
Gu, Xiaowei, Zhang, Ce, Shen, Qiang, Han, Jungong, Angelov, Plamen
and Atkinson, Peter (2022) A Self-Training Hierarchical Prototype-based
Ensemble Framework for Remote Sensing Scene Classification. Information
Fusion, 80 . pp. 179-204. ISSN 1566-2535.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/91586/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1016/j.inffus.2021.11.014

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
CC BY-NC-ND (Attribution-NonCommercial-NoDerivatives)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/91586/
https://doi.org/10.1016/j.inffus.2021.11.014
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

* Corresponding author

A Self-Training Hierarchical Prototype-based Ensemble Framework for
Remote Sensing Scene Classification

Xiaowei Gu1, *, Ce Zhang2, 3, *, Qiang Shen4, Jungong Han4, Plamen P. Angelov5 and Peter M. Atkinson2

1 School of Computing, University of Kent, Canterbury, CT2 7NZ, UK
2 Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK

3 UK Centre for Ecology & Hydrology, Lancaster, LA1 4AP, UK
4 Department of Computer Science, Aberystwyth University, Aberystwyth, SY23 3DB, UK

5 School of Computing and Communications, Lancaster University, Lancaster, LA1 4WA, UK

E-mails: x.gu@kent.ac.uk;{qqs, juh22}@aber.ac.uk; {c.zhang9, p.angelov, pma}@lancaster.ac.uk

Abstract: Remote sensing scene classification plays a critical role in a wide range of real-world applications.

Technically, however, scene classification is an extremely challenging task due to the huge complexity in remotely

sensed scenes, and the difficulty in acquiring labelled data for model training such as supervised deep learning.

To tackle these issues, a novel semi-supervised ensemble framework is proposed here using the self-training

hierarchical prototype-based classifier as the base learner for chunk-by-chunk prediction. The framework has the

ability to build a powerful ensemble model from both labelled and unlabelled images with minimum supervision.

Different feature descriptors are employed in the proposed ensemble framework to offer multiple independent

views of images. Thus, the diversity of base learners is guaranteed for ensemble classification. To further increase

the overall accuracy, a novel cross-checking strategy was introduced to enable the base learners to exchange

pseudo-labelling information during the self-training process, and maximize the correctness of pseudo-labels

assigned to unlabelled images. Extensive numerical experiments on popular benchmark remote sensing scenes

demonstrated the effectiveness of the proposed ensemble framework, especially where the number of labelled

images available is limited. For example, the classification accuracy achieved on the OPTIMAL-31, PatternNet

and RSI-CB256 datasets was up to 99.91%, 98. 67% and 99.07% with only 40% of the image sets used as labelled

training images, surpassing or at least on par with mainstream benchmark approaches trained with double the

number of labelled images.

Keywords: self-training; pseudo-labelling; prototypes; remote sensing; scene classification.

1. Introduction
Remote sensing scene classification aims to allocate remote sensing images into different land-use categories

automatically, and is an important research goal due to its utility in a wide range of Earth observation applications

[1]–[3]. However, remote sensing scenes often present huge complexity and heterogeneity, with high intra-class

similarity (and low inter-class variation) and complex geometrical structures, often compounded by limited

availability of labelled images. Remote sensing scene classification is, thus, considered a challenging task for the

machine learning community and has received wide attention [4], [5].

Currently, deep neural networks (DNNs) are mainstream methods for remote sensing scene classification,

outperforming handcrafted feature engineering methods on a variety of benchmark datasets [5]–[7]. However,

DNNs are “black box” models with a significant number of hyper-parameters. Their training processes are

computationally expensive and commonly restricted to offline learning. Furthermore, a DNN model requires a

large number of labelled images to be trained properly. DNNs unfortunately are not able to utilize the huge number

of unlabelled images available for training purposes. In real-world application scenarios, high-quality labelled

images are hard to obtain due to the expensive costs of manual annotation [8], [9]. Annotating remote sensing

images manually usually requires a high-level of knowledge and expertise, and can only be done by well-trained

researchers. This makes labelled remote sensing images a scarce resource. Although it is possible to increase the

number of labelled images through data augmentation techniques, the generalisation of DNN models is scarified,

and the models become fragile to uncertainties and lack robustness. On the other hand, semi-supervised learning

methods [10] can build a powerful predictive model from both labelled and unlabelled images simultaneously

with less human input. Therefore, semi-supervised methods have been increasingly explored in the remote sensing

domain [11], [12]. However, the vast majority of existing works using semi-supervised learning techniques

focused on land-cover classification of remotely sensed images [13]–[17]. The potential of semi-supervised

learning for land-use classification has not been sufficiently explored.

