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Abstract

Unsupervised change detection techniques are generally constrained to two multi-

band optical images acquired at different times through sensors sharing the same spa-

tial and spectral resolution. While the optical imagery modality is largely studied in

the remote sensing community, this scenario is suitable for a straight comparison of ho-

mologous pixels such as pixel-wise differencing. However, in some specific cases such

as emergency situations, punctual missions, defense and security, the only available

images may be those acquired through different kinds of sensors with different resolu-

tions. Recently some change detection techniques dealing with images with different

spatial and spectral resolutions, have been proposed. Nevertheless, they are focused on

a specific scenario where one image has a high spatial and low spectral resolution while

the other has a low spatial and high spectral resolution. This paper addresses the prob-

lem of detecting changes between any two multi-band optical images disregarding their

spatial and spectral resolution disparities. To overcome those limitations, state-of-the

art methods consist in applying conventional change detection methods after prepro-

cessing steps applied independently on the two images, e.g. resampling operations

intended to reach the same spatial and spectral resolutions. Nevertheless, these prepro-

cessing steps may waste relevant information since they do not take into account the

strong interplay existing between the two images. Conversely, in this paper, we propose
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a method that more effectively uses the available information by modeling the two ob-

served images as spatially and spectrally degraded versions of two (unobserved) latent

images characterized by the same high spatial and high spectral resolutions. Covering

the same scene, the latent images are expected to be globally similar except for possi-

ble changes in spatially sparse locations. Thus, the change detection task is envisioned

through a robust fusion task which enforces the differences between the estimated la-

tent images to be spatially sparse. We show that this robust fusion can be formulated as

an inverse problem which is iteratively solved using an alternate minimization strategy.

The proposed framework is implemented for an exhaustive list of applicative scenar-

ios and applied to real multi-band optical images. A comparison with state-of-the-art

change detection methods evidences the accuracy of the proposed robust fusion-based

strategy.

Keywords:

Image fusion, change detection, different resolutions, hyperspectral imagery,

multispectral imagery.

1. Introduction

Remote sensing consists in collecting measurements, without any physical contact,

about an object or phenomenon. This paper focusses on applications to Earth obser-

vation and surface monitoring [1, 10, 29, 5]. The type of acquired measurements, also

referred to as modality, is intimately related to the sensor. Each modality provides a

predefined amount and type of information about the scene. The technological growth

and new data policies directly impact the availability of multi-temporal data (i.e., ac-

quired at different time instants) [3], which overcomes this limitation, yet, simulta-

neously introducing new challenges. Notably, multi-temporal data acquired over the

same geographical location can be used to detect changes or variations. Thus, analyz-

ing multi-temporal data has culminated in the development of an extremely important

area for the remote sensing community, namely, change detection (CD).

CD refers to the techniques used to detect areas where potential changes have oc-

curred between multiple multi-temporal and possibly multi-source (i.e., acquired by
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different sensors) images acquired over the same scene (geographical location) [31, 8].

CD is generally conducted within a supervised or unsupervised context [3]. The for-

mer requires prior ground-truth knowledge in order to train algorithms maximizing the

detection rate while minimizing the false alarm rate. Conversely the latter tries to infer

changes after carefully designing a blind model-based distance operator. As ground-

truth information is not easily available, significant efforts have been made so that un-

supervised CD techniques reach the supervised CD performance. Nevertheless, almost

all unsupervised CD methods only focus on a particular scenario, actually the most

favorable one which considers two multi-band optical images with same spatial and

spectral resolutions [3]. There are two main reasons for considering such a scenario:

i) multi-band optical images represent the most commonly used and largely studied re-

mote sensing modality, according to [33], and ii) images with same spatial and spectral

resolutions are pixel-wisely comparable, which makes easy the use of simple distance

operators.

Multi-band optical sensors provide a particular representation of the observed scene

according to some intrinsic characteristics, particularly, the ability of sensing the re-

flected electromagnetic spectrum of the incoming light. Well suited to map horizontal

structures like land-cover type at large scales [7], its facility to be directly interpreted

has contributed to popularize its use. Another important aspect of optical imaging is

the widely admitted Gaussian modeling of the sensor noises, which has lead to a mas-

sive development of least-square like methods, specially for CD. Indeed, the properties

of the noise model, for instance the symmetry of the Gaussian probability distribution

function, allow CD techniques to be implemented through a simple operation of im-

age differencing, as noticed in [31] and [3]. Although CD differencing methods have

been adapted to handle multi-band images by considering spectral change vectors [2, 4]

and transform analysis [28, 27], all of them rely on the crucial premise of a favorable

scenario which assumes that the observed images share the same spatial and spectral

resolutions.

However, the need for flexible and reliable CD techniques that are able to handle

more scenarios is real. In some situations, for instance consecutive to natural disas-

ters or within punctual imagery missions, the limited availability of the sensors and the
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time constraints may preclude the use of the same sensor at two distinct time instants.

Thus, in these cases, observed images are possibly from different modalities and do

not share the same spatial and/or spectral resolutions. To make existing conventional

CD methods usable in these cases, one strategy, hereafter referred to as the worst-case

(WC) method, consists in individually and independently, spatially and/or spectrally,

resampling the images to reach the same spatial and spectral resolutions. Although

this WC technique allows off-the-shelf CD techniques to be used directly, it may re-

mains suboptimal since i) resampling operations independently applied to each image

do not take into account their joint characteristics and thus crucial information may be

missed and ii) these spatial and spectral operations are generally from a higher to a

lower resolution, which results in a significant loss of information. To overcome these

limitations, [14] and [15] recently proposed two CD approaches specifically designed

to deal with multi-band images with different spatial and spectral resolution. Both ap-

proaches rely on the inference of a latent (i.e., unobserved) image which results from

the fusion of the two observed images. Fusing information contained in remote sens-

ing images has motivated a lot of research works in the literature [24, 23, 32, 17, 25].

Within a CD context, the underlying assumption is most of pixels of the fused image,

which are supposed not to have been changed during the time interval, produce consis-

tent information while the few remaining ones, locating in the change regions, produce

aberrant information. More precisely, the method proposed in [15] is based on a 3-step

procedure (namely fusion, prediction and detection) which, instead of independently

preprocess each observed image, recovers a latent high spatial and spectral resolution

image containing changed and unchanged regions by fusing observed images. Then, it

predicts pseudo-observed images by artificially degrading this estimated latent image

using forward models underlying the actually observed images. The result is two pairs,

each composed of a predicted image and an observed image with the same spatial and

spectral resolutions. Then, any classical multi-band CD method can be finally applied

to estimate two change images, that can be thresholded to build the change maps. Con-

versely, [14] propose a robust fusion-based CD technique which aims at recovering two

high spatial and spectral resolution latent images related to the observed images via a

double physically-inspired forward model. The robust fusion of multi-band images is
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formulated as an inverse problem. The difference between the two latent images is as-

sumed to be spatially sparse, implicitly locating the changes at a high resolution scale.

The resulting objective function is solved through the use of an alternating minimiza-

tion algorithm, which iteratively optimizes with respect to (w.r.t.) one latent image and

the change image. The CD map can be finally generated from the recovered change

image. Both methods offer a way to conduct unsupervised CD between two multi-band

optical images. Even if they have shown significant improvements in the detection rate

when compared to WC method, they are also still limited to a single scenario: one

high spatial low spectral resolution image and one low spatial high spectral resolution

image.

In this paper, capitalizing on the method proposed in [14], we show that the unsu-

pervised CD task can be formulated in a general robust-fusion form for all multi-band

optical image scenarios involving two observed images. Contrary to the previous tech-

nique, the proposed approach is not limited to one high spatial and low spectral res-

olution observed image and one low spatial high spectral resolution observed one. It

generalizes the robust fusion model to handle all possible configurations of two multi-

band optical images. Note that the scenario and the solution proposed in [14] is a

specific instance of the framework developed in this paper. Therefore, the same as-

sumptions regarding the two observed images is adopted. Namely they can be jointly

approximated by a standard linear decomposition model complemented with an out-

lier term corresponding to the change image. The outlier term is still characterized by

a spatial sparsity-inducing regularization. The resulting objective function, regardless

the scenario proposed, is solved through the use of an alternate minimization algorithm.

Remarkably, optimizing w.r.t. the latent image always relies on a closed-form solution,

which ensures the convergence of the alternate minimization procedure. The CD map

can be finally generated from the recovered change image.

The paper is organized as follows. Section 2 formulates the change detection prob-

lem for multi-band optical image. Section 3 presents the solution for the formulated

problem based on robust fusion for each possible scenarios. Experimental CD ex-

amples are considered in Section 5 for each possible scenario described in Section 3.

Section 6 concludes the paper.
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2. Problem formulation

2.1. Generic forward model for multi-band optical images

In digital image processing, the image formation process inherent to multi-band op-

tical sensors can be generally modeled as a sequence of successive transformations and

degradations. These transformations are applied over the original scene and resulting in

an output image, commonly referred as the observed image and denoted Y ∈ Rmλ×m

where m and mλ are the numbers of pixels and spectral bands in the observed image.

It corresponds to the particular limited representation of the original scene according

to the characteristics imposed by the image signal processor describing the sensor. The

original scene cannot be exactly represented because of its continuous nature, but it

can be conveniently approximated by an (unknown) latent image of higher spatial and

spectral resolutions, X ∈ Rnλ×n, where n ≥ m and nλ ≥ mλ are the numbers of

pixels and spectral bands, respectively. In what follows, as a well-admitted approxima-

tion, the observed and latent images are assumed to be related according to the generic

forward model [37, 40, 30]

Y = LXR + N (1)

where

• L ∈ Rmλ×nλ is a spectral degradation matrix,

• R ∈ Rn×m is a spatial degradation matrix,

• N is an additive term comprising sensor noise and modeling errors.

In (1), the left-multiplying matrix L and right-multiplying matrix R spectrally and

spatially degrade the latent image, respectively, by combining some spectral bands of

each pixel or by combining neighboring pixel measurements in each spectral band.

