
Memory Based Fusion for Multi-modal Deep Learning

Darshana Priyasad∗, Tharindu Fernando, Simon Denman, Sridha
Sridharan, Clinton Fookes

SAIVT, Queensland University of Technology, Brisbane, Australia

Abstract

The use of multi-modal data for deep machine learning has shown promise
when compared to uni-modal approaches with fusion of multi-modal features
resulting in improved performance in several applications. However, most
state-of-the-art methods use naive fusion which processes feature streams in-
dependently, ignoring possible long-term dependencies within the data dur-
ing fusion. In this paper, we present a novel Memory based Attentive Fusion
layer, which fuses modes by incorporating both the current features and long-
term dependencies in the data, thus allowing the model to understand the
relative importance of modes over time. We introduce an explicit memory
block within the fusion layer which stores features containing long-term de-
pendencies of the fused data. The feature inputs from uni-modal encoders
are fused through attentive composition and transformation followed by naive
fusion of the resultant memory derived features with layer inputs. Following
state-of-the-art methods, we have evaluated the performance and the gen-
eralizability of the proposed fusion approach on two different datasets with
different modalities. In our experiments, we replace the naive fusion layer
in benchmark networks with our proposed layer to enable a fair comparison.
Experimental results indicate that the MBAF layer can generalise across dif-
ferent modalities and networks to enhance fusion and improve performance.
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1. Introduction

Multi-modal deep learning has become a major research area with an in-
creasing number of applications that generate/use multiple modalities such
as autonomous driving [1, 2, 3], emotion analysis [4, 5, 6, 7], image fusion
[8, 9, 10] and biometrics [11, 12]. Researchers have sought to develop dif-
ferent approaches to combine learned features from different modalities and
obtain a common feature space that maximizes the overall performance of
the system [13, 14, 15]. Careful selection of the fusion stage, the model, and
it’s parameters has enabled researchers to obtain higher performance com-
pared to using a single mode. However, difficulties associated with fusion
have created new challenges, and thus fusion has emerged as a separate field
of research.

The majority of prior multi-modal fusion research has used naive ap-
proaches such as feature concatenation and summation, or fusion methods
using attention to filter out uninformative features from the combined space
[16, 17]. However, with a naive fusion approach, the fusion process only
uses information from the current time step and ignores historic informa-
tion which can play a vital role in multi-modal fusion by means of capturing
long-term dependencies between the data domains. With multiple modali-
ties, information from one modality may be occluded or corrupted, leading
to an information loss that adversely affects the fusion. However, reasonable
adjustments can be inferred by understanding the relationships between the
modes and the events captured within them.

Long-Short Term Memory (LSTM) networks provide a mechanism to
capture historical relationships for fusion [18, 19]. Despite their feedback
connections and ability to process sequential data, these methods have lim-
ited capacity, especially when considering long-term dependencies. Memory
Networks [20], however, are capable of learning long-term dependencies, es-
pecially in sequential data [21, 22], by means of an explicit memory repre-
sentation. The original concept of an explicit memory has been improved
[23, 24] and used in applications not limited to sequential data [25].

We are motivated by the fact that memory networks consider historical
information explicitly, and thus reduce the chance of forgetting important
historic information. Therefore, we argue that by incorporating an external
memory to store historic data relevant to the fusion, fusion in future itera-
tions can exploit this information and can lead to better representation and
recognition. However extending existing memory architectures to enable fu-
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sion is not trivial and can add more complexity to the network which can
degrade performance if not carefully designed. Furthermore, consideration
needs to be given to the information stored in the memory, and how best to
extract information from the memory to assist decision making.

The main objective of this research is to evaluate the performance of a
memory-based architecture for multi-modal fusion. We have proposed an
improved memory network that receives multi-modal data and outputs fused
features, which incorporates both current and historical data. We conduct
experiments on different modalities and architectures and show the superior
performance and generalizability of the proposed method.

2. Literature Review

Multi-modal deep learning has been extensively used in problems such as
emotion recognition [26, 27] and autonomous driving [28, 29] over the past
decade. Different modalities including video, multi-spectral data, and sensor
data have been used in these applications [30, 31, 32], and typically deep
networks are used to learn high-level semantic features from each modality,
which are then combined through fusion. State-of-the-art methods in multi-
modal fusion will be discussed in Section 2.1, and memory networks will be
outlined in Section 2.2.

2.1. Deep Multi-Modal Fusion

The fusion of multi-modal features can be carried out at different depths
in a deep neural network, and methods can be broadly categorized into three
stages: early, intermediate and late [33, 34]. A widely used fusion methodol-
ogy, particularly for intermediate fusion, is concatenation, where the features
from different modes are combined via concatenation (horizontal or stacked)
[35, 36], summation, or multiplication.

Haghighat et al. presented a customized intermediate feature fusion ap-
proach using discriminant correlation analysis for biometric recognition [37].
Their method incorporates class associations into the correlation analysis of
the feature sets and performs fusion by maximizing the pairwise correlations
across the two feature sets. The proposed method eliminates inter-class cor-
relations and strengthens the intra-class correlations. Dong et al. proposed
an improved late fusion approach based on matrix factorization [38]. In gen-
eral, late fusion leads to performance degradation as the predictions from
different features can contradict each other. Such methods leverage a hard
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constraint on the matrix rank to preserve the consistency of predictions by
different features. Kim et al. used locally adaptive fusion networks to fuse
tri-modal (original image, disparity, and matching cost) confidence features
(using scale and attention maps) for stereo matching to reconstruct the ge-
ometric configuration of scene [39]. They have used attention networks to
encode the importance of features and then stacked them together in an
adaptive and dynamic fashion.

