unidimensional functions Aj : Rn →

R (with j ∈ {1, . . . , d}), then it is SC-monotone.

Proposition 26. If a function A : Rd×n → Rd is such that A
(
x(1), . . . ,x(n)

)
j

=

Aj
(
x(1)
j , . . . ,x(n)

j

)
for some d monotone unidimensional functions Aj : Rn →

R (with j ∈ {1, . . . , d}) and it is rotation equivariant, then it is SP-monotone.

The orthogonalization of multivariate location estimators has been stud-
ied in the field of applied statistics. For instance, the orthomedian [33] is
obtained by averaging the componentwise median over all orthogonal trans-
formations. In the following, we prove that any function obtained by averag-
ing a componentwise extension of some d monotone unidimensional functions
over all orthogonal transformations turns out to be SC-monotone.

Proposition 27. If a function A : Rd×n → Rd is such that A
(
x(1), . . . ,x(n)

)
j

=

Aj
(
x(1)
j , . . . ,x(n)

j

)
for some d monotone unidimensional functions Aj : Rn →

R (with j ∈ {1, . . . , d}), then the function F : Rd×n → Rd, defined as

F (x(1), . . . ,x(n)) =
∫
O

OTA(Ox(1), . . . ,Ox(n)) dO ,
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where O denotes the group of orthogonal d × d matrices and
∫
. . . dO refers

to the unique Haar measure on O with total mass 1, is SC-monotone.

Proof. F is orthogonal equivariant by construction, thus, according to Propo-
sition 15, it suffices to prove that F is SC-monotone w.r.t. just one direction.
For instance, we consider the direction ~e1 of the canonical basis. We partition
O in two sets

O+ = {O ∈ O | ~e1 ·O~e1 ≥ 0} ,
O− = {O ∈ O | ~e1 ·O~e1 < 0} .

Due to the orthogonal invariance and symmetry of the dot product, it holds
that O ∈ O+ if and only if OT ∈ O+. Similarly, it holds that O ∈ O− if and
only if OT ∈ O−.

Now consider any
(
x(1), . . . ,x(n)

)
∈ Rd×n, any i ∈ {1, . . . , n} and any

step size t ≥ 0. It holds that

F
(
x(1), . . . ,x(i) + t~e1, . . . ,x(n)

)
− F

(
x(1), . . . ,x(i), . . . ,x(n)

)
=
∫
O

OTA(Ox(1), . . . ,Ox(i) + tO~e1, . . . ,Ox(n)) dO

−
∫
O

OTA(Ox(1), . . . ,Ox(i), . . . ,Ox(n)) dO

=
∫
O

OT
(
A(Ox(1), . . . ,Ox(i) + tO~e1, . . . ,Ox(n))− A(Ox(1), . . . ,Ox(i), . . . ,Ox(n))

)
dO

=
∫
O+

OT
(
A(Ox(1), . . . ,Ox(i) + tO~e1, . . . ,Ox(n))− A(Ox(1), . . . ,Ox(i), . . . ,Ox(n))

)
dO

+
∫
O−

OT
(
A(Ox(1), . . . ,Ox(i) + tO~e1, . . . ,Ox(n))− A(Ox(1), . . . ,Ox(i), . . . ,Ox(n))

)
dO .

On the one hand, from Theorem 23, we know that, for any O ∈ O+,(
A(Ox(1), . . . ,Ox(i)+tO~e1, . . . ,Ox(n))−A(Ox(1), . . . ,Ox(i), . . . ,Ox(n))

)
·~e1 ≥ 0 ,

and, therefore, since ~e1 ·O~e1 ≥ 0,

OT
(
A(Ox(1), . . . ,Ox(i)+tO~e1, . . . ,Ox(n))−A(Ox(1), . . . ,Ox(i), . . . ,Ox(n))

)
·~e1 ≥ 0 .

Thus, it holds that∫
O+

OT
(
A(Ox(1), . . . ,Ox(i)+tO~e1, . . . ,Ox(n))−A(Ox(1), . . . ,Ox(i), . . . ,Ox(n))

)
dO·~e1 ≥ 0 .
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On the other hand, also from Theorem 23, we know that, for any O ∈ O−,(
A(Ox(1), . . . ,Ox(i)+tO~e1, . . . ,Ox(n))−A(Ox(1), . . . ,Ox(i), . . . ,Ox(n))

)
·~e1 ≤ 0 ,

and, therefore, since ~e1 ·O~e1 < 0,

OT
(
A(Ox(1), . . . ,Ox(i)+tO~e1, . . . ,Ox(n))−A(Ox(1), . . . ,Ox(i), . . . ,Ox(n))

)
·~e1 ≥ 0 .

Thus, it holds that∫
O−

OT
(
A(Ox(1), . . . ,Ox(i)+tO~e1, . . . ,Ox(n))−A(Ox(1), . . . ,Ox(i), . . . ,Ox(n))

)
dO·~e1 ≥ 0 .