More precisely, the spectral degradation L represents a spectral resolution reduction

with respect to the latent image X, as already considered in [40], [30] and [38]. In

practice, this matrix is fully defined by spectral filters characterizing the optical sensors.

When the specifications of the sensor are available, these filters are known. Otherwise,

they can be learned by cross-calibration, e.g., following the strategies proposed in [30]
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or [39]. On the other hand, the spatial degradation matrix R models the combination of

different spatial transformations applied to the pixel measurements within each spectral

band. These transformations are specific of the sensor architecture and include warp,

blur, translation and decimation [39, 38]. In this work, geometrical transformations

such as warp and translation are assumed to have been previously corrected, e.g., using

image spatial alignment techniques. Thus, similarly to the model considered in [38],

the spatial degradation matrix R only stands for a spatially invariant blurring, followed

by a decimation (i.e., downsampling) operation. Thus, in what follows, the spatial

degradation matrix R will be assumed of the form

R = BS. (2)

The sparse symmetric Toeplitz matrix B ∈ Rn×n in (2) operates a cyclic convolution

on each individual band to model a space-invariant blur associated with a symmetric

convolution kernel. The decimation operation, denoted by the n ×m matrix S in (2),

corresponds to a uniform downsampling operator1 of factor d = dr×dc withm = n/d

ones on the block diagonal and zeros elsewhere, such that STS = Im [38].

The noise corrupting multi-band optical images is generally modeled as additive

and Gaussian [3, 10, 26, 38]. Thus the noise matrix N in (1) is assumed to be distributed

according to the following matrix normal distribution (see Appendix Appendix A)

N ∼MNmλ,m(0mλ×m,Λ,Π).

The row covariance matrix Λ carries information regarding the between-band spectral

correlation. In what follows, similarly to the approach in [38], this covariance matrix

Λ will be assumed to be diagonal, which implies that the noise is spectrally indepen-

dent and characterized by a specific variance in each band. Conversely, the column

covariance matrix Π models the noise correlation w.r.t. to the pixel locations. Follow-

ing a hypothesis widely admitted in the literature, this matrix is assumed to be identity,

Π = Im, to reflect the fact the noise is spatially independent. In real applications, both

matrices Λ and Π can be estimated by calibration [39].

1The corresponding operator ST represents an upsampling transformation by zero-interpolation from m

to n.
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2.2. Problem statement

Let us consider two co-registered multi-band optical images Y1 ∈ Rmλ1×m1 and

Y2 ∈ Rmλ2×m2 acquired by two sensors S1 and S2 at times t1 and t2, respectively.

It is not assumed any specific information about time ordering of acquisitions, either

t2 < t1 or t2 > t1 are possible cases. The problem addressed in this paper consists

in detecting significant changes between these two multi-band optical images. This

is a challenging task mainly due to the possible spatial and/or spectral resolution dis-

similarity (i.e., mλ1 6= mλ2 and/or m1 6= m2), which prevents any use of simple yet

efficient differencing operation [31, 3]. To alleviate this issue, this work proposes to

generalize the CD framework introduced in [14] to handle all possible combinations

(scenarios) of two multi-band optical images. More precisely, following the widely ad-

mitted forward model described in Section 2.1 and adopting consistent notations, the

observed images Y1 and Y2 can be related to two latent images X1 ∈ Rnλ×n and

X2 ∈ Rnλ×n with the same spatial and spectral resolutions

Y1 = L1X1R1 + N1 (3a)

Y2 = L2X2R2 + N2. (3b)

where L1 and L2 denote two spectral degradation operators and R1 and R2 are two

spatial degradation operators that can be decomposed according to (2). Note that (3a)

and (3b) are a specific double instance of the model (1). In particular, the two multi-

band latent images X1 and X2 share the same spectral and spatial resolutions, generally

higher than those of the observed images:

nλ ≥ max {mλ1
,mλ2

} and/or n ≥ max {m1,m2} . (4)

Thereby, after inferring the latent images, any classical differencing technique can be

subsequently implemented to compute a change image ∆X = [∆x1, . . . ,∆xn] ∈

Rnλ,n defined by

∆X = X2 −X1 (5)

where ∆xp ∈ Rnλ denotes the spectral change vector in the pth pixel (p = 1, . . . , n).

It is worth noting that, under the assumptions (4), these changes can be identified at
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a high spatial and spectral resolutions. Finally this change image can be further ex-

ploited by conducting a pixel-wise change vector analysis (CVA) which exhibits the

polar coordinates (i.e., magnitude and direction) of the spectral change vectors [22].

Then, to spatially locate the changes, a natural approach consists in monitoring the in-

formation contained in the magnitude part of this representation, summarized by the

change energy image [31, 2, 4]

e = [e1, . . . , en] ∈ Rn

with

ep = ‖∆xp‖2 , p = 1, . . . , n.

When the CD problem in the pth pixel is formulated as the binary hypothesis testing H0,p : no change occurs in the pth pixel

H1,p : a change occurs in the pth pixel

a pixel-wise statistical test can be written by thresholding the change energy image

pixels

ep
H1,p

≷
H0,p

τ.

The final binary CD map denoted d = [d1, . . . , dn] ∈ {0, 1}n can be derived as

dp =

 1 if ep ≥ τ (H1,p)

0 otherwise (H0,p).

As a consequence, to solve the multi-band image CD problem, the key issue lies in the

joint estimation of the pair of HR latent images {X1,X2} from the joint forward model

(3) or, equivalently, the joint estimation of one latent image and the difference image,

i.e., {X1,∆X}. Finally, the next paragraph introduces the CD-driven optimization

problem to be solved.

2.3. Optimization problem

Following a Bayesian approach, the joint maximum a posteriori (MAP) estimator{
X̂1,MAP,∆X̂MAP

}
of the latent and change images can be derived by maximizing

9



the posterior distribution

p(X1,∆X|Y2,Y1) ∝ p(Y2,Y1|X1,∆X)p(X1)p(∆X)

where p(Y2,Y1|X1,∆X) is the joint likelihood function and p(X1) and p(∆X) cor-

respond to the prior distributions associated with the latent and change images, respec-

tively, assumed to be a priori independent. Because of the additive nature and statistical

properties of the noise discussed in Section 2.1, this boils down to solve the following

minimization problem{
X̂1,MAP,∆X̂MAP

}
∈ argmin

X1,∆X
J (X1,∆X) (6)

with
J (X1,∆X) =

1

2

∥∥∥Λ− 1
2

2 (Y2 − L2 (X1 + ∆X) R2)
∥∥∥2

F

+
1

2

∥∥∥Λ− 1
2

1 (Y1 − L1X1R1)
∥∥∥2

F

+ λφ1 (X1) + γφ2 (∆X) .

(7)

where ‖·‖F denotes the Frobenius norm. The regularizing functions φ1(·) and φ2(·)

can be related to the negative log-prior distributions of the latent and change images,

respectively, and the parameters λ and γ tune the amount of corresponding penaliza-

tions in the overall objective functionJ (X1,∆X). These functions should be carefully

designed to exploit any prior knowledge regarding the parameters of interest. As dis-

cussed in Section 3.1, numerous regularizations can be advocated for the latent image

X1. In this work, to maintain computational efficiency while providing accurate results

[26], a Tikhonov regularization proposed in [37] has been adopted

φ1 (X1) =
∥∥X1 − X̄1

∥∥2

F

where X̄1 refers to a crude estimate of X1.

Regarding the regularizing function φ2(·), as already mentioned in the previous

section, it should reflect the fact that most of the pixels are expected to remain un-

changed i.e., most of the columns of the change image ∆X are expected to be null

vectors. Thus, the regularizing function φ2(·) is chosen as in [16] as the `2,1-norm of

the change image

φ2 (∆X) = ‖∆X‖2,1 =

n∑
p=1

‖∆xp‖2 . (8)
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The next section describes the general iterative algorithm scheme which solves the

minimization problem (6).

3. Robust multi-band image fusion algorithm: generic formulation

Computing the joint MAP estimator of the latent image X1 at time t1 and of the

change image ∆X can be achieved by solving the minimization problem in (6). How-

ever, no closed-form solution can be derived for this problem for all the scenarios of

interest. Thus this section introduces a minimization algorithm which iteratively con-

verges to this solution. This alternating minimization (AM) algorithm, summarized in

Algo. 1, consists in iteratively minimizing the objective function (7) w.r.t. X1 and ∆X,

within so-called fusion and correction discussed below.

Algorithm 1 Algorithm for robust multi-band image fusion

Input: Y1, Y2, L1, L2, R1, R2, Λ1, Λ2.

1: Set ∆X1.

2: for k = 1, . . . ,K do

3: % Fusion step

4: X
(k+1)
1 = arg minX1

J (X1,∆X(k))

5: % Correction step

6: ∆X(k+1) = arg min∆X J (X
(k+1)
1 ,∆X)

7: end for

Output: X̂1,MAP , X
(K+1)
1 and ∆X̂MAP , ∆X̂(K+1)

3.1. Fusion step

As mentioned above, the forward model (3) relying on the pair {X1,X2} of latent

images can be rewritten as a function of {X1,∆X}, i.e.,

Y1 = L1X1R1 + N1 (9a)

Y2 = L2 (X1 + ∆X) R2 + N2. (9b)
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Generalizing the strategy proposed in [14], given the change image ∆X and the image

Y1 observed at time t1, a corrected image denoted Ỹ2 that would be acquired by the

sensor S2 at time t1 can be defined as

Ỹ2 = Y2 − L2∆XR2. (10)

With this notation, the forward model (9) can be easily rewritten, leading to

Y1 = L1X1R1 + N1 (11a)

Ỹ2 = L2X1R2 + N2. (11b)

Thus, the fusion step, at iteration k, consists in minimizing (7) w.r.t. X1, i.e.,

X̂
(k+1)
1 = argmin

X1

J1 (X1) , J
(
X1,∆X(k)

)
with

J1 (X1) =
1

2

∥∥∥Λ− 1
2

2

(
Ỹ

(k)
2 − L2X1R2

)∥∥∥2

F

+
1

2

∥∥∥Λ− 1
2

1 (Y1 − L1X1R1)
∥∥∥2

F

+ λ
∥∥X1 − X̄1

∥∥2

F
.