Ma et al. proposed a Generative Adversarial Network (GAN) based fu-
sion method to preserve important uni-modal information within the fused
features [10, 40]. This allows the networks to learn more robust high-level fea-
tures and achieve higher performance. Since most complex image fusion tech-
niques are associated with higher computational costs [8], several researchers
have focused on developing image fusion techniques with low computational
complexity. Zhan et al. proposed a gradient magnitude-based image fusion
technique to speed-up the fusion process [41]. Furthermore, they have intro-
duced a weighted map based fusion method [42] and a structure-preserving
filter to fuse medical images [43]. The importance of these approaches is the
associated low computational cost and competitive performance gain. How-
ever, since these fusion techniques are largely based on image characteristics,
they cannot be used across different modalities such as text and audio.

Even though the above-stated feature fusion frameworks achieve signif-
icantly better results compared to uni-modal networks, they can introduce
irrelevant and redundant features within the fused feature space, which re-
duces the potential performance improvement. Therefore, feature refinement
techniques have been used after fusion.

Pouyanfar et al. proposed a residual attention based fusion feature re-
finement method, where the encoded features from each modality are fused
using a weighted Support Vector Machine to handle imbalanced data [44].
Lv et al. introduced a feature refinement unit using a combination of a
CNN and an RCNN which can correct the network’s own identification er-
rors based on the acquired knowledge, and adapt the RCNN to compensate
for the lack of feature extraction in the CNN [45]. Park et al. introduced
feature refinement blocks from multiple stages of a deep net to achieve more
accurate prediction [46]. Feature fusion blocks learn residual features from
each modality and their combinations to fully exploit the complementary
characteristics in the data. Wang et al. suggested that the fusion of global
features from two modalities (image and 3D point cloud) blindly would de-
grade estimation performance [47]. They have proposed a pixel-wise dense
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fusion network that effectively combines the extracted features by performing
local per-pixel fusion instead of global fusion.

However, these feature fusion and refinement methods are application-
specific and fail to generalize across applications. This illustrates a recent
trend of introducing fusion methods specific to individual tasks, rather than
pursuing a general fusion architecture.

Beard et al. proposed recursive multi-attention with a shared external
memory [48], which is updated over several iterations as an alternative to
naive attention [49], where attention on one modality exploits other modali-
ties. They generate a context vector representing attended features from all
modalities and a vector representing the previous iterations, which is passed
to the next iteration. This method can easily be extended for multi-modal
fusion; however, it is limited by the simple vector representation used to store
and retrieve historical patterns.

Zadeh et al. proposed a dynamic fusion graph for multi-modal fusion
by defining n-modal dynamics as a hierarchical process [50]. They have
suggested that each fusion combination from the mode setting has a contri-
bution towards the final fusion outcome, and derived a “fusion set” graph.
The graphs’ node connections are weighted by efficacies (to measure how
strong the connection between to mode sets), which indicates the contribu-
tion. Wang et al. proposed a multi granularity fusion approach to fuse
information from attentive and global features [51]. Yang et al. proposed a
dynamic fusion method that randomly repels the representations from less
significant data sources for fusion [52]. This enables the network to dynam-
ically select informative modes of information and eliminate uninformative
modes from fusion, increasing performance.

The majority of multi-modal fusion research has limited the developed
methods for using the combination of input features at a given time step
as described above. Zadeh et al. [53] proposed Memory Fusion Networks
(MFN) which can explicitly account for view-specific and cross-view inter-
actions in multi-modal deep learning. Furthermore, they claim that the
proposed Multi-view Gated Memory has superior representation capabilities
compared to LSTM memories when capturing historical data. However, the
proposed mechanism has only been used to capture historical relationships
in uni-modal data, and naive fusion (concatenation) has been used for the fu-
sion of the learned multi-modal features. On the other hand, their proposed
approach shows that the richer representation of historical context can be
captured through complex architectures compared to conventional LSTMs.
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The notion of historical context has been applied to a limited number of
the fusion approaches [18, 49], but those methods fail to learn long term
dependencies in fusion. Therefore, we propose the use of an explicit memory
network to address the above limitations in multi-modal fusion.

2.2. Memory Networks

Memory networks utilize a storage block and inference components (reader,
writer, and composer) together, and learn to use these components jointly
[20]. The memory can be read and written to, with the aim of using it
for prediction tasks. Memory networks were introduced to alleviate the is-
sue of learning long-term dependencies in sequential data. Compared to a
Long Short Term Memory (LSTM) unit which updates an internal fixed-size
memory representation, memory networks consider the entire history explic-
itly, eliminating the chance to forget, and the size of memory becomes a
hyper-parameter to tune. Sukhbaatar et al. has extended the above idea by
introducing a recurrent attention model over the external memory which is
trained end-to-end [48]. This approach can be applied to realistic settings
since it needs less supervision during training.

Rae et al. have shown that naive memory networks scale poorly in time
and space as memory grows [54]. They have proposed a memory access
scheme which is end-to-end differentiable: Sparse Access Memory (SAM).
They have shown that this method retains the representative power of naive
methods while training efficiently with large memories. Miller et al. pro-
posed a key-value memory network for question answering to overcome the
limitations of knowledge bases [22]. Their approach makes document reading
viable by using a different encoding in later stages (output) of the memory
read and addressing.

Kumar et al. proposed a dynamic memory network for question answer-
ing that processes questions and input sequences using episodic memories
[24]. An iterative attention process is triggered by input questions and it
allows the network to condition the attention based on the history of pre-
vious iterations and the inputs. Fernando et al. introduced a Tree Mem-
ory Network which modeled inter-sequence (long-term) and intra-sequence
(short-term) relationships using memory modules [55]. The memory was im-
plemented as a recursive tree structure, compared to a naive approach that
uses a sequence of historical states. This shows that memory networks can
be applied to a diverse set of applications not limited to natural language
processing. Fernando et al. have used individual memories on two modes
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before fusion [56], to help extract salient features for fusion. However, the
joint learning of the two modalities does not allow modes to see the informa-
tion within their histories, and determine how this can be utilized in decision
making.

