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Abstract

Multimodal video sentiment analysis is a rapidly growing area. It combines

verbal (i.e., linguistic) and non-verbal modalities (i.e., visual, acoustic) to

predict the sentiment of utterances. A recent trend has been geared towards

different modality fusion models utilizing various attention, memory and

recurrent components. However, there lacks a systematic investigation on

how these different components contribute to solving the problem as well as

their limitations. This paper aims to fill the gap, marking the following key

innovations. We present the first large-scale and comprehensive empirical

comparison of eleven state-of-the-art (SOTA) modality fusion approaches in

two video sentiment analysis tasks, with three SOTA benchmark corpora.

An in-depth analysis of the results shows that the attention mechanisms

are the most effective for modelling crossmodal interactions, yet they are
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computationally expensive. Second, additional levels of crossmodal inter-

action decrease performance. Third, positive sentiment utterances are the

most challenging cases for all approaches. Finally, integrating context and

utilizing the linguistic modality as a pivot for non-verbal modalities improve

performance. We expect that the findings would provide helpful insights and

guidance to the development of more effective modality fusion models.

Keywords: multimodal human language understanding, video sentiment

analysis, emotion recognition, reproducibility in multimodal machine learning

1. Introduction

Human language is inherently multimodal and is manifested via words (i.e.,

linguistic modality), gestures (i.e., visual modality), and vocal intonations

(i.e., acoustic modality). Consequently, we need to process both verbal (e.g.,

linguistic utterances) and nonverbal signals (e.g., visual, acoustic utterances)

to better understand human language. Verbal signals often vary dynamically

in different nonverbal contexts. Even though for humans, comprehending

human language is an easy task, this is a non-trivial challenge for machines.

Giving machines the capability to understand human language effectively

opens new horizons for human-machine conversation systems [1], tutoring

systems [2], and health care [3], to name a few applications.

The challenge of modelling human language lies in coordinating time-

variant modalities. At its core, this research area focuses on modelling

intramodal and crossmodal dynamics [4]. Intramodal dynamics refer to

interactions within a specific modality, independent of other modalities. An

example is word interactions in a sentence. Crossmodal dynamics refer to
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interactions across several modalities, for example, a simultaneous presence of

a negative word, a frown, and a soft voice. Such interactions, occurring at the

same time step, are called synchronous crossmodal interactions. Crossmodal

interactions might span over a long-range multimodal sequence and are called

asynchronous crossmodal interactions. For example, the negative word with

the soft voice at the time step t might interact with the frown at the time

step t+ 1.

Early approaches for learning multimodal representations have widely

utilized conventional natural language processing (NLP) techniques in multi-

modal settings [5, 6, 7, 8]. A recent trend in multimodal embedding learning

research is to build more complex models utilizing attention, memory, and

recurrent components [9, 10, 11, 12, 13, 14, 15]. Various review papers have

surveyed the advancements in multimodal machine learning [16, 17, 18, 19, 20].

In particular, they mostly provide an insightful organization of modality fu-

sion strategies. They also identify broader challenges faced by multimodal

representation learning, such as synchronization across different modalities,

confidence level, contextual information, etc. However, none of them has

conducted a comprehensive empirical study across different state-of-the-art

(SOTA) fusion approaches to multimodal language analysis, intending to

provide critical and experimental analysis. Such an extensive empirical evalu-

ation would be useful to find out which aspects in the SOTA approaches are

the most effective in solving the problem of multimodal language analysis.

This paper aims to fill the gap. In particular, we replicate and evaluate

the most recent SOTA fusion approaches for modelling human language on

three widely used benchmark corpora for multimodal sentiment and emotion
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analysis [21, 22, 23], and investigate the following Research Questions (RQ).

• RQ1 How effective are the current machine learning-based multimodal

fusion strategies for the sentiment analysis and emotion recognition

tasks?

• RQ2 How efficient are the SOTA multimodal fusion strategies, and how

could the effectiveness affect efficiency, in the context of the multimodal

sentiment and emotion analysis tasks?

• RQ3 Which components/aspects in the multimodal language models

and fusion strategies are the most effective?

The rest of the paper is organized as follows: Section 2 briefly reviews the

related work. Section 3 describes the experiments in detail. The experimental

results are shown and discussed in Section 4 and 5, respectively. Finally,

Section 6 concludes the paper.

2. Related Work

In this section, we provide a review of multimodal representation learn-

ing and multimodal time series for video sentiment analysis and emotion

recognition.

2.1. Multimodal representation learning

Multimodal representation learning is a research area of great interest due

to the proliferation of multimedia data (e.g., textual, visual, and acoustic)

available in various contexts. A recent trend in NLP research has been geared

towards a variety of multimodal applications, including visual recognition
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[24], multimodal sentiment analysis [25], visual-acoustic emotion recognition

[26], visual question answering [27], and medical image analysis [28].

An early overview of multimodal information retrieval (MMIR) briefly

presents the basic concepts of MMIR with emphasis on challenges in MMIR

systems, feature extraction, and fusion strategies [29]. A more comprehensive

review of various multimodal tasks is given by [16]. In [17], Sun reviews

multiple kernel and subspace algorithms for multi-view learning. Recent

advances in multimodal machine learning have been reviewed, covering various

directions of the field, such as representation, translation, alignment, fusion,

and co-learning [19, 18].

More recently, research in the affective computing field has attracted

the attention of many researchers due to the recent availability of relatively

large-scale datasets for video sentiment analysis and emotion recognition tasks

[21, 22, 23, 30]. A comprehensive literature review of multimodal affective

analysis frameworks is given by Poria et al. [20]. Besides, Fatemeh et al. [31]

survey strategies for emotion recognition from body gestures. However, none

of the above surveys provides a comprehensive empirical study of the very

new multimodal language fusion strategies for sentiment analysis.

2.2. Multimodal Sentiment Analysis

Learning multimodal language embeddings is based on modelling in-

tramodal and crossmodal dynamics. Early, late, and hybrid fusion strategies

have been utilized to model such dynamics. Early fusion approaches integrate

features after being extracted [32]. Late fusion approaches build up diverse

classifiers for each modality and then aggregate their decisions by voting [33],

averaging [34], weighted sum [35] or a trainable model [36, 37, 38]. Hybrid
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strategies, combining outputs from early fusion and individual unimodal

predictions, outperform simple feature-level or decision-level approaches [37].

Early work has pushed some progress towards multimodal language embed-

ding learning [39, 40]. A range of neural approaches, such as Recurrent Neural

Networks (RNNs) [41], Long Short-Term Memory (LSTM) neural networks

[42], and Convolutional Neural Networks (CNNs) [43], have been used to

learn language-based multimodal embeddings by fusing either input features

per timestamp or unimodal output hidden units [5, 6, 7, 8].

Recent advances in deep learning have led to more sophisticated approaches

for modelling temporal intramodal and crossmodal interactions across uni-

modal sequences. Early advancements of this field utilized tensor-based fusion

approaches for entangling [44] and disentangling [45, 46] multimodal repre-

sentations. Those approaches fuse unimodal features at the utterance level

[44, 45, 46], word level [47], or in a hierarchical manner [48]. Recently, Mai

et al. [49] exploited the tensor-based strategy to fuse segmented unimodal

information for capturing local interactions. Then, the local tensors fed a

bidirectional skip connection LSTM to learn global interactions.

Considering human language contains time series and thus requires fus-

ing time-varying signals, a recent trend is to exploit LSTMs and RNNs to

fuse unimodal representations at the feature level [12, 50]. Amongst those

approaches, some of them use hybrid memory components, constructed from

the hidden units of each modality at the previous timestamp and fed as an

additional input of the next timestamp [12, 13]. In [51], Beard et al. proposed

a recursive attention-based memory network for constructing contextualized

multimodal embeddings. In contrast to typical RNN, the consecutive cells of

6



the proposed recursive recurrent neural network share the same input.

