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Emotion recognition using multi-modal data and 

machine learning techniques: A tutorial and review 

Abstract 
In recent years, the rapid advances in machine learning (ML) and information fusion has made it 

possible to endow machines/computers with the ability of  emotion  understanding, recognition, and 

analysis. Emotion recognition has  attracted  increasingly  intense interest from researchers from 

diverse fields. Human emotions can be recognized from facial expressions, speech, behavior 

(gesture/posture) or physiological signals. However, the first three methods can be ineffective since 

humans may involuntarily or deliberately conceal their real emotions (so-called social masking). The 

use of physiological signals can lead to more objective    and reliable emotion recognition. Compared 

with peripheral neurophysiological signals, electroencephalogram  (EEG)  signals  respond  to 

fluctuations of affective states more sensitively and in real time and thus can provide useful features 

of emotional states. Therefore, various EEG-based emotion recognition techniques have been 

developed recently. In this paper, the emotion recognition methods based on multi-channel EEG 

signals as well as multi-modal physiological signals are reviewed. According to the standard pipeline 

for emotion recognition, we review different feature extraction (e.g., wavelet transform and nonlinear 

dynamics), feature reduction, and ML classifier design methods (e.g., k-nearest neighbor (KNN), 

naive Bayesian (NB), support vector machine (SVM) and random forest (RF)). Furthermore, the EEG 

rhythms that are highly correlated with emotions are analyzed and the correlation between different 

brain areas and 
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emotions is discussed. Finally, we compare different ML and deep learning algorithms for emotion 

recognition and suggest several open problems and future research directions in this exciting and          

fast-growing area of AI. 
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Acronym Full form Acronym Full form 

EEG Electroencephalogram LDA Linear Discriminant Analysis 

ECG Electrocardiography LSTM Long- Short-Term Memory 

EMG Electromyography RNN Recurrent Neural Network 

EOG Electrooculography SVM Support Vector Machine 

FFT Fast Fourier Transform ML Machine Learning 

DBN Deep Belief Network ELM Extreme Learning Machine 

CNN Convolutional Neural Network HMM Hidden Markov Model 

DBM Deep Boltzmann Machine PCA Principal Component Analysis 

RBM Restricted Boltzmann Machine ICA Independent Component Analysis 

ECDF Empirical Cumulative Distribution Function kNN K-nearest neighbors 

EMD Empirical Mode Decomposition DL Deep Learning 

LR Logistic Regression RBF Radial Basis Function 

 
1 Introduction 

In recent years, the availability of various electronic products in our lives has made people spend more and  

more time on social media, online shopping, online video games, etc. However, most of contemporary human- 

computer interaction (HCI) systems are deficient in interpreting and understanding emotional information and 

lack emotional intelligence. They are unable to identify human emotional states and use this information for 

decision-making and action. 



Resolving the lack of rapport between humans and machines is critical in advanced intelligent HCI. Any HCI 

system that ignores human affective states would fail to react to those states properly. To address this problem  in 

HCI, we need to equip machines with the ability to interpret and understand human emotional states. Hence, a 

prerequisite for implementing intelligent HCI is a reliable, accurate, adaptable and  robust  emotion  recognition 

system. With the ultimate goal of endowing machine with emotions, more and more researchers in the field of 

artificial intelligence (AI) have carried out studies of affective computing in general and emotion recognition in 

particular, making them an emerging and promising research area. 

Recently emotion-aware intelligent systems have been used in various areas such as e-health, e-learning, 

recommender systems, smart home, smart city, and intelligent conversational systems (e.g., chatbot). The use   of 

computer-based automatic emotion recognition has great potential in various intelligent systems, including 

online gaming, neuromarketing (customers’ feedback assessment), and mental health monitoring. Given the 

importance of mental health in contemporary societies, researchers are now finding ways to accurately  

recognize  human  emotions  in  order  to  develop  intervention  schemes  for  mental  health.  For 

example, in a healthcare system with module of emotion  recognition module,  patients’  mental  and physical 

states can be monitored in real time and appropriate therapy can be prescribed accordingly. In the field of HCI, 

the goal of emotion recognition/detection is to design and implement intelligent systems with optimized HCI, 

which are adaptable to users’ emotional states. 

What is emotion? What factors induce emotion? Are emotions computable? Can the computer automatically 

recognize human emotions? These vague questions were only concern of science fiction about two or three 

decades ago. Nevertheless, over the past two decades it has become   a hot research topic to automatically 

recognize/detect human emotions and make HCI as natural as human-human interactions. 

1.1 Background and motivations 

 
As the interaction/collaboration between man and machines (computers) exists in a variety of environments, 

more and more researchers in the fields of ergonomics and intelligent systems are trying to improve the 

efficiency and flexibility of human-computer interaction (HCI). This intelligent HCI system requires the 

computer to be adaptive, and it is critical to precisely understand the ways of human communications and in  

turn trigger correct feedback. Human intentions can be expressed through verbal and nonverbal behaviors with 

different emotions. A key factor of computer adaptability is its ability to understand human emotions and 

behavior. Most existing HCI systems lack the ability to recognize human emotional states. The computerized 

automatic recognition of human emotional state is significant to the development of advanced HCI systems.  

This emerging research field is termed as affective computing. 

Emotion is a complex state that combines feelings, thoughts, and behavior and is people's psychophysiological 

reactions to internal or external stimuli. It plays a vital role in people's decision-making, perception and 

communication. Affective computing has a wide range of applications. In a HCI system, if the computer can 

recognize the human operator's emotional state accurately and in real time, the interaction  between  the  

machine and the operator can be made more intelligent and user-friendly. The application of emotion  

recognition in the product design and user experience allows for monitoring in real time the emotional state of 



the user when using the product, thereby further improving the user experience. In military and aerospace 

applications, the high-risk functional state of soldiers and pilots/astronauts can be detected in real time. The 

emotion recognition can also be applied to public transportation, for example to enhance driving safety by 

monitoring the emotional state of the driver in real time to prevent dangerous driving under extreme emotional 

conditions. 

Emotion recognition is a key component of affective computing. It is an interdisciplinary field that spans 

computer science, AI, psychology, and cognitive neuroscience. Human emotions can be identified by facial 

expression, speech, behavior, or physiological signals [1–4]. However, the first three methods of emotion 

recognition are somehow subjective. For instance, the subjects under study may deliberately conceal their true 

feelings, which may be inconsistent with their performance. In contrast, the emotion recognition by means of 

physiological signals is more reliable and objective [5]. EEG signals are generated by the central nervous  

system (CNS) and respond more rapidly to emotional changes than other peripheral neural signals. Moreover, 

EEG signals have been shown to provide important features for emotional recognition [6,7]. This paper is   

aimed at analyzing the complex correlation between EEG signals and emotional states in humans. 

1.2 An overview of emotion recognition approaches 

 
In recent years, the AI field has undergone rapid development and there is an urgent need for intelligent HCI.  

As an important branch of AI research, affective computing has drawn increasingly intense interest from 

researchers. Currently the research of emotion recognition is focused on the following topics: (1)  the  

correlation between different types of physiological signals and emotions; (2) stimuli selection methods for 

inducing the expected emotional states; (3) emotion-characteristic feature extraction  algorithms;  (4) 

mechanistic or causal models of emotion generation mechanism; and (5) emotion recognition techniques based 

on multi-modal information fusion. In the following, we will give a brief overview of earlier and current 

research developments in those directions. 

Picard's Lab at the Massachusetts Institute of Technology (MIT) has conducted a significant amount  of  

research, demonstrating that certain affective states can be recognized by using physiological signals including 

heart rate, galvanic skin response (GSR), temperature, EMG and respiration rate. For instance, she and her 

associates used personalized imagery to elicit targeted emotions and collected four channels of physiological 

signals (EMG, pulse rate, GSR and respiration) to recognize up to eight classes of emotional states [8]. They 

extracted the time- and frequency-domain features from those physiological signals respectively. The feature 

selection was performed by forward floating search method, Fisher projection method and a hybrid algorithm. 

They achieved an overall classification accuracy of 88.3% for 3-class (anger, sadness, and happiness) problem 

by using kNN classification algorithm and 81% for 8-class problem by using hybrid LDA. Khorrami and his 

team used visual and auditory cues to induce emotion, and collected four types  of  physiological  signals, 

namely temperature, galvanic skin response, blood volume fluctuation, and electrocardiogram  [9].  The  

resultant average classification accuracy is 61.8%. Chanel et al. used the  international  emotional  picture 

system to induce emotions in the subjects, and performed 100 high arousal and low arousal emotion induction  

on the four subjects, and recorded the EEG, blood pressure, and skin conductance response of the subjects [10] 

. Heart rate, skin temperature and respiratory signals were extracted, and linear discriminant analysis and naive 



Bayes were used for emotion recognition. A classification accuracy of about 55% was reported. Koelstra et al. 

used music video clips as stimulating material, instructing each of the 32 subjects to watch 40 pieces of music 

video material, and recorded the self-report (subjective ratings), facial expression, EEG and peripheral 

physiological signals [11]. A classification accuracy of 0.67.7% was achieved. Schmidt et al. used music to 

induce four emotions [12]. They found that when using positive musical materials, the EEG activity in the 

frontal areas of left hemisphere was enhanced, while the EEG activity in the frontal areas of right hemisphere    

is enhanced when using the negative music materials. The authors conclude that there is a strong correlation 

between the frontal areas of human brain and the emotion. Wagner has also done a lot of work in this area [13]. 

They collected four types of physiological signals, including electrocardiogram, galvanic skin response, EOG, 

and respiration, and extracted the physiological features respectively. Three feature selection methods were 

tested and compared, namely variance analysis, Fisher projection method and sequence forward drifting 

selection algorithm. Three classifiers, namely K-nearest neighbor, linear discriminant analysis, and multi-layer 

perceptron, were used to identify the four emotions of joy, happiness, anger and sadness, and encouraging 

classification results were achieved. 

Lu and his associates carried out research on emotion recognition based on physiological signals [14–17]. In 

recent years, they have set up EEG-based emotion recognition database accessible to researchers. Other 

researchers also set up the emotion-related database, consisting of four physiological signals of ECG, galvanic 

skin response, skin temperature and respiration, and the binary (happy vs. relaxed) classification rate reached 

86.7% [18]. Liu and others collected physiological signals of heart rate, respiration,  skin  conductance  

response, ECG, EMG and pulse rate from 500 university students, and extracted the features through neural 

network, random forest, and evolutionary algorithms (such as particle swarm optimization, ant colony 

optimization, etc.) [19–23]. The average 6-class (happiness, disgust, sadness, fear, anger and surprise) 

recognition rate was reported to be 60-90%. 

1.3 Affective computing 

 
Affective computing is an emerging cross-disciplinary research field that aims to enable intelligent systems to 

recognize, infer/predict, and interpret human emotions and spans such domains as computer science, AI, 

cognitive science, neuroscience, neuropsychology, and social science. The goal of affective computing is to 

recognize emotional cues during HCI and forming emotional responses. Affective computing is the set of 

techniques of affect recognition from data in different modalities and granularities. Affective  computing 

research mainly comprises the topics of sentiment analysis and emotion recognition. The former performs 

coarse-grained affect recognition (usually a task of binary positive vs. negative or 3-class positive, negative,   

and neutral sentiments classification), whereas the latter involves fine-grained analysis (usually a multiclass 

classification of big data into a larger set of emotion labels, for example more than 4 classes). Over the past    

two decades, AI researchers have attempted to endow machines with cognitive capabilities to recognize, 

interpret and express emotions and sentiments. All such efforts can regarded as affective computing research. 

Emotion is a psychophysiological phenomenon. Fig.  1 shows the bodily map of different emotions [24]. Due   

to its complexity, psychologists have not yet reached a consensus on a unifying definition of emotion or 

sentiment. There are hundreds of theories related to emotions or sentiments available [25]. 

 



 
 

The main goal of emotion recognition study is to achieve more natural, harmonious and friendly HCI, and to 

transform the computer from a logical computing machine into an intuitive perceptron, thus realizing the 

transformation from the machine- to human-centric design of machines. In order for the machine/computer to 

achieve such a transformation, it must possess affective computing capacity.  Without  emotional intelligence,  

the machine/computer could not achieve true human-level intelligence. In 1997, Picard from  the  MIT  

published her seminal book on affective computing [26]. The main contents of her influential book include the 

following four parts: (1) Extracting human emotion information; (2) Modeling of emotions; (3) perception- 

based understanding through reasoning/inference; (4) representation of the outcome of the understanding. The 

general procedure of affective computing based on physiological signals is composed of the following three 

steps: 

Step 1 – Feature extraction: Extract features from heterogeneous physiological signals from different sources 

(including EEG, EEG, ECG, galvanic skin response, respiration, pulse rate, etc.); 

Step 2 – Emotion recognition: Recognition of the emotional state; and 

 
Step 3 – Emotional regulation: Regulation/adjustment of the emotions through psychological measures.  

 
Chen et al. identified the emotions of fear, calm and happiness by extracting the facial expressions and 

movements of the subjects, and the highest recognition rate reached 86.7%. Their study showed that the    

human brain's prefrontal cortex (PFC) is responsible for emotional regulation and perception. Through clinical 

trials it was found that PFC damage can lead to abnormal emotional function [27]. 

1.4 Categorization of emotions 

 
The number of categories of emotions has always been controversial in psychology. Historically, psychologists 

have two different methods to model emotions: one is basic emotion theory that label emotions in discrete 

 

 

Fig. 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The bodily map of human emotions. 
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The 2 D emotion model. 
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categories and the other is multi-dimensional theory that categorizes emotions on multiple  dimensions  or 

scales. 