(12)

The double forward model (11), as well as the optimization problem (12), underly the

estimation of an image X1 from an observed image Y1 and a pseudo-observed image

Ỹ2. Various instances of this pixel-level fusion problem have been widely considered

in the literature [24, 32, 17, 25]. For instance, [21] and [42] have addressed the problem

of single mono-band image superresolution from a single observed image Y1, i.e., with

L1 = Imλ1 and mλ1
= nλ = 1. The problem of fusing several degraded mono-

band images to recover a common high resolution latent image has been considered

in [11]. Similarly, the model (11) generalizes the conventional observational model

widely adopted by the remote sensing community to conduct multi-band image fusion

[19, 9, 41, 40, 23, 30, 36, 37, 38]. Within this specific scenario, a high spatial and high

spectral resolution latent image X1 is estimated from two observed images, one of low

spatial and high spectral resolutions (i.e., L1 = Imλ1 ) and the other of high spatial and

low spectral resolutions (i.e., R2 = In2 ).

In this context, the CD task considered in this paper can be cast as a so-called robust

fusion problem since the multi-band image fusion model (11) implicitly depends on the
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(unknown) change image ∆X. More precisely, since the two latent images X1 and X2

are related to the same scene observed at two time instants, they are expected to share

a high level of similarity, i.e., the change image ∆X is expected to be spatially sparse.

Thus, this additional unknown change image ∆X to be inferred can be considered as

an outlier term, akin to those encountered in several robust factorizing models such as

robust principal component analysis (RPCA) [6] and robust nonnegative factorization

[16]. A particular instance of this strategy has been successfully adopted in [14] to

detect changes between two complementary multi-band images, i.e., in the particular

case of L1 = Imλ1 and R2 = In2 . In this work, we propose to follow a similar

route while generalizing the approach to the much more generic model (3) to handle all

practical scenarios of CD. These different scenarios are discussed in the next paragraph.

3.2. Correction step

Given the current state X1 of the latent image, the predicted image that would be

observed by the sensor S2 at time t1 can be defined as

Y̌
(k)
2 = L2X

(k)
1 R2 (13)

leading to the predicted change image

∆Y̌2 = Y2 − Y̌2. (14)

Then, the correction step in Algo. 1 consists in solving

∆X̂(k+1) = argmin
∆X

J2 (∆X) , J
(
X

(k)
1 ,∆X

)
(15)

with

J2 (∆X) =
∥∥∥Λ− 1

2
2

(
∆Y̌

(k)
2 − L2∆XR2

)∥∥∥2

F
+ γ ‖∆X‖2,1 . (16)

This correction can be interpreted as a joint spatial and spectral deblurring of the pre-

dicted change image ∆Y̌
(k)
2 . Note that this ill-posed inverse problem is regularized

through an `2,1-norm penalization, which promotes the spatial sparsity of the change

image ∆X.

It is worth noting that the difficulty of conducting the two steps of the AM algorithm

detailed above is highly related to the spatial and/or spectral degradations operated on
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the two latent images, according to applicative scenarios which are detailed in the next

section. Interestingly, the following section will also show that these steps generally

reduce to ubiquitous (multi-band) image processing tasks, namely denoising, spectral

deblurring or spatial super-resolution from a single or multiple images, for which effi-

cient and reliable strategies have been already proposed in the literature.

4. Algorithmic implementations for applicative scenarios

The general model presented in (3) and the AM algorithm proposed in Section 1 can

be implemented to handle all scenarios derived from two multi-band optical images.

These scenarios differ by the corresponding spatial and spectral degradations relating

the pair of observed images {Y1,Y2} and the pair of latent images {X1,X2}. Table 1

summarizes the 10 distinct scenarios (denoted S1 to S10) according to the degradations

operated on the two latent images X1 and X2. The specificities of these scenarios are

also discussed in what follows.

S1 is devoted to a pair of observed images sharing the same spatial and spectral reso-

lutions. In this case, CD can be conducted by pixel-wise comparisons, as classi-

cally addressed in the literature, e.g., in [31] and [3].

S2 consists in conducting CD between two images with the same spatial resolution but

different spectral resolution, considered in [28] and [27].

S3 consists in conducting CD between two images with the same spectral resolution

but different spatial resolution.

S4 relies on two complementary images: the first image with high spectral and low

spatial resolutions, the second image with low spectral and high spatial resolu-

tions. This is the CD scenario considered in [13, 15, 14]. When the two observed

images have been acquired at the same time instants (ti = tj), this scenario cor-

responds to the multi-band image fusion task considered in numerous works,

e.g., in [37], [40] and [30].
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S5 represents an even less favorable instance of S2 and S3 where one image is of

high spatial and spectral resolutions while the other is of low spatial and spectral

resolutions.

S6 generalizes S3. As for S3, both observed images have the same spectral resolutions

and different spatial resolutions. However, contrary to S3, the relative downsam-

pling factor between images is non-integer, which precludes the use of a unique

spatial degradation matrix R = BS. As a consequence, the latent images X1

and X2 are characterized by a common spatial resolution which is higher than

those of both observed images. The choice of this virtual downsampling factor

is based on the greatest common divisor between spatial resolutions.

S7 generalizes S4 with a non-integer relative downsampling factor (as for S6).

S8 generalizes S2 where the two observed image share the same spatial resolution but

have distinct spectral resolutions. However, contrary to S2, this difference in

spectral resolutions cannot be expressed using a unique spectral degradation ma-

trix. This may happen when the two spectral ranges of observed images contain

non-overlapping bands.

S9 generalizes S4, but the difference in spectral resolutions cannot be expressed using

a single degradation matrix (as for S8).

S10 generalizes S4, but the difference in spatial resolutions cannot be expressed using

a unique spatial degradation matrix (as for S6) and the difference in spectral

resolutions cannot be expressed using a single spectral degradation matrix (as

for S8).

Finally, the following paragraphs instantiate the AM algorithm for each scenario.

These specific instantiations will relate the fusion and correction steps with ubiquitous

image processing tasks that can be performed efficiently thanks to recent contributions

proposed in the image processing literature. Table 2 summarizes these implementations

w.r.t. the discussed scenarios.
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4.1. Scenario S1

Considering the degradation matrices specified in Table 1 for this scenario, the

forward model (9) can be rewritten as

Y1 = X1 + N1 (17a)

Y2 = (X1 + ∆X) + N2 (17b)

As expected, for this scenario, the observed, latent and change images share the same

spatial and spectral resolutions. The resulting objective function, initially in (7), is

simplified as

JS1 (X1,∆X) =
1

2

∥∥∥Λ− 1
2

2 (Y2 − (X1 + ∆X))
∥∥∥2

F

+
1

2

∥∥∥Λ− 1
2

1 (Y1 −X1)
∥∥∥2

F

+ λ
∥∥X1 − X̄1

∥∥2

F
+ γ ‖∆X‖2,1 .

(18)

The two steps of the AM algorithm are detailed below.

4.1.1. Fusion: optimization w.r.t. X1

At the kth iteration of the AM algorithm, let assume that the current value of the

change image is denoted by ∆X(k). As suggested in Section 3.1, a corrected image

Ỹ
(k)
2 that would be observed at time t1 by the sensor S2 given the image Y2 observed

at time t2 and the change image ∆X(k) can be introduced as

Ỹ
(k)
2 = Y2 −∆X(k). (19)

Updating the latent image X1 consists in minimizing w.r.t. X1 the partial function

JS1,1 (X1) , JS1
(
X1,∆X(k)

)
=
∥∥∥Λ− 1

2
1 (Y1 −X1)

∥∥∥2

F

+
∥∥∥Λ− 1

2
2

(
Ỹ

(k)
2 −X1

)∥∥∥2

F
+ λ

∥∥X1 − X̄1

∥∥2

F
.

This formulation shows that recovering X1 in Scenario S1 reduces to a denoising prob-

lem from an observed image Y1 and a pseudo-observed image Ỹ
(k)
2 . A closed-form

solution of this `2-penalized least-square problem can be easily and efficiently com-

puted.
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4.1.2. Correction: optimization w.r.t. ∆X

Following the same strategy proposed in [14], let Y̌
(k)
2 denote the predicted image

that would be observed by the sensor S2 at time t1 given the current state of the latent

image X
(k)
1 . Since the two sensors share the same spatial and spectral characteristics,

one has

Y̌
(k)
2 = X

(k)
1 . (20)

Similarly to (5), the predicted change image can thus be defined as

∆Y̌
(k)
2 = Y2 − Y̌

(k)
2 . (21)

The objective function (18) w.r.t. ∆X is then rewritten by combining (20) and (21)

with (18), leading to

JS1,2(∆X) , JS1(X
(k)
1 ,∆X)

=
∥∥∥Λ− 1

2
2

(
∆Y̌

(k)
2 −∆X

)∥∥∥2

F
+ γ ‖∆X‖2,1 .

(22)

Again, since the observed, latent and change images share the same spatial and spec-

tral resolutions, this correction step reduces to a denoising task of the predicted change

image ∆Y̌
(k)
2 . With the particular CD-driven choice of φ2 (·) in (8), minimizing

JS1,2(∆X) is an `2,1-penalized least square problem. Minimizing (22) also defines

the proximal operator associated with the `2,1-norm and can be directly achieved by

applying a group-soft thresholding on the predicted change image ∆Y̌
(k)
2 .

4.2. Scenario S2

In this scenario, the two observed images are of same spatial resolution (as for

scenario S1) but with different optical spectral information, which preclude a simple

comparison between pixels. For this scenario, the joint forward observation model

derived from (9) can be written as

Y1 = L1X1 + N1, (23a)

Y2 = (X1 + ∆X) + N2, (23b)
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which results in the objective function

JS2 (X1,∆X) =
1

2

∥∥∥Λ− 1
2

2 (Y2 − (X1 + ∆X))
∥∥∥2

F

+
1

2

∥∥∥Λ− 1
2

1 (Y1 − L1X1)
∥∥∥2

F

+ λ
∥∥X1 − X̄1

∥∥2

F
+ γ ‖∆X‖2,1 .