Inspired by successful trends in NLP, some approaches introduced encoder-

decoder structures in sequence-to-sequence learning by translating a target

modality to a source modality [14, 15, 52]. In contrast to the previous

translation strategies, Wang et al. [53] adopted a parallel translation approach

by fusing linguistic with acoustic features and linguistic with visual features

independently to eliminate noise interference between modalities. Other

fusion strategies incorporated reinforcement learning [54], fuzzy logic[55],

bilinear pooling [56], deep canonical correlation analysis [57], hierarchical

fusion strategies [58, 59], and simple but strong baselines [60].

Recently, attention mechanisms have been exploited to align different

modalities, resulting in better-performing modality fusion approaches [9, 10,

11, 61]. Besides multimodal fusion, attention mechanisms have also been

exploited for visual and acoustic feature extraction, yielding improved perfor-

mance [56]. [9] was considered the SOTA feature-level fusion approach for

utterance-level video sentiment analysis for CMU-MOSI, CMU-MOSEI, and

IEMOCAP tasks. However, very recently [61] achieved higher performance

than [9] on CMU-MOSI and IEMOCAP tasks.

Most of the above strategies are black-box approaches, which come with the

price of lacking interpretability. Having said that, some holistic frameworks

endowed models with inherent interpretability by separating crossmodal

interactions. For instance, the contributions to the prediction from each

modality and the interactions between modalities, i.e., bi-modal and tri-modal

interactions, have been investigated through an interpretable multimodal

fusion framework [62]. Hazarika et al. [63] exploited two subspaces, a joint
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subspace and a modality-specific subspace, to capture uni-modal and tri-modal

interactions. In [61], authors applied seven distinct self-attention mechanisms

to the factorized multimodal representation, capturing all possible uni-modal,

bi-modal, and tri-modal interactions, simultaneously.

In this work, we align nonverbal features with words before training. That

is, we model crossmodal interactions on aligned timestamps (i.e., synchronous

crossmodal interactions) without considering long-range contingencies across

different modalities (i.e., asynchronous crossmodal interactions). Recently a

few approaches have been proposed to model long-range crossmodal interac-

tions across multimodal sequences [9, 11, 50]. However, working on unaligned

features is a non-trivial task. A fair comparison between word-aligned se-

quences and unaligned multimodal time series shows a decreased performance

for unaligned multimodal streams [9].

Finally, it is worth noting that there are other approaches that consider

contextual information from surrounding utterances, thus aiding the sentiment

analysis and emotion recognition tasks. Current work utilizes supervised NLP

approaches to model contextual interactions among utterances, including

recurrent neural networks [6, 64], memory networks [65, 66], sequence-to-

sequence networks [67], graph neural networks [68], and quantum-inspired

networks [69]. Nevertheless, these approaches are beyond the scope of this pa-

per since they consider modality fusion as a simple concatenation of unimodal

features.
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3. Methodology

This section details the methodology we used for our empirical study of

the most recent SOTA multimodal language fusion approaches, in the context

of video sentiment and emotion analysis tasks. We first formulated the task on

which our study was carried out. Sentiment analysis was a binary multimodal

classification task inferring either positive or negation emotions. Emotion

recognition was a multimodal multilabel classification task inferring one or

more emotions, e.g., happy and joyful. However, both tasks aim to capture

emotions of video utterance and fall under affective computing field [70].

3.1. Task definition

The goal is to infer the emotion of utterances from video speakers. Each

video consists of N sequential utterances U = (U1, ..., Ui, ..., UN), where i

is the ith utterance. Each utterance Ui is associated with three modalities,

namely, linguistic, visual, and acoustic, Ui = (U l
i , U

v
i , U

a
i ), 1 ≤ i ≤ N . The

corresponding labels for the N segments are denoted as y = (y1, ..., yi, ..., yN ),

yi ∈ R. We apply word-level alignment, where visual and acoustic features

are averaged across the time interval of each spoken word. Then, we zero-pad

the utterances to obtain time-series data of the same length. After this step,

language, visual, and acoustic features have the same length L. For the lin-

guistic modality the Ui utterance is represented by U l
i = (l1i , ..., l

L
i ). Similarly

for visual and acoustic modalities, it is represented by U v
i = (v1

i , ..., v
L
i ) and

Ua
i = (a1

i , ..., a
L
i ), respectively.
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3.2. Datasets

We empirically evaluated the SOTA approaches from the last two years on

multimodal sentiment analysis tasks by using two SOTA benchmark datasets,

namely CMU Multimodal Opinion-level Sentiment Intensity (CMU-MOSI)

[21] and the largest available dataset for multimodal sentiment analysis, CMU

Multimodal Opinion Sentiment and Emotion Intensity (CMU-MOSEI) [22].

We also evaluated the approaches to the multimodal emotion recognition

task using the IEMOCAP dataset [23]. We compared all approaches to

word-aligned multimodal language sequences, leaving the very challenging

comparison with unaligned language sequences for future work.

CMU-MOSI is a relatively balanced (1176 positive and 1023 negative utter-

ances) human multimodal sentiment analysis dataset consisting of 2,199 short

monologue video clips (each lasting the duration of a sentence). It has 1,284,

229, and 686 utterances in training, validation, and test sets, respectively.

CMU-MOSEI is a larger scale sentiment and emotion analysis dataset made

up of 22,777 movie review video clips from more than 1,000 online Youtube

speakers. The training, validation, and test sets are comprised of 16,265, 1,869

and 4,643 utterances, respectively. Human annotators labelled each sample

with a ratio score from -3 (highly negative) to 3 (highly positive) including

zero. Hence, the multimodal sentiment analysis task can be formulated as a

regression problem.

For MOSI and MOSEI, we used the CMU-Multi-modal Data SDK1 [22] for

feature extraction. Following previous work [9, 13, 50, 44, 45, 71], we converted

1https://github.com/A2Zadeh/CMU-MultimodalSDK
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video transcripts into 300-dimensional pre-trained Glove word embeddings

(glove.840B.300d) [72]. Besides, GloVe embedding is more computationally

affordable than other more effective, yet computationally expensive, word

embeddings [73, 74]. Facet 2 is used to capture facial muscle movement,

including per-frame basic and advanced emotions and facial action units.

We used VOCAREP [75] to extract low-level acoustic features (e.g., 12 Mel-

frequency cepstral coefficients, pitch tracking and voiced/unvoiced segmenting

features, glottal source parameters, peak slope parameters, and maxima

dispersion quotients). For MOSI, we extracted visual and acoustic features

at a frequency of 15Hz and 12.5 Hz respectively. For MOSEI, we extracted

at a frequency of 15 Hz and 20Hz. To reach the same time alignment across

modalities, we applied a word-level alignment. To align visual and acoustic

modalities with words, we used P2FA [76]. Then, to obtain the aligned

timesteps, we averaged the visual and audio features within these time ranges.

All sequences in the word-aligned case had length 50. For each word the

dimension of the feature vector was set to 300 (linguistic), 20 (visual), and 5

(acoustic) for MOSI, and 300 (linguistic), 35 (visual), and 74 (acoustic) for

MOSEI.

For multimodal emotion recognition, we used IEMOCAP. It consists of

151 videos about dyadic interactions, where professional actors are required

to perform scripted scenes that elicit specific emotions. It has 2,717, 798,

and 938 utterances in training, validation, and test sets, respectively. Human

annotators labelled each sample for four emotions (neutral, happy, sad, angry).

2https://pair-code.github.io/facets/
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The labels for every emotion are binary. That allowed us to reduce the

multiclass learning problem to a problem solvable using binary classifiers.

Following a one-vs-all strategy, for each emotion, we trained a robust classifier

to recognize one emotion from all the others. We followed a similar process

to the sentiment analysis datasets to extract features from 3 streams. The

linguistic, facial and acoustic embeddings are 300-dimensional, 35-dimensional,

and 74-dimensional vectors, respectively. All sequences are word-aligned

having length 50.