Basic emotion theory holds that there are several basic emotions in humans, e.g., happiness, sadness, fear,  

anger, disgust and surprise. Other nonbasic emotional states (such as fatigue, anxiety,  satisfaction, confusion  

and frustration) are somehow composed of them. Each category of emotion has unique inner experience, 

external performance, and physiological patterns. Ekman believes that basic emotions must have the following 

characteristics: (1) Emotions come from instinct; (2) Different people produce the same emotion under the   

same situation; (3) Different people express basic emotions in a similar way; (4) When basic emotions are 

produced, the physiological patterns of different people are consistent. There are six basic emotions: anger,    

fear, sadness, disgust, surprise, and happiness. From these six basic emotions, other compound (nonbasic) 

emotions may be derived, such as shyness, guilt, contempt, etc. 

The dimensional theory holds that human emotion has a multi-dimensional structure, and each dimension is a 

characteristic of emotion. Each emotional state can be placed as a point in a multi-dimensional space. Instead   

of choosing discrete labels or terms, one can indicate his/her impression on several continuous- or discrete- 

valued scales, e.g., pleasant-unpleasant, attention-rejection, etc. So far, researchers have proposed different 

multi-dimensional approaches for emotion modeling. Typical examples include (1) Russell's early circumplex 

model – 2 D emotional model which uses the dimensions of arousal and valence to plot 150 affective labels; 

(2) Whissell's continuous 2 D space whose dimensions are evaluation and activation; and (3) Schloberg's 3 D 

emotion model in which he added attention-rejection dimension to the 2 D model. The commonly  used 

approach is Russell's 2 D emotion model, in which the horizontal axis is the arousal dimension (indicating the 

intensity of the emotional experience, from low to excitement), and the vertical axis is the valence dimension 

(indicating the degree of joy or cheerfulness, from negative to positive). Fig. 2 shows a schematic of the 2 D 

emotion model. The 2 D emotion model will be used to determine the target/real/actual emotion-related data 

labels as the ground truth in order to evaluate the emotion classification accuracy. 
 



1.5 Emotion elicitation paradigms 

 
A critical step in emotion recognition based on physiological signals is to induce/trigger/evoke the emotional 

state of the experimental subject in certain proper ways, that is, the emotional arousal. There are three main  

ways to induce emotions: 

(1) Evoking emotions by presenting the music, pictures, videos and other stimulating materials.   

This is a commonly used approach to inducing emotions. In order to induce the subjects to 

generate emotional states and tag/label them in more objective manner, Lang et al.  developed  

the international emotional picture/sound systems [28,29]. They asked subjects  of  different 

ages, genders, and ethnicities to score the three dimensions of the valence, arousal, and 

dominance of each material in the system. This provides a basis for the tagging of the emotional 

categories induced. 

(2) Inducing emotions by constructing simulated scenarios. People often produce some  

unforgettable emotions at some point in the past. It is also possible to induce emotions by    

letting the subjects recollect the fragments with different emotional colors in their past 

experience. However, the disadvantage of this method is that it cannot  guarantee  that  the 

subject generates the corresponding emotion, and the duration of the corresponding emotion is 

not measurable. 

(3) The subject is required to play a computer/video game or pretend to have certain facial 

expressions and gestures. The disadvantage of this method is that the participants might conceal 

their true emotions. 

1.6 Main contribution and organization of this paper 

 
This paper reviews the emotion recognition methods based on heterogeneous signals with the following major 

contributions: 

1) The physiological data labeling approaches were surveyed. 

2) Different feature extraction methods, such as wavelet transform and nonlinear dynamics, were 

reviewed. 

3) Different feature dimensionality reduction algorithms, including Kernel Spectral Regression 

(KSR) discriminant analysis, Locality Preserving Projection (LPP), Principal Component 

Analysis (PCA), mRMR, and ReliefF algorithm, were reviewed. 

4) Classification performance of k-Nearest Neighbor (KNN), Naïve Bayes (NB), Support Vector 

Machine (SVM) and Random Forest (RF) was compared. 

5) Guidelines for combining feature extraction, feature reduction, and classification algorithms are 

suggested. 

6) In order to select an optimal number of EEG electrodes, the emotion classification accuracy 

using the EEG electrodes placed on each brain area was compared to identify the most relevant 

brain areas. 



The rest of the paper is organized as follows: Section 1 describes the background and motivations, an overview 

of the state-of-the-art emotion recognition techniques, different models of emotions, emotional induction 

paradigms, as well as application areas of emotion recognition techniques. Section 2 introduces the physiological 

basis of emotion generation  and  the role of  each area of the brain in the formation of emotions, and analyzes 

the correlation between emotion and EEG signals. Section 3 considers the emotional databases and provides 

an overview of EEG signal processing 

techniques for emotion recognition problem. Section 4 compares several major feature 

extraction, reduction and classification methods. Section 5 is devoted to analysis of different brain regions that 

are relevant to  emotions, with an aim to find the brain regions that are highly  correlated to emotions. Finally, 

Section 6 summarizes the major findings of the paper and points out some open problems/challenges and future 

research directions in the  field. 

2 An overview of emotion and EEG signals 

This section provides an overview of the emotion and EEG. Section 2.1 introduces the physiological basis of 

emotion generation and Papaz's fundamental theory of emotion. Section 2.2 describes the structure and 

function of the brain. The cerebral cortex is usually divided into four regions, each of which is responsible for 

different functions. Studies have shown that the prefrontal cortex (PFC) is most closely associated with 

emotion. Section 2.3 describes the characteristics of EEG signals. The last section describes the major 

techniques for EEG signal processing and analysis, including time-domain analysis,  frequency-domain  

analysis, time-frequency analysis, and nonlinear dynamics. 

2.1 Physiological differentiation of emotions 

 
The accurate measurement of physiological indicators/markers is based on the endocrine changes  and  

vegetative neural activities produced under emotional conditions. Psychophysiological studies have shown that 

subcortical activity is mainly regulated by the cerebral cortex, and the lower part of the cortex is the main area 

that is responsible for emotion generation. 

Emotion is a psychophysiological process triggered by conscious and/or unconscious perception of an object, 

stimulus, or situation and is often associated with mood, temperament, sentiment, personality and 

disposition/inclination, and personal motivations. Emotions of humans can be expressed  either  verbally  

through emotional words or by nonverbal cues such as intonation of voice, facial expressions and body 

gestures/postures. Emotion is systematically produced by cognitive processes, subjective  feelings,  

physiological arousal, motivational or action tendencies (also called stance), and behavioral reactions. The 

production of emotion involves the activities in many areas, including the thalamic system, reticular structure, 

limbic system and the subcutaneous ganglion and thus emotion has a complex central mechanism. 

The debate on whether emotions can be discriminated by physiological changes is still under way in the 

communities of psychology and neurophysiology. A well-known hypothesis was made by James to support the 

antecedence of physiological specificity in emotional processes, but Cannon rejected the claim. In 

neurophysiology, the hypothesis can be reduced to the quest for the central circuitry of human emotions, that 



is, to find the brain center in the central nervous system (CNS) and the neural center in the peripheral nervous 

system (PNS) which are both involved in emotional experience. 

In 1884 James, the father of American psychology, argued that emotion is a feeling caused by bodily changes. 

Any category of emotion is accompanied by some changes in the body, such as muscle activity, facial 

expressions and visceral secretion. Later physiologist Lange proposed a similar view [30], which was called    

the James-Lange theory of emotions. This theory points out that there is an intrinsic relationship between 

emotion and physiological activities, but it is also incomplete to simplistically regard emotion as changes in 

activities of peripheral nervous system, which includes two parts: somatic nervous system and autonomic 

nervous system (ANS). In 1927 Cannon rejected the James-Lange theory. He believed that the hypothalamus 

determines the production of emotion. When people feel the stimulus, it is transmitted to the cerebral cortex, 

which then activates the hypothalamus and thereby produces different emotions. This is called the Cannon-  

Bade theory [31], in which the thalamus plays a major role in formation of emotions, but the relationship 

between emotion and PNS is completely disregarded. In 1937, Papez loop, the limbic system mechanism of 

emotion production, was proposed to link emotions to physiological activities [32]. First, the  emotion  

originates from the hippocampus. After the hippocampus is stimulated, the impulse is transmitted to the 

hypothalamus, then the anterior nucleus and eventually return to the hippocampus through the cingulates. It is   

in this process that the emotion is produced. Based on the Papez theory of emotion, Maclean proposed the 

concept of visceral brain. He believed that the visceral brain is responsible for regulating or modulating all 

internal organs related to emotion and the hypothalamus is responsible for mediating related bone and visceral 

responses [33]. 

Although the definition and generation mechanism of emotion is still controversial, there is no doubt that   

human emotions are accompanied by physiological changes and are associated with activities of the 

physiological ANS activity. This provides a neurophysiological basis for recognizing emotions from EEG 

signals. 

2.2 Structure and functionalities of brain 

 
The human brain is divided into three major parts, the cerebrum, cerebellum and the brainstem. The cerebrum 

consists of the cerebral cortex, the limbic system and the brain nucleus. The cerebral cortex is primarily 

responsible for the higher-level emotional and cognitive functions. It is located at the outermost layer of the 

human brain, with a thickness of about 1-4   mm, mainly composed of grey matter, below which is mainly    

white matter [34]. A central sulcus in the middle of the brain divides it into left and right hemispheres. The  

brain can be divided into four areas: the Frontal Lobe, the Parietal Lobe, the Occipital Lobe, and the Temporal 

Lobe. These four areas of the brain have the following different functions: 

(1) Frontal lobe: The frontal lobe is located before the central sulcus of the brain. It is responsible  

for higher cognitive functions. It includes the prefrontal lobe, the primary motion area, and the 

frontal motion area. The main functions include abstract thinking, inference, judgment, 

conception, and motion control. They are mainly responsible for planning, thinking, and 

physiological functions related to individual's emotions and needs. 

(2) Parietal lobe: The parietal lobe is located behind the central sulcus and before the occipital 



fissure. It is a high-level sensory center. It is mainly responsible for the response to the sensory 

and spatial information of pain, temperature, pressure, touch, and taste, as well  as  the  

integration of somatosensory information. This area is also related to mathematical and logical 

reasoning. 

(3) Occipital lobe: The occipital lobe is located at the back of the hemisphere, behind the occipital 

sulcus, and is primarily responsible for processing information related to vision. In addition, it    

is related to individual's memory, behavioral perception, and abstract concepts. 

(4) Temporal lobe: The temporal lobe is located under the lateral fissure, with the frontal lobe in 

front, the parietal lobe above, and the occipital lobe in the back. It is mainly responsible for the 

processing of auditory information, and is also related to emotion and memory. 

2.3 EEG signal processing 

2.3.1 EEG signals 

 
Electroencephalogram (EEG), also known as brain wave, is one of the effective tools for monitoring brain 

activity. In 1929, the Austrian psychiatrist Berger initiated the recording of human EEG and then published the 

first paper on human EEG [35]. After that, electrophysiologists and neurophysiologists gradually confirmed    

his research results, making rapid development of EEG research in brain science and clinical medicine. By 

analyzing the EEG signals, one can understand the changes in emotion. Neuronal potentials can reflect the 

functional and physiological changes of the central nervous system (CNS). EEG is currently the most sensitive 

method for monitoring brain function. However, the EEG does not simply reflect the activity of a certain  

neuron, but reflects the electrical activity of a population of neurons in the brain region where the EEG 

measurement electrode is placed. Therefore, the EEG signal contains a lot of meaningful and useful 

psychophysiological information. In medicine, an objective basis for diagnosing certain diseases can be  

provided through EEG signals classification, computing, and analysis. In neuroengineering, disabled people   

can control wheelchairs or robotic arms using the EEG signals generated by mind or motion imagery. This is 

currently a hot research field, called Brain-Computer Interface (BCI). Due to the non-stationarity of EEG  

signals and the complex environmental factors, the EEG signal processing and analysis is always challenging    

in brain research. 

2.3.2 Characteristics of EEG signals 

 
EEG signal is one of the most important physiological signals. It is a direct reflection of brain activity,  and  

plays an important role in the study of physiological phenomena of human brain. It possesses the following  

main characteristics: 

(1) Noisy: The EEG recordings are usually noisy and susceptible to environmental interferences.  

The EEG signal usually has a low amplitude (generally around 50 uV with the maximum of 

about 100 uV). The EEG signals are usually mixed with a number of other signals (such as  

EOG, EMG, and ECG), noises, interferences, or artifacts. 

(2) Nonlinear: EEG signals can be divided into spontaneous and evoked signals. Spontaneous EEG 



or evoked potentials are inevitably affected by other peripheral physiological signals during the 

signal acquisition. Physiological regulation or adaptation of human tissues makes EEG signals 

highly nonlinear. 

(3) Nonstationary: The change of EEG signals is unstable, sensitive to the external environment 

factors, and exhibits strong non-stationarity property. Many studies use statistical analysis 

techniques to detect and identify features of EEG signals. 

(4) Frequency-domain characteristics: The frequency  range  of  EEG  signals  is  generally  0.5-–  

100 Hz, but the frequency band most relevant to cognition is the low frequency range of 0.5-–    

30 Hz. Usually the researchers divide it into five frequency sub-bands, each corresponding to 

different cognitive function. 

EEG signals are usually classified into two types: spontaneous and evoked. Spontaneous EEG is a rhythmic 

potential fluctuation produced by the nervous system without any external stimuli. The external 

stimulation/excitation of the human sensory organs leads to a detectable potential change  in  the  cerebral 

cortex, called evoked potentials. Brain cells are rhythmically discharged, so the EEG signals are rhythmic. The 

EEG signal can be divided into five frequency bands, as illustrated in Fig. 3 [26,35]. 

(1) Delta wave (1-4 Hz): The signal amplitude is generally 20-200 µV, which usually  occurs  in  the 

frontal cortex. When one is in a state of sleep, lack of oxygen, or being anesthetized, the  delta 

wave is usually detected. When an adult is in a normal awake state, the wave would disappear. 