Even though significant advances have been made in areas of multi-modal
fusion and memory networks, the applicability of memory networks to multi-
modal fusion is not well explored. To the best of our knowledge, [57, 58] is
the only work that investigates how history can be used to augment feature
fusion. However, no investigation has been made regarding 1) what infor-
mation from each modality should be stored; 2) how to combine different
modalities using fusion, and 3) how to effectively extract information from
the stored memories to augment the decision making. Our proposed system
uses a memory-based fusion layer to model the relationship between data
sources and uses it as supportive data for naive fusion. Our proposed layer
addresses the above-mentioned research questions.

3. Methodology

In this paper, we propose a novel fusion architecture for multi-modal deep
learning with an explicit memory and attention as an alternative to naive
fusion. The relative positioning of the proposed layer (red box) in a deep
network is illustrated in Figure 1. We have evaluated the performance gain of
the proposed fusion, by changing only the fusion layer while keeping all other
components in the overall architecture the same. First, the uni-modal input
features are passed through separate feature encoders (see Section 5.1 and
5.2 for the encoder networks used for respective tasks), and then the encoded
features are fused by the proposed fusion layer. The resultant features are
then passed through a DNN followed by the classification. The main highlight
of the paper, the proposed Memory based Attentive Fusion layer (MBAF)
is explained in Section 3.1 and the task-specific encoder networks and the
DNNs are explained in Section 4.

3.1. Mamory based Attentive Fusion (MBAF) Layer

The proposed Memory-Based Attentive Fusion (MBAF) layer (see Figure
2) consists of four major modules: controller, reader, composer, and writer
(the colored boxes in Figure 2 refer to these components). The memory is
represented by M ∈ Rk,l, with a variable number of memory slots where
k is the memory length (slots) and l is the hidden dimension. The size of
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Mode 1 
Encoder

Mode 2 
Encoder

Fusion Layer
DNN + 

Classification

Mode 1
Input

Mode 2
Input

Figure 1: High-level system architecture. We have used different encoder networks and
DNNs (to capture high-level features), followed by classification for different tasks and
modalities. To evaluate the superiority of our proposed fusion architecture, we compare
the performance gain achieved by replacing Naive Fusion (NF) with the proposed Memory
based Attentive Fusion (MBAF) within the fusion layer (red box), while keeping all other
encoder and DNN networks the same throughout a specific task.

the hidden dimension is set to the shape of the concatenated multi-modal
features that are the input to the memory. During initialization, the memory
is filled with values from a normal distribution where µ = 0 and σ = 1. All
other weights are initialized using a uniform distribution. The proposed layer
takes dense feature vectors from the two modalities as the input and outputs
a tensor with the same shape as naive concatenation to obtain a similar
number of parameters for deeper layers and allow fair comparison with naive
fusion.

Consider the dense feature vectors from mode 1 and mode 2, which we
denote xm1,t and xm2,t respectively. The memory controller concatenates the
feature vectors to obtain xt (Equation 1), which is used with the state of the
memory from the previous timestep (Mt−1) to generate a key vector (zt) for
a corresponding memory slot which is semantically associated with xt. The
read module receives zt and Mt−1 and retrieves data from the selected slot
mr,t. The slot location r is defined by zt which is obtained by attending over
memory slots [59]. The process is defined by Equations 2 and 3.

xt = xm1,t ⊕ xm2,t (1)

zt = softmax(fr (xt)
>Mt−1) (2)

mr,t = zt
>Mt−1 (3)
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Figure 2: Proposed MBAF layer: Inputs are the dense feature vectors from two modalities,
and the output is a feature vector of the same dimension as the concatenation of the input
features. The inputs are concatenated and the corresponding memory locations’ key is
calculated (green box). The resultant key is used to read the memory slot (purple box)
and it is fed to the composer (blue box) along with the concatenated input to compose.
Self-attention is applied to filter uninformative features from the composed vector. The
composer output is transformed (learnable over iterations) and written to the memory
slot (pink box) using the pre-calculated key by the controller. The transformed vector is
added to the concatenated input and outputs from the layer.

9



Similar to the work by Munkhdalai et al. [60], the read function, fr,
maps the concatenated dense feature vectors (xt) to the internal memory
space and the memory slots related to xt are determined. The degree of as-
sociation is calculated and transformed to a key vector zt, and the composing
slot, mr,t, is determined by the weighted sum of all slots. Then mr,t and xt
are passed to the memory composition component and the composition op-
erations concatenate them followed by passing the representation through a
Multilayer Perceptron (MLP), fMLP

c , and self-attention. The resultant com-
position feature vector, ct, is returned. We have used fusion to incorporate
both the input and memory in composing the output and an MLP to make
the composition learnable. With this, the composition component is capable
of learning semantic features from a fused vector space. Attention is applied
to the generated features from the MLP to filter uninformative features from
the composition. The composition process is defined by Equations 4, 5 and
6, where α and bt are the attention score and attentive vector respectively.

bt = fMLP
c (xt ⊕mr,t) (4)

αt = softmax(bt) (5)

ct = αi ⊗ bt (6)

Then the composition output, ct, is transformed to the encoded memory
space, ht, with weight wt and a RelU activation. In the write module, the
resulting feature vector, ht, is written to the selected memory slot, r, using
the pre-calculated key, zt. This updates the memory to the new state, Mt.
First the data in the corresponding slot is erased and then it is replaced with
ht as indicated in Equations 7 and 8,

ht = RelU (ct · wt) (7)