The result finally follows from the linearity of the dot product.

The following result states that an idempotent function that is SP-monotone
with respect to the directions given by the canonical basis and one additional
direction must necessarily be SP-monotone (with respect to all directions).
The only functions of this kind are weighted centroids. Actually, the result
is also easily proved to hold if SP-monotonicity holds with respect to an
orthogonal basis and one additional direction.

Theorem 28. Let A : Rd×n → Rd be an idempotent function and d ≥ 2.
Then the following conditions are equivalent:

(i) A is SP-monotone w.r.t. the directions {~ej}dj=1 of the canonical basis
as well as some other direction ~v = ∑d

i=1 vi~ei with vi 6= 0 for at least
two i ∈ {1, . . . , d};

(ii) There exist k1, . . . , kn ≥ 0 with ∑n
i=1 ki = 1 such that, for any (x(1), . . . ,

x(n)) ∈ Rd×n, it holds that A(x(1), . . . ,x(n)) = ∑n
i=1 kix(i);

(iii) A is SP-monotone (w.r.t. all directions).

Proof. (i)⇒ (ii). We adapt the proof of Theorem 5 in [29] to prove the result.
From Theorem 23, it follows that A is a componentwise extension of some d
monotone unidimensional functions Aj : Rn → R (with j ∈ {1, . . . , d}).

Consider (x(1), . . . ,x(n)) ∈ Rd×n. We define (y(1), . . . ,y(n)) ∈ Rd×n such
that y(i0) = x(i0) + t ~v for some step size t ≥ 0 and some fixed i0 ∈ {1, . . . , n},
whereas y(i) = x(i) for all other i 6= i0. From the ~v-SP-monotonicity of
A, we know that A(y(1), . . . ,y(n)) = A(x(1), . . . ,x(n)) + k ~v for some k ≥ 0
dependent on (x(1), . . . ,x(n)), t and i0. Since A is a componentwise extension
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of d monotone unidimensional functions, it follows that A(y(1), . . . ,y(n))j −
A(x(1), . . . ,x(n))j = Aj(y(1)

j , . . . , y
(n)
j )−Aj(x(1)

j , . . . , x
(n)
j ) = k for any fixed j ∈

{1, . . . , d}, thus k being dependent on at most (x(1)
j , . . . , x

(n)
j ), t and i0. Since

this holds for any j and ~v is a combination of at least two directions in the
canonical basis, we conclude that k must be independent of (x(1), . . . ,x(n)).
We thus use the notation ki0,t to indicate that it depends on the choice of i0
and t.

We now prove that ki0,t = t ki0,1. We distinguish two cases depending on
whether t is a rational number or an irrational number. If t is a rational
number, then it can be expressed as t = p

q
. Since ki0,t does not depend on

(x(1), . . . ,x(n)), we may apply the above result q times with a step size of
1
q
(instead of a single time with a step size of 1), and obtain ki0,1 = q ki0, 1

q
.

Similarly, we may apply the above result p times with a step size of 1
q
(instead

of a single time with a step size of p
q
), and obtain ki0,t = p ki0, 1

q
. We conclude

that ki0,t = p
q
ki0,1 = t ki0,1. If t is an irrational number, consider a decreasing

sequence {a`}`∈N of rational numbers with limit t and an increasing sequence
{b`}`∈N of rational numbers with limit t. The result follows from the facts
that ki0,t is obviously increasing with respect to t and that ki0,a`

= a` ki0,1
and ki0,b`

= b` ki0,1 for any ` ∈ N.
Finally, we conclude that, for any (x(1), . . . ,x(n)) ∈ Rd×n, it holds that

A(x(1), . . . ,x(n)) = A(0, . . . ,0)+
(∑n

i=1 ki x
(i)
1 , . . . ,

∑n
i=1 ki x

(i)
d

)
= ∑n

i=1 ki x(i)

for some k1, . . . , kn ≥ 0, due to the fact that

(x(1), . . . ,x(n)) = (0, . . . ,0) +
(
(x(1)

1 , 0, . . . , 0)T ,0, . . . ,0
)

+
(
(0, x(1)

2 , 0, . . . , 0)T ,0, . . . ,0
)

+ . . .+
(
0, . . . ,0, (0, . . . , 0, x(n)

d )T
)

and A(0, . . . ,0) = 0 if A is idempotent. Also from the idempotence of A, we
conclude that ∑n

i=1 ki = 1.
As it is easily seen that (ii)⇒(iii) and trivially (iii)⇒(i), the proof is

complete.

It trivially follows that the only symmetric7, idempotent and SP-monotone
function is the centroid.

7A function A : Rd×n → Rd is symmetric if A(x(1), . . . ,x(n)) = A(x(σ(1)), . . . ,x(σ(n)))
for any

(
x(1), . . . ,x(n)) ∈ Rd×n and any permutation σ of {1, . . . , n}.
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Figure 3: Graphical comparison of componentwise monotonicity w.r.t. the first component
(left side) and ultramonotonicity (right side). The four black circles represent four initial
data points, whereas the white circles represent the new positions of the initial data
points. The point marked with the symbol × represents the initial aggregate and the
dashed arrow represents the direction in which we are considering the monotonicity. The
red area indicates the area to which the aggregate must not go.