(2) Theta wave (4-8 Hz): The signal amplitude is generally 100-150 µV. It usually appears in the 

temporal lobe and parietal lobe when one is relaxed, indicating that the CNS is in a state of 

inhibition. It is usually associated with working memory load and can help people with long- 

term and deep memory. 

(3) Alpha wave (8-13 Hz): The signal amplitude is generally 20-100 µV. It mainly occurs in the 

parietal lobe and occipital lobe. When one is in a resting state with eyes closed, the alpha wave 

can be detected. Alpha waves can be significantly reduced or even disappeared under some 

external stimuli, such as auditory or visual stimuli, or when people are  carrying  out  some 

mental activity.  Alpha waves are usually thought to be involved in preparatory activities of  

brain. 

(4) Beta wave (13-30 Hz): The signal amplitude is generally 5-20 µV. When one is in a  resting state 

with eyes closed, the beta wave is usually only detected in the frontal lobe; but when one    is 

thinking, the beta wave appears in a wide range of areas. When the human body is in a   relaxed 

state, alpha waves dominate the cerebral cortex, and this rhythm gradually disappears as the 

emotional activity becomes stronger. Conversely, when the CNS is in a state of 

tension/strain/stress, the amplitude of the Alpha wave is reduced while its frequency becomes 

higher, and the alpha wave gradually turns a Beta wave. Its appearance usually implies that the 

cerebral cortex is in an excited state. 

(5) Gamma wave (>30 Hz): This is the high frequency component of the brain wave. The 
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The waveforms of five typical EEG rhythms. 
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amplitude is usually lower than 2 µV. Gamma waves play an important role in the cognitive 

activities of the brain. They are also related to high-level functions, such as reception, 

transmission, processing, integration, and feedback of information in the brainstem, and  

activities that require intense attention (concentration). The gamma wave is often found in the 

process of multi-modal sensory processing. Some studies have shown that the gamma waves   

can directly reflect the activity of the brain. 

 

2.3.3 EEG signal processing methods 

 
The procedure of emotion recognition based on EEG signals can be divided into the following steps: (1) 

emotional induction; (2) acquisition of EEG signals; (3) preprocessing of EEG signals; (4) extraction of EEG 

features; (5) EEG feature dimensionality reduction; (6) emotional pattern learning and classification. 

EEG signals contain a wealth of information about psychophysiological activities, which is a direct indication  

of neuronal activity. However, the EEG signals are weak with small amplitude and highly noisy. An important 

issue is how to extract useful information from complex EEG signals. In 1932, Dietch first proposed the  

analysis of EEG signals by Fourier transform. After that, various modern signal processing methods have been 

used in the analysis of EEG signals [36]. Since 1980s more sophisticated EEG signal analysis methods have 

been proposed, opening up new opportunities for in-depth research on EEG signals. The EEG  feature  

extraction methods can be roughly divided into classical and modern analysis methods. Classical analysis 

methods include time-domain analysis, frequency-domain analysis, and bi-spectral analysis. Modern analysis 

methods include time-frequency multi-resolution analysis, matching and tracking methods, and nonlinear 

dynamics (such as chaos, fractal, complexity, and entropy theory). In the following, we will briefly introduce 

those analysis methods: 



A. Time-domain analysis 

 
It is an early analysis method by exploiting the statistics of EEG signals (such as mean, variance, amplitude, 

skewness and kurtosis). The commonly-used time-domain analysis methods include zero-crossing analysis, 

analysis of variance, correlation, histogram, waveform recognition, etc. Since the time-domain waveform 

contains all the information of EEG without loss of information, the time-domain analysis methods was 

developed first. Because it is intuitive and easy to interpret, many researchers are still using the time-domain 

analysis. However, due to the complexity of the EEG signals, there is no particularly effective time-domain 

waveform analysis method. 

B. Frequency-domain analysis 

 
The frequency-domain analysis method assumes that the EEG signal is stationary, and only considers the 

frequency-domain information of the EEG signal while ignoring the time information. One of the primary 

frequency-domain analysis is power spectrum estimation. It is a spectrogram that changes the amplitude of the 

EEG over time into the power of the EEG as a function of frequency, so that the EEG rhythms can be observed 

intuitively. 

Power spectrum estimation methods can usually be divided into classical and modern methods. Classical 

spectral estimation method estimates the power spectrum of an EEG signal by using Fourier transform and    

time window. The periodogram method is the simplest method. In modern analytical methods, the most widely 

used spectral estimation method is based on parametric model. Firstly,  according to some a priori information  

or some assumptions about EEG signals, a stochastic parametric model is determined, and then the 

autocorrelation delayed sequence or sampling sequence is used to estimate the parameters  of  the  model. 

Finally, the model identified is used to calculate the power spectrum of the EEG signal. The AR, MA and 

ARMA models are commonly used in modern spectral estimation. However, the spectral estimation requires   

the assumption that the EEG signal is stationary. However, the measured EEG signal is  typically  non-  

stationary in nature, so the spectral analysis must be based on the partition of the EEG signal into several quasi-

stationary segments. The common frequency-domain features include power spectrum, power spectral density, 

and energy. 

C. Time-frequency analysis 

 
Much of the information in EEG signals is contained in their time-domain waveforms. However, it is difficult   

to extract the useful features directly using waveform analysis. In many situations, it is easier to examine EEG 

signals in the frequency domain. However, the local property of the EEG signal cannot be obtained only from  

its frequency-domain characteristics. Therefore, for EEG signals, some features cannot be extracted by simple 

time- or frequency-domain analysis. The time-frequency analysis method has better localized analysis and   

other important properties in both the time and frequency domain. The commonly used methods for time- 

frequency analysis are short-time Fourier transform and wavelet transform. 

In short-time Fourier transform, the composition and phases of the local sine waves of the time-varying signal 

are obtained by moving the window function. The resolution of the short-time Fourier transform depends on 



the window function selected to use. For a quasi-stationary or a piecewise stationary time series, the short-time 

Fourier transform usually leads to satisfactory analysis results. Nevertheless, for  the  non-stationary  EEG 

signal, high temporal resolution is required. The short-time Fourier transform cannot balance frequency and  

time resolution and wavelet transform is more suitable for non-stationary EEG signals. 

In 1984 Grossman and Morlet formulated Wavelet Transform (WT). In 1987 Mallet introduced the idea of multi-

scale analysis in wavelet analysis, including the construction of wavelet functions and the decomposition and 

reconstruction of signals by WT. After selecting the appropriate base wavelet, the orthogonal function generates 

wavelets through binary translation and scaling. Wavelet analysis actually uses a fast-decaying, finite-length 

mother wavelet to represent the signal, which is translated and scaled to match the input signal.  WT is divided 

into two categories: Discrete Wavelet Transform (DWT) and Continuous Wavelet Transform (CWT). Discrete 

transform uses a specific subset of all scaling and translation values, while continuous transformation operates 

on all possible scaling and translation transformations. The mathematical principles of wavelet analysis will be 

described in more detail in Sect. 3. 

D. Nonlinear dynamics 

 
EEG signals are a mixture of neuronal activities in the brain, characterized by complexity and irregularities, so  

it is difficult to analyze EEG signals using only traditional analytical methods. In recent years, some research  

has shown that the human brain is a nonlinear dynamic system, and EEG signals can be considered as the   

output of such a system. Therefore, researchers are trying to analyze EEG signals using nonlinear dynamics. In 

general, the methods of nonlinear dynamics can be divided into two categories: one is chaos theory and the  

other is information theory. The methods based on chaos theory include correlation dimension, Lorenz scatter 

plot, Lyapunov exponent, and Hurst exponent. Information theory based methods  include  Approximate  

Entropy (APoEn), Sample Entropy (SampEn), Permutation Entropy (PeEn), and complexity. The nonlinear 

dynamic analysis of EEG signals can provide information that cannot be obtained by  conventional  EEG 

analysis methods, which is reproducible and insensitive to the impact of outliers or artifacts in the EEG time 

series. 

3 EEG-based emotion recognition 

This section introduces the emotion datasets, EEG feature extraction, feature dimensionality reduction, and 

classification methods. Section 3.1 introduces the benchmark DEAP database used in various emotion 

recognition studies and describes the methods for EEG data preprocessing and the determination of the 

target/actual emotion classes. Section 3.2 introduces two EEG feature extraction methods: wavelet transform  

and nonlinear dynamics. Section 3.3 introduces several EEG feature reduction/selection algorithms, including 

Kernel Regression Discriminant Analysis (KSR), Local Preserving Projection (LPP), ReliefF, and minimal- 

Redundancy-Maximal-Relevance (mRMR) algorithms. Finally, we briefly describe two ML-based emotion 

classifiers: support vector machine (SVM) and random forest (RF). 

3.1 Datasets and data preprocessing 

3.1.1 Available physiological datasets 



Table 1 

Modality of datasets for emotion recognition used in recent literature. 

Bailenson et al. (2008) [57] V + PP 

Kim (2007) [56] A + PP 

Koelstra et al. (2012) [11] CP + C + PP 

Ref. Data modality 

 

i The presentation of Tables and the formatting of text in the online proof do not match the final output, though 

the data is the same. To preview the actual presentation, view the Proof. 
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In this section, we describe widely-used datasets for multimodal emotion recognition, especially emotion 

recognition from physiological signals. 

Recent advances in emotion recognition have motivated the creation of datasets containing emotional 

expressions in different modalities. Most datasets contain speech (acoustic), visual data, or audio-visual data 

(e.g., [37–41]). The audio modality covers genuine or posed emotional speech in different languages. The    

visual modality includes facial expressions and/or body gestures (or postures). 

Healey [42,43] recorded one of the first affective physiological datasets. She recorded 24 participants driving 

around Boston area and annotated the dataset by the drivers’ stress level. Responses of 17 out of the 24 

participants are publicly available (http://www.phsyionet.org/pn3/drivedb/). Her recordings include ECG, 

galvanic skin response (GSR), EMG, and respiration patterns. 

A publicly available multimodal emotional datasets which include both physiological responses and facial 

expressions are the enterface 2005 emotional database and MAHNOB HCI [44,45]. The database recorded by 

Savran et al. [45] includes two sets. The first one has EEG, peripheral physiological signals, functional near 

infrared spectroscopy (fNIRS) and facial videos from five male participants. The 2nd dataset only has fNIRS 

and facial videos from 16 participants of both genders. Both datasets recorded spontaneous  emotional  

responses to images from the International Affective Picture System (IAPS) [46].The MAHNOB HCI dataset 

[44] consists of two experiments. The emotional responses including EEG, physiological signals, eye gaze, 

audio, and facial expressions of 30 people were measured. 

There has been a large number of publications in the area of emotion recognition from physiological signals [ 

42,47–51]. There are also various studies on music emotion characterization from acoustic features [52–54]. In 

the study [55], EEG and physiological signals of six participants were recorded as each watched 20 music 

videos. The participants rated arousal and valence dimensions and the EEG and physiological signals for each 

video were classified into low/high A/V classes. Some datasets used in recent literature are summarized in   

Table 1, in which the emotions in all papers were induced, except for Ref. [60] (natural emotions). 
 

http://www.phsyionet.org/pn3/drivedb/


 CP + PP Khalali and Moradi (2009) [58]  

A + PP Kim and Lingenfelser (2010) [59] 

CP + PP Chanel et al. (2011) [60] 

A + PP Walter et al. (2011) [61] 

V + PP Hussain et al. (2012) [62] 

V + PP Monkaresi et al. (2012) [63] 

CP + Gaze Soleymani et al. (2012) [64] 

CP + C Wang et al. (2014) [65] 

Legenda: V = Video, A = Audio, C = Content/Context, CP = Central Physiology, PP = Peripheral Physiology; Gaze = eye Gaze. 

 

3.1.2 Benchmark DEAP emotion dataset 

 
In this section, the DEAP emotion database will be described. Based on the 2 D model of emotions, Koelstra, 

Muhl and Soleymani et al. [63] used 40 music video clips as the visual stimuli to elicit different emotions, and 

32 subjects (half of them were male, half were female; aged between 19 and 37 with an average age of 26.9   

y/o) watched 40 1 m highlight of music videos while their EEG and peripheral physiological signals and facial 

expressions were recorded. The advantages of using music video as emotional stimuli include:  (i)  It  can 

express emotions consistently and continuously; and (ii) It is easier to induce the emotional state  of  the 

subjects, without requiring the subjects to induce emotions by watching the slowly developed plots in movie 

clips. 

There were 40 channels of physiological signals, including 32-channel EEG signals and 8-channel peripheral 

physiological signals (such as galvanic skin response, respiratory signal, skin temperature,  ECG,  blood  

volume, EMG, and EOG). More specifically, for 22 participants, frontal face video was recorded.  Also  

included is the subject ratings from the initial online subjective annotation and the list of 120 videos used.    

EEG was recorded at a sampling rate of 512 Hz using 32 electrodes. Thirteen peripheral physiological signals 

were also recorded. 

The experiment started with a 2 m baseline recording, during which a fixation cross was displayed to the 

participant who was asked to relax during this baseline period. Then the 40 music videos were presented in 40 

trials. After 20 trials (videos), the participants took a short break. Then the experimenter checked the signal 

quality and the electrodes placement and asked the participants to continue the 2nd stage of the experiment.   

The experimental procedure is shown in Fig. 4, where the top panel represents that each experiment consisted   

of two stages with a short break in between, the middle panel represents that during each stage the subject was 

asked to watch 20 music video clips in order to elicit his/her emotional states, and the bottom panel represents 

that during watching each music video the video number was displayed on the monitor for 2 s, a 5 s baseline 

physiological data was recorded, the video clip was then played for 1 min for the subject to watch, finally the 

subject was asked to complete self-assessment of his/her emotional states while watching the 1 min video clip. 