3.3. Evaluation Metrics

To evaluate the effectiveness on MOSI and MOSEI tasks, we adopted

a series of evaluation performance metrics used in prior work [22, 9, 13,

12]: binary accuracy (i.e., Acc2 : positive sentiment if values ≥ 0, and

negative sentiment if values < 0), 7-class accuracy (i.e., Acc7 : sentiment

score classification in Z ∩ [−3, 3]), F1 score, Mean Absolute Error (MAE) of

the score, and the Pearson’s correlation (Corr) between the model predictions

and regression ground truth. For all the metrics, higher values denote better

performance, except MAE where lower values denote better performance.

To evaluate the effectiveness on IEMOCAP, in contrast to previous work

reporting accuracy [9, 50], we reported recall and F1 score for individual

emotion classes. We empirically found that accuracy was a misleading mea-

surement for evaluating one-vs-all emotion classifiers. That is because there

is a class imbalance. For instance, the ratio of utterances labelled as happy

versus the other emotion equals 1/6. Indeed, some classifiers showed high

accuracy even thgouh they failed to distinguish the emotion of the class

from all the others correctly. To evaluate the overall performance of the
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SOTA models, we also calculate the weighted recall and weighted F1 score

measurements.

We evaluated efficiency by reporting: the number of parameters for each

approach, the training time of learning, i.e., speed-up during inference, and

the validation set convergence.

3.4. Experiments

To address our research questions, we devised three experiments as follows:

1. Experiment 1: We first replicated the SOTA approaches following

the same experiment set up, as reported in the original papers. Then,

we investigated the performance through a comprehensive critical and

experimental analysis.

2. Experiment 2: We compared the SOTA approaches in terms of effi-

ciency.

3. Experiment 3: We conducted several ablation studies to understand

a) the importance of modalities and b) which components contribute

most to modelling crossmodal interactions across the three modalities.

3.5. SOTA models

We replicated a variety of sequential attention mechanisms, memory,

tensor fusion, and translation neural approaches3 into a unified framework

in PyTorch. Most of their authors have made implementations available on

Github. We replicated the EF-LSTM, LF-LSTM, RMFN, and MARN models

from scratch .

3The code for our models and experiments is available on Github.
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Except for the Multimodal Transformer (MulT) [9], the rest of the modality

fusion methods are typically RNN-based deep learning networks. However,

we went beyond a typical one-to-one comparison and proposed a taxonomy

in terms of model features, namely: recurrent-based, tensor-based, attention

mechanism-based, memory-based, and translation-based networks. This

taxonomy will enable researchers to understand the SOTA field better and

identify directions for future research.

3.5.1. Recurrent cell-based networks

This category includes modality fusion approaches which mainly utilize

recurrent cells for each time step. In this case, the cells get stacked one after

the other, implementing an efficiently stacked RNN.

• Early-Fusion LSTM (EF-LSTM) [42] EF-LSTM concatenates lin-

guistic, visual, and acoustic features at each timestamp, and builds an

LSTM to construct sentence-level multimodal representation. The last

hidden state is taken and sequentially passed to two fully connected

layers to produce the output sentiment.

• Late-Fusion LSTM (LF-LSTM) [42]. LF-LSTM builds LSTMs for

linguistic, visual, and acoustic inputs separately, and concatenates the

last hidden state of the three LSTMs as sentence-level multimodal rep-

resentation. The concatenated hidden states are taken and sequentially

passed to two fully connected layers to produce the output sentiment.

• Recurrent Multistage Fusion Network (RMFN) [10] RMFN mod-

els crossmodal interactions through a divide-and-conquer approach in
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several stages. Intramodal dynamics are modelled through modality-

specific RNNs. For each timestep, the unimodal hidden states of RNNs

are concatenated. Then, the concatenated representation is processed

in multiple stages. For each stage, the most important modalities are

highlighted using an attention module and then fused with the previous

stage fused representations. In the end, a summary action generates a

multimodal joint representation which is fed back into the intramodal

RNNs as an additional input for the next timestep.

3.5.2. Tensor-based networks

This group of networks is mainly based on the tensor product of modalities

for entangling and disentangling information.

• Tensor Fusion Network (TFN) [44] TFN explicitly models view-

specific and cross-view dynamics by creating a multi-dimensional tensor

that captures unimodal, bimodal, and trimodal interactions across

linguistic, visual, and acoustic modalities.

• Low-rank Multimodal Fusion (LMF) [45]. LMF adopts the same

approach as TFN to model the multimodal representation. After that,

it applies a tensor decomposition approach by calculating the inner

product of the multimodal tensor with a weight tensor. The output is

a low-dimension vector, which is used to make predictions.

3.5.3. Attention mechanism-based networks

These approaches mainly exploit various attention mechanism components

to fuse modalities.
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• Multi-Attention Recurrent Network (MARN) [71]. MARM cap-

tures crossmodal dynamics at each timestamp. A multi-attention block

is built to construct a crossmodal representation, based on hidden states

of the previous timestamp, and fed into the inputs of the current times-

tamp. The crossmodal representation and hidden states of the last

timestamp are concatenated to form a multimodal sentence embedding,

which is sequentially passed to two fully connected layers to produce

the output sentiment.

• Multimodal Transformer (MulT) [9] MulT merges multimodal

time-series via a feed-forward fusion process from multiple directional

pairwise crossmodal transformers. Each crossmodal transformer is a

deep stacking of several crossmodal attention blocks. As a final step,

it concatenates the outputs from the crossmodal transformers and

passes the multimodal representation through a sequence model to

make predictions.

• Multimodal Uni-Utterance - Bimodal Attention (MMUU-BA)

[10] MMUU-BA encodes linguistic, visual, and acoustic streams through

three separate Bi-GRU layers followed by fully connected dense lay-

ers. Then, pairwise attentions are computed across all possible com-

binations of modalities, i.e., linguistic-visual, linguistic-acoustic, and

visual-acoustic. Finally, individual modalities and bimodal attention

pairs are concatenated to create the multimodal representation, used

for final classification. MMUU-BA makes predictions by applying a

fully connected layer to each timestamp. In our experiments, since we
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did not consider proceeding utterances, we extracted the last hidden

state only and fit it to a fully connected layer to make predictions.

• Recurrent Attended Variation Embedding Network (RAVEN)

[50] RAVEN learns multimodal shifted word representations conditioned

on the visual and acoustic modalities. Concretely, visual and acoustic

embeddings interact with each word embedding through an attention

gated mechanism to yield a nonverbal visual-acoustic vector. The

resulting vector is integrated into the original word embedding to model

the intensity of the visual-acoustic influence on the original word. By

applying the same method for each word in a sentence, the model outputs

a multimodal shifted word-level representation. The representation is

encoded into an LSTM followed by a fully connected layer to produce

an output that fits the task. Yet, in our experiments, we considered

the last hidden state to construct nonverbal visual-acoustic embeddings

since we worked on word-level aligned data.

3.5.4. Memory-based networks

This category extends recurrent neural models with a memory component

to model modality interactions.

• Memory Fusion Network (MFN) [13] MFN is a memory fusion net-

work that builds a multimodal gated memory component. The memory

cell is updated along with the evolution of the hidden states of three

unimodal LSTMs. The last memory cell is concatenated with the last

hidden states of unimodal LSTMs to construct the multimodal sentence
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representation. Then, the multimodal representation is sequentially

passed to two fully connected layers to produce the output sentiment.

3.5.5. Translation-based networks

This category includes neural machine translation approaches for modelling

human language by converting a source modality to a target modality.

• Multimodal Cyclic Translations Network (MCTN) [14] MCTN

is a hierarchical neural machine translation network with a source modal-

ity and two target modalities. The first level learns a joint representation

by using back translation. Then, the intermediate representation is

translated into the second target modality without back translation.