4. Componentwise monotonicity and ultramonotonicity

4.1. Componentwise monotonicity
Another natural type of monotonicity is what is referred to as componen-

twise monotonicity in [26].

Definition 29. A function A : Rd×n → Rd is called componentwisely mono-
tone if, for any fixed j ∈ {1, . . . , d} and any

(
x(1), . . . ,x(n)

)
,
(
y(1), . . . ,y(n)

)
∈

Rd×n satisfying that x
(i)
j ≤ y

(i)
j for any i ∈ {1, . . . , n}, it holds that

A
(
x(1), . . . ,x(n)

)
j
≤ A

(
y(1), . . . ,y(n)

)
j
.

Note that there is no condition on how x
(i)
j′ and y(i)

j′ should relate if j′ 6=
j. Explicitly, this means that, as long as the j-th component of the data
points increases, the j-th component of the aggregate should also increase
(whatever happens in the other components). For simplicity, we just focus
on componentwise monotonicity w.r.t. the first component in the illustration
of this property in the left side of Figure 3.

An important result concerning componentwise monotonicity is that com-
ponentwise monotonicity of any function A is equivalent to A being a com-
ponentwise extension of some d monotone unidimensional functions [26].
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Theorem 30. A function A : Rd×n → Rd is componentwisely monotone
if and only if A

(
x(1), . . . ,x(n)

)
j

= Aj
(
x(1)
j , . . . ,x(n)

j

)
for some d monotone

unidimensional functions Aj : Rn → R (with j ∈ {1, . . . , d}).
Remark 31. The above result combined with Theorem 23 implies that compo-
nentwise monotonicity is equivalent to ~ej-SP-monotonicity for any direction
~ej in the canonical basis.

4.2. Ultramonotonicity
The notion of componentwise monotonicity can be generalized to any

possible direction. Hereinafter, we shall refer to such a property as ultra-
monotonicity. For a graphical interpretation of this property, see the right
side of Figure 3.
Definition 32. For a given direction ~u ∈ Rd\{0}, a function A : Rd×n →
Rd is called ~u-ultramonotone if, for any

(
x(1), . . . ,x(n)

)
∈ Rd×n, any non-

negative step sizes t1, . . . , tn ∈ R and any family of directions ~u1, . . . , ~un ∈ Rd

such that ~u · ~ui ≥ 0 for any i ∈ {1, . . . , n}, it holds that(
A
(
x(1) + t1~u1, . . . ,x(n) + tn~un

)
− A

(
x(1), . . . ,x(n)

) )
· ~u ≥ 0 .

Definition 33. A function A : Rd×n → Rd is called ultramonotone if it is
~u-ultramonotone with respect to all directions ~u ∈ Rd\{0}.

Note that the magnitude and the sign of ~u do not matter for defining
~u-ultramonotonicity.
Proposition 34. For any given direction ~u ∈ Rd\{0}, a function A :
Rd×n → Rd is ~u-ultramonotone if and only if it is (c~u)-ultramonotone for
any c 6= 0.
Proof. We only prove that ifA is ~u-ultramonotone, thenA is (c~u)-ultramonotone
for any c 6= 0 (the other implication is evident). Consider c > 0. Thus,
for any

(
x(1), . . . ,x(n)

)
∈ Rd×n, any non-negative step sizes t1, . . . , tn ∈ R

and any family of directions ~u1, . . . , ~un ∈ Rd such that c~u · ~ui ≥ 0 for any
i ∈ {1, . . . , n}, it holds that(

A
(
x(1) + t1c~u1, . . . ,x(n) + tnc~un

)
− A

(
x(1), . . . ,x(n)

) )
· c~u

= c
(
A
(
x(1) + t′1~u1, . . . ,x(n) + t′n~un

)
− A

(
x(1), . . . ,x(n)

) )
· ~u

≥ 0 .
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Similarly, consider now c < 0, any
(
x(1), . . . ,x(n)

)
∈ Rd×n, any non-negative

step sizes t1, . . . , tn ∈ R and any family of directions ~u1, . . . , ~un ∈ Rd such
that c~u·~ui ≥ 0 for any i ∈ {1, . . . , n}. It follows that |c|~u·|c|(−~ui) ≥ 0 for any
i ∈ {1, . . . , n}. We fix

(
x(1)′, . . . ,x(n)′

)
=
(
x(1) − t1|c|~u1, . . . ,x(n) − tn|c|~um

)
.