This challenging benchmark database can be used to compare different affect recognition methods. 



 
 

3.1.3 Data preprocessing 

 
EEG signals are generated by the CNS and suited for emotion recognition. Therefore, EEG signals have been 

extensively used for emotion classification and analysis. The EEG signals are usually down-sampled during  

data preprocessing step. Then the EOG artifact is removed by using a band-pass filter. 

The pre-processed EEG data includes emotion-related and baseline (emotionless) EEG data. In addition, there 

are significant individual differences (i.e., subject-to-subject variability) in the physiological signals. Even for 

the same subject and the same stimulus material, different emotions may be triggered at different times and/or 

under different environments. Therefore, in order to minimize the influence of the previous stimulus material   

on the subsequent emotional state and the influence of individual differences in physiological signals, the 

baseline EEG features (prior to the emotional material stimulation) were subtracted from the EEG features    

after the emotional material stimulation. Finally, the resultant residual features are normalized into the unit 

interval [0, 1]. 

A major problem in emotion recognition research is that there are individual differences in  subjective  

emotional experiences for the same stimulus material. Therefore, the number of emotion  classes  in  most 

studies is usually small. In the study of DEAP emotion recognition, many studies focus on the binary (positive 

vs. negative or high vs. low arousal) classification problems [66–69], and the target  emotional  labels  are 

usually obtained by simple, and subjective hard threshold of subjective rating/scoring data of the subjects. 

3.1.4 Clustering and validation 

 
K-means clustering of the subjective scoring data can be used to obtain the target classes of emotion. When k- 

means clustering algorithm is used, the initial clusters must be set mainly based on two considerations: (1) 

whether the target classes obtained by data clustering can be reasonably explained by the two-dimensional 

emotion model, i.e., the clusters obtained can be found on the 2 D emotion plane; (2) two indices are used to 
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The procedure of emotion elicitation experiment.              
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evaluate the clustering performance. Since the true labels are unknown, the Silhouette coefficient and Calinski- 

Harabasz index are used. 

The silhouette coefficient applies when the actual clusters are unknown. For a sample, the  Silhouette  

coefficient is defined by [70]: 

 

 

 
 

(1) 

 

Where represents the average distance of the sample from other samples in the same cluster, represents the 

average distance of the sample from all samples in the closest (different) cluster, S denotes a measure of the 

clustering quality. Generally, the larger the S, the higher the clustering quality. 

The Calinski-Harabasz index can also be used in the case that the true clusters are unknown [71]. The Calinski-

Harabasz index is calculated by: 
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(4) 

 

whereTr(  ·  )  denotes  the  trace  of  a  matrix,Bk represents  covariance  matrix  between  different  clusters,   

Wk represents covariance matrix within the same cluster, N is the total number of samples, K is the number of 

clusters, c q is the set of samples in the q-th cluster, Nq represents the number of samples in the q-th cluster. 

The above formulae show that the larger the covariance between the clusters, the smaller the covariance within 

the cluster, and the larger the Calinski-Harabasz index, the higher the clustering quality. 

3.2 EEG feature extraction 

 
The main purpose of feature extraction is to extract the information from EEG signals that can significantly 

reflect the emotional state, which can be further used for the emotion recognition/classification algorithms.    

The features extracted determine, to a large extent, the accuracy of emotion recognition. Therefore, it is crucial 

to extract the salient EEG features of emotional state. In this section, two methods of EEG feature extraction 



are reviewed: wavelet transform (time-frequency analysis) and approximate entropy and sample entropy 

(nonlinear dynamics). 

3.2.1 Wavelet transform 

 
Wavelet decomposition is a typical and practicable time-frequency analysis method. It is a localized analysis 

method based on time window and frequency window.  The EEG signal is non-stationary and is characterized  

by slow change of the lower-frequency components and fast variability of the higher-frequency components,    

so wavelet transform is ideally suited to its signal analysis. The multi-scale analysis of EEG signals using 

wavelet transform allows for the EEG signal to exhibit both details and approximations at different wavelet 

scales. By wavelet decomposition of EEG signals, a series of wavelet coefficients can be obtained at different 

scales. These coefficients can completely describe the characteristics of the signal and thus can be used as a 

feature set of the signal. In general, the wavelet function ψ( · ) is defined by: 

 

 

 

 

(5) 

 

Where b and a represent the time-shift and scale factor, respectively. 

 
The wavelet transform has the following characteristics: (1) multi-resolution; (2) constant relative bandwidth; 

(3) by selecting appropriate base wavelets, the local characteristics of the target signals can be represented in 

both the time and frequency domains. The wavelet function is like a band-pass filter.  The original EEG signal   

is decomposed into different scales by high- and low-pass filters through dilation and contraction 

transformations. The wavelet coefficients obtained after high-pass filtering are details (D), while the wavelet 

coefficient obtained after low-pass filtering is the approximations (A). The approximate component is then 

further decomposed into a detail component and an approximate component. 

For a given signal x(t), its wavelet decomposition can be expressed by: 
 

 

 

 

 

(6) 

 

Where C N, k denotes the k-th approximate component  of  the  N-th  level  of  wavelet  decomposition, 

represents the k-th detail component of the j-th level of the wavelet decomposition, 

ψ(t)represents wavelet function, and ϕ(t)represents the dilation/contraction coefficient. 

 
Compared with the short-time Fourier transform, there are many types of wavelet base functions, which have 

different properties and scopes of applicability, in the wavelet transform. Commonly used  wavelet  bases 

include Daubechies wavelets, Meyer wavelet, Morlet mother wavelet and Haar mother wavelet. However, 
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because different wavelets have different properties in terms of symmetry, smoothness, orthogonality and 

compact support, it is difficult to construct a wavelet function that possesses all the four properties. 

Considering the orthogonality and compact support of the Daubechies wavelet and the nearly optimal 

localization of the Db4 wavelet base [72], this function is used as the wavelet basis function to decompose the 

EEG signal into five levels. Thereby the frequency components of the EEG signal in five frequency bands can 

be extracted. 

From Table 2, it can be seen that the frequency bands of the EEG signal obtained by five-level wavelet 

decomposition is in good agreement with the known rhythms of the EEG signal. Fig. 5 illustrates the five-level 

wavelet decomposition of EEG signal into approximate signals (A1-5 in higher frequency bands) and details 

(D1-5 in lower frequency bands). For example, A2 and D2 result from the further decomposition of the 

approximate signal A1. The specific frequency range of each signal (A1-5, D1-5) is given in Table 2. 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

Decomposition level Frequency range (Hz) EEG rhythm Frequency range (Hz) 

D1 32–64 Gamma 30–50 

D2 16–32 Beta 13–30 

D3 8–16 Alpha 8–13 

D4 4–8 Theta 4–8 

A5, D5 0–4 Delta 0.5–4 

 
 



 
 

For EEG signal from each channel, three features are derived from the wavelet coefficients of each sub-band, 

including wavelet energy, wavelet energy ratio (the ratio of each sub-band energy in the total energy of all sub- 

bands), and wavelet entropy which are defined as follows: 

(1) wavelet energy 
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(2) wavelet energy ratio 
 
 

 
(3) wavelet entropy 
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where D i, j represents wavelet coefficients of the corresponding decomposition levels, as introduced in (6). 

3.2.2 Nonlinear dynamics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Schematic of five-level wavelet decomposition of EEG signal. 



EEG signals are highly complex and nonlinear. In recent years, nonlinear analysis (e.g., entropy and other 

complexity measures) has been widely used in the analysis of EEG signals [73–75]. Among them,  two  

nonlinear dynamic methods, approximate entropy and sample entropy, are important tools for quantifying the 

complexity of time series. This section mainly studies the effectiveness of the two nonlinear dynamic methods  

in extracting EEG features. 

A. Approximate entropy 

 
Approximate entropy (ApEn) was proposed by Pincus [76] and can be used to describe the irregularity of 

complex systems. If the time series is more irregular, the corresponding ApEn is larger.  The ApEn indicates    

the probability of the generation of new pattern when the dimension of a time series increases from  m  to          

m  +  1. The larger the ApEn, the greater the probability of generating a new pattern, implying the more  

complex the time series. Usually only a short data segment is required to obtain a robust estimation of ApEn. 

What the ApEn actually reflects is the degree of self-similarity of the patterns corresponding to a time series, 

that is, the probability of generating a new pattern when the dimension of the time series varies. Compared    

with other nonlinear dynamic measures, such as the Lyapunov exponent and correlation dimension, ApEn has 

the following characteristics: 

(1) A robust estimate can be obtained by using a relatively shorter data segment. It  can  be  

estimated by taking 100-–5000 data points when applied to biosignals. 

(2) Strong resistance to transient interference. 

(3) It can be applied to many types of signals, such as stochastic signals, deterministic signals, or 

mixed signals comprising both. 

The specific algorithmic steps for estimating ApEn are as follows: 

 
Step 1: Given time series of length n, , construct in turn the m-dimensional vector as: 

 

 

 

(10) 
 

 

Step 2: Compute the distance between vectors x m (i)andx m (j)and define the maximum distance between each 

component as the distance of maximum contribution: 

 

 

 

(11) 

 

where . 
 

Step 3: Given a positive threshold r > 0 and the embedding dimensionality m, the regularity probability of the 

time series X can be obtained by: 



 

 
(12) 

 
whereNm (i) denotes the number of d[x m (i), x m (j)] ≤ r. 

Step 4: For each , calculate its logarithmic average: 

 

 

 
 

(13) 
 

 

Step 5: For each embedding dimensionality m + 1, repeat Step 1-–4 to obtain 

defined by: 

. Finally, the ApEn can be 

 

 
 

(14) 
 

 

The values of M, r, N determine the value of the approximate entropy. We usually take mm = = 2 and rr = 

= 0.1-–0.2 * SDX , where SDX represents the standard deviation of the original data, to have better statistical 

properties of ApEn. 

B. Sample entropy 

 
Sample Entropy (SampEn) is a complexity measure of time series based on improved ApEn, which was 

proposed by Richman et al. [77]. The ApEn has the following disadvantages: (1) It involves the comparison of 

its own data segments in the calculation, so it is biased; (2) The consistency of the ApEn results is poor. 

The calculation of SampEn does not need to perform its own matching, thus in principle it is more accurate   

than the ApEn. Intuitively,  when the time series is more complex, the SampEn is larger, and vice versa. 

SampEn has the following characteristics: 

(1) It has good consistency. 

(2) It requires less data points and does not require explicit granulation of the original data. 

(3) It can be used to analyze mixed signal comprising deterministic and stochastic signals. 

 
Because of the above characteristics, the SampEn is more suitable for EEG signal processing. The specific 

algorithmic steps for calculating the SampEn are as follows: 

Step 1: Given the original data sequence , construct in turn the m-dimensional vector: 
 
 



 

(15) 

 

where m is the window length, also called embedding dimensionality. 

Step 2: Define the distance between vectors x m (i)andx m (j)as: 

 

 

(16) 

 

where . 
 

Step 3: Given a positive threshold r and embedding dimensionality m, calculate the probability of regularity of 

the time series by: 

 

 

 

(17) 

 

where . Then calculate the average of all by: 
 

 

 

 
 

(18) 
 

 

Step 4: Set the embedding dimensionality as m + 1, repeat Steps 1-3, the SampEn can be computed by: 
 

 

 

 

(19) 
 

 

In practice N is taken a limited number, thus we have: 
 

 

 

 

(20) 
 

 

Likewise, the value of SampEn also depends on the selection of the values of  m, r, and  N. According to   

Pincus [76], to make the calculated SampEn have good statistical properties, the embedding dimension m can 



be selected as 1 or 2 and r is generally chosen between 0.1*SD and 0.25*SD (SD  is the standard deviation of  

the original time series). 

3.3 EEG feature reduction and feature selection 

 
Dimensionality reduction of EEG features is an important step in EEG-based emotion recognition. Selecting    

an effective feature reduction and selection algorithm can improve not only the efficiency of model training,   

but also the accuracy of model prediction. Feature reduction and selection is usually required to: (1) help with 

data visualization and understanding; (2) reduce the training time of the model; (3) overcome the curse of 

dimensionality, thereby improving the model prediction performance (or generalizability). 

In this section we will introduce three dimensionality reduction algorithms (KSR, LPP, and PCA) and two 

feature selection algorithms (mRMR, Relief) on EEG features. PCA is a commonly used dimensionality 

reduction algorithm, which is generally used as a baseline for comparison with advanced dimensionality 

reduction and feature selection algorithms. 

3.3.1 Graph embedding framework for dimensionality reduction 

Suppose  that  we  have  dataset  containing m samples. The goal of a dimensionality reduction 

algorithm is to find a lower-dimensional representation of the dataset. Given a graph G with m vertices, each 

representing a data point. The data points are connected by a weighted edge, which can be represented by a       

m × msymmetric matrix W. Graph embedding actually represents the vertices in graph G by  lower-  

dimensional vector, and describes the similarity between any two samples by the weight of the edge [78]. 

The   one-dimensional  mapping  of is , then the optimal y under certain 

constraints would minimize 
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where and  D is a diagonal matrix with the elements on the main diagonal . 
 

