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Abstract

It is widely known that very small datasets produce overfitting in Deep Neu-
ral Networks (DNNs), i.e., the network becomes highly biased to the data it has
been trained on. This issue is often alleviated using transfer learning, regulariza-
tion techniques and/or data augmentation. This work presents a new approach,
independent but complementary to the previous mentioned techniques, for im-
proving the generalization of DNNs on very small datasets in which the involved
classes share many visual features. The proposed model, called FuCiTNet (Fu-
sion Class inherent Transformations Network), inspired by GANs, creates as
many generators as classes in the problem. Each generator, k, learns the trans-
formations that bring the input image into the k-class domain. We introduce a
classification loss in the generators to drive the leaning of specific k-class trans-
formations. Our experiments demonstrate that the proposed transformations
improve the generalization of the classification model in three diverse datasets.

1. Introduction

It is well-known that building robust and efficient supervised deep learning
networks requires large amounts of quality data, especially when the involved
classes share many visual features. Recent technological advances in camera
sensors and the potentially unlimited data provided by internet have helped
gathering large volumes of images [T}, 2 [B]. However, labelling such amounts of
data is still manual and costly. In consequence, a large number of problems has
still to deal with very small labeled datasets and hence, the resulting classifica-
tion models are usually unable to generalise correctly to new unseen examples,
this problem is known as overfitting.
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In general, the issue of overfitting in supervised networks is addressed either
from the model or data point-of-view. In the former, transfer learning or diverse
regularization techniques are employed. In the later, increasing the volume of
the training set using data augmentation strategies [4l [5l [6] are considered. For
highly sensitive purposes, data augmentation strategies, if not chosen correctly,
can potentially change meaningful information resulting in ill-posed training
data. Instead of manually selecting data augmentation techniques, recent works
showed that learning these transformations from data can lead to significant
improvements in the generalization of the models.

Some approaches train the generator of a GAN (Generative Adversarial Net-
work) to learn the suitable augmenting techniques from scratch [7} [8] while oth-
ers train the generator to learn finding the optimal set of augmenting techniques
from an initial space of data augmentation strategies [9]. The downside of the
aforementioned approaches is that the selected transformations are applied to
all samples in a training set without taking into account the particularities of
each class.

The present work proposes FuCiTNet approach for learning class-inherent
transformations in each class within the dataset under evaluation. FuCiTNet is
inspired by GANSs, it creates a number, N, of generators equal to the number
of classes. Each generator, k, with k € {1,..., N}, will be entrusted to learn
the features of a specific k-class space. When a sample is fed into the system,
it is broadcasted to every generator producing N transformed images, each of
which is fed to the classifier which predicts a label with certain error. The
error is transferred back to the entrusted generator (specified by the input’s
label ground-truth) indicating the amount of change the class transformation
must be altered to meet the classifier requirements. The final prediction of
the trained classification model will be calculated based on the fusion of the N
different output predictions.

The contributions of this work can be summarized as follows:

e We propose class-inherent transformation generators for improving the
generalization capacity of image classification models, especially appropri-
ate for problems in which the involved classes share many visual features.
Our approach, FuCiTNet, creates as many generators as the number of
classes N. Each generator, k € {1,..., N}, learns the inherent transfor-
mations that bring the input image from its space to the k-class space.
We introduce a classification loss in the generators to drive the learning
of specific k-class transformations.

e The final prediction of the classification model is calculated as a fusion of
the N output scores. The source code of FuCiTNet will be available in
Github after acceptation

e Our experiments demonstrate that class-inherent transformations produce
a clearer discrimination for the classifier yielding better generalisation per-
formance in three small datasets from two different fields.



This paper is organized as follows. A summary of the most related works to
ours are reviewed in Section 2. A description of FuCiTNet model is provided
in Section 3. Experimental framework is provided in Section 4. Results and
analysis are given in Section 5 and finally conclusions and future work in Section

6.

2. Related Work

Improving the performance of supervised deep neural networks in image
classification is still ongoing research. To reach high accuracies the model needs
to generalise robustly to unseen cases to eventually avoid overfitting. This is
addressed using several approaches.