Due to the (|c|~u)-ultramonotonicity of A, it holds that(
A
(
x(1)′ + t1|c|(−~u1), . . . ,x(n)′ + tn|c|(−~un)

)
−A

(
x(1)′, . . . ,x(n)′

) )
·|c|~u ≥ 0 ,

or, equivalently, after substituting x(i)′,(
A
(
x(1), . . . ,x(n)

)
− A

(
x(1) − t1|c|~u1, . . . ,x(n) − tn|c|~un

) )
· |c|~u ≥ 0 .

We finally conclude that(
A
(
x(1) + t1c~u1, . . . ,x(n) + tnc~un

)
− A

(
x(1), . . . ,x(n)

) )
· c~u ≥ 0 .

Ultramonotonicity trivially implies componentwise monotonicity.

Proposition 35. Any ultramonotone function A : Rd×n → Rd is componen-
twisely monotone.

Proof. Follows from the fact that componentwise monotonicity can be under-
stood as ~u-ultramonotonicity with respect to all directions ~u in the canonical
basis.

Furthermore, any function that is rotation equivariant needs only to be
~u-ultramonotone with respect to one direction ~u ∈ Rd in order to be ultra-
monotone.

Proposition 36. A rotation equivariant function A : Rd×n → Rd is ultra-
monotone if and only if it is ~u-ultramonotone with respect to at least one
direction ~u ∈ Rd\{0}.

Proof. Consider ~u ∈ Rd\{0} and assume that A is ~u-ultramonotone. Con-
sider any

(
x(1), . . . ,x(n)

)
∈ Rd×n, any non-negative step sizes t1, . . . , tn ∈ R

and any family of directions ~u1, . . . , ~un ∈ Rd such that ~u · ~ui ≥ 0 for any
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i ∈ {1, . . . , n}. Consider ~v = R~u for some rotation matrix R, then it holds
that (

A
(
x(1) + t1~u1, . . . ,x(n) + tn~un

)
− A

(
x(1), . . . ,x(n)

) )
· ~v

= R
(
A
(
R−1x(1) + t1R−1~u1, . . . ,R−1x(n) + tnR−1~un

)
− A

(
R−1x(1), . . . ,R−1x(n)

) )
·R~u

=
(
A
(
R−1x(1) + t1R−1~u1, . . . ,R−1x(n) + tnR−1~un

)
− A

(
R−1x(1), . . . ,R−1x(n)

) )
· ~u ≥ 0 ,

due to the fact that the dot product is rotation invariant (and, additionally
~u · ~ui ≥ 0 if and only if ~v ·R−1~ui ≥ 0). Thus, A is ~v-ultramonotone.

Corollary 37. A rotation equivariant function A : Rd×n → Rd is ultramono-
tone if and only if it is componentwisely monotone.

4.3. Ultramonotonicity and idempotence
It is widely known that, for a monotone unidimensional function, inter-

nality (being bounded from below by the minimum and from above by the
maximum) is equivalent to idempotence. Note that there are two main exten-
sions of the notion of internality to multiple dimensions [26]: BB (bounding
box)-internality and CH (convex hull)-internality. The former requires the
aggregate A(x(1), . . . ,x(n)) to belong to the bounding box of x(1), . . . ,x(n),
i.e., the set [

n
min
i=1

x
(i)
1 ,

nmax
i=1

x
(i)
1

]
× . . .×

[
n

min
i=1

x
(i)
d ,

nmax
i=1

x
(i)
d

]
.

The latter requires the aggregate A(x(1), . . . ,x(n)) to belong to the convex
hull of x(1), . . . ,x(n), i.e., the set{

x =
n∑
i=1

λix(i) ∈ Rd |
(

n∑
i=1

λi = 1
)
∧
(
(∀i ∈ {1, . . . , n})(λi ≥ 0)

)}
.

For a componentwisely monotone function, idempotence is equivalent to BB-
internality, whereas, for an ultramonotone function, idempotence is equiva-
lent to CH-internality.
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Proposition 38. A componentwisely monotone function A : Rd×n → Rd is
idempotent if and only if it is BB-internal.

Proof. By Theorem 30, it follows thatA
(
x(1), . . . ,x(n)

)
j

= Aj
(
x(1)
j , . . . ,x(n)

j

)
for some d monotone unidimensional functions Aj : Rn → R (with j ∈
{1, . . . , d}). Note that A is idempotent if and only if all Aj are idempotent,
and that A is BB-internal if and only if all Aj are bounded from below by
the minimum and from above by the maximum. Finally, the result follows
from the fact that, for monotone unidimensional functions, it is known that
idempotence is equivalent to being bounded from below by the min and from
above by the max [1].

Proposition 39. An ultramonotone function A : Rd×n → Rd is idempotent
if and only if it is CH-internal.