Mt = Mt−1(1− (zt ⊗ ek)>) + (ht ⊗ et)(zt ⊗ ek)> (8)

where 1 is a matrix of ones, el ∈ Rl and ek ∈ Rk are vectors of ones and ⊗
is the outer product. Finally, the output of the layer (ot) is calculated using
xt and ht as indicated in Equation 9 where fSUM

o refers to axis wise summa-
tion of elements where the output of the MBAF layer is determined by the
composition of the current input and previous memory state. This operation
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is carried out to ensure the output dimension of the layer is similar to that
achieved by naive fusion, and the inclusion of memory output ht ensures that
the long term dependencies are incorporated in the fusion operation.

ot = fSUM
o (xt ⊕ ht) (9)

The number of parameters of the proposed fusion layer changes with the
input dimensions and it is calculated using,

pmbaf = 3(sx1,t + sx2,t)
2 + (q + 2)(sx1,t + sx2,t) (10)

where pmbaf , sx2,t , sx2,t , q refers to the total parameters of the layer, the
vector dimension of first and second mode, and the batch size respectively.
Similar to the naive fusion layer, this can be extended to n modalities without
significant changes to the architecture. Even though this layer has a signifi-
cantly higher number of parameters (Equation 10) compared to a naive fusion
layer, operations are fast and no significant time increase can be observed
during inference.

In the proposed layer, we have developed a novel approach in composition,
memory update, and output generation to incorporate historical features and
the current input for feature fusion. Compared to other methods, Beard et
al. [49] uses a single vector as the memory (context) while we utilize a
memory (M) with l slots, which ensures that our model has more capacity
to store and retrieve informative facts for different contexts. Fernando et al.
[56] utilized two separate memory layers for two different modalities, (M tr

t

and M sp
t ), while we use a single memory for the combined features. Due

to this representation, we are able to build a memory that stores historical
relationships among the two modalities that are learned by the network and
use that information during fusion, giving the network a better intuition of
how modalities behaved in the past compared to the above works.

In memory composition (ct), both the above works have used naive fu-
sion (concatenation) where we have used an MLP and attention (applied to
inputs and memory) to encourage the memory to learn relationships among
historical feature representations and current features, and to filter-out un-
informative details. In output generation, both the prior methods have used
either a transformed ct (i.e. ht), or ct itself. However, if the input fea-
ture vector contains different information from the historical vectors, it will
be augmented and the same information will not be propagated to deeper
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layers. However, in the proposed method, we use both the input and the
transformed features in output generation to minimize the above effect.

4. Datasets and Experimental Setup

In this section, we describe the datasets used and the experimental setup
used to evaluate the performance gain in multi-modal deep learning networks
by using the proposed memory enabled fusion, and to establish its general-
izability. We have selected benchmarks and baselines from the literature for
two different domains: emotion recognition and physiological signal analy-
sis. We have implemented baseline network architectures similar to original
works, and replaced the naive fusion layer with the proposed Memory-Based
Attentive Fusion (MBAF). The same hyper-parameter configurations were
used for both the naive fusion and proposed MBAF to evaluate performance.

4.1. Experimental Setup for IEMOCAP

The Interactive Emotional Dyadic Motion Capture (IEMOCAP) dataset
1 for emotion recognition was selected, and our architecture follows the ap-
proach of [61]. IEMOCAP contains five sessions of utterances for 10 unique
speakers along with transcripts. We follow the evaluation protocol of [61, 62],
and select utterances annotated with four basic emotions: anger, happiness,
neutral, and sadness; to achieve an approximately even sample distribution
over classes. Samples with excitement are merged with happiness as per [61].
The resultant dataset contains 5531 utterances {anger:1103, happiness:1636,
neutral:1708, sadness:1084}.

Initial training is carried out on both acoustic (AE) and textual (TE)
encoding networks separately before fusion as described below [61]. In AE,
a 250ms audio utterance is passed through a SincNet layer [63] followed by
a Deep Convolution Neural Networks (DCNN) with “Convolution1D” and
“Dense” layers. We obtain a 2048-D feature vector as the output of AE.

In TE, the input vector is passed through an embedding layer followed
by two parallel branches (Left: bi-RNN + DCNN; Right: DCNN) for textual
feature extraction. The output vector from the Bi-RNN is passed through
three parallel convolutional layers with the filter size of 1 ,3 and 5; and
convolutional layers with the same filter sizes are used in the right branch.

1Dataset link : https://sail.usc.edu/iemocap/
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Audio Input Text Input Audio Input Text Input

ClassificationClassification

AE TE AE TE AE TE

F - I

Audio Input Text Input

Classification

Fusion Layer Self Attention Layer AE Audio Encoder TE Text Encoder

F - II F - III

Figure 3: Audio and Text inputs are passed through separate encoder networks and the
resultant dense features are passed through the memory based attentive network. The
encoder networks (AE & TE) are kept unchanged (see Section 4.1) from [61] where SincNet
[63] and a CNN are used for auditory feature extraction, and an RNN and CNN based
network is used to extract textual features. Encoded dense features are passed through 3
different fusion networks: F-I, F-II and F-III. The proposed fusion is applied on text and
audio encoded features directly in F-I, while self attention is applied after and before the
fusion in F-II and F-III respectively.

Cross-attention is applied to convolution layers with the same filter size from
the right branch as the attention for the left branch. The corresponding
convolution layers from two branches are concatenated together and passed
through a dense layer to obtain a 4800-D feature vector as the output of
TE. The resultant dense feature vectors from each modality are then passed
through the proposed MBAF layer as illustrated in Figure 3.