The most popular approach is data augmentation. It was firstly introduced
by Y. LeCun et al. [I0] by randomly applying these transformations to the
training dataset: shearing, random cropping and rotations. With the revolu-
tion of CNNs [], novel transformations appeared, such as horizontal flipping,
changes in intensity, zooming, noise injection etc. With data augmentation,
most CNN-based classifiers reduce overfitting and increase their classification
accuracy.

Dropout, a well known regularization technique, is also used for improving
generalization. It was first introduced by Srivastava et al. [I1]. The key idea is
to randomly drop units (along with their connections) from the neural network
throughout the training process. This prevents units from co-adapting too much
to the data. It significantly reduces overfitting and gives major improvements
over other regularization methods.

The emergence of GANs [12] has led to promising results in image classi-
fication. They were useful for generating synthetic samples to increase small
datasets where the number of samples per class was low eventually introducing
variability for the generalisation of the classification models. The downside of
GANSs is that its latent space converges if there exists a fair good amount of
images to train. Generating synthetic samples in small and very small dataset
is still an open issue.

For small and very small datasets, the problem of overfitting is even greater.
Inspired by GANSs, the authors in [7] designed an augmentation network that
learns the set of augmentations that best improve the classifier performance.
The classifier tells the generator network which configuration of image transfor-
mations prefers when distinguishing samples from different classes. In the same
direction, the authors in [I3] [0] address a similar problem using Reinforcement
Learning and adversarial strategy respectively. The former chooses from a list
of potential transformations which one is the best suited through augmentation
policies. The latter combined the list of transformations to synthesize a total
image transformation. The present work is different to all the previously cited
works in that it proposes a new approach for learning transformations inherent
to each particular class based on the classifier requirements eventually forcing
the classes to be as distinguishable as possible from each other.



3. FuCiTNet approach

Inspired by GANs, FuCiTNet learns class-inherent transformations. Our
aim is to build a generator that improves the discrimination capacity between
the different classes. GANs use the so called adversarial loss which optimizes a
min-max problem. The generator, G, tries to minimize the following function
while the discriminator, D, tries to maximize it:
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Where D(X) is the discriminator’s estimate of the probability that real data
instance X isreal. Ex.p,,,, x, 1S the expected value over all real data instances.
G(z) is the generator’s output given a noise z. D(G(z)) is the discriminator’s
estimate of the probability that a fake instance is real. E..,_(.) is the expected
value over all random inputs to the generator. The formula derives from the
cross-entropy between the real and generated distributions.

In this work, the adversarial concept is slightly changed. Instead of using a
discriminator that focuses on maximizing the inter-class probability of the image
belonging to the data or latent distribution, we use a classifier that minimizes
the loss of G(X) of belonging to a particular dataset class. As the images
produced by the generator do not need to be similar to its ground truth, we
restrict the generator latent space in a different way by replacing D(X) with the
classification loss of G(X'), which will hallucinate samples with specific enhanced
features to meet the classifier requirements improving the classification accuracy.

Instead of building one single generator (G, we create an array of N genera-
tors, Gy, with k € {1,..., N}. Where N is equal the number of object classes.
Each generator Gy (X) = X is in charge of learning the inherent features of
that specific k-class until X’ becomes part of the k-class space. In other words,
each generator Gy will learn the transformations that map the input image X

from its own i-class domain to the k-class domain, with ¢ € {1,...,N}. The
flowchart diagram of FuCiTNet is depicted in Figure
The architecture of our generators Gy, with k € {1,..., N}, consists of

5 identical residual blocks [I4]. Each block has two convolutional layers with
3% 3 kernels and 64 feature maps followed by batch-normalization layers [I5] and
ParametricReLU [I6] as activation function. The last residual block is followed
by a final convolutional layer which reduces the output image channels to 3 to
match the input’s dimensions.

Our classifier is a ResNet-18 which consists of an initial convolutional layer
with 7 x 7 kernels and 64 feature maps followed by a 3 x 3 max pool layer.
Then, 4 blocks of two convolutional layers with 3 x 3 kernels with 64, 128, 256
and 512 feature maps respectively followed by a 7 x 7 average pooling and a
fully connected layer which outputs a N element vector. ReLU is used as the
activation function [I7].