Then the above minimization problem can be rewritten as: 
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Since , the problem becomes equivalent to: 
 
 



 

(23) 
 

 

Now the solution of the above optimization problem can be obtained by solving the following maximum 

eigenvector problem: 

 

 

 
(24) 

 

 

In order to obtain the mapping of all training and test samples, we select the linear function , 

i.e. , then the above formula can be rewritten as: 
 

 

 

 

 
(25) 

 

 

The optimal a can be obtained by solving the following maximum eigenvalue problem: 
 

 

 

(26) 

 

and 
 

 
(27) 

 

 

This method is called Linear extension of Graph Embedding (LGE). Through selecting different W, different 

subspace learning algorithms result, such as linear discriminant analysis (LDA) and locality preserving 

projection (LPP). Nevertheless, a common drawback of these algorithms is that the eigendecomposition of the 

redundant matrix is computationally expensive. In LDA algorithm, assume that we have c classes, the s-class 

contains  ms samples, thus the total number of samples is . Then we define: 
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Then it is easy to check and (a m-dimensional identity matrix). 



the pro 

In LPP algorithm, Nk (x i )represents the k-neighborhood set ofx i . We define: 

 

 

 

 

 

 

(29) 
 

 

3.3.2 Spectral regression kernel discriminant analysis (SRKDA) 

When dealing with massive data, the spectral regression algorithm is very effective. 

Theorem 1 [79]: Let yand λbe the eigen-vector and eigen-value, respectively of 

 

 

 

blem (24). If , 

the eigen-vector and eigen-value of the problem (26) are a and λrespectively. If 

eigen-value of the problem (27) are α and λrespectively. 

, the eigen-vector and 

The above theorem gives the solution to problem (26). The linear embedding function can be obtained by the 

following two steps: 

Step 1: Solve the problem (24) to get the eigen-vector y. 

 
Step 2: Find asuch that . However, a may not exist, hence a feasible way is to find a that satisfies the 

least squares formula: 

 

 

 

 

(30) 

 

whereyi is the i th component of y. 

The advantages of the above two-step procedure are: 

 
(1) Since D is positive definite, stable solution exists for the problem (24). In addition, L and D are 

both sparse matrices. 

(2) There exists standard method to solve the LS problem [80]. In the case that there are more 

features  than  samples,  (30) is ill-defined, thus has an infinite number of solutions. To 

overcome this problem, a common method is to introduce regularization as follows: 

 

 

 

 

(31) 



where α is called scale parameter. The regularized LS is also known as ridge regression [81]. 

 
(3) The regression model allows the regularization technique to be well integrated. Even with many 

features, a stable and meaningful solution can be obtained. If we replace linear regression with 

spectral regression, an embedding function can be obtained in the reproducing kernel Hilbert 

space (RKHS). This algorithm performs data regression after the graphical spectral analysis, so  

it is called spectral regression (SR). 

Given the labeled samples x 1, x 2, ⋅⋅⋅, x l  and unlabeled samples  in real space     . Assume that 

there are c classes of samples and lk  represents the number of samples in the k-th class ( ). SR 

algorithm consists of the following computational steps: 

(1) Create adjacency graph 

 
Let G be a graph with M vertices and the i  th point x i . G can be created by the following two steps: 

Step1: If x i is the p-nearest neighbor of x j , the two points are connected. 

Step2: If x i andx j have the same label, the two points are connected; Otherwise, their connection is removed. 

(2) Select the weight function W that is a m × × m sparse matrix with wij representing the connection 

weight between x i andx j . If there is no edge between them, the weight is set zero; otherwise, we 

have: 

 

 

 

 

(32) 
 

 

where 0 ≤ δ ≤ 1 is a parameter that evaluates the neighborhood information and s(i, j) is a preselected function 

used to describe the degree of similarity between x i and x j . 

(3) Feature decomposition 

 

Let the eigenvectors corresponding to the  c  maximum eigenvalues of problem (24) be . 

(4) Regularized LS 

 

Find (c-1) vectors as the solution to the following regularization problem: 

 

 
 

(33) 



where is the i  th component of y k and λ ≤ 1is a parameter that is used to adjust the weights of unlabeled 

samples. Let , then (33) can be rewritten as: 
 

 

 

 

(34) 

 
a k is the solution to the following system of linear equations: 

 

 

 
 

(35) 
 

 

(5) Regression discriminant analysis embedding 

 
Let  the transformation  matrix , the samples can be embedded in the (c-1)- 

dimensional subspace where 

 

 

 
(36) 

 

 

If the embedding function is obtained in RKHS, Step4 can be modified to the following form. 

 
(6) Regularized kernel LS 

 

Find (c-1) vectors as the solution to the system of equations as follows: 

 
 

(37) 

 

where Kism  ×  mCramer matrix. It is easy to prove that the function  where is the i th 

component of α k , is the solution to the following optimization problem: 

 

 

 

 

(38) 
 

 

(7) Spectral regression discriminant analysis embedding 



Let transformation matrix ,  the  samples  can  be  embedded  in  the - 

dimensional subspace in the following form: 
 

 

 

(39) 

 
where . 

3.3.3 RELIEF-F algorithm for feature selection 

 
RELIEF is a multivariable feature selection algorithm, which is used to compute the weights of features based 

on sample learning [82]. The algorithm is mainly used for feature selection in two-class problem. The basic   

idea is to determine the importance of features according to their ability of distinguishing instances that are   

near each other.  The more important feature should make samples in the same class closer and those in   

different classes farther apart. In other words, the RELIEF algorithm mainly measures  the  difference  of 

features between within-class samples and cross-class samples, and then measures the distinguishing ability of 

the features. If a feature has a small difference between samples in the same class and a large difference in 

samples from different classes, it has better discriminant ability. For any sample in the dataset, the RELIEF 

algorithm first selects its two nearest neighbors: one from the same class (called nearest hit) and  the  other  

from different class (called nearest miss). 

In RELIEF, the degree of importance of the featurefi is estimated as the difference of two probabilities: the 

probability that the nearest instance from the same class takes different value of featurefi minus the probability 

that the nearest instance from different class takes different value offi . 

In 1994 Kononenko extended the RELIEF algorithm and proposed the RELIEF-F algorithm [83].  The  

algorithm extends the applicability of RELIEF from only two-class to multi-class problem by converting the 

latter into multiple one-to-many problems. For the multi-class problem, instead of finding one nearest neighbor 

from different class, the algorithm finds one nearest neighbor for each different class, and then evaluates the 

quality of a feature through its ability of differentiating the nearest neighbors from any two classes. 

The pseudocode implementation of the RELIEF-F algorithm is as follows: 
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RELIEF-F algorithm 

 

Inputs: Instance set  and the number of classes  

Output: Weight vector  

Step 1: For any feature , set the initial weight . 

 



 Step 2:  

Randomly select from S; 

Select the k-nearest neighbors from the same class of ; 

Select the k-nearest neighbors from different class from . 

 

 

Update the weight by: 

 

  
  

End 

End 

 

where dist(a, x, y) is the distance between instances x and y under the feature a, P(c) denotes the probability 

of the c-th class which can be obtained as the ratio between the size of the c-th class and the total number of 

instances, m j (c) denotes the j-th sample from the c-th class,m is the number of  iterations,  and  k  is  the 

number of nearest neighbors. 

3.3.4 minimal-Redundancy-Maximal-Relevance (mRMR) algorithm for feature selection 

 
mRMR is a typical information-based feature selection algorithm [84]. The core idea of the algorithm is to find 

the m features in the feature space of the given samples, which have maximum relevance to the target class but 

minimal redundancy with other features. Mutual information is used to measure the  relevance  between  

features and target classes or other features in the feature space: 

 

 

 

 

(40) 
 

 

 

 

 
(41) 

 

whereSis the feature set, c is the target class, I(xi ; c)denotes mutual information between feature iand target class 

c, I(xi, xj )denotes mutual information between feature i and j. 

The relevance between feature subset S and target class c  can be maximized by maximizing (40).  Conversely, 

by minimizing (40) we can make the cross-relevance between features in S minimal. 

Assume that we have two random variables xandywith p.d.f. and joint p.d.f. p(x), p(y), andp(x, y), then their 

mutual information can be defined as: 

 



 

 

(42) 
 

 

The mutual information between Sm and the target class c can be defined as: 

 

 

 

 

 
(43) 

 

 

By combining (40) and (41), we can get the feature selection criterion for mRMR algorithm: 
 

 

 

(44) 
 

 

Based on this criterion, we can find the optimum feature subset by sequential forward search. Firstly,  we    

obtain the feature that is most relevant to the target class and then add it to the set Sm . Other features are 

computed and added in the analogous manner. Suppose that there are already m features in the feature subset 

Sm , other features can be selected in the remaining sample set by: 

 

 

 

 

 

(45) 
 

 

3.4 Machine learning classifiers 

 
The process of constructing the emotion recognition model includes data collection, emotion-related feature 

extraction, feature reduction, and classifier model building. After the first three steps are completed, the final 

task is to design an effective emotion classifier model based on certain classification performance criteria. The 

accuracy of the emotion recognition depends largely on the classifier developed [85]. In order  to  obtain 

accurate recognition and to validate the effectiveness of the feature extraction and dimensionality reduction 

algorithms, we will briefly describe in the following two types of ML-based classifiers, namely SVM and RF. 

SVM and RF outperform other types of ML classifiers in terms of 4-class emotion classification accuracy   

based on our recent empirical studies and performance comparison of different ML-based classifiers [36,86]. 

3.4.1 Support vector machine (SVM) 

 
Given a labeled dataset, the task is to find a linear classification hyperplane that satisfies: 



 
 

(46) 

 

wherex i denotes the feature vector and yi denotes the corresponding actual label. 

If the sample cannot be correctly classified with the linear classifier, the problem can be described by: 
 

 

 

(47) 

 

where the relaxation variable ξi indicates the allowed degree of deviation from the ideal linear separability 

condition. 

Finding the optimal hyperplane among all subsets of linear classification hyperplane is equivalent to  

minimizing the following cost function: 

 

 

 

 

(48) 

 

where the constant C > 0 is a penalty factor that controls the degree of penalty to misclassification of samples. 

The constraints are: 

 

 

 

(49) 
 

 

Under the above constraints, the minimization of the cost function (42) is equivalent to maximizing the 

classification boundary.  The Lagrange multiplier approach can be used to solve the optimization problem:  

Given a training set , find the Lagrange multiplier αisto maximize the objective function: 

 

 

(50) 

 

such that 



(51) 
 

 

Finally, the new sample can be classified by: 
 

 

 

 

 

(52) 

 

where L is the number of support vectors. 

 
In practice, before performing linear classification the data is firstly mapped to higher-dimensional feature  

space through nonlinear transformation. Then the following decision function is applied: 

 

 

 

 

 
(53) 

 

where φ(x) denotes the nonlinear mapping that maps the data to higher-dimensional space. 

 

Thus the inner product in the objective function xi 
T xi is changed to [φ(xi )] 

T φ(xi ). However, in order to avoid 

the operation of dot product in higher-dimensional feature space, we use kernel function to calculate the inner 

product: , then the decision function is modified to: 

 

 

(54) 
 

 

For multi-class classification problem, we can use the “one-to-one” or “one-to-many” method. “One-to-one” 

refers  to  the use of binary classifiers and when there are new samples, the outputs of all those 

classifiers are aggregated by majority voting approach. “One-to-many” means that the solution of multiple 

classification hyperplane parameters is formulated as an optimization problem with modified  objective  

function. Finally, the multi-class classification is directly realized by solving the optimization problem, but this 

method is computationally expensive and not easy to implement. In addition, the SVM-based classification 

performance depends on: (1) the parameter optimization; and (2) the selection of appropriate kernel function. 

3.4.2 Random forest (RF) 

 
RF is a classifier formed by combining decision trees. It is a kind of ensemble learning algorithm based on the 

idea of Bagging algorithm. The final output of RF is determined by voting of all decision trees [87]. 



Binary classification confusion matrix. 
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RF  is  an  ensemble  classifier  comprising   K   decision  trees  , each used as a base 

classifier,  where  is a sequence of random variables determined by the two ideas of 

randomization of RF: 

 
1) Bagging: From the original sample set X, K training sets of the same size as X, 

, are randomly selected (bootstrapping), and a decision tree is constructed  

using each training set Tk . 

2) Feature subspace: When splitting each node of the decision tree, we randomly extract a subset   

of attributes from all attributes with the same probability, and then select an optimal attribute 

from this subset to split the nodes. We grow each decision tree using the following algorithm: 

Step 1: Give the training set with the number of samples N and the number of features M. 

Step 2: Randomly select m < M features in the feature set. 

Step 3: Extract n samples from the given sample set to form a new set of  training  samples  for  growing 

decision tree. 

Step 4: For the splitting of a node, calculate its best attribute using the previously selected m features. 

Step 5: Fully grown each decision tree without pruning. 

3.4.3 Classification performance metrics 

 
In order to evaluate the performance of the emotion classifier, the classification confusion matrix (see the   

binary classification case in Table 3) is used, based on which four classification performance indices, namely 

Precision, Sensitivity,  Specificity,  and F-score, are usually calculated. Consider binary classification problem  

for the sake of simplicity, then the four metrics, namely precision, sensitivity, specificity,  and F score, are  

defined respectively as: 
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Grouping of EEG measurement electrodes according to different lobes. 
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  Predicted Class  

Positive (+) Negative (-) 

 
Target Class 

Positive (+) True Positive (TP) False Negative (FN) 

Negative (-) False Positive (FP) True Negative (TN) 

 
 

3.5 Emotion-relevant brain regions 

 
This section discusses the brain regions most correlated to emotions with an aim to use fewer electrodes for 

satisfactory emotion classification performance. In subsection 2.2, we introduced different areas of the brain   

and their distinctive functions. Physiological studies have shown that the cerebral cortex is primarily  

responsible for the higher emotional cognitive functions in humans. 