Similar configurations have been followed where the sampling rate of each
utterance (A), audio segment length (A), window size (A), window shift (A),
max sequence length (T), embedding (T) was set to 16000Hz, 250ms, 250ms,
10ms, 100 and Glove-300d respectively (A- Audio network configuration, T-
Text network configuration). We utilize an 8:1:1 dataset split for training,
validation, and testing sets respectively (since the memory access operation
depends on the batch size, nearest multiplication of batch size to the split
size is selected for test split). The learning rate in each network is fixed at
0.001 , and the Adam optimizer is used. Experiments were conducted on the
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baseline architecture with naive fusion and using the proposed fusion.

4.2. Experimental Setup for PhysioNet-CMEBS

We have selected the “combined measurement of ECG, breathing and
seismocardiogram (CMEBS)” dataset 2 from the PhysioNet database. The
dataset contains electrocardiogram (ECG), breathing (through respiratory
signals - RS) and seismocardiogram (SCG) for 20 healthy people (physiologi-
cal signals)[64, 65]. Subjects are asked to listen to music and the physiological
signals were measured at three states; Basel state, while listening to music
and after the music. The recordings are 5min, 50min, and 5min in length for
each state respectively. The data has been acquired by a Biopac MP36 [64]
where channels 1,2,3 and 4 were devoted to measuring ECG-I, ECG-II, RS,
and SCG respectively. Each channel was sampled at 5 kHz.

For experimental purposes, we divide and annotate the data according to
the acquired state (3 classes). Furthermore, due to the high-class imbalance
in the original dataset, we selected a single 5min segment from the second
state (first 5 mins). Then each signal was segmented into 200ms chunks
(each chunk with 1000 data points). The obtained dataset consists of 14, 977
samples {class 1: 4977, class 2: 5000, class 3: 5000}. Due to the lack of multi-
modal fusion research on this dataset, we created a benchmark model with
LSTMs and an MLP as illustrated in Figure 4. We considered 6 consecutive
chunks from each modality as a single input to the network. First, the inputs
are passed through LSTM-1 with 512 hidden units which return sequences,
followed by LSTM-2 with 512 hidden units which return a single dense out-
put. The resultant features from both modalities are then fused using the
proposed MBAF layer. Then the fused features are passed through a dense
layer with 1024 units and 0.5 dropout rate followed by a classification dense
layer with 3 units and softmax activation.

Experiments were conducted on the proposed baseline architecture with
naive fusion and the proposed fusion. The learning rate and the batch size in
each network are fixed at 0.001 and 32 respectively, and the Adam optimizer
is used. Leave One Subject Group Out (LOSGO) cross-validation is used in
this experiment with 4 groups of 5 subjects in each.

2https://physionet.org/content/cebsdb/1.0.0/
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layer. The fused features are then passed through a dense layer (MLP) and classified.
In evaluations, we use naive fusion and the proposed MBAF in the fusion layer. We
use ECG-I, RS and SCG signals in the experiments with combinations of (ECG+RS) as
F-IV,(ECG+SCG) as F-V and (RS+SCG) as F-VI.

5. Results and Discussion

The experimental results on both IEMOCAP and PhysioNet-CMEBS
datasets are described in Section 5.1 and 5.2 respectively.

5.1. Experiments on IEMOCAP Dataset

Following [61, 62], we have measured the performance of our system with
weighted accuracy (WA) and unweighted accuracy (UA). Table 1 and Figure
5 presents the performance of our approach for emotion recognition compared
with the state-of-the-art methods 3.

Yoon et al. has utilized two RNNs to encode textual and acoustic data
followed by a DNN for classification in MDRE [68]. Cho et al. has used
two encoders (RNN and a DCNN) to encode two modalities followed by fu-
sion and an SVM for classification [26]. MHA-1 and MHA-2 by Yoon et al.
have used two Bidirectional Recurrent Encoders (BRE) for two modalities
followed by multi-hop attention where two different hop counts were used

3State-of-the-art methods are selected that use the same subset of IEMOCAP dataset
(with anger, happiness, neutral and sad emotions) and the same modalities (audio and
text only).
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Table 1: Recognition accuracy for IEMOCAP where NF, MBAF, UA and WA refers
to Naive Fusion, proposed Memory based Attentive Fusion, unweighted accuracy and
weighted accuracy respectively. F-I, F-II and F-III architectures are illustrated in Figure
3 and F-III with MBAF has shown the highest recognition accuracy surpassing existing
state of the art methods.

Model Modality WA UA

Conv. MKL [66] A+ T 65.07% −
Ens. SVM Trees [67] A+ T 67.4% 67.4%

E-vec+MCNN+LSTM [26] A+ T 64.9% 65.9%

MDRE [68] A+ T 71.8% −
MHA-1 [62] A+ T 75.6% 76.5%

MHA-2 [62] A+ T 76.5% 77.6%

F-I (with NF) [61] A+ T 77.85% 79.27%

F-II (with NF) [61] A+ T 78.98% 80.01%

F-III (with NF) [61] A+ T 79.22% 80.51%

Ours F-I (with MBAF) A+ T 78.13% 79.75%

Ours F-II (with MBAF) A+ T 79.49% 80.06%

Ours F-III (with MBAF) A+ T 80.66% 82.20%

for two methods [62]. Most of the above works have been limited by using
hand-crafted features as inputs to uni-modal encoders. However, deep learn-
ing has been shown to learn a better feature representation, compared to
manually-extracted or calculated features, which has enabled the F-III with
NF method from [61] to obtain higher results than the above methods. Table
1 illustrates that MHA-2 has achieved the highest performance from all the
above state-of-the-art methods except for [61]. We note that MHA-2 [26] and
[61] are the only methods to use attention for feature refinement, demonstrat-
ing the importance of utilizing attention to refine fused features. Priyasad et
al.[61] has surpassed all the above methods in recognition accuracy via the
careful utilization of deep-nets for automated feature extraction and atten-
tion. However, all of these methods have used naive fusion (concatenation)
as the fusion mechanism ignoring the relative importance of modes over-time.