The classifier uses a standard cross entropy loss (I¢g). Given a batch size
B of input images with their respective ground truth labels, {XU) y()| j =
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Figure 1: Flowchart of FuCiTNet during training. The input image X is broadcasted to every
generator. Each generator produces a transformed image X’. The classifier computes the cross
entropy loss which is transferred back to the generator commissioned to enhance features of
the class given by the input’s groundtruth label y.
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The true label distribution for the j** image is depicted by y(/) and y;jj ) indicates

the predicted label distribution for the transformed image X;C(j ).

All generators use the same loss inspired by [18]. For the k" generator with
ke {1,...,N} the respective loss Lgen, is indicated by Formula (3). It consists
of a multiple term loss constituted by a pixel-wise MSE term, a perception MSE
term and the classifier loss. Adding this classifier loss to the generators is one of
the main novelty of our method. The classification loss is added to the generator
loss with a weighted factor A indicating how much the generator must change
its outcome to suit the classifier. It is worth noting that, for each input image,
the classification loss is only transferred to a particular generator indicated by
the input’s ground-truth label.
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Figure 2: Flowchart of FuCiTNet in inference.

The similarity term (L) keeps the generator from changing the image too
much while the classifier loss drives the output away from the input and close
to the k-class feature space.

The pixel-wise MSE is obtained by performing a regular L2-norm between
each pixel in the input image and the generated image.
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The perceptual MSE assesses similarity between X and X’ by feeding each
of them into a pretrained VGG-16 [19]. The euclidean distance between the j**
VGG-16 feature maps (¢,,) defines the perceptual loss.

lpm"ceptual W H ZZ ¢j (X; y)) (5)
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The cross entropy loss coming from the classifier is added to a particular
generator loss in the generator array specified by the input’s ground-truth label
y with a weighted factor A controlling the impact of the classifier within the
generator:
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where B is the batch size, N the number of classes and y/)[k] is the element
in the true label distribution of the j** image belonging to class k. Likewise,
y;f“ )[k:] depicts the classifier predictions for the transformed image X;C(j ) with
ke {1,...,N} of belonging to the class k.

In this manner, each generator in the array is able to learn class-inherent
features from a specific class eventually, accentuating the differentiation among
classes.

In inference time the general flowchart of the system is modified as shown in
Figure [2| The final class prediction is given by concatenating each output dis-
tribution §' for every X’ in the logit domain, taking the arg max and computing
the modulo with the amount of classes IV as indicated in Formula

y = argmax(y},¥,...,¥y) mod N (7)

4. Experimental framework

To assess the capacity of FuCiTNet in increasing the discrimination among
classes, we created three datasets from two different fields using object-classes
that are frequently confused by the best performing classification model. In
particular, from Tiny ImageNet [20], we created two datasets made of two and
three classes respectively, cat-vs-dog and cat-vs-dog-vs-goldfish. From NWPU-
RESISC45 remote sensing dataset made of aerial ortho-images [21], we created
church-vs-palace dataset which represent one of the most similar/confusing pair
of classes in this dataset. To further increase the complexity of this dataset, we
downsampled the church and palace images to 64 x 64 pixels. A brief description
of the three datasets is provided in Table [I]

| Dataset H # classes \ # pixels/image \ Train \ Test \ Total ‘
cat-vs-dog two 64 x 64 800 200 1000
cat-vs-dog-vs-goldfish three 64 x 64 1200 300 1500
church-vs-palace two 64 x 64 1120 280 1400

Table 1: Description of the three evaluated datasets together with the used data distribution
80%-20%.

The N generator networks were initialized randomly while the classifier,
ResNet-18, was initialized using the pretrained weights on ImageNet [I]. As
optimization algorithm, we used Adam [22] in both, generator and classifier
with 81 = 0.9. The adopted learning rates for generators and classifier are
different, for the generators, we used a value of 107* and 10~3 for ResNet-18.
The reason why generators have a lower learning rate is because they need to
be subtle when generating the transformed image and avoid the classifier from
falling behind on capturing the rate of change in appearance. For the ResNet-
18 we used learning rate decay of 0.1 each 5 epochs. We have also used weight
decay of 10~ to avoid overfitting. We applied early stopping monitoring based
on the validation loss with a patience of 10 epochs.