It would be desirable to find the brain areas that are closely relevant to emotion through EEG-based emotion 

recognition [88]. The electrodes are first grouped according to the respective cerebral cortex where they are 

distributed. The area division of the electrodes is shown in Fig. 6, where red electrodes are distributed in the 

frontal cortex, green electrodes in the parietal cortex, blue ones in the occipital cortex, yellow ones in the 

temporal cortex, and squares represents the electrodes distributed in the central area. EEG  features  are  

extracted from each group of electrodes and then emotion classification are performed. All the electrodes are 

sorted/ranked according to their degree of importance by the feature selection algorithm, and then the 

importance of the electrodes is visualized through the brain topographic map, thereby facilitating the 

identification of the brain areas in which the higher ranked electrodes are distributed. 
 



 

 

4 Emotion recognition techniques: recent advances 

4.1 Emotion recognition using multi-modal signals 

 
Sensors can measure different types of signals and can be embedded in daily devices such as smartphones,  

smart watches, and other wearable medical devices. Based on the type of the measurement sensor, human 

emotion recognition/detection can be roughly classified into audio-visual based and smartphone and other 

wearable approaches. 

So far a significant amount of work on emotion recognition has been carried out using audio (speech and   

voice), visual (facial expressions), and movement (body posture and gesture) data. audio-visual approaches 

deploy speech/video sensors that capture speech and facial expressions to recognize emotions. 

The growing popularity of sensors, low-power integrated circuits and wireless networks has led to the 

development of affordable and wearable devices that can measure and transmit data for a long time. Wearable 

devices are worn by the users for non-intrusive (un-obtrusive) monitoring of physiological signals. In recent 

years, many wearable devices are equipped with a range of sensors which can continuously monitor HR, 

movement/motion, and location data. This led to the emergence of big data in a variety of areas such as health- 

care, smart home, and smart city. 

With the advent of low-cost wearable sensors (e.g., smartphone, smartwatch and wristband), there is also an 

emerging interest in using multi-modal physiological signals (e.g., EEG, heart rate, galvanic skin response,   

etc.) for emotion recognition. Smartphone has become a ubiquitous personal device with a rich set of sensors 

embedded, such as accelerometer, GPS, gyroscope, and microphone, for health monitoring, pedestrian 

localization and navigation. The use of smartphone and wireless network signals for  human  activity  

recognition (including emotion detection) has also gained considerable attention. 

4.1.1 Physiological signals 

 
Most efforts in emotion assessment used audio-visual data, that is, facial expressions, emotional speech and 

body gestures. Physiological signals can also be used for emotion assessment, but they have received less 

attention [89]. The main difficulties in using physiological signals for emotion recognition include: 

1) It is hard to map uniquely physiological patterns onto specific emotional states because 

physiological patterns may largely vary across subjects and experimental sessions. 

2) Traditionally, recording of physiological signals requires the user to be connected with  

biosensors and the signal measurement is sensitive to motion artifacts. Furthermore, analysis of 

multi-channel homogenous or heterogeneous (multi-source) physiological signals is a complex 

multivariate time series analysis problem, which requires knowledge about and insight into 

neuro-psychological processes and functions. 

3) It is hard to obtain the ground truth of physiological data (i.e., the target/actual class label of  

each data point) since we cannot perceive emotions directly from the real-time physiological 



signals. This results in difficulties in physiological data labeling/annotation. 

 
However, the following major benefits can be gained by using physiological signals for emotion recognition: 

 
1) We can continuously monitor affective states. Consider the cases that people resort to ‘poker  

face’ or simply do not say anything when they get angry. In those cases, the emotional states of 

the user cannot be detected by traditional audio-visual data driven method. 

2) Since the activation of autonomic nervous system (ANS) is largely involuntary and cannot be 

easily triggered by any conscious or intentional (deliberate) control, using physiological signals 

from ANS for emotion recognition would be robust against artifacts caused by human social 

masking. For instance, sometimes people smile in negative emotional experiences. Such smile 

results from social masking, where one regulates emotions for  a  good  interpersonal 

relationship, and does not express his/her actual emotional state [44]. 

3) Experimental results revealed significant cross-cultural consistency (or invariance) in the ANS 

physiological patterns among different emotions [90]. 

Atkinson and Campos [91] combined the mutual information based EEG feature selection  approach  and 

support vector machine to estimate emotions. Two levels on arousal and valence dimensions were classified  

with the accuracy of 60.7% and 62.4%, respectively. Moreover, Chen et al. [92] improved the EEG-based 

emotion classifier system by employing a set of ontological models to represent EEG feature sets. Their results 

showed the ontological approach achieved the binary classification accuracy of 69.9%  and  67.9%,  

respectively. Li et al. [93] proposed the individual-specific models to improve the machine learning based 

emotion classifier. In particular, four types of emotions, neutral, sadness, fear, and pleasure, were recognized. 

Three physiological indicators were used as the classifier inputs, i.e., electrocardiogram (ECG), galvanic skin 

response (GSR), and photo plethysmography (PPG). Verma and Tiwary [94] proposed a multi-resolution 

approach for emotion estimation using physiological signals. The clustering algorithm was  applied  to  

determine valence, arousal and dominance thresholds of multiple emotions. The features were extracted with  

the discrete wavelet transform (DWT) method. Yoon and Chung [95] proposed a Bayesian weighted-log- 

posterior function method to identify the optimal weights of an artificial neural network (ANN) for classifying 

emotions. The EEG features were used as the classifier input. For the three-class emotion  classification 

problem, an average accuracy of 55.4% and 55.2%, respectively, has been achieved. 

Petrantonakis and Hadjileontiadis [96] defined an Asymmetry Index (AsI) to represent the difference of the 

activities in left and right hemispheres of the frontal cortex. They used three-channel EEG measurements to 

classify six type of emotions. The SVM classifier was used to model the EEG data. Wang  et al.  [97]  proposed  

a Fourier parametric model using the 1 st- and 2 nd-order differences for speech-based emotion recognition. 

Wang et al. [98] employed functional near infrared spectroscopy (fNIRS) to estimate the variation of  the 

patients' emotions in healthcare context. They found a decrement of 22.2% in the classification accuracy 

between two experimental sessions with a 3-week interval. A feature selection method was developed to find  

the stable indicators of emotion to achieve comparable recognition accuracy. Nakisa et al. [99] utilized  long-  

and short-term memory (LSTM) networks to process the time courses of the EEG and blood volume pulse 

signals for emotion recognition. They found that the generalizability of the LSTM model can be improved by 
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tuning its hyper-parameters via differential evolution algorithm. Yin et al. [22,27,66] investigated the  problem 

of how to derive the salient EEG features that is closely correlated to the emotion variations. 

4.1.2 Audiovisual data and text data 

 
Several representative recent work on emotion recognition using audio, visual and text data is summarized in 

Table 4. 

A. Audio data 
 

 

 

 
 

 

Recent work on emotion recognition using audio-visual data and text data. 

 

Dataset Features Model Ref. 

404 YouTube vloggers (194 M, 

210 F)/ YouTube personality 

dataset 

 

A-V, lexical, POS psycholinguistic, emotional and traits 

 

SVM 

 
Alam et al. 

(2014) [100] 

 
404 YouTube vloggers/ YouTube 

personality dataset 

 

A-V, text, demographic and sentiment 

LR with 

ridge 

estimator 

 
Sarkar et al. 

(2014) [101] 

 
47 (27 M 20 F)/YouTube dataset 

Softwares using CLM-Z and GAVAM, openEAR and 

using CNN 

 
MKL 

Poria et al. 

(2015) [102] 

42/ ISEAR, CK + +, eNTERFACE 

dataset 

66 FCP using Luxand software, JAudio software, BOC, 

Sentic features and Negation 

 
SVM 

Poria et al. 

(2015) [103] 

 
230 videos/ Rallying a Crowd 

(RAC) dataset 

 
Softwares using CAFFEE and features (prosody, MFCC, 

or spectrogram) and using SATSVM and DCM 

 
RBF-SVM 

and LR 

Siddiquie 

et al. (2015) 

[104] 

 
47 (27 M and 20 F)/YouTube 

dataset SenticNet 

Softwares using Luxand FSDK 1.7 and GAVAM, 

openEAR and Concept-gram and SenticNet-based 

features 

 

ELM 

 
Poria et al. 

(2016) [105] 

Legenda: A = Audio; V = Video; T = Text; ML = Machine Learning; LR = Logistic Regression; MKL = Multiple  Kernel  

Learning; ELM = Extreme Learning Machine; CNN = Convolutional Neural Network; RBF = Radial Basis Function. 

 

Recently Zhalehpour et al. [106] built a database, named BAUM-1, of audio-visual information for validating 

the effectiveness of the emotion recognition algorithms. Eight classes of emotion were recognized, including 

happiness, anger, sadness, disgust, fear, surprise, boredom and contempt. Eyben et al. [107] proposed a 

Table 4 



standard acoustic parameters set for emotion recognition via automatic voice analysis. The features were 

selected based on their usefulness to indicate affective changes in voice, the automatedness of extraction 

procedure, and the theoretical significance. Wu et al. [108] classified emotions via affective speech that 

combines acoustic-prosodic information (AP) and semantic labels (SLs) with multiple  classifiers.  The  

Gaussian mixture model (GMM), support vector machine (SVM), and the multi-layer perceptron (MLP) were 

integrated to extract spectra, formant, and pitch related features. Yoon and Park [109] proposed a speech-based 

emotion recognition framework for consumer electronic applications. They extended binary (neutral vs. anger) 

emotion classifier to a hierarchical structure exploiting emotional characteristics and gender difference. Wu        

et al. [110] proposed an eigenface conversion based approach to filtering the facial expressions. The GMM 

model and the decision three were used to recognize emotions. Four types of emotions defined on the VA      

plane were classified based on the articulatory attribute (AA) of speech segments. Schuller et al. [111] studied 

the generalizability of the emotion recognition systems on multiple speech datasets. They performed a cross- 

corpora evaluation across six benchmark databases and found a serious performance degradation when 

compared with the intra-corpus testing. Abdelwahab et al. [91] introduced the principle of the transfer learning 

in speech-based emotion recognition since it is plagued by the mismatch of the data distributions between the 

training and testing sets. They learned a common representation of features based on the predicted emotional- 

attribute descriptors of arousal, valence, or dominance. Bisio et al. [112] proposed subject-specific emotion 

recognition systems by using the audio signal registrations. In particular, they improved the classification 

accuracy by combining the emotion recognition with the gender recognition. Park et al. [113] studied  the  

speech emotion recognition in service robot interacting with human users. They selected discriminative vectors 

among overlapped features to design the binary-class (negative vs. positive) classifier. Chen et al. [114] 

evaluated four component tying methods, namely single group tying, quadrant-wise tying, hierarchical tying, 

and random tying, for personalized emotion recognition. They adapted acoustic emotion GMM models to 

individual users. 

B. Visual data 

 
Guo et al. [115] performed fine-grained analysis of emotions by using images with  a  compound  facial  

emotion. In particular, they built the dataset, termed iCV-MEFED which includes 50 labeled classes of 

compound emotions. They designed the deep convolutional neural network (CNN) as the emotion classifier.  

Jing et al. [116] employed local binary pattern (LBP) and k-nearest neighbors (kNN) to classify facial 

expressions into different emotions in the smart home with eldercare robots. Yan et al. [117]  proposed a  

bimodal emotion classification method that combines the facial expression and speech. They also developed 

sparse kernel reduced-rank regression (SKRRR) fusion method to integrate the bimodal features. In particular, 

the scale-invariant feature transform was used to extract emotion-related indicators in facial expressions. 

Petrantonakis and Hadjileontiadis [118] used the higher-order crossings (HOC) analysis to find the 

representative features from EEG signals. They combined HOC feature extraction method with the quadratic 

discriminant analysis (QDA), KNN, Mahalanobis distance model, and SVMs to recognize six types of basic 

emotions. Shojaeilangari et al. [119] proposed a robust emotion recognizer based on extreme sparse learning. 

They combined the extreme learning machine with the sparse representation in order to cope with the noisy 

images recorded in natural settings. Chakraborty et al. [120] developed a fuzzy relation based  emotion  

classifier using facial expressions. The Mamdani-type relational model was adopted to control the transition of 



emotion dynamics towards a desired state. Ferreira et al. [121] employed the deep neural network to classify 

facial expressions into different emotion states. They proposed an end-to-end NN architecture along with a well-

designed loss function based on the prior knowledge that facial expressions are the result of the motions    of 

some facial muscles. Zhang et al. [122] employed biorthogonal wavelet entropy method to extract the multiscale 

features for facial expression recognition. A stratified cross-validation accuracy of 97%  was  achieved for 

recognizing seven types of emotions (happy, sadness, surprise, anger, disgust, fear, and neutral). 

C. Text data 

 
Li et al. [123] considered the issues in affective lexicon. They applied the support vector regression to 

automatically estimate affective representation of words from the word embedding. The extended lexicons are 

publicly accessible. Albornoz and Milone [124] developed a language-independent emotion  recognition  

system. The concept of universality of emotions is employed to map and predict emotions in unforeseen 

languages. In particular, they developed an ensemble classifier using the emotion profiles technique in order to 

map features from diverse languages in a more tractable space. Xu et al. [125] proposed an integrative 

framework for transferring knowledge from heterogeneous sources of image and text to facilitate three related 

tasks in video emotion analysis and understanding: emotion recognition, emotion attribution, and emotion- 

oriented summarization. 

4.1.3 Time series signals 

 
Quan and Ren [126] identified compound emotions in the text using weighted high-order hidden  Markov 

models (HMMs). They encoded emotion of the text by a sequence of spectral vectors under its temporal 

structure. Karyotis et al. [127] represented an AV-AT emotion model with a genetically optimized adaptive  

fuzzy logic framework and built a hybrid cloud intelligence architecture to examine the user sentiments and 

affects. A personalized learning system was applied to validate the performance of the fuzzy model. He and 

Zhang [128] employed an assisted learning strategy to improve the training performance of the CNN model for 

the problem of image based emotion recognition. Jain et al. [129] employed a hybrid convolution-recurrent 

neural network (RNN) for facial expression recognition problem. Architecturally, the network consists  of 

several convolution layers linked to an RNN, in order to reveal the relations between facial image sequences. 