The self-training hierarchical prototype-based (STHP) classifier was introduced recently as a semi-supervised

learning method exploiting “pseudo-labelling” [18]. Initially primed with a small number of labelled data, STHP

is able to self-learn a multi-layered prototype-based structure from unlabelled data. These prototypes represent

local models of data distributions identified at multiple granularity levels, and are aggregated into pyramidal

hierarchies. STHP model offers high transparency and interpretability compared with mainstream classifiers

thanks to its prototype-based nature, while maintaining high classification accuracy with minimum human

supervision. As STHP can capture the most distinctive characteristics between different classes at multiple

specificity levels with its multi-layered structure, it is highly suitable for solving classification problems involving

complex data structures, such as remote sensing scene classification. In addition, unlike traditional semi-

supervised methods, STHP is able to learn from unlabelled data on a “chunk-by-chunk” basis and self-evolve its

system structure continuously to adapt to unfamiliar data patterns.

In this paper, using STHP+ (a modified version of the original STHP [18]) as the base learner, a novel self-training

hierarchical prototype-based ensemble framework (STHPEF) is proposed for remote sensing scene classification.

STHPEF boosts the diversity of its base classifiers using different types of feature descriptors from multiple views

of remote sensing images. As the base classifiers self-expand their knowledge bases from unlabelled images by

pseudo-labelling, the pseudo-labelling mechanism of the original STHP model is modified to increase precision

by using valuable information mined from unlabelled data at multiple specificity levels, leading to the enhanced

version STHP+. In addition, a cross-checking mechanism is introduced to STHPEF, allowing the base classifiers

to self-train using unlabelled images, with information exchange to maximize pseudo-labelling accuracy.

Integrating the new pseudo-labelling and cross-checking mechanism has great potential to increase the overall

accuracy of the proposed ensemble framework.

Major contributions of this paper are:

1) A novel pseudo-labelling mechanism is proposed by considering the multi-granular information mined from

data in decision-making.

2) A novel semi-supervised ensemble framework with a cross-checking mechanism is used to learn from

unlabelled images autonomously with accuracy.

The remainder of this paper is organized as follows. Section 2 presents a review of related works. Details of the

proposed STHP+ classifier and STHPEF system are described in Sections 3 and 4. Numerical experiments are

provided in Section 5, and a conclusion is drawn in Section 6.

2. Related Works

2.1. Remote Sensing Scene Classification
The main aim of remote sensing scene classification is to assign automatically distinct land-use class labels to

remotely sensed images based on their semantic content. Existing scene classification methods generally fall into

three categories [2]: 1) methods based on low-level visual features, 2) methods based on mid-level visual features,

and 3) methods based on high-level visual features. Low-level methods are based mostly on hand-crafted features

such as Gist [19], scale-invariant feature transform (SIFT) [20], local binary pattern (LBP) [21] and colour

histogram (CH) [22]. These handcrafted features require domain expertise for their production, and have limited

descriptive capabilities. Mid-level methods attempt to construct holistic representations by encoding low-level

visual features [1]. Typical mid-level methods include bag of visual words (BoVW) [23] and unsupervised feature

learning methods, such as sparse encoding [24], [25] and the autoencoder [26]. However, BoVW-based methods

lack flexibility and are hard to adapt to different problems, while unsupervised feature-based methods fail to

capture class-specific information [27]. Hence, the performance of mid-level methods may not be satisfactory.

In contrast to the previous two types, high-level methods utilize high-level semantic features learned by DNNs

(mostly, deep convolutional neural networks, DCNNs) for remote sensing scene classification [8], [28]. DCNNs

have achieved impressive results on a variety of complex real-world problems such as image classification, object

detection and natural language processing [5], [29]. Thanks to their powerful feature representation, DCNN-based

methods have achieved high accuracies in remote sensing scene classification. For example, Tong et al. [1]

employed the lightweight DenseNet-121 as the backbone to extract spatial features at multiple scales and

introduced a channel attention mechanism to strengthen the weights of important feature channels. Zhang et al.