The weighted factor A in the generator loss in Eq. is a hyperparameter
to be tuned. We evaluated a space of 13 values: [1, 0.5, 0.1, 0.075, 0.05, 0.025,
0.01, 0.0075, 0.005, 0.0025, 0.001, 0.00075, 0.0005]. We assessed the effect from
a high contribution in the loss towards a softer impact. For each value of A
the system was trained throughout 100 epochs with a batch size of 32. We
alternate updates between the generator and classifier, i.e., for each batch we
update first the classifier then we update the generator. We evaluate FuCiTNet
on the validation set after each epoch. The chosen weights for both networks
are the ones which minimize the classification loss in this set.

For a fair comparison, we compare the results of FuCiTNet with the two
most related approaches [7] and [9]. As [9] provides the source code, we analyze
and show the results on the three considered datasets, cat-vs-dog, cat-vs-dog-vs-
goldfish and church-vs-palace, following the same experimental protocol we used
in the rest of experiments. However, as [7] does not provide the source code and
considered only binary classes, we included only the results reported in the paper
using the same experimental protocol on dog-vs-cat dataset. The results of this
approach on cat-vs-dog-vs-goldfish and church-vs-palace are not available to us.
Both approaches from [7] and [9] used ResNet CNN architecture. In addition, we
also compare our results to the results of the best classification model obtained
based on the same network architecture and by manually selecting the set of
optimizations that reaches the highest performance.

In all the experiment, we used 3-fold cross validation following a 80:20 hold
out data distribution as depicted in Table[ll All the experiments were executed
on a NVIDIA Titan Xp. All the implementations were performed using PyTorch
DL framework [23].

5. Results and analysis

This section presents, compares and analyzes the quantitative and qualita-
tive results of FuCiTNet with the state-of-the-art methods, [7] and [9], and with
the best classification model.



Setup Accuracy | Cat mean | Dog mean
confidence | confidence
None 0.872 —
FT 0.865 —
Data aug 0.892 1.673 2.520
Data aug, FT 0.888 —
[7] 0.770 — —
[9] 0.800 — —
FuCiTNet, None, A = 0.01 0.870 —
FuCiTNet, FT, A = 0.025 0.880 —
FuCiTNet, Data aug, A = 0.0075 0.883 — —
FuCiTNet, Data aug, FT, A = 0.05 0.912 2.734 2.101

Table 2: Performance of ResNet-18 classification model without (row: 1 to 4) and with (row:
7 to 10) FuCiTNet, using different configurations, on cat-vs-dog dataset. Data aug consists
of random horizontal flipping, random rotation and random affine. The accuracy of the state-
of-the-art approaches, [7] and [9], is shown in row 5 and 6 respectively.

Predicted/Actual | Cat | Dog Predicted/Actual | Cat | Dog
Cat 86 14 Cat 97 3
Dog 11 89 Dog 10 90

(a) Confusion matrix for the setup: Data aug (b) Confusion matrix for the setup: FuCiT-
Net, Data aug, FT, A = 0.05

Table 3: Cat-vs-dog confusion matrices for fold #1 in 3FCV for the best reference model(a)
and FuCiTNet (b)

Setup Accuracy | Church mean | Palace mean
confidence | confidence
None 0.774 — —
No data aug, FT 0.769 — —
Data aug 0.783 0.769 1.452
Data aug, FT 0.779 — —
[9] 0.779 — —
FuCiTNet, None, A = 0.05 0.751 — —
FuCiTNet, FT, A = 0.0025 0.767 — —
FuCiTNet, Data aug, A = 0.01 0.777 — —
FuCiTNet, Data aug, FT, A = 0.0025 0.795 1.868 1.580

Table 4: Performance of ResNet-18 based classification model without (row: 1 to 4) and with
(row: 6 to 9) FuCiTNet, using different configurations, on the church-vs-palace dataset. Data
augmentation consists of random horizontal flipping, random rotation and random affine. The
accuracy of the state-of-the-art approach [9] is shown in row 5.