The multimodal representation is fed into RNN for final classification.

For our experiments, the source modality is the linguistic modality.

We first fine-tuned all models by performing a fifty-times random grid

search on the hyperparameters. We reported the final settings in Appendix A.

After the fine-tuning process, we trained all the models again for 50 epochs,

five times. We used the Adam optimizer with L1 loss as the loss function for

CMU-MOSI and CMU-MOSEI since sentiment analysis is formulated as a

regression problem. For IEMOCAP, we used cross-entropy loss since emotion

recognition is formulated as a multilabel classification problem. We reported

the average performance on the test set for all experiments.

4. Results

4.1. Effectiveness

In Table 1, we see that attention mechanism-based approaches, namely,

MulT, MMUU-BA, and RAVEN, exhibit the highest binary accuracy (between
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78.2% and 78.7%) on MOSI. MulT reports just 0.1% higher accuracy than

RAVEN. Yet, for Acc7, RAVEN reports an increased performance of 34.6%

as compared to 33.8% for MMUU-BA and 33.6% for MulT. TFN attained

the highest accuracy of 34.9% for Acc7. Raven and MMUU-BA report the

highest correlation (Corr). Despite the low accuracy, MCTN exhibits the

lowest mean absolute error. That might imply that MCTN needs more epochs

to converge (we found in [14] that MCTN had been trained for 200 epochs).

Overall, RAVEN was the most effective approach on MOSI task. T-tests did

not reveal a significant difference in binary accuracy across all approaches.

There is a discrepancy between the empirical results from our experiments

and the reported ones in literature. Specifically, we empirically found lower

accuracy for all the SOTA approaches, except RAVEN, which attained an

increased accuracy of 78.6% compared to 78% in [50]. A possible reason for the

discrepancy between literature and our empirical results may be that different

versions of the MOSI dataset had been used in the published works. Those

versions consist of different feature dimensions and sequence lengths. Another

possible explanation for this might be the fine-tuning parameters, which are

rarely reported in current work, making reproducibility a particularly tricky

task. In the literature, MulT is regarded as the SOTA approach among the 11

investigated approaches, reporting an increased binary accuracy of 83.0% as

compared to 78.7% in our experiments on MOSI. Note that for MulT we used

the same datasets, implementation, and configuration settings as described

in [9].

In Table 2, we present the results for multimodal sentiment analysis on

MOSEI. All approaches attained an improved performance compared to that
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Table 1: Comparative analysis across the SOTA approaches on MOSI.

Approach Acc7 Acc2 F1 MAE Corr

EF-LSTM [42] 32.7 75.8 75.6 1.000 0.630

LF-LSTM [42] 32.7 76.2 76.2 0.987 0.624

RMFN [10] 32.3 76.8 76.4 0.980 0.626

TFN [44] 34.9 75.6 75.5 1.009 0.605

LMF [45] 30.5 75.3 75.2 1.018 0.605

MARN [71] 31.8 76.4 76.2 0.984 0.625

MulT [9] 33.6 78.7 78.4 0.964 0.662

MMUU-BA [10] 33.8 78.2 78.1 0.947 0.675

RAVEN [50] 34.6 78.6 78.6 0.948 0.674

MFN [13] 31.9 76.2 75.8 0.988 0.622

MCTN [14] 32.3 76.2 76.2 0.903 0.630

of the MOSI dataset. We suspect this is because MOSEI is a much larger

dataset. MMUU-BA attained an increased binary accuracy of 80.7% compared

to 80.2% for RAVEN and MulT. MMUU-BA also reports the highest accuracy

for Acc7 and the highest correlation (Corr in Table 2) compared to all other

approaches. In general, we found that attention mechanism-based fusion

strategies, namely, MMUU-BA, MulT, and RAVEN, significantly outperform

the other approaches. Yet, there is no significant difference across MMUU-BA,

MulT, and RAVEN in terms of binary performance.

MOSEI is a recently published dataset. We can only compare the em-

pirical results from our experiments to the reported ones in literature for

RAVEN, MulT and MMUU-BA. In literature, MulT reports the best binary
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Table 2: Comparative analysis across the SOTA approaches on MOSEI.

Approach Acc7 Acc2 F1 MAE Corr

EF-LSTM [42] 45.7 78.2 77.1 0.687 0.573

LF-LSTM [42] 47.1 79.2 78.5 0.655 0.614

TFN [44] 47.3 79.3 78.2 0.657 0.618

LMF [45] 47.6 78.2 77.6 0.660 0.623

MARN [71] 47.7 79.3 77.8 0.646 0.629

MulT [9] 46.6 80.2 79.8 0.657 0.661

MMUU-BA [10] 48.4 80.7 80.2 0.627 0.672

RAVEN [50] 47.8 80.2 79.8 0.636 0.654

MFN [13] 47.4 79.9 79.1 0.646 0.626

performance, attaining an increased binary accuracy of 82.5% compared to

80.2% in our experiments even though we used the same experimental settings

as in [9]. In contrast, MMUU-BA reports an increased binary accuracy of

80.7% compared to 79.8% in literature. In [50], authors did not conduct

experiments on MOSEI. Yet, in [9], for RAVEN, authors reported a decreased

accuracy of 79.1% compared to our 80.2% (see Table 2). We could not run

experiments for RMFN or MCTN on MOSEI. RMFN was computationally

too expensive, and MCTN could not support MOSEI.

Following previous work [77], the binary performance across different

modality fusion approaches was compared for the MOSI and MOSEI tasks, as

shown in Figure 1. Each line style corresponds to the taxonomy of the SOTA

approaches. According to Figure 1, all approaches improve on the MOSEI

task. Besides, MulT and Raven yield similar performance for both MOSI
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and MOSEI tasks. That is, they show similar learning behaviour. However,

MMUU-BA shows a positive trend with a sharper rise in performance for the

MOSEI task than the MulT and RAVEN approaches.

Figure 1: Accuracy comparison across different modality fusion approaches for MOSI and

MOSEI tasks.

We present the results for the emotion recognition task in Table 3. In

contrast to sentiment analysis tasks, which calculate accuracy, we calculated

the class-wise recall to find out how many emotions were detected correctly

out of the total number of emotions for each emotion class. We also calculated

the weighed recall for each modality fusion method. The results show that

the happy emotion class is the most challenging for all approaches, while the

angry class is the most straightforward. Attention mechanism approaches,

e.g., MulT and MMUU-BA, are the most effective for the emotion recognition

task. In particular, MMUU-BA achieves the highest recall for happy and
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sad classes, while MulT recalls the most neutral utterances (see Table 3).

However, EF-LSTM has the highest sensitivity for the angry class. Overall,

MulT is the most effective approach for the emotion recognition task, yielding

an increased weighted recall of 60.2% as compared to 58.7% of the next best

approach, i.e., MMUU-BA. We cannot directly compare our results with

those in literature since binary accuracy is used as a prime performance

measurement. However, in [9], MulT is also the SOTA for the IEMOCAP

task.

Table 3: Comparative analysis across the SOTA approaches on IEMOCAP dataset.