[30] proposed a multi-scale dense network for hyperspectral remote sensing image classification. Lu et al. [31]

introduced an end-to-end feature aggregation convolutional neural network (CNN) that aggregates different

convolutional features for scene classification. Liu et al. [32] constructed Siamese CNNs to learn discriminative

feature representations for accurate remotely sensed scene classification. Zhang et al. [33] introduced a lightweight

CNN with high classification accuracy. Recent review papers [4], [5] summarised some of the latest development

in DNNs for remote sensing scene classification.

Despite the above advantages, DCNNs are data- and computational resource-hungry, and their training may

require a huge number of labelled training images. Transfer learning techniques [34] can prevent DNNs from

overfitting when trained with small-size datasets, but fine-tuned networks are still unstable without sufficient

labelled images. An effective approach is to employ off-the-shelf DNNs pre-trained using large-scale natural

images (i.e., ImageNet [35]) as feature descriptors to extract high-level representations for remotely sensed scene

classification [2], [9]. Researchers [36], [37] have reported high accuracy by training mainstream classifiers such

as support vector machines (SVM) and random forests (RF) using high-level features from pre-trained DNNs (e.g.

AlexNet, VGGNet, GoogLeNet). However, these pre-trained DNNs often fail to capture the most distinctive

characteristics of different land-use categories, due to the intricate and highly complicated geometric structures

and spatial patterns involved.

To date, the majority of remote sensing scene classification involves training in a fully supervised fashion to learn

a predictive model [38]–[40]. However, as introduced above, labelled images are scarce and expensive to obtain,

while unlabelled images are plentiful. Supervised methods are unable to utilize unlabelled images during the

training process. In contrast, semi-supervised methods can build strong predictive models using both labelled and

unlabelled images [10] with minimum human labelling effort. Despite this, most existing semi-supervised

methods were developed for land cover classification using hyperspectral/multispectral satellite sensor images

[13]–[16], [41], [42] and polarimetric synthetic aperture radar images [17], [43], [44], with the main purpose of

assigning a pixel (or a group of pixel) of a remotely sensed image to a particular land-cover class. Very few semi-

supervised methods have been proposed for remote sensing scene classification [9], which deserves further

exploration.

2.2. Semi-supervised Learning
Semi-supervised learning is a hybrid machine learning technique combining features of both supervised and

unsupervised learning [18], [45]. Semi-supervised learning methods can be categorized broadly into two major

categories: 1) inductive methods and 2) transductive methods [10]. Inductive methods aim to construct a predictive

model from both labelled and unlabelled data, which can be used to predict class labels of newly available data

samples after the training phase. Typical inductive methods include semi-supervised support vector machine

(S3VM) [46], safe S3VM (S4VM) [47], self-training [48], co-training [49] and SemiBoost [50]. Transductive

methods aim to predict class labels of unlabelled samples that are given during the training phase. Since

transductive methods do not build predictive models, their predictive power is limited to the unlabelled samples

seen during training. Mainstream transductive method include the transductive support vector machine (TSVM)

[46], Laplacian SVM [51], local and global consistency (LGC) [52], and anchor graph regularization (AGR) [53].

Self-training [48] and co-training [49], [54] are the most popular inductive semi-supervised learning methods.

Typically, the training processes of the two methods are composed of two alternating steps; training and pseudo-

labelling [10]. A standard self-training method first trains a predictive model with the labelled data and then uses

the trained model to classify the unlabelled samples. Unlabelled samples with the highest classification confidence

are chosen to augment the labelled training set with their predicted labels, which are the so-called “pseudo-labels”.

The predictive model is then retrained with the augmented labelled training set and the same process is repeated.

A standard co-training method [49], [54] firstly trains two or more classifiers with labelled data. Then, the

classifiers are used for predicting the class labels of unlabelled samples from their respective views. The most

confident predictions of each classifier are used to augment the training set of the other(s). The classifiers are then

retrained with the augmented training sets, and the same process is repeated, which is similar to the standard

procedure of self-training methods. However, the key to the success of co-training methods is that the trained

classifiers show a certain degree of disagreement between each other. To achieve this, co-training methods either

split the feature space into multiple views (namely, sub-feature sets), split data into multiple views (namely, sub-

datasets), or promote the diversity of trained classifiers [10]. In general, self-training is easy to implement

compared with other semi-supervised learning methods and, importantly, it does not impose any assumptions on

the data generation models with parameters, providing a simple but effective approach to utilize valuable hidden

information from unlabelled data [18].