Within an AM algorithmic schemes, the two sub-problems of interest are detailed be-

low.

4.2.1. Fusion: optimization w.r.t. X1

The same strategy as for scenario S1 in paragraph 4.1.1 is adopted. As model

(23b) is the the same as model (17b), the corrected image Ỹ
(k)
2 is defined following

(19). Then, updating the latent image X1 consists in minimizing the partial objective

function
JS2,1 (X1) , JS2

(
X1,∆X(k)

)
=
∥∥∥Λ− 1

2
1 (Y1 − L1X1)

∥∥∥2

F

+
∥∥∥Λ− 1

2
2

(
Ỹ

(k)
2 −X1

)∥∥∥2

F
+ λ

∥∥X1 − X̄1

∥∥2

F
.

(24)

This problem can be interpreted as a spectral deblurring of the observed image Y1

where the corrected image Ỹ
(k)
2 plays the role of prior information. Minimizing (24)

can be easily conducted by computing the standard least square solution.

4.2.2. Correction: optimization w.r.t. ∆X

As both models (23b) and (17b) are the same, optimizing w.r.t ∆X can be con-

ducted following the procedure detailed in paragraph 4.1.2 (i.e., denoising of the pre-

dicted change image).

4.3. Scenario S3

In this scenario, the two observed images share the same spectral resolution but

differ by their spatial resolutions. These spatial resolutions are related by an integer

relative downsampling factor, which allows a unique spatial degradation matrix R1
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to be used2. The joint forward observation model derived from (9) using the specific

degradation matrices presented in Table 1 can be written as

Y1 = X1R1 + N1. (25a)

Y2 = (X1 + ∆X) + N2. (25b)

with the objective function

JS3 (X1,∆X) =
1

2

∥∥∥Λ− 1
2

2 (Y2 − (X1 + ∆X))
∥∥∥2

F

+
1

2

∥∥∥Λ− 1
2

1 (Y1 −X1R1)
∥∥∥2

F

+ λ
∥∥X1 − X̄1

∥∥2

F
+ γ ‖∆X‖2,1 .

4.3.1. Fusion: optimization w.r.t. X1

The same strategy as for previous scenarios is adopted here. As model (25b) is

the same as model (17b), the corrected image Ỹ
(k)
2 is defined following (19). Then,

updating the latent image consists in minimizing w.r.t. X1 the partial function

JS3,1 (X1) , JS3
(
X1,∆X(k)

)
=
∥∥∥Λ− 1

2
1 (Y1 −X1R1)

∥∥∥2

F

+
∥∥∥Λ− 1

2
2

(
Ỹ

(k)
2 −X1

)∥∥∥2

F
+ λ

∥∥X1 − X̄1

∥∥2

F
.

This fusion task can be interpreted as a set of nλ super-resolution problems associated

with each band of the observed image Y1, where the corrected image Ỹ
(k)
2 acts here as

a prior information. Closed-form expressions of these nλ solutions are given by [42].

4.3.2. Correction: optimization w.r.t. ∆X

As the model (25b) is the same as model (17b) of scenarios S1 and S2, optimizing

w.r.t. ∆X can be conducted following the procedure detailed in paragraph 4.1.2 (i.e.,

denoising of the predicted change image).

2The case of observed images with non-integer relative spatial downsampling factor is discussed in sce-

nario S6.
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4.4. Scenario S4

Scenario S4 is specifically addressed in [14] with the joint forward model

Y1 = X1R1 + N1,

Y2 = L2 (X1 + ∆X) + N2.

The two observed images have complementary information since Y1 and Y2 are of

high spectral and spatial resolutions, respectively. The resulting objective function

writes
JS4 (X1,∆X) =

1

2

∥∥∥Λ− 1
2

2 (Y2 − L2 (X1 + ∆X))
∥∥∥2

F

+
1

2

∥∥∥Λ− 1
2

1 (Y1 −X1R1)
∥∥∥2

F

+ λ
∥∥X1 − X̄1

∥∥2

F
+ γ ‖∆X‖2,1 .

(26)

When these images have been acquired at the same time instant, the change image

is ∆X = 0 and this configuration boils down to a multiband image fusion problem

addressed in [38]. Thus, minimizing (26) can be conducted following the AM strategy

by combining a multiband image fusion step [38] and a spectral deblurring step of the

predicted change image. The interested reader is invited to consult the work in [14] for

a comprehensive description of the resolution.

4.5. Scenario S5

Under this scenario, the observed image Y2 is of higher spatial and spectral reso-

lutions than the observed image Y1. Within a conventional fusion context, one would

probably discard Y1 since it would not bring additional information to the one provided

by Y2. Conversely, within a CD context, both observed images are of interest and can

be exploited. More precisely, here, the joint forward observation model derived from

(9) is specifically written

Y1 = L1X1R1 + N1, (27a)

Y2 = (X1 + ∆X) + N2, (27b)
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with the resulting objective function

JS5 (X1,∆X) =
1

2

∥∥∥Λ− 1
2

2 (Y2 − (X1 + ∆X))
∥∥∥2

F

+
1

2

∥∥∥Λ− 1
2

1 (Y1 − L1X1R1)
∥∥∥2

F

+ λ
∥∥X1 − X̄1

∥∥2

F
+ γ ‖∆X‖2,1 .

Its minimization relies on the two steps detailed below.

4.5.1. Fusion: optimization w.r.t. X1

The same strategy as for previous scenarios is adopted here. After defining the

corrected image Ỹ
(k)
2 by (19), updating the the latent image X1 consists in minimizing

JS5,1 (X1) , JS5
(
X1,∆X(k)

)
=
∥∥∥Λ− 1

2
1 (Y1 − L1X1R1)

∥∥∥2

F

+
∥∥∥Λ− 1

2
2

(
Ỹ

(k)
2 −X1

)∥∥∥2

F
+ λ

∥∥X1 − X̄1

∥∥2

F
.

(28)

Minimizing (28) can be interpreted as a simultaneous spatial super-resolution and spec-

tral deblurring of the multiband image Y1, with prior information brought by Ỹ
(k)
2 .

This minimization is a much more challenging task than the fusion steps encountered

for scenarios S1–S4. Indeed, the simultaneous spatial and spectral degradations applied

to X1 prevents a closed-form solution to be efficiently computed. Thus, one proposes

to resort to an iterative algorithm, namely the alternating direction method of multipli-

ers (ADMM). It consists in introducing the splitting variable U ∈ Rmλ1×n = L1X1.

The resulting scaled augmented Lagrangian for the problem is expressed as

Lµ(X1,U,V) =
∥∥∥Λ− 1

2
1 (Y1 −UR1)

∥∥∥2

F
+∥∥∥Λ− 1

2
2

(
Ỹ

(k)
2 −X1

)∥∥∥2

F
+

λ
∥∥X1 − X̄1

∥∥2

F
+
µ

2
‖L1X1 −U + V‖2F .

(29)

The ADMM iteratively minimizes Lµ w.r.t. U and X1 and updates the dual variable

V. By comparing the partial objective function (28) and its augmented counterpart

(29), it clearly appears that the splitting strategy allows the spectral and spatial degra-

dations to be decoupled. Thus, each of these steps can be easily conducted. More
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precisely, optimizing w.r.t. U consists in conducting a super-resolution step achieved

as for scenario S3 by resorting to the algorithm proposed in [42]. Conversely, optimiz-

ing w.r.t. X1 consists in solving a least-square problem whose closed-form solution

can be computed (akin to scenario S2).

4.5.2. Correction: optimization w.r.t. ∆X

Again, as the forward model (27b) is the same as (17b) of Scenario S1, optimizing

w.r.t. ∆X can be conducted following the procedure detailed in paragraph 4.1.2 (i.e.,

denoising of the predicted change image).

4.6. Scenario S6

As for scenario S3, scenario S6 considers two observed images of same spectral

resolutions but with distinct spatial resolutions. However, contrary to scenario S3,

this difference in spatial resolutions cannot be expressed thanks to a unique spatial

degradation matrix R1 due to a non-integer relative downsampling factor. Thus the

forward model is written

Y1 = X1R1 + N1. (30a)

Y2 = (X1 + ∆X) R2 + N2. (30b)

with the following objective function

JS6 (X1,∆X) =
1

2

∥∥∥Λ− 1
2

2 (Y2 − (X1 + ∆X) R2)
∥∥∥2

F

+
1

2

∥∥∥Λ− 1
2

1 (Y1 −X1R1)
∥∥∥2

F

+ λ
∥∥X1 − X̄1

∥∥2

F
+ γ ‖∆X‖2,1 .

(31)

In (30), both latent images are supposed to suffer from spatial degradations. Thus,

choosing which spatial degradation affects the change image ∆X results in a particular

spatial resolution for this change map. To derive a CD map at a high spatial resolution,

the spatial degradation applied to ∆X should be chosen as the one with the lowest

virtual downsampling factor. The minimization of (31) according to the AM strategy

is addressed in the following paragraphs.
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4.6.1. Fusion: optimization w.r.t. X1

For this scenario, the corrected image in (10) is defined as

Ỹ
(k)
2 = Y2 −∆X(k)R2.

Then, updating the latent image X1 consists in minimizing w.r.t. X1 the partial func-

tion
JS6,1 (X1) , JS6

(
X1,∆X(k)

)
=
∥∥∥Λ− 1

2
1 (Y1 −X1R1)

∥∥∥2

F

+
∥∥∥Λ− 1

2
2

(
Ỹ

(k)
2 −X1R2

)∥∥∥2

F
+ λ

∥∥X1 − X̄1

∥∥2

F
.

(32)

As for scenario S3, minimizing (32) can be interpreted as recovering a spatially super-

resolved image X1 from the observed image Y1 and the corrected image Ỹ
(k)
2 . How-

ever, contrary to scenario S3, here, Ỹ
(k)
2 rather defines an additional data-fitting term

instead of a prior information [11]. Moreover, this sub-problem cannot be solved di-

rectly since no closed-form solution can be efficiently derived, mainly due to the simul-

taneous presence of the two spatial degradation operators. Thus, as for scenario S5, one

resorts to the ADMM scheme by introducing the splitting variable U ∈ Rnλ×n = X1.