Neutral Happy Sad Angry Weighted

Approach Recall F1 Recall F1 Recall F1 Recall F1 Recall F1

EF-LSTM [42] 57.3 61.2 20.7 30.8 57.7 62.0 80.7 71.7 57.8 59.5

LF-LSTM [42] 58.5 60.0 31.7 40.0 53.7 56.0 66.1 69.6 55.5 58.6

RMFN [10] 56.9 60.3 17.3 25.6 55.4 57.3 65.5 70.8 53.2 57.2

TFN [44] 60.0 61.9 19.3 28.0 53.4 57.3 76.4 72.9 56.7 58.7

LMF [45] 46.6 54.7 34.5 40.6 49.8 54.3 80.1 72.9 53.6 57.0

MARN [71] 55.1 59.6 27.1 35.1 57.2 57.4 70.4 71.2 55.2 58.4

MulT [9] 64.9 64.2 19.9 29.6 56.8 58.5 79.3 70.9 60.2 59.7

MMUU-BA [10] 57.0 60.0 35.6 41.8 58.2 61.2 75.5 71.9 58.7 60.5

RAVEN [50] 33.6 42.6 0.7 1.4 14.5 23.2 21.4 32.7 22.0 30.3

MFN [13] 49.4 55.6 35.1 42.1 56.2 55.5 64.5 67.3 52.4 56.5

Overall, we see that all approaches attained a lower binary performance

compared to the reported ones in literature, except RAVEN, which achieved

a higher performance on both MOSEI and MOSI, and MMUU-BA, which

achieved a higher accuracy on MOSEI. RAVEN is the most effective model

for the MOSI task, MMUU-BA for MOSEI, and MulT for IEMOCAP. That

is, attention mechanism-based approaches are the most effective for human
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multimodal affection recognition tasks. MulT is a robust competitive model,

but, in contrast to the literature, we found that it did not attain the highest

performances on sentiment analysis tasks. Yet, without considering efficiency,

we noticed that MulT, MMUU-BA, and RAVEN are the most appropriate

models for sentiment analysis, while MMUU-BA and MulT are the most

appropriate ones for emotion recognition. While RAVEN shows outstanding

performance for the sentiment analysis tasks, it yields the lowest performance

for the emotion recognition task.

Error Analysis. We conducted an error analysis on the above experiments.

Figure 2 shows the percent error4 per sentiment class on MOSI. Each line style

corresponds to the taxonomy of the SOTA approaches. Despite the fact that

MOSI is a relatively balanced dataset, consisting of 1176 positive and 1023

negative utterances, all fusion modality approaches yield a higher percent

error for the positive sentiment class compared to the negative sentiment

class (see Figure 2). In particular, most approaches show a percent error that

is twice as high for the positive sentiment class compared to the negative

sentiment class. We also noticed that attention mechanism-based approaches,

e.g., MMUU-BA, MulT, and RAVEN, achieve the lowest percent error for the

positive sentiment class. However, tensor-based modality fusion approaches,

e.g., TFN and LMF, are more effective in terms of performance for the

negative sentiment class. It is worth noting that RAVEN, achieving the

lowest percent error for the positive class, yields the highest percent error for

4We define percent error within a class as the difference between the estimated number

and the actual number when compared to the actual number expressed as a percentage.
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the negative class.

Figure 2: Percent error per sentiment class on MOSI.

Figure 3 depicts the percent error per sentiment class on MOSEI. In

contrast to MOSI, all approaches achieve a low percent error for the positive

sentiment class, whereas they struggle with negative utterances. We suspect

this is because MOSEI is an unbalanced dataset. That is, it consists of

11544 positive and 4721 negative utterances. The results show that once we

collected enough data, there was no significant difference among different

fusion modality approaches in terms of performance (see the positive class in

Figure 3).

Figure 4 shows the percent error for each emotion on IEMOCAP. The

results show that the percent error is high, i.e., greater than 64%, for the happy

emotion class. We suppose that this is due to the small number of samples.
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Figure 3: Percent error per sentiment class on MOSEI.

Specifically, the happy emotion class has only 135 samples compared to 383,

193, and 227 in the neutral, sad, and angry emotion classes, respectively, in

the test set. That implies that the performance for each emotion class is

analogous to the number of samples for each class. However, some approaches,

such as MMUU-BA and MulT, are more effective than others, such as RAVEN

and MFN. That is, there is a considerable variance in percent error across

different modality fusion approaches.

We then carried out the following analysis on test outputs of MOSI. We

grouped the outputs of all the samples in the test dataset. The first group

(i.e., easy) consists of 49 cases, where all methods predict correctly; the second

group (i.e., medium) consists of 21 cases, where half the methods predict

correctly; the third (i.e., hard) consists of 18 cases, where 2 out of 11 methods
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Figure 4: Percentage error per emotion class on IEMOCAP.

predict correctly; and the fourth (i.e., very hard) consists of 15 cases, where

all methods predict incorrectly. We included four samples for each group in

Table 4.

Out of 686 utterances, 49 of them, that were 7.1%, are predicted correctly

by all approaches. These are usually sentences consisting of highly sentimental

words such as “horrible”, “love” (see Table 4, Easy category). Only 21

utterances, 3.1%, were predicted correctly by half of the approaches. All those

utterances are either neutral or positive. For example, one possible reason

that approaches fail to make a correct prediction for utterances such as “But

it does have some adult humour” and “It actually surprised me” (see Table

4, Medium category) is due to missing content. Eighteen utterances, i.e.,

2.6%, could not be correctly predicted by 9 out of 11 approaches, even though
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Table 4: Error Cases across all approaches on MOSI

Category Case Label

Easy (100%) This movie was horrible. Neg.

I had no idea why I even saw this movie. Neg.

This movie seemed um a little long. Neg.

You will really love this movie if you are 8. Pos.

Medium (50%) But it does have some adult humour. Pos.

He is a pretty average guy. Pos.

The two women in this movie are particularly

good looking.

Pos.

It actually surprised me. Pos.

Hard (20%) They are back to you having two killers thank-

fully.

Pos.

She is a really pretty girl. Pos.

It had me laughing out loud. Pos.

Not a bad idea for a sequel. Pos.

Very Hard (0%) Who I don’t usually like. Pos.

I did like Transformers 2 even though a lot of

people didn’t like that.

Pos.

A lot of people don’t like Scream 2. Pos.

Everything that happened in Shrek 1,2, and

3 are wiped away.

Pos.
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utterances include highly sentimental words like “pretty girl”, “laughing” (see

Table 4, Hard category). Finally, no approaches could predict 15 utterances,

that is 2.2%. Utterances like “Everything that happened in Shrek 1,2, and

3 are wiped away” and “A lot of people don’t like Scream 2 ” (see Table 4,

Very Hard category) are dominated by highly negative words, but the overall

sentiment is positive. It is worth mentioning that all the error cases of the

medium, hard, and very hard groups are positive sentiment utterances. To

our knowledge, this is a novel finding.

4.2. Efficiency

In experiment 2, we reported the model sizes (i.e., parameters), the

training time of learning, and the validation set convergence. We illustrated

the validation set convergence across all competitive approaches on MOSI,

MOSEI and IEMOCAP in Figure 5, Figure 6, and Figure 7, respectively.

We noticed that all approaches converge in just a few epochs for all tasks,

i.e., CMU-MOSI, CMU-MOSEI, and IEMOCAP tasks. Overall, we observed

that the validation set convergence exhibits different carve trends across

different fusion approaches and tasks. At first, all approaches manifest a

downtrend. That implies that the learning algorithms seek to minimize the

loss function, called optimization. After the optimization process, there were

some approaches that the downtrend shifted to an uptrend with a sharp

rise (e.g., observe LMF and EF-LSTM convergence in Figure 6, or MFN

and LF-LSTM in Figure 7). We attribute such a sharp rise to overfitting.

Indeed, some approaches are more prone to overfitting than others. Other

strategies exhibit a horizontal trend (e.g., the majority of models in Figure

5, or MULT and MFN in 6) after the optimization process. That means
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that the optimization algorithm is stuck in a local optimal - a good enough

set of weights - or a global optimal - the best set of weights. However, for

CMU-MOSI task, the horizontal trends are smooth while for CMU-MOSEI

task, they usually manifest a slight negative or positive slope. We speculate

that this is due to the high learning rate on CMU-MOSEI.

For MOSI, we empirically found that MMUU-BA converges faster to better

results at training compared to other approaches (see Figure 5). RAVEN

shows a more stabilized mean absolute error (MAE) at training compared to

MulT, but it is still higher compared to MMUU-BA. In general, all approaches

converge quite fast, up to 10 epochs. We assume that this is due to the small

data size. We observed that MCTN needs much more than 50 epochs to

converge.