3. STHP+ Classifier
In this section, technical details of the STHP+ classifier are presented. Compared with the original STHP classifier

introduced in [18], the self-training mechanism of STHP+ is modified to increase the pseudo-labelling precision

by considering multi-granular data distribution information.

Let 𝐗𝐾 = {𝒙1, 𝒙2, … , 𝒙𝐾} be a particular dataset in a 𝑁 dimensional real data space, 𝐑𝑁 ; 𝒙𝑘 =

[𝑥𝑘,1, 𝑥𝑘,2, … , 𝑥𝑘,𝑁]
𝑇
 is the sample observed at the kth time instance; 𝐾 is the total number of data samples. 𝐗𝐾 is

composed of data samples of 𝐶 different classes, and only the first 𝐿 samples are labelled (𝐿 ≪ 𝐾) with their

corresponding class labels denoted as 𝐘𝐿 = {𝑦1, 𝑦2, … , 𝑦𝐿}; 𝑦𝑖 ∈ {1,2, … , 𝐶} for ∀𝑦𝑖 ∈ {𝑦}𝐿 . Hence, 𝐗𝐾 can be

divided into a labelled subset, denoted as 𝐗𝐿 = {𝒙1, 𝒙2, … , 𝒙𝐿} and an unlabelled set, denoted as 𝐗𝑈 =

{𝒙𝐿+1, 𝒙𝐿+2, … , 𝒙𝐾}. The labelled set can be further divided into 𝐶 subsets, namely, 𝐗𝑖,𝐿𝑖
= {𝒙𝑖,1, 𝒙𝑖,2, … , 𝒙𝑖,𝐿𝑖

}

according to the class labels (𝑖 = 1,2, … , 𝐿𝑖) and there is 𝐿 = ∑ 𝐿𝑖
𝐶
𝑖=1 . For clarity, a list of key notations is given

by Table 1.

Table 1. Key notations and definitions

Notations Definitions

𝐗𝐾 A dataset

𝒙𝑘 The data sample observed at the kth time instance

𝐈𝑘 The image observed at the kth time instance

𝑦𝑘 The true label of 𝒙𝑘 or 𝐈𝑘

𝑦̂𝑘 The estimated label of 𝒙𝑘 or 𝐈𝑘

𝐶 Number of classes

𝐗𝐿 The set of labelled data

𝐘𝐿 Labels of 𝐗𝐿

𝐗𝑈 The set of unlabelled data

𝐿 Cardinality of 𝐗𝐿

𝐗𝑖,𝐿𝑖
 The set of data belonging to the ith class

𝐗́𝑗 The jth unlabelled data chunk

𝑄 The cardinality of 𝐗́𝑗

𝒙𝑗,𝑘 The kth unlabelled sample in 𝐗́𝑗

𝐿𝑖 Cardinality of 𝐗
𝐿𝑖
𝑖

𝐗𝑗 The set of pseudo-labelled samples from 𝐗́𝑗

𝐘𝑗 Pseudo-labels of 𝐗𝑗

𝑁 Dimensionality of the data space

𝐑𝑁 The data space

λ𝑖 The confidence score produced by the ith hierarchy

𝐏𝑖
ℎ The set of prototypes at the hth layer of the ith hierarchy

𝑀𝑖
ℎ Cardinality of 𝐏𝑖

ℎ

𝒑𝑖,𝑗
ℎ The jth prototype in 𝐏𝑖

ℎ

𝓵𝑖,𝑗
ℎ The set of immediate subordinates of 𝒑𝑖,𝑗

ℎ

𝑆𝑖,𝑗
ℎ The number of data samples associated with 𝒑𝑖,𝑗

ℎ

DR𝑖 The ith feature descriptor

𝐸 Number of feature descriptors

𝒙𝑘
𝑖 The feature vector of 𝐈𝑘 extracted by the ith feature descriptor

𝕀𝑗 The jth image chunk

𝐗́𝑗
𝑖 The collection of feature vectors extracted from 𝕀𝑗 by the ith feature descriptor