The resulting scaled augmented Lagrangian can be written as

Lµ(X1,U,V) =
∥∥∥Λ− 1

2
1 (Y1 −UR1)

∥∥∥2

F

+
∥∥∥Λ− 1

2
2

(
Ỹ

(k)
2 −X1R2

)∥∥∥2

F
+ λ

∥∥X1 − X̄1

∥∥2

F

+
µ

2
‖X1 −U + V‖2F .

(33)

Both minimizations of (33) w.r.t. U and X1 can be conducted band-by-band following

the strategy proposed in [42], which provides closed-form solutions of the underlying

single-image super-resolution problems and also ensures the convergence of the AM

algorithm.

4.6.2. Correction: optimization w.r.t. ∆X

For this scenario, a predicted image that would be observed by the sensor S2 at

time t1 can be defined as

Y̌
(k)
2 = X

(k)
1 R2 (34)
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with the resulting predicted change image

∆Y̌
(k)
2 = Y2 − Y̌

(k)
2 . (35)

The objective function (7) w.r.t. ∆X is then rewritten by combining (34) and (35) with

(7), leading to

JS6,2(∆X) , JS6(X
(k)
1 ,∆X)

=
∥∥∥Λ− 1

2
2

(
∆Y̌

(k)
2 −∆XR2

)∥∥∥2

F
+ γ ‖∆X‖2,1 .

(36)

The minimization of (36) can be interpreted as a super-resolution problem. Even if a

forward-backward algorithm could be used to iteratively minimize this objective func-

tion, the size of the spatial degradation matrix R2 suggests to resort to an ADMM.

By introducing the splitting variable W ∈ Rnλ×m2 = ∆XR2, the resulting scaled

augmented Lagrangian for the problem is expressed as

Lµ(∆X,W,V) =
∥∥∥Λ− 1

2
2

(
∆Y̌

(k)
2 −W

)∥∥∥2

F
+ λ ‖∆X‖2,1

+
µ

2
‖∆XR1 −W + V‖2F .

(37)

Closed-form expressions of the minimizers of (37) w.r.t. ∆X and W can be derived,

following a group soft-thresholding operation and the technique proposed in [42], re-

spectively.

4.7. Scenario S7

Scenario S7 generalizes scenario S4 with the specific case of a non-integer relative

spatial downsampling factor, which precludes the use of a unique spatial degradation

matrix. The resulting joint observation model is

Y1 = L1X1R1 + N1. (38a)

Y2 = (X1 + ∆X) R2 + N2 (38b)

which leads to the following objective function

JS7 (X1,∆X) =
1

2

∥∥∥Λ− 1
2

2 (Y2 − (X1 + ∆X) R2)
∥∥∥2

F

+
1

2

∥∥∥Λ− 1
2

1 (Y1 − L1X1R1)
∥∥∥2

F

+ λ
∥∥X1 − X̄1

∥∥2

F
+ γ ‖∆X‖2,1 .
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The choice of assuming that the image acquired by the sensor S2 does not suffers

from spectral degradation is motivated by an easier and more accurate estimation of

the change image ∆X by avoiding additional spectral deblurring steps. The two sub-

problems underlying the AM algorithm are detailed below.

4.7.1. Fusion: optimization w.r.t. X1

By defining the corrected image as for Scenario S6, i.e.,

Ỹ
(k)
2 = Y2 −∆X(k)R2,

updating the latent image X1 consists in minimizing the partial function

JS7,1 (X1) , JS7
(
X1,∆X(k)

)
=
∥∥∥Λ− 1

2
1 (Y1 − L1X1R1)

∥∥∥2

F

+
∥∥∥Λ− 1

2
2

(
Ỹ

(k)
2 −X1R2

)∥∥∥2

F
+ λ

∥∥X1 − X̄1

∥∥2

F
.

(39)

Unfortunately, it is not possible to derive a closed-form solution of the minimizer (39).

As for Scenarios S5 and S6, capitalizing on the convexity of the objective function, an

ADMM strategy is followed. By defining the splitting variable U ∈ Rmλ1×n = L1X1.

The scaled augmented Lagrangian can be written

Lµ(X1,U,V) =
∥∥∥Λ− 1

2
1 (Y1 −UR1)

∥∥∥2

F

+
∥∥∥Λ− 1

2
2

(
Ỹ

(k)
2 −X1R2

)∥∥∥2

F
+ λ

∥∥X1 − X̄1

∥∥2

F

+
µ

2
‖L1X1 −U + V‖2F .

(40)

Iterative minimizations of (40) w.r.t. both U and X1 can be conducted efficiently. More

precisely, optimizing w.r.t. U consists in solving a set of super-resolution problems

whose closed-form solutions are given band-by-band in [42]. Regarding the minimiza-

tion w.r.t. X1, it consists in solving a `2-penalized super-resolution problem, whose

closed-form solution is given in [38].

4.7.2. Correction: optimization w.r.t. ∆X

Since the observation model (38b) related to ∆X is the same as the one of Scenario

S6 (see (30b)), optimizing w.r.t. ∆X can be achieved thanks to ADMM, as described

in paragraph 4.6.2 (spatial super-resolution of the predicted change image).
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4.8. Scenario S8

This scenario is similar to the Scenario S2 described in paragraph 4.2. It relies

on two images of same spatial resolution but of distinct spectral resolution. However,

contrary to Scenario S2, this difference in spectral resolutions cannot be expressed

with a unique spectral degradation matrix, e.g., due to respective spectral ranges with

non-overlapping bands. In this case the joint forward observation model is

Y1 = L1X1 + N1. (41a)

Y2 = L2 (X1 + ∆X) + N2. (41b)

with the resulting objective function

JS8 (X1,∆X) =
1

2

∥∥∥Λ− 1
2

2 (Y2 − L2 (X1 + ∆X))
∥∥∥2

F

+
1

2

∥∥∥Λ− 1
2

1 (Y1 − L1X1)
∥∥∥2

F

+ λ
∥∥X1 − X̄1

∥∥2

F
+ γ ‖∆X‖2,1 .

The choice of which degradation matrices applies to the change image ∆X is driven by

considering the matrix with larger number of bands, which results in a change image of

higher spectral resolution. The associated sub-problems are described in what follows.

4.8.1. Fusion: optimization w.r.t. X1

Similarly to Scenario S4, by defining the corrected image as Ỹ
(k)
2 = Y2−L2∆X(t),

updating the latent image X1 consists in minimizing

JS8,1 (X1) , JS8
(
X1,∆X(k)

)
=
∥∥∥Λ− 1

2
1 (Y1 − L1X1)

∥∥∥2

F

+
∥∥∥Λ− 1

2
2

(
Ỹ

(k)
2 − L2X1

)∥∥∥2

F
+ λ

∥∥X1 − X̄1

∥∥2

F
.

(42)

Minimizing (42) formulates a joint spectral deblurring problem from an observed im-

age Y1 and a pseudo-observed image Ỹ
(k)
2 . Thanks to its quadratic form, this least-

square problem can be easily solved.
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4.8.2. Correction: optimization w.r.t. ∆X

The predicted image that would be observed by sensor S2 at time t1 can be defined

as

Y̌
(k)
2 = L2X

(k)
1

with the resulting predicted change image

∆Y̌
(k)
2 = Y2 − Y̌

(k)
2 .

The objective function (7) w.r.t. ∆X is then rewritten by combining (34) and (35) with

(7), leading to

JS8,2(∆X) , JS8(X
(k)
1 ,∆X)

=
∥∥∥Λ− 1

2
2

(
∆Y̌

(k)
2 − L2∆X

)∥∥∥2

F
+ γ ‖∆X‖2,1 .

(43)

As for scenario S4, minimizing (43) is a spectral deblurring of the predicted change

image ∆Y̌
(k)
2 , which can be achieved using a forward-backward algorithm as proposed

in [14].

4.9. Scenario S9

This scenario generalizes scenario S4, but with relative spectral responses involving

non-overlapping bands. The joint forward observation model is then

Y1 = L1X1R1 + N1. (44a)

Y2 = L2 (X1 + ∆X) + N2. (44b)

which yields the objective function

JS9 (X1,∆X) =
1

2

∥∥∥Λ− 1
2

2 (Y2 − L2 (X1 + ∆X))
∥∥∥2

F

+
1

2

∥∥∥Λ− 1
2

1 (Y1 − L1X1R1)
∥∥∥2

F

+ λ
∥∥X1 − X̄1

∥∥2

F
+ γ ‖∆X‖2,1 .

Note that the estimated latent and change images are defined at the highest spatial

resolution while benefiting from the spectral resolutions of both observed images. The

choice of assuming that the image acquired by sensor S2 does not suffer from spatial
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degradation has been motivated by an easier and accurate estimation of the change

image ∆X by avoiding additional spatial super-resolution steps. The resulting sub-

problems involved in the AM algorithm are detailed below.

4.9.1. Fusion: optimization w.r.t. X1

As for scenarios S4 and S8, the corrected image Ỹ
(k)
2 can be defined as Ỹ

(k)
2 =

Y2 − L2∆X(k). Thus, updating the latent image X1 consists in minimizing

JS9,1 (X1) , JS9
(
X1,∆X(k)

)
=
∥∥∥Λ− 1

2
1 (Y1 − L1X1R1)

∥∥∥2

F

+
∥∥∥Λ− 1

2
2

(
Ỹ

(k)
2 − L2X1

)∥∥∥2

F
+ λ

∥∥X1 − X̄1

∥∥2

F
.

(45)

Minimizing (45) is challenging mainly due to the simultaneous presence of spatial and

spectral degradation matrices R1 and L2 with an additional spatial degradation L1.