Figure 5: Validation set convergence across the SOTA approaches on the MOSI task
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For MOSEI, we observed that EF-LSTM, LF-LSTM, TFN, LMF, and

MARN increase the MAE after 5 epochs (see Figure 6). A possible explanation

for this might be overfitting since MOSEI is a large dataset. MulT and RAVEN

show a pretty destabilized MAE at training. Despite RAVEN being among

the most robust approaches on MOSEI in terms of binary accuracy, it achieves

the highest MAE among all approaches (see Figure 6). Finally, we empirically

found that MMUU-BE converges faster to better results, attaining the lowest

MAE.

Figure 6: Validation set convergence across the SOTA approaches on the MOSEI task

For IEMOCAP, most of the approaches increase the cross-entropy loss

after the 5th epoch (see Figure 7). Only RAVEN and MulT attain a low

and stabilized cross-entropy loss. Specifically, MulT, reporting the best

recall performance for the “neutral” class, attained the lowest cross-entropy
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loss. EF-LSTM, achieving an improved performance as compared to other

sophisticated competitive approaches, shows a fair and stabilized loss at

training until 25th epoch.

Figure 7: Validation set convergence across the SOTA approaches on the IEMOCAP task

We investigated the complexity of the models by presenting the number of

parameters and training times in minutes for MOSI, MOSEI, and IEMOCAP

in Table 5. We observed that approaches integrating LSTMCell components,

such as LF-LSTM, MARN, and RMFN, are not able to speed up. PyTorch

cannot maintain the same speed for LSTMCell, which is a variant of LSTM.

Despite the low performances, tensor-based approaches attain significant

speedup during inference. For MOSI, MMUU-BA is faster than RAVEN,

even though the latter has fewer parameters. We attribute this slowdown

to the LSTMCell component of RAVEN. MulT, being a more complicated
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Table 5: Comparative analysis across the SOTA approaches on IEMOCAP dataset.

MOSI MOSEI IEMOCAP

Approach Mins. Params. Mins. Params. Mins. Params.

EF-LSTM [42] 0.43 177,329 6.59 217,457 1.40 206,152

LF-LSTM [42] 3.14 1,155,109 54.47 5,111,485 3.59 946,756

RMFN [10] 57.42 1,950,805 - - 20.85 1,732,884

TFN [44] 0.51 14,707,911 1.87 6,804,859 0.53 23,198,398

LMF [45] 0.43 1,144,493 2.00 5,079,473 1.12 962,116

MARN [71] 69.5 1,350,389 268.20 5,442,313 4.6 1,362,116

MulT [9] 17.6 1,071,211 31.20 874,651 36.89 1,074,998

MMUU-BA [10] 0.64 2,424,965 7.07 2,576,165 0.79 2,605,484

RAVEN [50] 3.71 171,433 23.87 159,213 3.00 173,680

MFN [13] 1.88 1,513,221 18.56 415,521 5.13 1,325,508

MCTN [14] 15.64 147,100 - - - -

model, requires more time (i.e., 17.6 minutes) than MMUU-BA and RAVEN

(i.e., 0.64 and 3.71 minutes, respectively). We observed similar behaviour

for MOSEI. Even though MOSEI is a relatively large dataset compared to

MOSI, some models have fewer parameters on MOSEI compared to MOSI.

This might be because different configuration settings were set up after the

fine-tuning process. For IEMOCAP, EF-LSTM is not only an effective but

also an efficient approach, attaining a more significant speedup (26 times)

than its counterpart (i.e., MulT) in terms of performance.
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4.3. Ablation studies

To address the third research question, we designed various ablation studies

to analyse a) the importance of modalities and b) essential components for

learning crossmodal interactions. We conducted all ablation studies on MOSI.

4.3.1. Importance of modalities

To understand the importance of modalities in multimodal tasks, we

conducted ablation studies on TFN, which inherently models unimodal,

bimodal, and trimodal interactions, and MulT, which attains high accuracy

on both sentiment analysis and emotion recognition tasks. For TFN, we

tested the TFN approach with unimodal, bimodal, and trimodal tensors.

Table 6 shows the results of the ablation studies. We observed that language

is the most informative modality as it is a pivot for visual and acoustic

modalities. The unimodal visual and acoustic subnetworks and the bimodal

visual-acoustic subnetwork attained fairly low accuracy compared to those

integrating the linguistic modality. Specifically, combining language with

visual or acoustic modalities is generally better than combining the visual and

acoustic modalities. In contrast to [44], we found that the language-based

subnetwork performs similarly to the trimodal tensor network in terms of

the binary accuracy. That is, our experiments showed that the tensor-based

fusion is not an effective approach for modelling crossmodal interaction across

three modalities.

For MulT, we first considered the performances for linguistic, visual, and

acoustic only transformers. We found a binary accuracy of 79.5% for the

language transformer compared to 77.4% in literature [9]. The language trans-

former significantly outperforms the visual- and acoustic-only transformers
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Table 6: Comparison of TFN with its subtensor variants on MOSI.

Variant Acc7 Acc2 F1 MAE Corr

TFNl 31.3 75.7 75.6 1.017 0.756

TFNv 17.3 53.2 50.5 1.465 0.125

TFNa 15.2 56.6 54.4 1.425 0.181

TFNl,v 30.3 75.1 75.0 1.013 0.610

TFNl,a 31.1 75.9 75.9 1.012 0.624

TFNv,a 15.4 56.9 55.5 1.414 0.178

TFNw/oc 35.7 75.1 74.9 1.024 0.605

TFNl,v,a [44] 34.9 75.6 75.5 1.009 0.605

(see Table 7).

We also studied the importance of individual crossmodal transformers

according to the target modality (i.e., L, V → A, V,A→ L, and L,A→ V ).

Among the three crossmodal transformers, the one where acoustic is the

target modality works best. This result is consistent with [14] but in contrast

with [9], which reports that presenting language as a target modality leads to

the best performance. The experiments show that there is no need to consider

multiple directional pairwise crossmodal transformers. Specifically, when we

considered acoustic as a target modality yielded an increased accuracy of

79.6% compared to 78.7% for MulT. However, there is no statistical difference

in performance among the three crossmodal transformers and the multiple

directional pairwise crossmodal transformer (i.e., MulT).
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Table 7: Comparison of MulT with other variants of it.

Variant Acc7 Acc2 F1 MAE Corr

MulTl 34.3 79.5 79.2 0.939 0.662

MulTv 20.9 59.7 58.3 1.401 0.154

MulTa 18.75 60.5 60.1 1.348 0.211

MulTv,a→l 31.3 76.7 76.5 1.037 0.604

MulTl,a→v 32.6 78.9 78.7 0.993 0.787

MulTl,v→a 33.6 79.6 79.4 0.996 0.663

MulTH5 31.9 79.0 78.8 1.014 0.662

MulTH10 33.5 79.0 79.0 0.995 0.667

MulT [9] 33.6 78.7 78.4 0.964 0.662

4.3.2. Important Modules for Crossmodal Interactions

To understand the influence of individual components for modelling cross-

modal interactions, we performed comprehensive ablation analysis on the

SOTA approaches on MOSI. First, we studied the importance of extra di-

mensions with value 1 of TFNl,v,a [44], which models unimodal and bimodal

dynamics, besides trimodal ones. We found that the TFN version without

constant (TFNw/oc in Table 6) reports a decreased accuracy of 75.1% com-

pared to 75.6% for TFN. However, for Acc7, the model improves from 34.9%

to 35.7% when comparing TFNl,v,a to TFNw/oc.

For MulT, we considered the number of heads in the crossmodal attention

module. We experimented with 5 and 10 heads (MulTH5 and MulTH10 in

Table 7, respectively). We did not observe any difference in terms of binary

accuracy. However, for Acc7, the increased number of heads yielded an
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increased performance of 33.5% compared to 31.9% (see Table 7).