Proof. It is straightforward to see that, if A is CH-internal, then it is idempo-
tent. We prove that, if A is idempotent, then it is CH-internal by reductio ad
absurdum. Consider x(1), . . . ,x(n) such that A

(
x(1), . . . ,x(n)

)
does not be-

long to the convex hull of x(1), . . . ,x(n). Since the convex hull is a non-empty,
closed and convex set, there exists a unique point x(0) in the convex hull that
minimizes the distance to A

(
x(1), . . . ,x(n)

)
and, additionally the halfspace

formed by all points y such that
(
y−x(0)

)
·
(
A
(
x(1), . . . ,x(n)

)
−x(0)

)
≤ 0 con-

tains the convex hull of x(1), . . . ,x(n) and does not contain A
(
x(1), . . . ,x(n)

)
.

Since A is idempotent, it follows that A(x(0), . . . ,x(0)) = x(0). Consider
~u = A

(
x(1), . . . ,x(n)

)
− x(0). It follows that ~ui = (x(i) − x(0)) are such that

~ui · ~u ≥ 0, thus, since A is ultramonotone, it follows that(
A
(
x(1), . . . ,x(n)

)
− A

(
x(0), . . . ,x(0)

) )
· ~u ≥ 0 ,

a contradiction with the halfspace
(
y− x(0)

)
·
(
A
(
x(1), . . . ,x(n)

)
− x(0)

)
≤ 0

not containing A
(
x(1), . . . ,x(n)

)
.

Note that this result complies with intuition since for rotation equivari-
ant functions both componentwise monotonicity and ultramonotonicity co-
incide and both CH-internality and BB-internality coincide [26]. Later on in
this section, it will follow that ultramonotone and idempotent functions also
reduce to componentwise extensions of a single weighted arithmetic mean,
which are always CH-internal.
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4.4. Relations to the other monotonicity properties
An important matter of study is the relation of ~u-ultramonotonicity w.r.t.

all the monotonicity properties defined in Section 3.

Proposition 40. For any function A : Rd×n → Rd, any direction ~u ∈
Rd\{0} and any orthogonal basis ~v1, . . . , ~vd ∈ Rd such that ~v1 = ~u, the
following results hold:

(i) If A is ~vj-ultramonotone for any j ∈ {1, . . . , d}, then it is ~u-SP-
monotone.

(ii) If A is ~vj-SP-monotone for any j ∈ {1, . . . , d}, then it is ~u-ultra-
monotone.

(iii) If A is ~u-ultramonotone, then it is ~u-SC-monotone.

(iv) If A is ~vj-ultramonotone for any j ∈ {1, . . . , d}, then it is SC-monotone.

Proof. (i) Consider any
(
x(1), . . . ,x(n)

)
∈ Rd×n, any i ∈ {1, . . . , n} and any

step size t ≥ 0. Since A is ~vj-ultramonotone for any j ∈ {2, . . . , d}, it follows
that (

A
(
x(1), . . . ,x(i) + t~u, . . . ,x(n)

)
− A

(
x(1), . . . ,x(n)

) )
· ~vj ≥ 0 .

Since A is also (−~vj)-ultramonotone, it follows that:(
A
(
x(1), . . . ,x(i) − t~u, . . . ,x(n)

)
− A

(
x(1), . . . ,x(n)

) )
· (−~vj) ≥ 0 .

We conclude that:(
A
(
x(1), . . . ,x(i) + t~u, . . . ,x(n)

)
− A

(
x(1), . . . ,x(n)

) )
· ~vj = 0 .

Thus, A
(
x(1), . . . ,x(i) + t~u, . . . ,x(n)

)
− A

(
x(1), . . . ,x(i), . . . ,x(n)

)
is orthog-

onal to any ~vj with j ∈ {2, . . . , d}. Therefore, it holds that:

A
(
x(1), . . . ,x(i) + t~u, . . . ,x(n)

)
− A

(
x(1), . . . ,x(i), . . . ,x(n)

)
= k ~u ,

for some constant k. It follows from the ~u-ultramonotonicity of A that k ≥ 0.
(ii) Consider any

(
x(1), . . . ,x(n)

)
∈ Rd×n, any non-negative step sizes

t1, . . . , tn ∈ R and any family of directions ~u1, . . . , ~un ∈ Rd\{0} such that
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~u · ~ui ≥ 0 for any i ∈ {1, . . . , n}. Since ~v1, . . . , ~vd is an orthogonal basis, for
any ~ui, we can write ti~ui = ∑d

j=1 λi,j~vj (note that λi,1 ≥ 0 because ~v1 · ~ui =
~u·~ui ≥ 0). Decompose

(
A
(
x(1) + t1~u1, . . . ,x(n) + tn~un

)
−A

(
x(1), . . . ,x(n)

) )
in n× d movements corresponding to the d movements λi,j~vj in each of the
n directions ~ui. Since λi,1 ≥ 0 for any i ∈ {1, . . . , n}, we can apply (±~vj)-
SP-monotonicity n× d times and conclude that:(
A
(
x(1) + t1~u1, . . . ,x(n) + tn~un

)
− A

(
x(1), . . . ,x(n)

) )
· ~u

=
(
A
(
x(1) + t1~u1, . . . ,x(n) + tn~un

)
− A

(
x(1) + t1~u1, . . . ,x(n) + tn~un − λn,d~vd

)
+ . . .+ A

(
x(1) + λ1,1~v1, . . . ,x(n)

)
− A

(
x(1), . . . ,x(n)

) )
· ~u ≥ 0 ,

due to the linearity of the dot product.
(iii) Follows straightforwardly by considering the step sizes t1, . . . , tn ∈ R

such that ti 6= 0 (where i is the index of the point to be moved) and ti′ = 0
for any i′ ∈ {1, . . . , n}\{i} and ~ui = ~u.