Lin et al. [130] investigated emotion-related EEG dynamics during music listening. They obtained an average 

classification accuracy of 82.29% for 26 subjects. Yang et al. [131] developed a hierarchical network structure, 

consisting of several subnetworks, to improve the emotion classification  performance.  Three  subnetworks 

were designed to model three types of human emotions (positive, neutral, and negative). Katsigiannis and 

Ramzan [132] released a neurophysiological database for emotion classification. The ongoing EEG and ECG 

signals were measured under audio-visual stimuli. All neurophysiological signals were recorded by using 

portable, wearable, and wireless devices. Soleymani et al. [133] combined LSTM, RNN, and continuous 

conditional random fields (CCRF) to estimate continuous emotions. 

4.2 Emotion recognition based on multi-modal information fusion 



Most previous studies on emotion recognition focused on use of single sensor modality,  features  and  

classifiers, which are ineffective to discriminate complex emotion classes. Fusion of multiple modalities aims   

at improving classification accuracy by exploiting the complementarity of different modalities. For effective 

emotion recognition, data, features and classifiers may need to be fused with appropriate strategies as follows. 

Data-level fusion: involves integration of multi-source data to increase reliability, robustness and  

generalizability of the emotion recognition system. 

Feature-level fusion: Features are combined using ML algorithms such as SVM, decision tree, and HMM to 

discriminate the data into higher-level abstraction. Furthermore, automatic feature representation using DL has 

been proposed to solve the issues of temporal and spatial dependencies. DL automatically extracts translational 

invariant and robust features from data to minimize application-specificity and simplify feature extraction and 

selection steps. 

Classifier-level fusion: involves combination of multiple weak base classifiers to reduce uncertainty by fusion  

of outputs of different classifiers to achieve higher accuracy that are unlikely when the classifiers are used in 

isolation. Data manipulation, feature manipulation, model diversification and random initializations are often 

used to build multiple classifier systems. 

In feature-level fusion (or called early aggregation), the features extracted from signals of different modalities 

are concatenated to form a composite feature vector and then input to an emotion classifier. In decision- or 

classifier-level fusion (or called late aggregation), each modality is processed separately by the corresponding 

classifier and the outputs of the individual classifiers are aggregated to yield the final output. 

Either approach has its own strengths. For example, implementing a feature-fusion-based system is 

straightforward, while a decision-fusion-based system can be constructed from existing unimodal classifier 

systems. Moreover, feature fusion can consider synchrony of the multiple modalities, whereas decision fusion 

can flexibly model their asynchronous characteristics. 

An interesting advantage of decision fusion over feature fusion is that we can easily employ an optimal 

weighting scheme to adjust the degree of the contribution of each modality to the final decision result based on 

the reliability of individual modalities. 

A common weighting scheme can be formulated as follows. For a given test data X, the decision output of the 

fusion system is: 

 

 

 

 

 
(56) 

 

where M is the number of modalities, λm is the classifier for the m-th modality, and  Pi (X|λm )is its output for 

the i th class. The weights  αm , which satisfy    represents the modality's reliability 

which determines its degree of contribution to the final decision. 



A simple method for determining the optimal weights is based on the training data. The optimal weights are 

estimated by exhaustive search of the grid space, where each weight is increased from 0 to 1 with a step size of 

0.01 and the weights producing the best classification of the training data are selected. 

 
For example, Subramanian et al. [134] developed a multimodal database for emotion recognition by using 

commercial physiological sensors. The database, termed as ASCERTAIN, includes the personality traits and 

affective behaviors. The 58 participants’ data of subjective ratings, EEG, ECG, GSR, and facial  activity 

revealed the personality difference issue for emotion classification. In 2014 Zacharatos [135] reviewed  

emerging techniques for emotion recognition, the application areas of emotion classification, and  the  

techniques for body movement segmentation. Wang et al. [136] developed a music emotion recognition system 

for multi-label classification. In their work, hierarchical Dirichlet process mixture model (HPDMM) was used  

to share model components in different emotions. Kim and André [137] comprehensively investigated the 

measures of EMG, ECG, GSR, and respiration activity for emotion recognition. They proposed a multi-level 

dichotomous classifier and achieved the subject-dependent (or -independent) classification accuracy of 95%    

(or 70%). Mariooryad and Busso [138] investigated the cross-modal properties of an emotion classifier system 

based on facial expression and speech information. Under a mutual information evaluation framework, the 

authors found that the facial and acoustic features are indicative of similar affective behavior. Zheng et al. 

[139] modified the least square regression (LSR) into an incomplete sparse LSR to model the correlation 

between the speech features and the corresponding emotion labels. In particular, both the  labeled  and  

unlabeled speech data were used for semi-supervised learning. Wagner et al. [140] considered the missing data 

issue when applying the ensemble learning method to facial, vocal, and gestural data. In order to compare in a 

fair manner different facial expression based emotion recognition algorithms, Valstar et al. [141] proposed 

protocols for the emotion database, classification paradigms and the performance evaluation metrics. 

4.3 Emotion recognition using deep learning techniques 

4.3.1 Comparison between traditional ML and DL 

 
Researchers have investigated the relationship between the physiological data and human  emotions.  A  

majority of earlier work employed traditional statistical analysis techniques. 

Recently, numerous studies on using machine learning and deep learning (DL) approaches for  automatic 

emotion recognition have been reported, although they are relatively new when comparing with the long   

history of emotion research in psychophysiology. 

Feature extraction and dimensionality reduction identify a smaller feature set to  increase  classification  

accuracy and reduce computational time. Feature extraction can be divided into the extraction of shallow and 

deep features. Shallow features refer to hand-crafted features in different analysis domains, such as time- 

domain, frequency-domain, and Hilbert-Huang transform. The higher-dimensional features are reduced using 

principal component analysis (PCA) or empirical cumulative distribution functions. Unfortunately, shallow 

features rely heavily on heuristics and require a large number of labeled data that may be hard to collect in real-

world application scenarios. 



The extraction and selection of hand-crafted features (usually statistical variables such as mean, variance, 

kurtosis, entropy,  and multi-scale entropy) are usually laborious and time-consuming, but have a decisive  

impact on the performance of ML models. The hand-crafted shallow features are often domain-specific and  

hard to be reused in similar problems. 

Traditional feature engineering and ML algorithms may not be efficient to elicit the complex and nonlinear 

patterns in multivariate time series datasets. Additionally, selecting the salient features in a large feature set is 

critical and will require dimensionality reduction techniques. Furthermore, feature extraction and selection are 

computationally expensive. For instance, the computational cost of feature selection  may  increase 

exponentially with the increase of feature dimensionality. In general, search algorithms may not be able to 

converge to optimal feature set for a given ML model. 

In order to overcome the difficulties in obtaining effective and robust features from time series data, many 

researchers have paid attention to DL approaches. DL relieves the burden of extracting hand-crafted features   

for ML models. Instead, it can learn a hierarchical feature representation automatically. This eliminates the   

need for data preprocessing and feature space reconstruction in standard ML pipeline. DL techniques, such as 

autoencoder, convolutional neural network, and recurrent neural network, have made significant impact (with 

almost human-level performance) on computer vision, speech recognition, object recognition, natural language 

processing (NLP), and machine translation. Since DL can realize high-level abstraction of data, it has been   

used to develop reconfigurable architectures for emotion recognition in recent years. 

DL can be dated back to the work in 1980s. The neocognitron [142] was arguably the first artificial neural 

network (ANN) that possessed the “deep” property and took into account neurophysiological insights. In 2006, 

Hinton and Salakhutdinov [143] initiated a breakthrough in feature extraction, which was followed up in later 

years [144–147]. Various studies [143,145,148–150] showed that multilayer NNs  with  iterative  or  non-  

iterative methods can be used for feature representation/learning. 

DL methods apply high-level data representation to extract salient features with deep neural network. An 

interesting advantage of DL techniques is that they can work directly with raw data and automate the feature 

extraction and selection processes. Time series samples are fed into the network, and after each nonlinear 

transformation, a hidden representation of inputs from the previous layer is generated to form a hierarchical 

structure of data representation. In other words, each layer in a deep network model combines outputs from the 

previous layer and transforms them to a new feature set via a nonlinear mapping. The typical DL method, 

convolutional neural networks (CNNs), has been applied to EEG data in different application scenarios [151, 

152]. 

4.3.2 Recent work on emotion recognition using DL approaches 

 
Recently the DL methods have become prevalent for analysis of physiological signals for emotion recognition. 

In most state-of-the-art emotion recognition studies, DL was used due to its effectiveness for deep feature 

extraction/representation. 

DL-based learning methods have penetrated into the field of EEG-based emotion recognition. For example,    

DL has been applied to EEG-based emotion recognition [153–156]. Sheng et al. [17] trained a deep belief 



network (DBN) with DE features and achieved a classification accuracy of 87.62%. Tsiaris et al. [157] applied 

the deep convolutional neural network (CNN) to extract the intermediate speech features for emotion 

recognition. In addition, a 50-layer deep residual network was constructed for visual feature representations. 

Finally they implemented a long short-term memory networks to improve the testing performance of deep  

model and to handle the outliers in the dataset. Li and Deng [158] developed a deep locality-preserving 

convolutional neural network (DLP-CNN) that exploits the advantages of deep and manifold learning 

approaches. The basic idea is to improve the discriminative power of high-level features by measuring the 

locality closeness. In particular, the authors built a new database, called RAF-DB, with 30 k images for facial 

expression based emotion recognition. Attabi and Dumouchel [159] studied anchor classification models. They 

used an unbalanced dataset of children speech under various emotions. Their results indicated that  the  

Euclidean or cosine distances are best suitable in a GMM and SVM based anchor classifier. Zhang et al. [160] 

adopted CNN deep model to extract features from audio-visual data and integrated them via deep belief 

networks (DBNs). Then a linear SVM was used to classify emotions. Deng et al. [161] investigated the domain 

adaptability of an adaptive denoising autoencoder for the speech based emotion recognition. Xia and Liu [162] 

attempted to combine the arousal and valence dimensions of the emotion model into a hidden variable. They 

applied deep belief networks (DBN) as a regression model to find such variable and to output the predicted 

emotion class. Tariq et al. [163] used a set of features of images to perform the subject-independent emotion 

classification. Hierarchical Gaussianization markers, scale-invariant features and coarse motion features were 

input into a SVM classifier. A classification accuracy of 66% was reported for the person-independent emotion 

recognition. Chen et al. [164] employed the deep sparse autoencoder network (DSAN) to find the hidden 

information in facial features and recognize different emotions via a Softmax regression model. They found   

that the training complexity of the deep classifier model (and therefore computational burden of the model 

training) is relatively lower than CNNs. 

A DL framework was proposed on the basis of a sparse auto-encoder,  which  combines  emotion-related 

features as inputs of two logistic regression models for arousal and valence classification [165]. A DL-based 

information fusion system was developed using the speech and the video data [166]. The speech signal was 

processed to extract Mel-spectrogram features and then combined with the representative frames of videos.    

The extracted features were fed to CNN to estimate different emotional states. 

The unsupervised deep belief network (DBN) was used for fusion of the  features  from  Electro-Dermal  

Activity (EDA), zygomaticus ElectroMyoGraphy (zEMG), and PhotoPlethysmoGram (PPG) signals [167]. 

Subsequently the DBN-elicited features are combined with statistical features of EDA, PPG and zEMG signals 

to constitute a feature vector, which is then used as inputs of the Fine Gaussian Support Vector Machine 

(FGSVM) with radial basis function kernel to classify five basic types of emotions (i.e., Happy, Relaxed, 

Disgust, Sad, and Neutral). 

The recurrent neural network (RNN) based DL model was applied to cope with the complexity of the emotions 

in texts [168]. The deep RNN adopted dropout layers and the weighted loss function with the regularization 

term. The frame-based formulation of minimal speech processing technique was used as features of the RNN 

architecture to model intra-utterance dynamics for emotion recognition [169]. The deep CNN model was also 

suitable for recognizing emotions based on facial expressions. A deep CNN was applied to emotion 



recognition problem, with an architecture of 6 convolutional layers, 3 max pooling layers, 2 residua layers, and  

2 fully-connected layers [170]. The deep CNN based emotion recognition system was also applied to process 

body movement features [171]. 

A hybrid deep feature extraction model, based on LDA and PCA, was used for speech emotion recognition 

[172]. In particular, the authors developed an improved emotion learning system by using genetic algorithm    

for parameter optimization. The deep CNN was also used for image emotion recognition [173]. A  LSTM-  

based CNN was applied for understanding emotions in text [174]. They combined semantic and sentiment 

feature representations to classify three classes of emotions (i.e., happy,  sad and angry) in the texts. In [170]  

Jain et al. utilized an extended deep convolutional neural network for facial emotion classification. The deep 

network architecture contains several convolution layers and deep residual blocks. The proposed model can 

learn the subtle features that discriminate the seven facial emotions (i.e., sad, happy, surprise, angry, neutral, 

disgust, and fear) from facial images. 

Finally,  the performance comparison of several recent DL methods for emotion recognition problem is given    

in Table 5. 
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Performance comparison of DL methods for emotion recognition based on audio-visual data. 

  
Dataset 

 
DL method 

Accuracy 

[%] 

 
Ref. 