Predicted/Actual | Church | Palace Predicted/Actual | Church | Palace
Church 114 26 Church 114 26
Palace 30 110 Palace 27 113

(a) Confusion matrix for the setup: Data aug (b) Confusion matrix for the setup: FuCiT-
Net, Data aug, FT, A = 0.0025

Table 5: Church-vs-palace confusion matrices for fold #1 in 3FCV for the best reference
model(a) and FuCiTNet (b)

Setup Accuracy | Cat mean | Dog mean | Goldfish mean
confidence | confidence confidence
None 0.898 — — —
FT 0.909 — — —
Data aug 0.915 7.796 4.778 9.617
Data aug, FT 0.911 — — —
[9] 0.790 — — —
FuCiTNet, None, A = 0.0075 0.887 — — —
FuCiTNet, FT, A = 0.0075 0.902 — — —
FuCiTNet, Data aug, A = 0.005 0.900 — — —
FuCiTNet, Data aug, FT, A = 0.005 0.920 3.484 3.248 6.613

Table 6: Performance of ResNet-18 based classification model without (row: 1 to 4) and with
(row: 6 to 9) FuCiTNet, using different configurations, on cat-vs-dog-vs-goldfish dataset. Data
augmentation consists of random horizontal flipping, random rotation and random affine. The
accuracy of the state-of-the-art approach [9] is shown in row 5.

Predicted/Actual | Cat | Dog | Goldfish Predicted/Actual | Cat | Dog | Goldfish
Cat 94 6 0 Cat 94 6 0
Dog 18 80 2 Dog 9 85 6
Goldfish 3 2 95 Goldfish 1 1 98

(a) Confusion matrix for the setup: Data aug (b) Confusion matrix for the setup: FuCiT-
Net, Data aug, FT, A = 0.005

Table 7: Cat-vs-dog-vs-goldfish confusion matrices for fold #2 in 3FCV for the best reference
model(a) and FuCiTNet(b)

Quantitative results. The performance, in terms of accuracy, of the best classi-
fication model with and without applying FuCiTNet, on the three datasets is
presented in Tables and [} Several configurations were analyzed, 'None’
indicates that the network was initialized with ImageNet weights and retrained
on the dataset. 'Data aug’ indicates that the set of the optimal data augmenta-
tion techniques was applied. 'FT’, for Fine Tuning, indicates that only the last
fully connected layer was retrained on the dataset and the remaining layers were
frozen. If "FT’ is not indicated, it means that the whole layers of the network
were re-trained on the dataset. To compare FuCiTNet with the state-of-the-art,
we also include the accuracy of the method proposed in
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[7] on cat-vs-dog dataset only (see Table [2)) and the method proposed in [9]
on the three datasets (see Tables and [6] ).

When applying FuCiTNet to the test images, the classification model reaches
2.24%, 1.53% and 0.54% higher accuracy than the best classification model on
cat-dog, church-vs-palace and cat-vs-dog-vs-goldfish respectively. The number
of TP and TN also improves in all the three datasets as shown in the confusions
matrices in Tables and [7]

With respect to the state-of-the-art, FuCiTNet provides 14%, 2% and 16.4%
better accuracy than the approach proposed in [9] on cat-dog, church-vs-palace
and cat-vs-dog-vs-goldfish respectively and 18.44% better accuracy than the
approach proposed by [7] on cat-vs-dog.

These results can explain that FuCiTNet makes the object-class in the input
images more distinguishable to the model. Our transformation approach can
be considered as an incremental optimization to the rest of optimizations space,
since on all the datasets, the best results were obtained by combining FuCiTNet
with fine-tuning and data-augmentation.

We have also analyzed the mean confidence of each class in the three prob-
lems such that:

T .
N
mean confidence(k-class) = M

where T is the number of correctly classified test images, from the test split,
with k& ground truth class. The mean confidence of the best reference model and
FuCiTNet are shown in the third column of Tables[2] dland[6] As we can observe
from these results FuCiTNet clearly improve the mean confidence of the model
in all the classes in cat-vs-dog and church-vs-palace datasets. Although FuCiT-
Net have lowered the mean confidence in the cat-vs-dog-vs-goldfish dataset, the
accuracy, number of true positives and true negatives have improved.

FuCiTNet provides several advantages over the method proposed in [7] and
[9]. It does not require neither paired datasets of high and low resolution input
images nor super-resolution network. Unlike [7], in which the transformations
were learnt regardless the class of the sample, our results demonstrate that
exploiting class-inherent features improves significantly the borders between vi-
sually similar classes.
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(a) (2.862, —3.777) (b) (2.393, —2.376)

(d) (1.816,—2.261) (e) (2.912, —2.960) (f) (2.037, —2.007)

Figure 3: Left) Original sample of dog class; middle) Dog transformation to original sample;
right) Cat transformation to original sample. The confidence score of the model for (dog
class, cat class) are indicated below each image. The score for the left image is obtained using
the best reference model whereas the ones for the middle and right images are obtained with