(iv) From (i), we obtain that A is ~vj-SP-monotone for any j ∈ {1, . . . , d}.
The result then follows from Proposition 19.

The following theorem follows as a corollary from the proposition above.
We illustrate the result in Figure 4.

Theorem 41. For any function A : Rd×n → Rd, the following results hold:

(i) A is ultramonotone if and only if it is SP-monotone.

(ii) If A is componentwisely monotone, then it is SC-monotone.

Since SP-monotonicity is equivalent to ultramonotonicity, we conclude
from Proposition 16 that both ultramonotonicity and componentwise mono-
tonicity are equivalent in case d = 1 and reduce to the classical monotonicity
in the setting of real numbers.

Proposition 42. For any unidimensional function A : Rn → R, the follow-
ing results are equivalent:

(i) A is monotone in the sense of Definition 1.

(ii) A is ultramonotone.

(iii) A is componentwisely monotone.
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Figure 4: Graphical comparison of the different monotonicity properties defined in this
section. The four black circles represent four initial data points, whereas the white circles
represent the new positions of (some of) the initial data points. The point marked with the
symbol × represents the initial aggregate and the dashed arrow represents the direction
in which we are considering the monotonicity. The red area indicates the area to which
the aggregate must not go.

5. Examples

In the following, we provide some noteworthy examples of functions A :
Rd×n → Rd and discuss which monotonicity properties they satisfy. A sum-
mary of these examples is anticipated in Table 1.

Centroid. The centroid is defined as the point that minimizes the sum of
squared Euclidean distances to the points to be aggregated. Equivalently, the
centroid is characterized as the componentwise extension of the arithmetic
mean. Since it is a componentwise extension of d monotone unidimensional
functions and it is rotation equivariant, we know from Proposition 26 that the
centroid is SP-monotone. Furthermore, from Theorem 14, it follows that the
centroid is MP-, SC-, and MC-monotone, and, from Theorem 41, it follows
that the centroid is componentwisely monotone and ultramonotone. Note
that any weighted centroid (the componentwise extension of a single weighted
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Function SP=Ultra MP SC MC Componentwise
Centroid X X X X X

Componentwise median × X X X X
Spatial median × X × X ×
Orthomedian × X X X ×

Euclidean center × X × X ×
Componentwise extension ? ? X X Xof some d monotone
unidimensional functions
Orthogonalized version of ? ? X X ?componentwise extension

of some d monotone
unidimensional functions
Translation equivariant ? X ? X ?function

Table 1: Noteworthy examples of functions A : Rd×n → Rd and summary of the mono-
tonicity properties they satisfy. The symbols X, × and ? respectively represent that all,
none or some (but not all) functions within the family satisfy the corresponding mono-
tonicity property.

arithmetic mean) satisfies all these monotonicity properties. Actually, as
stated in Theorem 28, weighted centroids are the only idempotent functions
fulfilling SP-monotonicity (and, thus, ultramonotonicity).

Componentwise median. The componentwise median is the componentwise
extension of the median. It satisfies the conditions of Propositions 18 (see [26])
and 25, thus, it follows that the componentwise median is MP- and SC-
monotone. Furthermore, from Theorem 14, it follows that the component-
wise median is MC-monotone. As it is componentwisely defined, it is evident
that the componentwise median is componentwisely monotone (see Theo-
rem 30). Finally, we can see that the componentwise median is not SP-
monotone (and, thus, not ultramonotone) with the following example. Con-
sider x(1) = (1, 1)T , x(2) = (3, 1)T and x(3) = (2, 0)T . The componentwise
median of x(1), x(2) and x(3) is given by A(x(1),x(2),x(3)) = (2, 1)T , whereas
for x(3)′ = x(3) +(1, 1)T , we get A(x(1),x(2),x(3)′) = (3, 1)T . Thus, there does
not exist k ≥ 0 such that (A(x(1),x(2),x(3)′) − A(x(1),x(2),x(3))) = (1, 0)T
equals k(1, 1)T .

Spatial median. The spatial median is defined as the point that minimizes
the sum of Euclidean distances to the points to be aggregated. It satisfies
the conditions of Proposition 18 (see [26]), thus, it follows that the spatial
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median is MP-monotone. Furthermore, from Theorem 14, it follows that the
spatial median is MC-monotone. Finally, we can see that the spatial median
is not SC-monotone (and, thus, neither SP-monotone, nor componentwisely
monotone, nor ultramonotone) from the example in Figure 5.