In [71], authors claim that for each timestamp, there might exist multiple

crossmodal interactions. We experimented with three variants of MARN

to investigate the number of attentions needed to extract all crossmodal

dynamics. Specifically, we tried one, five, and ten attentions. In contrast to

[71], our experiments show that the MARN with only one attention slightly

outperforms the models with multiple attentions in terms of binary accuracy

(see Table 8). Yet, the MARN with five attentions outperforms the other two

variants, for Acc7. We also removed the multi-attention block (MAB) from

MARN. Specifically, we replaced the MAB with a fully connected layer and

removed the softmax function. We observed that there is no effect on binary

accuracy (see Table 8) while for Acc7, the difference is marginal.

Table 8: Comparison of MARN with other variants of it.

Variant Acc7 Acc2 F1 MAE Corr

MARNK=1 30.9 76.9 76.7 0.983 0.629

MARNK=5 31.5 76.1 76.0 1.001 0.616

MARNK=10 30.9 76.4 76.2 1.012 0.621

MARNw/oMAB 32.4 76.4 76.2 0.979 0.622

MARN [71] 31.8 76.4 76.2 0.984 0.625

For MMUU-BA, we analyzed the attention module to understand its

learning behaviour. We experimented with two other variants of MMUU-

BA (see Table 9). The architecture of these variants differs concerning the

attention computation module. Particularly, in MMUU-UA, we computed

one-directional attention, e.g., from linguistic to visual modality only. In

37



MMUU-SA, we only computed self-attention within modalities. We found

that one-directional attention results in an increased binary accuracy of 78.8%

compared to 78.2% from the proposed framework. Both MMUU-UA and

MMUU-BA attained the same performance, for Acc7 (see Table 9). For

the self-attention approach, we found that it is less effective than the one-

directional crossmodal attention but more effective than the bi-directional

crossmodal attention, in terms of the binary performance.

Table 9: Comparison of MMUU with other variants of it.

Variant Acc7 Acc2 F1 MAE Corr

MMUU-UA 33.8 78.8 78.6 0.925 0.680

MMUU-SA 32.0 78.6 78.5 0.950 0.688

MMUU-BA [10] 33.8 78.2 78.1 0.947 0.675

For MFN, first, we investigated if crossmodal interactions can happen

over multiple time instances. Specifically, we experimented with a variant

of MFN by shrinking the context from time t and t− 1 to only the current

timestamp t in the memory component. We found that MFNw/o∆ (see Table

10) significantly underperforms the MFN approach. That implies that we

should not model crossmodal interactions on aligned time steps, but consider

long-range crossmodal contingencies across a multimodal sequence. Second,

we evaluated the importance of spatial-temporal crossmodal interactions over

time by removing all memory components. The results show the effectiveness

of memory components on the proposed approach. Both outcomes agree with

the reported experiments in [13].

For RAVEN, we have already removed the Nonverbal Subnetworks [50] as
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Table 10: Comparison of MFN with other variants of it.

Variant Acc7 Acc2 F1 MAE Corr

MFNw/o∆ 31.5 73.8 73.8 1.042 0.584

MFNw/oMemory 31.6 75.0 74.8 1.011 0.598

MFN [13] 31.9 76.2 75.8 0.988 0.662

mentioned in Section 3.5. This modification results in an increased binary

accuracy of 78.6% compared to 78.0% in [50] on MOSI. We also investigated

the temporal interactions between the nonverbal “subword” units with lan-

guage utterances. Specifically, we removed the shift component, which learns

dynamically to shift the text representation by integrating the nonverbal

vector. Visual and acoustic representations are concatenated with the word

embeddings before being fed to downstream networks. We found that integrat-

ing the nonverbal context with words is beneficial for understanding human

language (see Table 11). Specifically, RAVEN shows a significantly increased

binary performance of 78.6% compared to 75.6% for RAVENw/oShift.

Table 11: Comparison of RAVEN with other variants of it.

Variant Acc7 Acc2 F1 MAE Corr

RAVENw/oShift 31.8 75.6 75.5 1.016 0.615

RAVEN [50] 34.6 78.6 78.6 0.948 0.674

For RMFN, we decomposed the fusion problem into multiple stages, we

experimented with the number of stages needed for modelling crossmodal

dynamics. Specifically, we experimented with one, three, and six stages. Our
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experiments show that RMFN attained a similar performance whether we

apply one or six stages to fuse information (see Table 12).

Table 12: Comparison of RMFN with other variants of it.

Variant Acc7 Acc2 F1 MAE Corr

RMFNs=1 32.9 75.3 75.2 0.982 0.616

RMFNs=3 32.5 75.5 75.3 0.991 0.623

RMFNs=6 33.1 75.6 75.5 0.991 0.613

RMFN[10] 31.7 75.2 75.1 1.005 0.612

Overall, we found that linguistic modality is a pivot for visual and acoustic

modalities. This basic finding is consistent with literature. Yet, the results

from ablation studies do not always follow findings reported in literature. In

particular, we found that:

• fusing multimodal information into multiple levels (e.g., MulT, MARN,

and RMFN) does not necessarily result in better binary performance.

In some cases, fusing information into multiple levels might achieve

slightly better fine-grained accuracy, that is, Acc7;

• tensor-based approaches underperform the linguistic modality;

• integrating the temporal (e.g., MFN) or modality (e.g., RAVEN) context

over the multimodal fusion process results in a significantly better

performance.
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5. Discussion on Key Findings

In this paper, we replicated the most recent SOTA models for multimodal

language analysis. We evaluated their effectiveness through comprehensive

comparative studies, error analyses and series of ablation studies. The

efficiency of the models was also compared in terms of three evaluation metrics,

namely, parameters, training time, and validation set convergence. The results

associated with ablation studies helped us determine which components and

methodologies contribute most to solving the problem of affective computing.

In terms of effectiveness, the experiments showed that approaches exploit-

ing attention mechanism components improve the model performance for both

sentiment analysis and emotion recondition tasks. We speculate that this is

because the attention mechanism acts as an implicit multimodal alignment

component. Memory networks reached a similar performance as well. On the

other hand, despite tensor-based approaches getting a lower present error for

the negative sentiment class on MOSI, in general, they did not attain high

performance. Similarly, recurrent cell-based approaches do not achieve a high

performance either. Overall, most of the SOTA approaches attained lower

performances in the range of 2% to 4.5% compared to the reported one in the

literature. We mainly attribute such discrepancies to the fine-tuning process.

The different versions of the MOSEI and MOSI datasets used in published

works could be another reason for most of those cases.

From an efficiency viewpoint, attention mechanism-based approaches are

usually more complex and require more training time than the rest of the

modality fusion approaches. To alleviate that issue, we could consider less

fine-grained crossmodal interactions. Indeed, our ablation studies show that
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adding more levels of interactions across modalities results in a decreased

performance. Recurrent cell-based approaches are extremely computationally

expensive. On the other hand, memory and tensor networks are more efficient.

Table 13: Summary of Key Findings. The first column lists the investigated key components,

the second column summarizes which models are using which component, and the third

column shows how different components contribute differently to solving the problem of

multimodal language analysis.

Component Model Contribution

Basic Recurrent Struc-

tures

EF-LSTM [42], LF-LSTM

[42]

1) Computationally cheap.

2) Outperform a few SOTA approaches.

Tensor Operator TFN [44], LMF [45] 1) Low error for the negative class on MOSI.

2) Computationally cheap.

Attention Mechanism RMFN [10], MARN [71],

MulT [9], MMUU-BA [10],

RAVEN [50]

1) State-of-the-art performance on both tasks.

2) Relatively fast convergence.

3) Stabilized learning behaviour.

4) Cope with skewed and balanced datasets.

Memory Cell MFN [13] Capture non-aligned crossmodal interactions.

Autoencoder MCTN [14] 1) Tackle with perturbations and missing data.