Since F-III with Naive Fusion (NF) by Priyasad et al. [61] has achieved
the best state-of-the-art accuracy, we have selected it as our baseline. The
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Table 2: Comparison of class-wise Precision, Recall and F1 Score of our proposed approach
for the best model (F-III with MBAF) with the state-of-the-art approach of [61]. It is
observed that the proposed fusion method has achieved a substantial improvement in all
the evaluation metrics across the majority of the classes.

Class
F-III with NF [61] F-III with MBAF (Ours)

Precision Recall F1 Precision Recall F1

anger 87.76% 86.87% 87.31% 88.00% 88.89% 88.44%

happiness 80.00% 81.05% 80.52% 77.38% 89.97% 81.00%

neutral 76.19% 72.73% 74.42% 81.46% 69.89% 75.23%

sadness 74.73% 80.95% 77.71% 77.42% 85.71% 81.36%

w. avg. 79.32% 79.30% 79.28% 80.84% 80.66% 80.51%

only architectural differences between our model and the baseline models (F-
I, F-II, and F-III with NF) is the proposed memory-based attentive fusion
layer, which replaces the naive fusion layer. We have kept all the corre-
sponding layers and parameters the same throughout the experiment. Our
proposed model has achieved a substantial improvement in overall accuracy,
with a 1.7% increase (in F-III with MBAF) compared to the best baseline
F-III with Naive Fusion (NF). Furthermore, we have achieved a performance
increase of 0.6% and 0.5% from F-II with MBAF and F-I with MBAF re-
spectively. This performance increase is achieved only by changing the fusion
layer.

It is observed that the network architectures with attention (F-II and
F-III) have shown a slight increase in the recognition accuracy compared
to non-attentive networks (F-I) with both NF and MBAF fusion. Feature
refinement achieved through attention is the main reason behind this obser-
vation. Given these results, we argue that the proposed MBAF fusion has
allowed the model to understand the relative importance of modes over time
by incorporating both the current features and long-term dependencies in
the data. Ablation studies have been carried out to determine the impact of
different components and hyper-parameters in the explicit memory towards
the recognition accuracy, and these studies are presented in Section 6.

Table 2 presents a class-wise comparison of precision, recall, and F1 score
between the two best models: F-III with MBAF (proposed method) and F-
III with NF (best method in state-of-the-art). It is observed that the highest
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Figure 5: Confusion matrices of the proposed fusion layer for separate fusion methods.
Left, middle and right figures represent F-I with MBAF, F-II with MBAF and F-III with
MBAF respectively.

precision, recall, and F1 scores have been obtained by F-III with MBAF for
all the emotions, except for the highest precision for “happiness” and highest
recall for “neutral” which are achieved by F-III with NF. Given that the only
architectural difference between the two models is the explicit memory, this
demonstrates its ability to learn a better decision boundary.

When comparing our best model, F-III with MBAF with the best model
of [61] (F-III with NF), substantial improvement in recognition accuracy for
“happiness” and “neutral” alongside a subtle reduction in “anger” and “sad-
ness” is observed. Due to the class imbalance in the dataset, the memory
may have focused more on classes with more samples (“neutral” and “happi-
ness”; see Section 5.1), resulting in the observed behavior. Since the recog-
nition accuracy of “anger” remains higher for both the cases, the confusion
between other classes which resulted in reduced accuracy is negligible. How-
ever, a reduced confusion between “neutral” with “happiness” and “sadness”
is observed in F-III with MBAF resulting in an improvement in recognition
accuracy of the “neutral” emotion. The main reason behind this behavior
may be that the information captured through the explicit memory is help-
ing to minimize the confusion between “happiness” and “sadness” with the
“neutral” emotion.

5.2. Experiments on PhysioNet-CMEBS Dataset

For PhysioNet-CMEBS, we have measured the performance of our sys-
tem only with weighted accuracy (WA) since the modified dataset has an
approximately equal class distribution. Table 3 presents the performance
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Table 3: Recognition accuracy for PhysioNet-CMEBS where NF,MBAF and WA refers
to Naive Fusion, proposed Memory based Attentive Fusion and weighted accuracy. F-
IV, F-V and F-VI follows the same network architecture with different input modality
combinations.

Model WA-NF WA-MBAF

F-IV (ECG+RS) 35.23% 41.75%

F-V (ECG+SCG) 51.68% 53.58%

F-VI (RS+SCG) 51.50% 53.98%

of our approach for physiological signal state recognition compared with our
baseline method. Our proposed model achieves a substantial improvement in
overall accuracy, with approximately a 6.5%, 2%, and 2.5% increase in F-IV
(ECG+RS), F-V (ECG+SCG) and F-VI (RS+SCG) respectively, compared
to the corresponding baselines using naive fusion.

Table 4 shows the inference time for the above-mentioned models with
MBAF compared to the NF for 500 test samples on a PC with 10 CPU cores
and 20GB of memory. Since we have used the same benchmark network with
the same number of parameters for F-IV (ECG+RS), F-V (ECG+SCG), and
F-VI (RS+SCG) (different modalities with same input dimensions as inputs),
we have averaged the inference time for each model.

A substantial difference in inference time cannot be observed between
MBAF and NF for IEMOCAP, even with the high parameter difference. We
observe that the model used on the PhysioNet-CMEBS database is much
faster, due to the complexity of encoder networks and higher feature dimen-
sions required for processing IEMOCAP. With these results, it is evident
that the proposed MBAF layer has a negligible impact on the inference time,
even with high dimensional inputs.