Orthomedian. The orthomedian is defined as the average of the componen-
twise median over all orthogonal transformations. It satisfies the conditions
of Proposition 27, thus, it follows that the orthomedian is SC-monotone.
Additionally, it satisfies the conditions of Proposition 18 (see [26]), thus, it
follows that the orthomedian is MP-monotone. Furthermore, from Theo-
rem 14, it follows that the orthomedian is MC-monotone. Finally, we can
see that the orthomedian is not componentwisely monotone (and, thus, nei-
ther SP-monotone, nor ultramonotone) from the following example. Con-
sider x(1) = (−1, 0)T , x(2) = (1, 0)T and x(3) = (0, 1)T . The orthomedian
of x(1), x(2) and x(3) is given by A(x(1),x(2),x(3)) = (0, 0.5)T , whereas for
x(1)′ = x(1) + (1, 0)T , we get A(x(1)′,x(2),x(3)) = (0.25, 0.25)T .

Euclidean center. The Euclidean center is defined as the point that mini-
mizes the maximum Euclidean distance to the points to be aggregated. It
satisfies the conditions of Proposition 18 (see [26]), thus, it follows that the
Euclidean center is MP-monotone. Furthermore, from Theorem 14, it fol-
lows that the Euclidean center is MC-monotone. Finally, we can see that
the Eucliden center is not SC-monotone (and, thus, neither SP-monotone,
nor componentwisely monotone, nor ultramonotone) from the example in
Figure 6.

Componentwise cubic mean. The cubic mean A : Rn → R is the function de-
fined as A(x) = 3

√
1
n

∑n
i=1 x

3
i . The componentwise extension of the cubic mean

satisfies the conditions of Proposition 25, thus, it follows that the componen-
twise cubic mean is SC-monotone. Furthermore, from Theorem 14, it follows
that the componentwise cubic mean is MC-monotone. As it is component-
wisely defined, it is evident that the componentwise cubic mean is componen-
twisely monotone (see Theorem 30). Finally, we can see that the componen-
twise cubic mean is not MP-monotone (and, thus, neither SP-monotone, nor
ultramonotone) with the following example. Consider x(1) = (−2, 0)T , x(2) =
(1, 0)T and x(3) = (−0.5, 1)T . The componentwise cubic mean of x(1), x(2)

and x(3) is given by A(x(1),x(2),x(3)) ≈ (−1.3342008, 0.6933613)T , whereas
after moving all points in the direction ~u = (1, 1)T and step size t = 1, we
get A(x(1) + ~u,x(2) + ~u,x(3) + ~u) ≈ (1.334201, 1.493802)T . Thus, there does
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Figure 5: Consider x(1) = (−13,−11)T , x(2) = (−7,−17)T , x(3) = (21, 0)T , x(4) =
(5, 4)T . The corresponding spatial median y (marked with a yellow +) is located near
(−1.43,−7.26)T . In each subplot (i) (i ∈ {1, 2, 3, 4}), we depict the cosine of the angle
between y′ − y and (x, y)T − x(i) for all possible (x, y) on a rectangular grid spanning
[−24, 29]× [−24, 29], where y′ is the spatial median of (x(1),x(2),x(3),x(4)) but with the
corresponding x(i) substituted with (x, y)T . Red-colored regions mark destinations where
the spatial median actually moves in a conflicting direction (cosine < 0) to the point being
relocated.
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Figure 6: Consider x(1) = (−13,−11)T , x(2) = (−7,−17)T , x(3) = (21, 0)T , x(4) = (5, 4)T .
The corresponding Euclidean center y (marked with a yellow +) is located at (4,−5.5)T .
In each subplot (i) (i ∈ {1, 2, 3, 4}), we depict the cosine of the angle between y′ − y and
(x, y)T − x(i) for all possible (x, y) on a rectangular grid spanning [−34, 40] × [−34, 40],
where y′ is the Euclidean center of (x(1),x(2),x(3),x(4)) but with the corresponding x(i)

substituted with (x, y)T . Red-colored regions mark destinations where the Euclidean cen-
ter actually moves in a conflicting direction (cosine < 0) to the point being relocated.
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not exist k ≥ 0 such that (A(x(1) +~u,x(2) +~u,x(3) +~u)−A(x(1),x(2),x(3))) ≈
(2.6684016, 0.8004403)T equals k(1, 1)T .