Therefore, there is no closed-form solution for this problem, which can be eventu-

ally solved thanks to ADMM. By introducing the splitting variable U ∈ Rmλ×m1 =

X1R1. The resulting scaled augmented Lagrangian is

Lµ(X1,U,V) =
∥∥∥Λ− 1

2
1 (Y1 − L1U)

∥∥∥2

F

+
∥∥∥Λ− 1

2
2

(
Ỹ

(k)
2 − L2X1

)∥∥∥2

F
+ λ

∥∥X1 − X̄1

∥∥2

F

+
µ

2
‖X1R1 −U + V‖2F .

(46)

Closed-form expression of the minimizers of (46) w.r.t. X1 and U can be derived,

following [38] and a least-square formulation, respectively.

4.9.2. Correction: optimization w.r.t. ∆X

As both models (44b) and (41b) are the same, optimizing w.r.t. ∆X can be achieved

following the strategy detailed in paragraph 4.8.2, i.e., by spectrally deblurring a pre-

dicted change image ∆Y̌
(k)
2 thanks to the forward-backward algorithm proposed in

[14].

4.10. Scenario S10

This scenario generalizes all the previous scenario with the particular difficulties of

non-overlapping bands in the spectral responses and non-integer relative spatial down-
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sampling factor of the respective spatial degradations. The joint forward observation

model is given by (9), which results in the objective function JS10 in (7). Again, as

for scenarios S7 and S9, the choice of the spatial and spectral degradations applied to

the change image ∆X should be motivated by reaching the highest spatial and spectral

resolutions of this change image. The optimization sub-problems are finally discussed

below.

4.10.1. Fusion: optimization w.r.t. X1

For this scenario, the corrected image Ỹ
(k)
2 is given by (10), leading to an updating

rule of the X1 consists in minimizing (12). This minimization cannot be conducted

in a straightforward manner, since it requires to conduct a spectral deblurring and a

spatial super-resolution simultaneously. However, the optimal solution can be reached

by resorting to a ADMM with two splitting variables U1 = L1X1 ∈ Rmλ1×n and

U2 = X1R2 ∈ Rnλ×m2 . The resulting scaled augmented Lagrangian for the problem

is expressed as

Lµ(X1,U1,U2,V1,V2) =
∥∥∥Λ− 1

2
1 (Y1 −U1R1)

∥∥∥2

F

+
∥∥∥Λ− 1

2
2

(
Ỹ

(k)
2 − L2U2

)∥∥∥2

F
+ λ

∥∥X1 − X̄1

∥∥2

F

+
µ

2
‖L1X1 −U1 + V1‖2F +

µ

2
‖X1R2 −U2 + V2‖2F .

(47)

Closed-form expressions of the minimizers of (47) w.r.t. X1, U1 and U2 can be derived

as proposed in [38], [42] and following a least-square formulation, respectively.

4.10.2. Correction: optimization w.r.t. ∆X

For this scenario, given the current state X
(k)
1 of the latent image, the predicted im-

age that would be observed by the sensor S2 at time t1 can be defined as in (13) leading

to the predicted change image (14). Then, the correction step consists in minimizing

the objective function JS10,1(∆X) in (16). It consists in conducting a spectral deblur-

ring and spatial super-resolution jointly. This problem has no closed-form solution.

Therefore, the objective function is iteratively minimized using an ADMM with two

splitting variables W1 ∈ Rmλ1×n = L1∆X and W2 ∈ Rnλ×n = ∆X. The resulting
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scaled augmented Lagrangian for the problem is expressed as

Lµ(∆X,W1,W2,V1,V2) =∥∥∥Λ− 1
2

2

(
∆Y̌

(k)
2 −W1R2

)∥∥∥2

F
+ γ ‖W2‖2,1

+
µ

2
‖L1∆X−W1 + V1‖2F +

µ

2
‖∆X−W2 + V2‖2F .

(48)

Closed-form expression of the minimizers of (48) w.r.t. ∆X, W1 and W2 can be

derived, following a least-square formulation, the computation proposed in [42] and a

group soft-thresholding, respectively.

5. Experiments

5.1. Reference images

To illustrate the performance of the proposed algorithmic framework using real

multi-band optical data on each specific scenario discussed in paragraph 4, observed

images from 4 largely studied open access multi-band sensors have been chosen, namely

Landsat-8 from [35], Sentinel-2 from [12], Earth observing-1 Advanced Land Imager

(EO-1 ALI) [34] and Airborne Visible Infrared Imaging Spectrometer (AVIRIS) from

[20]. These images have been acquired over the same geographical location, i.e., the

Mud Lake region in Lake Tahoe, CA, USA between June 8th, 2011 and October 29th,

2016. Unfortunately, no ground truth information is available for the chosen image

pairs, as experienced in numerous experimental situations [4]. However, this region is

characterized by interesting natural meteorological changes, e.g., drought of the Mud

Lake, snow falls and vegetation growth, occurring along the seasons which help to vi-

sually infer the major changes between two dates and to assess the relevance of the

detected changes. All considered images have been manually geographically and geo-

metrically aligned to fulfill the requirements imposed by the considered CD setup.

In addition to the data provided by these sensors, complementary images have been

synthetically generated by considering so-called virtual sensors derived from the real

ones. The specifications of these virtual sensors, summarized in Figure 1, are chosen

such that all applicative scenarios previously discussed can be diversely represented.
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They are met by selecting a subset of the initial spectral bands or by artificially degrad-

ing the spatial resolution of the real sensors.

300 500 700 900 1100 1300 1500 1700 1900 2100 2300 2500

Wavelenght (nm)
H
S-2

9

AVIR
IS

 H
S-2

24
M

S-3
M

S-6

Sen
tin

el
-2

 M
S-4

M
S-3

M
S-9

EO
-1

 A
LI

 P
AN

M
S-3

M
S-5

M
S-8

La
nd

sa
t 8

 P
AN

15m

15m

10m

20m

10m

30m

10m

30m

30m

30m

15m

30m

S
p

a
ti
a

l 
R

e
s
o

lu
ti
o

n

Figure 1: Spectral and spatial characteristics of real (green) and virtual (red) sensors.

5.1.1. Landsat-8 images

Landsat-8 is the eighth Earth observation satellite series of the US LANDSAT

Program [35], launched on February 11th, 2013 with 16-days revisiting period. It

is equipped with the Operational Land Imager (OLI) and the Thermal InfraRed Sen-

sor (TIRS). In the conducted experiments, 3 sets of real images acquired at the dates

10/18/2013, 04/15/2015 and 09/22/2015 have been considered. For each acquisition,

Landsat-8 provides

• one panchromatic image over the spectral range 0.503–0.676µm (band ]8) at a

15m spatial resolution (denoted PAN),

• one multispectral image of 8 spectral bands (bands ]1–]7 and ]9) at a 30m reso-

lution (denoted MS-8).

For experimental purpose, as explained above, these real images are complemented

with the following virtually acquired images
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• one multispectral image of 5 spectral bands (bands ]1–]4 and ]7) at a 30m spatial

resolution (denoted MS-5),

• one red-green-blue (RGB) multispectral image of 3 spectral bands (bands ]2–]4)

at a 30m spatial resolution (denoted MS-3).

5.1.2. Sentinel-2 images

Sentinel-2 is a series of two identical satellites for Earth observation missions de-

veloped by ESA [12] as part of the Copernicus Program launched in 2015 and 2017

with 5-days revisiting period. The multi-spectral instrument embedded on each plat-

form is composed of two different sensors for acquisition in the visible and infrared

spectral domains, respectively. The actual dataset used in the experiments is composed

of two images acquired on 04/12/2016 and 10/29/2016 and, for each real scene, among

all available spectral bands, one considers

• one multispectral image of 4 visible/near infrared (VNIR) spectral bands (bands

]2–]4 and ]8) at a 10m spatial resolution (denoted MS-4)

• one multispectral image of 6 short wave infrared spectral range (SWIR) spectral

bands (bands ]5–]8a and ]11–]12) at a 20m spatial resolution (denotes MS-6)

and one additional virtually image, namely,

• one RGB multispectral image of 3 spectral bands (bands ]2–]4) at a 10m spatial

resolution (denoted MS-3).

5.1.3. EO-1 ALI images

Operated by NASA, EO-1 ALI is a Earth observation satellite part of the New Mil-

lennium Program launched in 2000 with 16-days repeat cycle and decommissioned

in 2017 [34]. The main embedded sensor Advanced Land Imager (ALI) is comple-

mented with the Hyperion spectrometer and the Linear Etalon Imaging Spectrometer

Array (LEISA) for atmospheric correction. The considered dataset corresponds to 2

acquisition dates, 06/08/2011 and 08/04/2011, for
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• one panchromatic image over the spectral range 0.48–0.69µm (band ]1) at a 10m

spatial resolution (denoted PAN),

• one multispectral image of 9 spectral bands (bands ]2–]10) at a 30m resolution

(denoted MS-9),

in addition to the virtual acquisition of

• one RGB multispectral image of 3 spectral bands (bands ]3–]5) at a 30m spatial

resolution (denoted MS-3).

5.1.4. AVIRIS images

AVIRIS is the second aircraft embedding an image spectrometer developed by Jet

Propulsion Laboratory (JPL) for Earth remote sensing [20]. It delivers calibrated im-

ages in 224 contiguous 10nm-width spectral channels ranging from 0.4µm to 2.5µm.

Since it is an airborne-dependent system, the spatial resolution is not a priori fixed and

is designed for each individual acquisition. The dataset considered in the conducted

experiments is composed by two real images acquired on 04/10/2014 and 09/19/2014.

For each scene, one considers

• the original hyperspectral image of 224 spectral bands at a 15m spatial resolution

(denoted HS-224)

• one virtual hyperspectral image of 29 spectral bands (corresponding to the RGB

domain) at a 15m spatial resolution (denoted HS-29)

5.2. Design of the spatial and spectral degradations

The proposed model requires the prior knowledge of spectral and spatial degrada-

tion matrices L and R = BS, respectively. Regarding the spectral degradation matri-

ces required in each simulation scenario, they can be easily derived from the intrinsic

sensor characteristics freely available by averaging the spectral bands corresponding to

the prescribed response. Conversely, the spatial degradation is not a sensor specifica-

tion. It depends not only on the considered systems as well as external factors but also

on the targeted resolution of the fused image. This work relies on commonly adopted
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assumptions by considering R as a Gaussian blur and by adjusting the downsampling

factor in S as an integer value corresponding to the relative ratio between spatial reso-

lution of both observed images.