FuCiTNet.
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(a) (—0.631,0.664) (b) (2.561, —2.557) (c) (3.597, —3.679)

"

(d) (—8.048,6.966) (e) (—1.625,1.961) (f) (—0.202,0.433)

Figure 4: left) Original sample of cat class; middle) Dog transformation to original sample;
right) Cat transformation to original sample. The confidence score of the model for (dog
class, cat class) are indicated below each image. The score for the left image is obtained using
the best reference model whereas the ones for the middle and right images are obtained with

FuCiTNet.
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(a) (0.936,0.104) (b) (0.099, —0.362) (c) (—0.512,0.278)

(d) (—0.279,0.530) (e) (—0.556,0.550) (f) (—0.677,0.661)

Figure 5: left) Original sample of Palace class; middle) Church transformation to original
sample; right) Palace transformation to original sample. The confidence score of the model
for (church class, palace class) are indicated below each image. The score for the left image
is obtained using the best reference model whereas the ones for the middle and right images
are obtained with FuCiTNet.
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(d) (0.422,0.646) (e) (0.626,—0.670) (f) (0.249, —0.291)

Figure 6: left) Original sample of Church class; middle) Church transformation to original
sample; right) Palace transformation to original sample. The confidence score of the model
for (church class, palace class) are indicated below each image. The score for the left image
is obtained using the best reference model whereas the ones for the middle and right images
are obtained with FuCiTNet.
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(e) (-1.41,-1.56,2.82) () (-3.05,-0.83,3.77) (g) (-2.99,-0.80,3.68) (h) (-3.12,-0.88,3.91)

Figure 7: left) Original sample of goldfish class; middle left) Cat transformation to original
sample; middle right) Dog transformation to original sample; right) Goldfish transformation to
original sample. The confidence score of the model for (dog class, cat class, goldfish class) are
indicated below each image. The score for the left image is obtained using the best reference
model whereas the others are obtained with FuCiTNet.

Qualitative results. Figures [6] and [7] show visually the transformations
applied by FuCiTNet to different original input images from different classes.
As it can be observed from these images, the transformations affect:

e the contour or border of the object class in the transformed images, as it
can be seen in Figures [3{c) and (f) and Figures[4(c) and (f).

e the pixels that constitute the body of the object-class, as it is the case in
Figure [3{(f) and Figures [5[b) and (c), Figures [6(b), (c) and (e), Figures
[A(c). (d), (f), (g) and (h).

e or background as it is the case in Figures c) and (f), Figures b)7 (c),
(e) and (f).

In some images in the church-vs-palace testset, the model does not add any
transformation. This indicates that the classifier does not need any additional
transformation to differentiate the object-class in those specific images. In gen-
eral, in this dataset, most of the palaces have either a dome or a rectangular roof
with an inner courtyard but generally the churches do not include any of these
features. In the cases where a church has an inner courtyard, the model needs
to add a transformation so that the classifier can distinguish it better from a
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church as it can be seen in Figure [f] Likewise, when the palace has a very dis-
tinguishable shape from a church, the model does not add any transformation
as it can be seen in Figure [5(d), (e) and (f).

This effect does not occur in the cat-vs-dog and cat-vs-dog-vs-fish test sets,
the background in these images is so diverse, it includes, people, furniture, occlu-
sion etc., that the model always need some more transformation to differentiate
better between the involved classes.

6. Conclusions and future work

Our aim in this work was reducing over-fitting in very small datasets in which
the involved object-classes share many visual features. We presented FuCiTNet
model in which a novel array of generators learn independently class-inherent
transformations of each class of the problem. We introduced a classification loss
in the generators to drive the learning of specific k-class transformations. The
learnt transformations are then applied to the input test images to help the
classifier distinguishing better between different classes.

Our experiments demonstrated that FuCiTNet increases the classification
generalization capability on three small datasets with very similar classes. With
the benchmark datasets we demonstrate that FuCiTNet behaves robustly in
diverse-nature data and handles properly different view dimensions (zenital and
frontal). We conclude that our method yields strong gains as an incremental
optimization technique additional to the standards when searching for a better
model performance.

As future work, we are planning to explore and adapt FuCiTNet to small
medical datasets.
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