 

 
Enterface 

mel-spectrogram, face images, cnn for audio, 3 d cnn for 

video 

 
85.97 

Zhang et al. (2017) 

[160] 

Audio-visual big data of 

emotion 

 
2 d cnn for speech, 3 d cnn for video, elm-based fusion 

 
99.9 

Hossain et al. (2019) 

[166] 

 
eNTERFACE 

 
Audio features, facial features, triple stream DBN 

 
66.54 

Jiang et al. (2011) 

[175] 

IEMOCAP; facial 

markers 

 
Feature selection and DBN 

 
70.46-–73.78 

 
Kim et al. (2013) [176] 

 
EmotiW 2014 

CNN for video, DBN for audio, ‘bag of mouth’ model, 

and auto-encoder 

 
47.67 

Kahou et al. (2016) 

[177] 

 
eNTERFACE 

 
Multidirectional regression, SVM 

 
84 

Hossain et al. (2016) 

[178] 

enterface mdr, ridgelet transform, elm 83.06 Hossain et al. (2016) 



    [179]  

Audio-visual big data of 

emotion 

lbp features for speech, idp features for face images, svm 

classifier 

 
99.8 

Hossain et al. (2018) 

[180] 

 
MAHNOB-HCI 

 
CDBN 

 
58.5 

Ranganathan et al. 

(2016) [181] 

 
EmotiW 2015; CK+ 

 
Audio features, dense features, CNN extracted features 

 
54.55; 98.47 

Kaya et al. (2017) 

[182] 

Legenda: DBN = Deep Belief Network; CDBN = Convolutional DBN; CNN = Convolutional Neural Network; SVM = Support 

Vector Machine; ELM = Extreme Learning Machine;  MDR  =  Multi-Directional  Regression;  LBP  =  Local  Binary  Pattern; 

IDP = Interlaced Derivative Pattern. 

 

4.4 Our work related to emotion recognition 

 
From 2005 Zhang and his co-workers started to investigate the problems of quantification of human mental 

stress/workload and human operator functional state in safety-critical human-machine interaction environment 

with an ultimate goal of realizing adaptive function/task allocation (a.k.a. adaptive automation or adjustable 

autonomy of human-automation systems) between humanistic and machine agents of intelligent human- 

machine systems. The work is intrinsically related to the problem of detecting low valence state (or high-risk    

or vulnerable functional state) in humans. The multimodal physiological signals, including EEG, ECG and  

ECG, were measured and pre-processed. The extracted features were fed to the supervised learning classifiers. 

To estimate/predict the quantitative level of mental stress, in 2016 Zhang et al. employed the Gaussian mixture 

model to elicit soft clusters [183]. Then an ensemble of SVM classifiers was adopted to recognize  the  

variations in mental stress over time. In particular, the diversity of the member classifiers was enhanced by  

using different hyper-parameters in the objective function for the SVM training. In [184,185], Zhang et al. 

showed the effectiveness of these methods and their variants, based on NARX-LSSVM and adaptive SVM, for 

the pattern recognition of mental stress. 

In recent years, we have focused on developing the improved DL architectures, models and algorithms for 

human emotion and mental stress recognition. In our recent work [22,27,186,187], ensemble SAE DL 

architectures have been proposed to classify binary arousal and valence levels. Both the CNS and PNS features 

were used as the input of each weak SAE model for abstract high-level neurophysiological representations. A 

transfer dynamical SAE was developed for cross-subject mental stress classification with an aim to handle the 

non-stationarity of the physiological features [188]. Similar architectures have been applied  in  extreme  

learning machine with multi-layer network [34]. In order to reduce the dimensionality of the input features and 

improve the emotion classification accuracy, we also developed several EEG feature  selection  approaches 

based on feature recursive elimination [22,27,66,186]. Although these DL methods lead to acceptable emotion 

recognition performance, their online version still needs to be developed and validated in the future work. On  

the other hand, we found that the emotion recognition performance of the DL models depends severely upon   

the size of the feature set as well as the size of the training dataset. 

5 Summary and future outlook 



In this paper, we have surveyed more than 220 papers, not only discussing the state of the art emotion 

recognition techniques proposed in recent years (up to 2019), but also considering the available datasets and 

illustrating principal constituents of a data-driven emotion recognition pipeline. In this section, we summarize 

some of our major findings drawn from this survey. 

5.1 Summary of major findings 

 
With the advancement of automation and human-machine systems technologies, emotion recognition has 

become a hot topic in the field of human-computer interaction. This paper reviews multi-modal 

psychophysiological data driven emotion recognition techniques. EEG responds in real time to changes in 

emotions. The EEG features can be extracted, reduced and then used for emotion classification. The general 

procedure of EEG-based emotion recognition consists of the following computational steps: Data acquisition, 

data preprocessing, feature extraction, feature dimensionality reduction, and design of optimal  classifier  

models. This paper focuses on different techniques for feature extraction, feature dimensionality reduction, 

classifier model optimization, and selection of brain regions that are most correlated to emotions. The main 

findings of this expository paper are summarized as follows: 

(1) In many literature [68,69,189], only binary classification of each dimension of emotion was 

considered. 

(2) Traditionally the labeling of the actual/true/target emotion classes is based on a preselected 

threshold of the subjective rating data. Unfortunately the proper threshold is hard to select. A  

new idea is to look at the valence and arousal dimensions simultaneously and  use  data  

clustering algorithms to obtain the target classes of emotion. 

(3) The incorporation of baseline EEG data: In many emotion recognition studies (e.g., [4,5,68,69 

]), the researchers only used the EEG data under different emotional conditions while ignoring 

the baseline EEG data. In [18,19,36], the features were extracted from both the 

baseline/spontaneous EEG (when the subjects were not aroused emotionally) and evoked 

potentials (or event-related potentials). The difference between the two features is then used as 

the input features to the classifier. The comparative results showed that the emotion  

classification accuracy can be significantly improved by taking into account the baseline EEG 

features. 

(4) Different feature extraction methods are reviewed, including wavelet transform and nonlinear 

dynamics. Through extensive comparisons, we found that the gamma sub-band features lead to 

the highest classification accuracy,  indicating that the gamma frequency band is most sensitive  

to the emotional changes. We also found that the classification accuracy can be improved when 

the ApEn and SampEn features are used jointly. 

(5) Different dimensionality reduction algorithms are reviewed. We found that the best feature 

dimensionality reduction algorithm varies with different feature extraction methods. 

(6) Different types of machine learning based classifiers are reviewed, including kNN, NB, SVM 

and RF. It is found that SVM and RF perform better than kNN and NB for EEG-based emotion 

recognition task. 



(7) The emotion classification accuracy based on the EEG signals from different brain regions is 

discussed. We found that using only a dozen of EEG electrodes placed on the frontal lobe can 

achieve a classification accuracy of over 90%, which may provide a basis for online EEG-based 

emotion recognition. 

   

  5.2 Open problems and future research vista 

 
As this survey paper has demonstrated, in addition to rich opportunities there still exist significant research 

challenges in this multi-disciplinary field. Although EEG-based emotion recognition systems have been 

developed recently, the use of EEG headcap for signal measurement is inconvenient and it usually takes a long 

time to measure experimentally the multi-channel signals. The users’ acceptability can be also an issue for EEG-

based emotion recognition. For real-world applications of emotion recognition technology, we can use wearable 

and wireless devices (with active dry electrodes) to measure EEG signals and advanced ML and DL algorithms 

for EEG signal analysis. However, some open problems still remain. For instance, the existing approaches to 

emotion recognition using physiological signals achieved average  classification  accuracy  of over 80%, which 

seems acceptable for practical applications, but the recognition accuracy are application- specific and strongly 

dependent upon the datasets under consideration. 

Several open problems and promising research directions in the field of emotion recognition are outlined as 

follows. 

(8) In addition to EEG signals, other types of physiological signals, such as ECG, EOG, and EMG 

signals, can also indicate change of emotions. In future studies, we need to  use  mobile,  

wearable (portable) sensors to collect facial expression, EEG, ECG, and other multi-modal 

physiological signals and fuse them in an appropriate framework to further improve  the  

accuracy of online, real-time feature extraction and emotional state estimation [135,190–199]. 

A challenge in the future will be the studies of multi-modal emotion recognition. Humans use several 

modalities jointly to interpret emotional states, since emotion affects almost all modes – audiovisual 

(facial expression, voice, gesture, posture, etc.), physiological (EEG, RSP, skin temperature, etc.), and 

contextual (goal, preference, environment, social situation, etc.) states in human communications. 

Recently emotion recognition by combining multiple modalities have been reported  in  literature,  

mostly by fusing features extracted from audiovisual modalities (such as facial  expressions  and  

speech). However, it should be noted that combining multiple modalities by equally weighting them  

does not always guarantee improved classification accuracy. A crucial issue is how to  properly  

aggregate the multiple modalities. An essential step towards human-like fine-grained recognition of 

emotions would therefore be to find the innate priority/preference among the modalities for each 

emotional state. 

It was found that for arousal there are negative correlations between the subjective ratings and the EEG 

theta, alpha, and gamma bands. The central alpha power decrease for higher  arousal  [200] and an 

inverse relationship exists between alpha power and the arousal level [201,202]. 



Valence showed the strongest correlation with EEG signals and correlation with the subjective ratings 

were found in all EEG frequency bands. In the lower-frequency bands, an increase of valence led to an 

increase of theta and alpha power.  A central decrease and an occipital and right temporal increase of  

beta power were found. Increased beta power over right temporal sites was associated with positive 

emotional self-induction and external stimulation [203]. Similarly, Onton and Makeig [204] found a 

positive correlation of valence and high-frequency (i.e., beta and gamma bands) power emanating from 

anterior temporal cerebral sources. In addition, a significant increase of left and especially  right  

temporal gamma power was also observed. However, it should be noted that the EMG activity is also 

prominent in the high frequencies, especially from anterior and temporal electrodes [205]. 

Most engineering approaches to emotion recognition provides evidence that the accuracy of arousal 

classification is usually higher than that of valence differentiation. The reason may be that the change    

of the arousal level directly correlated to the ANS activities (e.g., blood pressure and skin conductivity) 

which are easy to measure, whereas valence level discrimination requires a factor analysis of cross- 

correlated ANS responses. Therefore, we need to develop an emotion-specific classification scheme    

and to extract a wide range of valence-relevant features from EEG and other peripheral physiological 

signals in various analysis domains (e.g., time, frequency, sub-band spectra, time-frequency, space- and 

spectrum-time, entropy, and multi-scale entropy). 

A viable solution might be to decompose an emotion recognition problem into several  refining  

processes using additional modalities, for example, arousal (dimension) recognition using peripheral 

physiological signals, valence (dimension) recognition using audiovisual and EEG signals, and then 

resolution of subtle overlapping between adjacent emotion classes. In this connection, the physiological 

signals should be considered as a baseline channel in developing a multi-modal emotion recognition 

system. 

(9) Development of advanced ML techniques: In fact, the human emotion generation is a complex 

and subjective process. Emotions reflect the cognitive processes associated with biological 

understanding and psychophysiological phenomena. Thus it is difficult to propose a recognition 

method which is solely based on traditional ML methods. Domain-independent adaptive, deep 

and transferrable ML techniques need to be developed for speech, text, and physiological data 

based affective computing. In particular, the EEE is essentially space- and spectrum-time data 

(SSTD), specialized deep ML approaches can be used to analyze the EEG signals and to extract  

a richer set of emotion-related features from them. Also we need to apply DL techniques for 

feature- or classifier-level information fusion in order to further improve the emotion 

classification accuracy [88,166,206–210]. On the other hand, traditional time series analysis 

methods need to be combined with ML techniques for continuous-time monitoring of the 

temporal variations in emotion [211–217]. 

According to recent studies, the thalamus, basal ganglia, insular cortex, amygdala, and frontal cortex    

are all involved in emotion recognition [218]. Furthermore, more and more biological evidence [219, 

220] indicates that neuron activity in a mammal's prefrontal cortex is heterogeneous, random, and 



disordered. The combined features extracted from mixed selectivity neurons may be central to complex 

cognition. 

(10) The existing research mainly considers the subjective-specific/dependent emotion 

recognition problem, that is, for each subject we need to design an individualized/personalized 

classifier. In real-world scenarios, a subject-independent (or called generic) emotion recognition 

model,  which fits a group of subjects, would be of significant importance. However, the subject- 

independent classifier model needs to be combined with transfer learning technique to obtain 

emotion recognition accuracy that is stable across subjects. 

(11) Higher-dimensional models of emotion need to be built. Currently the 2 D emotion 

model is often used. Higher-dimensional emotion models need to be constructed for multi-class 

emotion recognition. For example, we can then predict the ‘stance’ dimension in a 3 D emotion 

model (i.e., arousal, valence and stance) by cumulative analysis of the subject's 

context/situational information. Researchers have subsumed the associated action tendencies 

under  the  term  stance. For example, fear is associated with the action pattern of ‘flight’, while 

anger is  associated with the urge to ‘fight’. Nevertheless, it is still not clear what action patterns 

are associated with positive emotions (such as happiness, contentment, and amusement). Such 

positive emotions seem to lack autonomic activation. This may be why so far there has been    

less research progress on positive emotions than that on negative emotions. Fredricson and 

Levenson [221] reported the undoing effect of positive emotions, which supported the idea of a 

symmetric process under the emotion system (i.e., positive emotions speed up return to 

homeostasis, while negative ones help human being escape from it). 

(12) More work needs to be done in order to develop more accurate method of labeling 

massive data in the emotion-related database. There is also uncertainty about the physiological 

data labeling due to individual self-reports and the situational variables in ANS activity [222]. In 

this connection, subjective ratings data can be used to obtain the target classes, but it is also 

possible to obtain them based on the particular content of emotion-elicitation stimuli. The 

physiological datasets used in most existing work were measured by using visual elicitation 

materials under  lab settings. The emotional state of the subjects prior to the experiments was not 

taken into account in most previous work. Such individual differences can induce inconsistency 

in the datasets. On the other hand, the practical effectiveness and reliability of subjective data  

clustering and threshold methods need to be further validated. 
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