5.3. Compared methods

As previously exposed, the proposed robust fusion-based CD framework (referred

to as RF) is able to deal with all combinations of mono- and multi-band optical images

of different spatial and spectral resolutions. However, up to author’s knowledge, there

is no technique in the literature with such a versatility, i.e., able to address all these

scenarios. For this reason, the technique referred to as the worst-case (WC) and also

considered in [14] has been used as a baseline and state-of-the-art CD technique. This

WC method consists in preprocessing the observed images by spatially and/or spec-

trally degrading them in order to reach a set of observed images of the same spectral

and spatial resolutions. Then, when handling images of same resolutions, classical CD

technique, e.g., CVA proposed in [22], can be easily conducted to build a low spatial

resolution change mask denoted d̂WC.

5.4. Results

The following paragraphs discuss the CD performance of the proposed RF method

and of the WC approach for each applicative scenario detailed in paragraph 4 (see also

Table 1). Depending on the considered scenario, pairs of real and/or virtual images

described in paragraph 5.1 are selected, benefiting from different acquisition times

but common acquisition location. Table 3 summarizes the pair of observed images

provided by the real and/or virtual sensors used in each scenario. Note that several

combinations of images can be made for Scenarios S1–S5.

5.4.1. Scenario S1

In the first scenario, CD is conducted on a pair of images of same spatial and spec-

tral resolutions, which corresponds to the most favorable and commonly considered

CD framework. Figures 2 to 4 present the CD binary masks recovered by the proposed

RF-based CD method as well as by the WC method for three pairs of panchromatic,
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Image ]1 Image ]2

Sensor
Spatial
resol.

Spectral
resol. Sensor

Spatial
resol.

Spectral
resol.

S1

Landsat-8 15 PAN Landsat-8 15 PAN

Landsat-8 30 MS-3 Landsat-8 30 MS-3

AVIRIS 15 HS-224 AVIRIS 15 HS-224

S2
EO-1 ALI 10 PAN Sentinel-2 10 MS-3

Landsat-8 15 PAN AVIRIS 15 HS-29

S3
Sentinel-2 10 MS-3 EO-1 ALI 30 MS-3

Sentinel-2 10 MS-3 Landsat-8 30 MS-3

S4

Landsat-8 15 PAN Landsat-8 30 MS-3

EO-1 ALI 10 PAN Landsat-8 30 MS-3

Landsat-8 15 PAN EO-1 ALI 30 MS-3

S5
EO-1 ALI 30 MS-3 AVIRIS 15 HS-29

Landsat-8 30 MS-3 AVIRIS 15 HS-29

S6 EO-1 ALI 10 PAN Landsat-8 15 PAN

S7 Sentinel-2 10 MS-3 Landsat-8 15 PAN

S8 Landsat-8 30 MS-8 EO-1 ALI 30 MS-9

S9 Landsat-8 30 MS-5 Sentinel-2 10 MS-4

S10 Sentinel-2 20 MS-6 EO-1 ALI 30 MS-9

Table 3: Pairs of real and/or virtual images, and their spatial and spectral characteristics, used for each

applicative scenario.

multispectral and hyperspectral images, respectively. Note that, in this scenario, the

WC boils down to conduct CVA directly on the observed images since they already

share the same spatial and spectral resolutions and, thus, do not require to be degraded

to be able to conduct pixelwise comparison. These CD maps show that both CD meth-

ods detect the most significant changes, in particular the draught of the lake. However,

for all configurations, the proposed method visually present CD maps with better detec-

tion/false alarm rates when compared with the WC method. This can be explained by

the fact that the proposed method denoises the observed image while jointly estimating
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the change image ∆X. Conversely, the WC method directly uses the observed images

to derive the change image, which may suffer from noise introducing false alarms and

misdetections. This is particularly visible in Fig. 4 depicting the results obtained from

a hyperspectral image, known to be of lower signal-to-noise ratio.

(a) Y1 (b) Y2

(c) d̂WC (d) d̂RF

Figure 2: Scenario S1: (a) Landsat-8 15m PAN observed image Y1 acquired on 04/15/2015, (b) Landsat-8

15m PAN observed image Y2 acquired on 09/22/2015, (c) change mask d̂WC estimated by the WC method

and (d) change mask d̂RF estimated by the proposed approach.

5.4.2. Scenario S2

This CD scenario deals with observed images of same spatial resolution but differ-

ent spectral resolutions. Figures 5 and 6 illustrate two possible situations and show the

CD results of the proposed RF-based CD method compared with the WC method. In
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(a) Y1 (b) Y2

(c) d̂WC (d) d̂RF

Figure 3: Scenario S1: (a) Landsat-8 30m MS-3 observed image Y1 acquired on 04/15/2015, (b) Landsat-8

30m MS-3 observed image Y2 acquired on 09/22/2015, (c) change mask d̂WC estimated by the WC method

and (d) change mask d̂RF estimated by the proposed approach.

this scenario, similarly to scenario S1, both estimated CD maps have the same spatial

resolution as the observed image pair, which means that there is not any loss of spatial

resolution. On the other hand, the proposed method delivers a change map estimated

from ∆X of same spectral resolution as the highest spectral resolution among the two

observed images. Conversely, the WC method conducts CVA on a pair of images after

spectral degradation to reach the lowest spectral resolution, which possibly results in

loss of significant information. The consequent impact on the change/no-change deci-

sion is the visual reduction of false alarm rate for the proposed RF method, even if both
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(a) Y1 (b) Y2

(c) d̂WC (d) d̂RF

Figure 4: Scenario S1: (a) AVIRIS 15m HS-224 observed image Y1 acquired on 04/10/2014, (b) AVIRIS

15m HS-224 observed image Y2 acquired on 09/19/2014, (c) change mask d̂WC estimated by the WC

method and (d) change mask d̂RF estimated by the proposed approach.

CD maps have the same spatial resolution.

5.4.3. Scenario S3

In scenario S3, corresponding to the reverse situation encountered in scenario S2,

observed images share the same spectral resolution but with different spatial resolution.

Figures 7 and 8 present the results obtained for two possible real situations. Note that

CD maps obtained by the proposed RF method are of higher spatial resolutions than

the ones estimated by the WC approach. Thus, this scenario is the first to illustrate

the most important differences between both approaches, i.e., the difference in spatial
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(a) Y1 (b) Y2

(c) d̂WC (d) d̂RF

Figure 5: Scenario S2: (a) EO-1 ALI 10m PAN observed image Y1 acquired on 06/08/2011, (b) Sentinel-

2 10m MS-3 observed image Y2 acquired on 04/12/2016, (c) change mask d̂WC estimated by the WC

approach from a pair of 10m PAN degraded images and (d) change mask d̂RF estimated by the proposed

approach from a 10m MS-3 change image ∆X̂.

resolutions of the CD maps. In scenario S2, the results have already shown that the

loss of spectral information inherent to the WC approach leads to an increase of false

alarms and misdetections. Here, the loss of spatial information when conducting the

WC approach results in an inaccurate localization of the possible changes.

5.4.4. Scenario S4

This scenario has been deeply investigated in [14] who conducted a comprehen-

sive analysis of the performance of the proposed RF-based CD method. This scenario
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(a) Y1 (b) Y2

(c) d̂WC (d) d̂RF

Figure 6: Scenario S2: (a) Landsat-8 15m PAN observed image Y1 acquired on 09/22/2015, (b) AVIRIS

15m HS-29 observed image Y2 acquired on 04/10/2014, (c) change mask d̂WC estimated by the WC

approach from a pair of 15m PAN degraded images and (d) change mask d̂RF estimated by the proposed

approach from a 15m HS-29 change image ∆X̂.

corresponds to a more difficult CD investigation than all previous ones since the pair

of observed images have not the same spatial neither spectral resolutions. As a conse-

quence, the conventional WC approach is constrained to compare a spatially degraded

version of one observed image with a spectrally degraded version of the other observed

image. Irredeemably, these degradations result in a loss of spectral information, es-

sential to assess the presence of change, and a loss of spatial information, required to

accurately localize the possible changes. On the contrary, the proposed method is able
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(c) d̂WC (d) d̂RF

Figure 7: Scenario S3: (a) Sentinel-2 10m MS-3 observed image Y1 acquired on 10/29/2016, (b) EO-1

ALI 30m MS-3 observed image Y2 acquired on 08/04/2011, (c) change mask d̂WC estimated by the WC

approach from a pair of 30m MS-3 degraded images and (d) change mask d̂RF estimated by the proposed

approach from a 10m MS-3 change image ∆X̂.

to derive the CD mask from a change image characterized by the best of the spectral

and spatial resolution of the observed images. Figures 9 to 11 depict the CD results

obtained for three common configurations and illustrate the superiority of the proposed

RF-based CD method.

5.4.5. Scenario S5

As in the previous case, this scenario handles images which do not share the same

spatial neither spectral resolutions. However, contrary to scenario S4, this scenario
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(a) Y1 (b) Y2

(c) d̂WC (d) d̂RF

Figure 8: Scenario S3: (a) Sentinel-2 10m MS-3 observed image Y1 acquired on 04/12/2016, (b) Landsat-

8 30m MS-3 observed image Y2 acquired on 09/22/2015, (c) change mask d̂WC estimated by the WC

approach from a pair of 30m MS-3 degraded images and (d) change mask d̂RF estimated by the proposed

approach from a 10m MS-3 change image ∆X̂.

considers one of the two images of higher spatial and spectral resolution. Again, the

WC is expected to be less reliable (in terms of decision and localization) due to the loss

of spectral and spatial information consecutive to the degradations before conducting

CVA. Figures 12 and 13 present the results obtained from two possible real configura-

tions. As expected the proposed RF-based CD method provides visually more satisfac-

tory results. In particular, as shown in Fig. 13, the WC method is unable to accurately

localize the change due to lake draught from the pair of multispectral and hyperspectral
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(a) Y1 (b) Y2

(c) d̂WC (d) d̂RF

Figure 9: Scenario S4: (a) Landsat-8 15m PAN observed image Y1 acquired on 09/22/2015, (b) Landsat-

8 30m MS-3 observed image Y2 acquired on 04/15/2015, (c) change mask d̂WC estimated by the WC

approach from a pair of 30m PAN degraded images and (d) change mask d̂RF estimated by the proposed

approach from a 15m MS-3 change image ∆X̂.

images.