6. Ablation Studies

Several ablations studies have been carried out to identify the; 1) im-
pact of memory size, 2) impact of the location of the memory unit,
3) impact of read function on the final classification performance,
4) impact of up/down sampling of the memory fusion output to-
wards the classification accuracy and 5) representation of deep-net
features. The best model (F-III with MBAF) for the IEMOCAP dataset is
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Table 4: Inference time in seconds for the best models with MBAF and NF for 500 samples
(time associated with encoder networks are not considered). Even with the significant
difference in number of parameters for NF and MBAF for each architecture, MBAF has
achieved approximately similar inference times due to associated simpler calculations.

Model
with NF with MBAF

Parameters Time Output Parameters Time

F-I 16, 420, 335 0.49s 6848−D 157, 434, 371 1.74s

F-II 63, 322, 307 0.85s 6848−D 204, 336, 323 2.22s

F-III 43, 661, 507 0.73s 6848−D 184, 675, 523 1.72s

F-IV - F-VI 11, 448, 323 0.96s 1024−D 14, 628, 867 1.13s

selected for these experiments and the results are presented in the following
subsections.

6.1. Impact of Memory Size on Recognition Accuracy

Table 5 illustrates the variation in recognition accuracy with the num-
ber of memory slots, l, measured with unweighted and weighted accuracy.
Approximately similar weighted accuracies can be observed with lower mem-
ory sizes while higher memory sizes achieve comparatively lower accuracies
(but higher than naive fusion, refer to Table 1). However, fluctuations are
observed with unweighted accuracy where the highest accuracy is obtained
with a memory size of 30.

Table 5: Variation of recognition accuracy for the best fusion approach (F-III with MBAF)
in IEMOCAP with the size of the memory. UA and WA refers to unweighted and weighted
accuracy respectively. Maximum recognition accuracy has been observed with a memory
size of 30 while the recognition accuracy drops slightly with higher memory sizes.

Accuracy
Memory Size

10 20 30 40 50 100

WA 80.07% 80.66% 80.66% 79.10% 80.07% 79.10%

UA 81.27% 81.98% 82.20% 80.49% 81.03% 80.55%

A fluctuating relationship between memory size and the accuracy is ob-
served for the PhysioNet-CMEBS dataset as illustrated in Table 6.
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Table 6: Variation in weighted recognition accuracy for different fusion methods in Phy-
sioNet as the size of the memory varies. A fluctuating relationship between memory size
and the accuracy is observed for the PhysioNet-CMEBS dataset.

Model
Memory Size

10 20 30 40 50 100

F-IV 39.86% 41.75% 41.61% 40.96% 40.80% 41.02%

F-V 53.58% 53.12% 52.08% 52.73% 52.68% 52.48%

F-VI 52.94% 53.98% 52.81% 52.39% 51.82% 53.07%

Even though the recognition accuracy changes with the memory size, all
the recognition rates have surpassed the naive fusion accuracy (refer to Table
1 and 3). A drop in recognition accuracy can be observed for higher memory
sizes since when more history is stored, it is harder for the memory read op-
eration to find salient information. Similarly, when the memory is too small,
information is lost and performance degrades slightly. Even though the size
of the memory layer increases with the memory slot size, no corresponding
increase in inference time was observed. We believe this is due to the simpler
tensor operations associated with the selection, retrieval and writing back to
memory.

6.2. Impact of Read Function on the Recognition Accuracy

The above described MBAF layer uses an attentive approach to select the
memory location in the read module. We have evaluated the performance
of using cross-attention over naive attention to retrieve the memory slot
since we are inputting two modalities to the layer. For this task, we have
defined an additional feature fusion by swapping the order of the fusion
(xst) and used it to compose (ct) the output which is written back to the
memory slot after transformation, as given in Equations 11, and 12. With
this, when the attentive memory selection is carried out, the original fused
features (xt) are used as an attention input to the memory which contains
transformed features of (xst), which behaves as a cross-attention function. All
other equations described in Section 3 are unchanged.

xst = xm2,t ⊕ xm1,t (11)

bt = fMLP
c (xst ⊕mr,t) (12)
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Table 7: Variation of recognition accuracy for the best fusion (F-III with MBAF) in
IEMOCAP with size of the memory when the cross-attention (CA) is used to read from
memory instead of naive attention (NA). UA and WA refers to unweighted accuracy
and weighted accuracy respectively. It is observed that using naive attention in memory
composition has resulted in a slight increase of accuracy compared to cross-attention.

Accuracy
Memory Size

10 20 30 40 50 100

WA-NA 80.07% 80.66% 80.66% 79.10% 80.07% 79.10%

WA-CA 79.82% 80.27% 79.49% 78.13% 79.30% 79.88%

UA-NA 81.27% 81.98% 82.20% 80.49% 81.03% 80.55%

UA-CA 80.80% 81.33% 80.45% 80.22% 80.99% 80.93%

The resulting accuracy variations with the memory size are illustrated
in Table 7. The results indicate that the use of cross-attention is unable to
achieve higher performance compared to general attention. The main reason
behind this would be significantly different features in the two modes.

6.3. Impact of Memory Location on Recognition Accuracy

We have evaluated the impact of the location of the memory-based fusion
layer to highlight the importance of using the memory in fusion. For this
experiment, we have used the proposed MBAF layer on individual channels
by altering Equations 1 to 13 as shown. All the other internal calculations
were kept the same.

xt = xmi,t
where i ∈ [1, 2] (13)

The experiments were carried out for the F-III with MBAF architecture
with a memory size of 30 and the accuracy was 78.31% for WA and 80.29%
for UA. Using memory for individual modes couldn’t outperform the MBAF
and NF accuracies. Therefore, it is evident that the long-term dependencies
learned through a memory network are capable of increasing the performance
of multi-modal fusion over using a naive fusion scheme.