Convex combination of the componentwise cubic mean and the spatial me-
dian. We have seen that the spatial median is not SC-monotone and that
the componentwise cubic mean is not MP-monotone. One could think of
a convex combination of these two functions for finding an example of an
MC-monotone function that is neither SP-, nor MP-, nor SC-monotone.
First, we see that it is MC-monotone by noting that both the spatial me-
dian and the componentwise cubic mean are MC-monotone, and, thus, also
any convex combination of them. We prove that this function is not MP-
monotone (and, thus, neither SP-monotone, nor ultramonotone) with the
following example. Consider x(1) = (−0.2, 1.2)T , x(2) = (0.8,−1.3)T and
x(3) = (1.5,−0.3)T . The chosen convex combination (0.8 for the spatial me-
dian and 0.2 for the componentwise cubic mean) of x(1), x(2) and x(3) is
given by A(x(1),x(2),x(3)) ≈ (1.123976,−0.4035746)T , whereas after moving
all points in the direction ~u = (0.35, 0.12)T and step size t = 1, we get
A(x(1) + ~u,x(2) + ~u,x(3) + ~u) ≈ (1.461759,−0.07761333)T . Thus, there does
not exist k ≥ 0 such that (A(x(1) +~u,x(2) +~u,x(3) +~u)−A(x(1),x(2),x(3))) ≈
(0.3377828, 0.3259613)T equals k(0.35, 0.12)T . Similarly, we prove that this
function is not SC-monotone (and, thus, neither SP-monotone, nor compo-
nentwisely monotone, nor ultramonotone) with the following example. Con-
sider x(1) = (−0.3, 0.7)T , x(2) = (1.1, 0.2)T and x(3) = (0.5, 1.2)T . The chosen
convex combination (again, 0.8 for the spatial median and 0.2 for the com-
ponentwise cubic mean) of x(1), x(2) and x(3) is given by A(x(1),x(2),x(3)) ≈
(0.4886453, 0.8882840)T , whereas after moving x(1) in the direction ~u =
(0.35, 0.075)T and step size t = 1, we get A(x(1) + ~u,x(2),x(3)) ≈ (0.4894801,
0.8808175)T . Thus, we conclude that (A(x(1)+~u,x(2),x(3))−A(x(1),x(2),x(3)))·
~u ≈ −0.000267812345 < 0.

A non-monotone function. As an example that does not fulfill any of the
above monotonicity properties, considerA(x(1), . . . ,x(n)) = maxni=1 maxdj=1 x

(i)
j .

Assume x(1) = (3, 2)T and x(2) = (5, 0)T . Applying this function to x(1) and
x(2) we obtain A(x(1),x(2)) = (5, 5)T , whereas after moving all points in the
direction ~u = (−1, 2)T and step size t = 1, we get A(x(1) + ~u,x(2) + ~u) =
(4, 4)T . Thus, we conclude that (A(x(1)+~u,x(2)+~u)−A(x(1),x(2)))·~u = −1 <
0. Obviously, this function is not idempotent, however, the function F de-
fined as F (x(1), . . . ,x(n)) = x(1), if x(1) = . . . = x(n), and, F (x(1), . . . ,x(n)) =
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maxni=1 maxdj=1 x
(i)
j , otherwise, serves as an example of an idempotent func-

tion that still fails to fulfill any of the monotonicity properties above.

6. Discussion

Different monotonicity properties for the framework of the aggregation
of multidimensional data have been studied. It is worth noting that, prior
to the current work, with the goal of allowing more functions to fulfill the
classical definition of an aggregation function, a further concept related to
the property of weak monotonicity (see Definition 2) has been studied un-
der the name of directional monotonicity [34]. Functions increasing in one
variable and decreasing in another one (e.g., ‘fuzzy implication’ functions)
are examples of functions justifying the analysis of directional monotonicity.
However, from the perspective of this contribution, this concept is not really
semantically valid. The directional monotonicity of a function A : Rn → R
treats the input to A as a single point in an n-dimensional space that can
be moved to an arbitrary position. Formally, however, from the geometrical
perspective, there are only two directions (‘left’ and ‘right’) to which we can
move any of the n points on the real line.

In this paper, we have pointed out that the classical monotonicity based
on the preservation of the product order makes no sense in the setting of
multidimensional data if not combined with some desirable behaviour with
regard to rotations. Furthermore, under rotation equivariance, this mono-
tonicity property coincides with both SP-monotonicity and ultramonotonic-
ity. Regrettably, if we combine this with the fact that the only idempotent
functions that are SP-monotone are componentwise extensions of a single
weighted arithmetic mean, we restrict the aggregation of multidimensional
data to this latter type of functions. However, thorough studies on many
different aggregation methods for multidimensional data that are not ex-
tensions of a single weighted arithmetic mean have been addressed. For
instance, we highlight the Euclidean center [35] and different extensions of
the unidimensional median [27]. Aggregation functions of the latter type in-
clude the spatial median [36], Oja’s simplex median [37], Tukey’s halfspace
median [38], the simplicial depth median [39] and the convex hull stripping
median [40]. Note that all of the previously mentioned extensions of the
median are rotation and translation equivariant (and all of them but the
spatial median actually are affine equivariant), thus not being monotone in
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the classical sense of aggregation theory. Fortunately, different monotonicity
properties are proved to hold for these functions.

We conclude by noting that many of the presented results may be gener-
alized to arbitrary vector spaces, e.g., polynomials, complex numbers, etc.
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