5.4.6. Scenario S6

This scenario represents a particular instance of scenario S3, i.e., with two observed

images of different spatial resolution but same spectral resolution. Nevertheless, here,

the two spatial resolutions are related by a non-integer downsampling ratio which pre-

cludes the use of a unique spatial degradation matrix in the proposed RF-based CD

method. As detailed in paragraph 4.6, super-resolutions are conducted during the fu-
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(a) Y1 (b) Y2

(c) d̂WC (d) d̂RF

Figure 10: Scenario S4: (a) EO-1 ALI 10m PAN observed image Y1 acquired on 06/08/2011, (b) Landsat-8

30m MS-3 observed image Y2 acquired on 09/22/2015, (c) change mask d̂WC estimated by the WC ap-

proach from a pair of 30m PAN degraded images (d) change mask d̂RF estimated by the proposed approach

from a 10m MS-3 change image ∆X̂.

sion and correction steps of the AM algorithm, which leads to a change image ∆X̂

with a spatial resolution higher than the ones of the two observed images (defined as

the greatest common divisor of the resolutions). For instance, Fig. 14 illustrates one

possible configuration for which the observed images Y1 and Y2, depicted in Fig.

14(a) and 14(b), are of 15m and 10m spatial resolutions, respectively. Thus the change

image ∆X̂ and change mask d̂RF estimated by the proposed method are at a 5m reso-

lution. Conversely, the WC method provides a CD map at a spatial resolution based on
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Figure 11: Scenario S4: (a) Landsat-8 15m PAN observed image Y1 acquired on 09/22/2015, (b) EO-

1 ALI 30m MS-3 observed image Y2 acquired on 06/08/2011, (c) change mask d̂WC estimated by the

WC approach from a pair of 30m PAN degraded images (d) change mask d̂RF estimated by the proposed

approach from a 15m MS-3 change image ∆X̂.

the least common multiple, which is, in this case, 30m. The significantly higher spatial

resolution of the change map is clear in Fig. 14(d).

5.4.7. Scenario S7

This scenario consists in a more challenging context than scenario S6 since, in ad-

dition to the non-integer relative downsampling factor, the two observed images do

not share the same spectral resolution. As before, the change image ∆X̂ and the bi-

nary change mask d̂RF estimated by the proposed RF-based CD method are defined
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(a) Y1 (b) Y2

(c) d̂WC (d) d̂RF

Figure 12: Scenario S5: (a) EO-1 ALI 30m MS-3 observed image Y1 acquired on 08/04/2011, (b) AVIRIS

15m HS-29 observed image Y2 acquired on 04/10/2014, (c) change mask d̂WC estimated by the WC

approach from a pair of 30m MS-3 degraded images (d) change mask d̂RF estimated by the proposed

approach from a 15m HS-29 change image ∆X̂.

at a higher spatial resolution than both resolutions of the observed image. Figure 15

presents one example of this scenario. As expected, the proposed method benefits from

the estimated highest spatial and spectral resolution change image ∆X to localize the

changes, contrary to the WC method which can only exploit a pair of spatially and

spectrally degrade images. This important dual resolution gap contributes a lot in the

observed differences on the false alarm and good detection rates.
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(c) d̂WC (d) d̂RF

Figure 13: Scenario S5: (a) Landsat-8 30m MS-3 observed image Y1 acquired on 04/15/2015, (b) AVIRIS

15m HS-29 observed image Y2 acquired on 09/19/2014, (c) change mask d̂WC estimated by the WC

approach from a pair of 30m MS-3 degraded images and (d) change mask d̂RF estimated by the proposed

approach from a 15m HS-29 change image ∆X̂.

5.4.8. Scenario S8

Scenario S8 generalizes scenario S2, with the particular case of presence of non-

overlapping bands in the two sensor spectral responses, which requires the simultane-

ous use of two spectral degradation matrices in the proposed RF method. Figure 16

provides one instance of this scenario. Due to the presence of non-overlapping bands,

before conducting CVA, the WC requires to ignore the spectral bands which are not

commonly shared by the two observed images. Conversely, by fully exploiting the
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(c) d̂WC (d) d̂RF

Figure 14: Scenario S6: (a) Landsat-8 15m PAN observed image Y1 acquired on 10/18/2013, (b) EO-

1 ALI 10m PAN observed image Y2 acquired on 08/04/2011, (c) change mask d̂WC estimated by the

WC approach from a pair of 30m PAN degraded images (d) change mask d̂RF estimated by the proposed

approach from 5m PAN change image ∆X̂.

whole available spectral information, the proposed method combines the overlapped

bands and the non-overlapping bands to estimate a change image ∆X̂ of higher spec-

tral resolution than the two observed images. This higher amount of information leads

to visually more consistent results in Fig. 16(d).

5.4.9. Scenario S9

This scenario correspond to a modified instance of scenario S4 (images of different

spatial and spectral resolutions) with some non-overlapping bands (as for the previous
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(c) d̂WC (d) d̂RF

Figure 15: Scenario S7: (a) Sentinel-2 10m MS-3 observed image Y1 acquired on 04/12/2016, (b) Landsat-

8 15m PAN observed image Y2 acquired on 09/22/2015, (c) change mask d̂WC estimated by the WC

approach from a pair of 30m PAN degraded images and (d) change mask d̂RF estimated by the proposed

approach from 5m MS-3 change image ∆X̂.

scenario). The results obtained for one configuration are depicted in Figure 17. In

this case, the change image ∆X̂ is characterized by a spatial resolution defined by

the highest one among the observed image with a spectral resolution higher than both

observed images. Once again, the results show the accuracy of the proposed method in

terms of detection and spatial resolution of the estimated change map.
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(a) Y1 (b) Y2

(c) d̂WC (d) d̂RF

Figure 16: Scenario S8: (a) Landsat-8 30m MS-8 observed image Y1 acquired on 04/15/2015, (b) EO-

1 ALI 30m MS-9 observed image Y2 acquired on 06/08/2011, (c) change mask d̂WC estimated by the

WC approach from a pair of 30m MS-7 degraded images (d) change mask d̂RF estimated by the proposed

approach from 30m MS-10 change image ∆X̂.

5.4.10. Scenario S10

The last scenario combines of the difficulties previously encountered: images of

different spatial and spectral resolution, characterized by a non-integer relative down-

sampling factor and non-overlapping spectral bands. As for scenarios S6 and S7, the

change image ∆X̂ and change mask d̂RF recovered by the proposed RF-based CD

method is of higher spatial resolution than the two observed images. In addition, as for

scenario S8 and S9, the change image is also defined at a higher spectral resolution.

52



(a) Y1 (b) Y2

(c) d̂WC (d) d̂RF

Figure 17: Scenario S9: (a) Landsat-8 30m MS-5 observed image Y1 acquired on 09/22/2015, (b) Sentinel-

2 10m MS-4 observed image Y2 acquired on 04/12/2016, (c) change mask d̂WC estimated by the WC

approach from a pair of 30m MS-3 degraded images and (d) change mask d̂RF estimated by the proposed

approach from a 10m MS-6 change image ∆X̂.

Conversely, the WC approach derives a change image of lower spatial and spectral res-

olutions before conducting CVA. Figure 18 depicts the results obtained by both meth-

ods. On this particularly challenging scenario, the proposed approach demonstrates its

superiority in recovering relevant changes and in localizing them accurately.
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(c) d̂WC (d) d̂RF

Figure 18: Scenario S10: (a) Sentinel-2 20m MS-6 observed image Y1 acquired on 04/12/2016, (b) EO-1

ALI 30m MS-9 observed image Y2 acquired on 06/08/2011,(c) change mask d̂WC estimated by the WC

approach from a pair of 60m MS-4 degraded images and (d) change mask d̂RF estimated by the proposed

approach from a 10m MS-11 change image ∆X̂.

6. Conclusion

This paper derived a robust fusion framework to perform change detection between

optical images of different spatial and spectral resolutions. The versatility of the pro-

posed approach allowed all possible real scenarios to be handled efficiently. The tech-

nique was based on the definition of two high spatial and spectral resolution latent

images related to the observed images via a double physically-inspired forward model.

The difference between these two latent images was assumed to be spatially sparse,
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implicitly locating the changes at a high resolution scale. Inferring these two latent

images was formulated as an inverse problem which was solved within a 2-step itera-

tive scheme. Depending on the considered scenario, these 2 steps can be interpreted as

ubiquitous signal & image processing problems (namely spatial super-resolution, spec-

tral deblurring, denoising or multi-band image fusion) for which closed-form solutions

or efficient algorithms had been recently proposed in the literature. Real images ac-

quired by four different sensors were used to illustrate the accuracy and the flexibility

of the proposed method, as well as its superiority with respect to the state-of-the-art

change detection methods. Future works will assess the robustness of the proposed

technique w.r.t. nonlinear effects (e.g., due to atmospheric effects, geometric and ra-

diometric distortions). Detecting changes between optical and non-optical data is also

under investigation.

Appendix A. Matrix normal distribution

The probability density function p(X|M,Σr,Σr) of a matrix normal distribution

MNr,c(M,Σr,Σc) is given in [18]

p (X|M,Σr,Σr) =
exp(− 1

2 tr[Σ
−1
c (X−M)TΣ−1

r (X−M)])
(2π)rc/2|Σc|r/2|Σr|c/2

where M ∈ Rr×c is the mean matrix, Σr ∈ Rr×r is the row covariance matrix and

Σc ∈ Rc×c is the column covariance matrix.
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