2) Fewer learning parameters.

Table 13 summarizes the key findings on how different components con-

tribute to solving the problem of affective video content analysis. Overall,

the results demonstrate that attention mechanism are the most effective

approaches despite being computationally expensive. During the training

process, they manifest a stabilized and fast convergence, and they cope with

both skewed and balanced datasets. However, autoencoder approaches are

more suitable if we work with missing or noisy data. The ablation studies show

that crossmodal interactions are not aligned on corresponding time steps but
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spread across a multimodal sequence. Finally, video sentiment analysis could

benefit from the integration of context. However, all approaches struggle with

positive sentiment utterances.

These key findings are drawn from experiments over three most widely

used standard benchmark datasets in the literature, and data imbalance

has been regarded as a vital issue influencing the model performance. The

linguistic modality is the most informative compared to visual and acoustic

modalities. We attribute that difference to the use of word embedding trained

on large corpora, and not to noise issues related to the datasets. All three

datasets were carefully collected, pre-processed and annotated by a world-

leading group in this area, and the noise within the datasets is minimized.

Indeed, there is a need for investigating new approaches for training visual

and acoustic embeddings. However, such an investigation is beyond the scope

of this paper. Thus, we believe that our results over three high-quality and

well-established large-scale benchmark datasets can sufficiently support the

conclusions.

In the future, it would be worth investigating how multimodal sentiment

analysis could benefit from considering proceeding utterances and existing

knowledge bases, which might entail sentiment or emotional knowledge. Little

effort has also been devoted towards crossmodal interactions across a mul-

timodal sequence instead of corresponding timestamps. One limitation of

our study is that we used a simple approach to align modalities. Following

previous work, we averaged visual and acoustic modalities throughout word

intervals since advancing the SOTA was not the aim of this work. Yet, fur-

ther investigation is needed in this direction to determine if other alignment
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approaches could enhance the relatively poor performance of the non-verbal

modalities. In terms of the implementation, we noticed that the LSTMCell

component could not speed up. That made approaches which primarily utilize

recurrent cell components less efficient.

6. Conclusions

We have replicated and proposed a large-scale empirical comparison among

SOTA approaches for multimodal human language analysis. We thoroughly

investigated both their effectiveness and efficiency on two human multimodal

affection recognition tasks and determined important components in mul-

timodal language models. The results showed that attention mechanism

approaches are the most effective for both sentiment analysis and emotion

recognition tasks, even though they are not computationally cheap. Besides,

components that are able to capture crossmodal interactions across different

timestamps, integrate context, and utilize linguistic modality as a pivot for

the non-verbal modalities achieved improved performance. It is worth men-

tioning that positive sentiment utterances are the most challenging cases for

all modality fusion approaches. To our knowledge, this is a novel finding. We

expect that the findings would provide helpful insights to the development of

more effective modality fusion models. In the future, we are going to focus on

conversational video sentiment analysis tasks because the utterance context

has proven to be beneficial for understanding human language.
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Appendices

A. Fine-tuning Final Settings

Table A.14: Hyperparameters of EF-LSTM we use for the various tasks.

MOSI MOSEI IEMOCAP

Batch Size 64 64 16

Initial Learning Rate 0.002 0.002 0.001

LSTM Output 96 128 128

Multimodal Embedding Dimension 64 128 16

Multimodal Embedding Dropout 0.1 0.2 0.1

Gradient Glip 0.4 0.8 0.3

Table A.15: Hyperparameters of LF-LSTM we use for the various tasks.

MOSI MOSEI IEMOCAP

Batch Size 64 16 16

Initial Learning Rate 0.005 0.001 0.001

LSTM Outputs 128,16,80 128,64,16 128,64,16

Multimodal Embedding Dimension 32 48 32

Multimodal Embedding Dropout 0.2 0.4 0.2

Gradient Glip 0.4 0.3 0.7
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Table A.16: Hyperparameters of TFN we use for the various tasks.

MOSI MOSEI IEMOCAP

Batch Size 96 128 128

Initial Learning Rate 0.001 0.002 0.001

Subnetwork Outputs 128,80,80 128,16,32 128,80,60

Subnetwork Dropout Probabilities 0.1,0.1,0.1 0.2,0.2,0.2 0.5,0.5,0.5

Sentiment Subnetwork Outpout 16 96 128

Sentiment Subnetwork Probability 0.4 0.3 0.4

Gradient Glip 0.1 0.1 0.5

Table A.17: Hyperparameters of LMF we use for the various tasks.

MOSI MOSEI IEMOCAP

Batch Size 96 128 32

Initial Learning Rate 0.001 0.002 0.001

Rank 4 4 16

Subnetwork Outputs 128,32,80 128,64,32 128,64,32

Subnetwork Dropout Probabilities 0.5,0.5,0.5 0.1,0.1,0.1 0.3,0.3,0.3

Crossmodal Representation 0.2 0.2 0.4

Gradient Glip 0.2 0.2 0.4
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Table A.18: Hyperparameters of MARN we use for the various tasks.

MOSI MOSEI IEMOCAP

Batch Size 128 16 64

Initial Learning Rate 0.001 0.002 0.001

LSTM Outputs 128,64,80 128,80,80 128,80,32

Attention Blocks 2 2 5

Attention Cell 16 64 32

Compressed dimension 64,32,8 64,40,40 64,16,8

Output cell dimension 16 16 96

Gradient Glip 0.1 0.2 0.7

Table A.19: Hyperparameters of MFN we use for the various tasks.

MOSI MOSEI IEMOCAP

Batch Size 128 128 32

Initial Learning Rate 0.001 0.002 0.005

LSTM Outputs 128,80,16 128,80,16 128,64,16

γ1, γ2 cell dimensions 128,128 128,128 64,32

Attention cell dimensions 64,32 64,32 256,32

Memory dimension 256 256 256

Output cell dimension 64 64 128

Gradient Glip 0.2 0.2 0.7
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Table A.20: Hyperparameters of MulT we use for the various tasks.

MOSI MOSEI IEMOCAP

Batch Size 16 128 32

Initial Learning Rate 0.001 0.002 0.005

Transformers Hidden Unit Size 40 40 40

Crossmodal Blocks 4 4 4

Crossmodal Attention Heads 8 10 10

Temporal Convolution Kernel Size 3/3/3 3/3/3 3/3/5

Textual Embedding Dropout 0.3 0.2 0.3

Crossmodal Attention Block Dropout 0.1 0.2 0.25

Output Dropout 0.1 0.1 0.1

Gradient Glip 0.2 0.2 0.7

Table A.21: Hyperparameters of MMUU-BA we use for the various tasks.

MOSI MOSEI IEMOCAP

Batch Size 64 64 64

Initial Learning Rate 0.005 0.002 0.001

RNN dropouts 0.15,0.15,0.15 0.1,0.1,0.1 0.7,0.7,0.7

GRU dropouts 0.1,0.1,0.1 0.3,0.3,0.3 0.15,0.15,0.15

FC dropouts 0.15,0.15,0.15 0.8,0.8,0.8 0.15,0.15,0.15

Output cell dimensions 32 32 64

Output dropout 0.15 0.3 0.1

Gradient Glip 0.3 0.9 0.5
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Table A.22: Hyperparameters of RMFN we use for the various tasks.

MOSI MOSEI IEMOCAP

Batch Size 64 128 16

Initial Learning Rate 0.005 0.002 0.002

Shift Weight 0.8 0.7 0.1

LSTM layers 3 1 1

Cell Output 50 40 30

Gradient Glip 0.7 1 0.1

Table A.23: Hyperparameters of RMFN we use for the various tasks.

MOSI MOSEI IEMOCAP

Batch Size 64 128 16

Initial Learning Rate 0.005 0.002 0.002

Shift Weight 0.8 0.7 0.1

LSTM layers 3 1 1

Cell Output 50 40 30

Gradient Glip 0.7 1 0.1
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