6.4. Impact of Output Dimension of MBAF layer on Recognition Accuracy

The proposed MBAF layer outputs a feature vector (ot) with the same
dimension as the naive concatenation output. In F-III with MBAF, two dense
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Table 8: Variation in recognition accuracy for the best fusion method (F-III with MBAF
with memory size 30) on IEMOCAP as the output dimension of the MBAF layer changes.
UA and WA refer to unweighted accuracy and weighted accuracy respectively. The output
dimension is changed via up and down sampling and it results in reduction in recognition
accuracy.

Accuracy 6848-D
Output Dimension of MBAF Layer

512 1024 2048 4096 8192

WA 80.66% 76.37% 76.56% 75.00% 76.37% 73.63%

UA 82.20% 77.58% 77.21% 75.64% 76.08% 74.16%

Inf. Time 1.72s 2.02s 2.00s 2.06s 2.21s 2.39s

feature vectors of 2048-D and 4800-D are input to the layer and a 6848-D
feature vector is returned (see Column 6848-D in Table 8). However, we can
alter the output dimension (ot) of the layer through up or down-sampling.
We have evaluated the impact of the dimension of the MBAF layer output
on the recognition accuracy and the results are shown in Table 8.

It is observed that down or up sampling of the original MBAF output
(Column 6848-D) has resulted in an accuracy drop. The experiments were
carried out for the F-III setting with the MBAF architecture and a memory
size of 30. With this result, it is evident that the added up or down sampling
has resulted in a reduction of the recognition accuracy.

6.5. Representation of Deep-net Features

Figure 6 presents a non-linear dimensionality reduction visualization of
deep-net features using t-distributed Stochastic Neighbor Embedding (t-
SNE) where A, B, C and D refer to acoustic feature input to fusion layer,
textual feature input to fusion layer, fused features with naive fusion and
fused features with MBAF for F-III architecture respectively. Both uni-
modal features were unable to clearly separate any emotion class. Both
NF and MBAF fusions have been able to deduce a better decision bound-
ary compared to uni-modal features. Furthermore, we have observed several
outlier points in uni-modal features that have been eliminated with fusion
suggesting the importance of multi-modal fusion over uni-modal approaches.
It is observed that MBAF is capable of learning a better decision boundary
for “sadness” and “happiness” resulting in reduced confusion with “neutral”
which confirms the results we obtained in Table 5. However, we do not ob-
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Figure 6: t-distributed Stochastic Neighbor Embedding (t-SNE) plot of A) acoustic feature
input to fusion layer, B) textual feature input to fusion layer, C) fused features with naive
fusion and D) fused features with MBAF for the F-III architecture. The axis limit were
manually set to obtain a better visualization ignoring some outlier points observed in B.
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serve a perfect decision boundary according to these plots. The main reason
for this would be the challenging nature of the problem, and the high dimen-
sionality of the data (6848-D) which has to be reduced to 2-dimensions.

7. Conclusion

In this paper, we propose a novel deep learning architecture for multi-
modal data fusion (MBAF layer) based on explicit memory and attention. In
contrast to the naive fusion (concatenation) which only considers the features
at a given time-step during fusion, MBAF fusion is capable of learning long-
term dependencies in data which is combined with the result of naive fusion
during the fusion stage. Furthermore, attention over memory composition
helps for the refinement of features retrieved from memory. The proposed
MBAF layer can be integrated into any deep learning network designed for
any task and can be learned end-to-end without having any significant impact
on the inference time, even with higher dimensionality in the fusion vector.

Experiments on publicly available datasets demonstrate the generalizabil-
ity of the proposed fusion. Furthermore, the experimental results demon-
strate that the proposed MBAF is capable of achieving significant improve-
ments, outperforming the naive fusion used by state-of-the-art baselines in
terms of classification accuracy. The results indicate that the proposed
MBAF fusion allows the model to understand the relative importance of
modes over time, by incorporating both the current features and long-term
dependencies in the data. Ablation studies show that the proposed fu-
sion methods are capable of achieving stable results over varying hyper-
parameters.
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[67] V. Rozgić, S. Ananthakrishnan, S. Saleem, R. Kumar, and R. Prasad,
“Ensemble of svm trees for multimodal emotion recognition,” in Pro-
ceedings of The 2012 Asia Pacific Signal and Information Processing
Association Annual Summit and Conference. IEEE, 2012, pp. 1–4.

[68] S. Yoon, S. Byun, and K. Jung, “Multimodal speech emotion recogni-
tion using audio and text,” in 2018 IEEE Spoken Language Technology
Workshop (SLT). IEEE, 2018, pp. 112–118.

33


	1 Introduction
	2 Literature Review
	2.1 Deep Multi-Modal Fusion
	2.2 Memory Networks

	3 Methodology
	3.1 Mamory based Attentive Fusion (MBAF) Layer

	4 Datasets and Experimental Setup
	4.1 Experimental Setup for IEMOCAP
	4.2 Experimental Setup for PhysioNet-CMEBS

	5 Results and Discussion
	5.1 Experiments on IEMOCAP Dataset
	5.2 Experiments on PhysioNet-CMEBS Dataset

	6 Ablation Studies
	6.1 Impact of Memory Size on Recognition Accuracy
	6.2 Impact of Read Function on the Recognition Accuracy
	6.3 Impact of Memory Location on Recognition Accuracy
	6.4 Impact of Output Dimension of MBAF layer on Recognition Accuracy
	6.5 Representation of Deep-net Features

	7 Conclusion
	8 Acknowledgements