𝐗𝐽
𝑖 The set of pseudo-labelled feature vectors from 𝐗́𝑗

𝑖

𝐘𝐽
𝑖 Pseudo-labels of 𝐗𝐽

𝑖

𝐗̃𝑗
𝑖 The cross-checked subset of 𝐗𝐽

𝑖

𝐘̃𝐽
𝑖 Pseudo-labels of 𝐗̃𝑗

𝑖

3.1. General Architecture
The general architecture of STHP+ (Fig. 1 [18]) is composed of 𝐶 prototype-based hierarchies that are self-

organized from data based on their ensemble properties and mutual distances. Each hierarchy corresponds to a

particular class and is composed of prototypes arranged by multiple layers, representing local peaks of a

multimodal data distribution at different levels of granularity/specificity. Prototypes at the higher layers of the

hierarchies represent global patterns of the data distribution and have strong generalization capabilities. Prototypes

at the lower layers disclose local patterns and provide fine details. Without loss of generality, all the pyramidal

hierarchies within the system have 𝐻 layers.

The learning process of STHP+ is composed of two stages [18]. First, the STHP+ classifier learns from a small

number of labelled training data to prime its knowledge base, system structure and meta-parameters in a

supervised manner. In the second stage, it self-learns from unlabelled data continuously to improve its knowledge

base and update its system structure and meta-parameters by exploiting pseudo-labelling.

During the pseudo-labelling/decision-making process, the STHP+ classifier assigns class labels to unlabelled

samples in terms of confidence scores produced by the pyramidal hierarchies, 𝑦̂ = 𝑙𝑎𝑏𝑒𝑙(𝒙):

 𝑦̂ ← 𝑖∗; 𝑖∗ = argmax
𝑖=1,2,…,𝐶

(λ𝑖(𝒙)) (1)

These confidence scores are based on the similarities between these samples and the prototypes identified from

data of different classes, following the “multi-nearest prototypes” principle, given by Eq. (2) (𝑖 = 1,2, … , 𝐶).

 λ𝑖(𝒙) = 𝑒
− ∑ ‖𝒙−𝒑𝑖,𝑛𝑙

∗‖
2

𝑊0
𝑙=1 (2)

where 𝑊0 is a user-controlled parameter, as a positive integer indicating the number of nearest prototypes per

class used for decision-making and pseudo-labelling; 𝒑𝑖,𝑛𝑙
∗ is the lth nearest prototype at the ith hierarchy, 𝒑𝑖,𝑛𝑙

∗ ∈

𝐏𝑖
1 ∪ 𝐏𝑖

2 ∪ … ∪ 𝐏𝑖
𝐻 . The recommended value of 𝑊0 is 4 to extract sufficient granular information from multiple

levels. Compared with the original STHP classifier, which calculates the confidence score based on the nearest

bottom-layer prototype only [18], multiple nearest prototypes from all layers are considered when computing the

confidence scores to increase pseudo-labelling accuracy and the robustness of STHP+ classifier to noise.

Fig. 1. General architecture of STHP+ classifier

3.2. Self-Training Process
The supervised and self-training procedures of the STHP+ classifier are described as follows. By default, each

training/testing sample is normalized by its Euclidean norm, namely,

 𝒙 ←
𝒙

‖𝒙‖
 (3)

where ‖𝒙‖ = √𝒙𝑇𝒙.

A. The supervised learning procedure

The STHP+ classifier follows the same supervised learning procedure as the original version [18].

The classifier starts a new learning cycle when the 𝑘th labelled sample (𝒙𝑘 , 𝑦𝑘) is observed. Assuming that 𝑦𝑘 =

𝑖, the ith prototype-based hierarchy is initialized if 𝒙𝑘 is the very first data sample of this class. In this case, 𝒙𝑘 is

used as the first prototype at each layer of this new hierarchy (ℎ = 1,2, … , 𝐻):

 𝑀𝑖
ℎ ← 1; 𝒑

𝑖,𝑀𝑖
ℎ

ℎ ← 𝒙𝑘 ; 𝑆
𝑖,𝑀𝑖

ℎ
ℎ ← 1; 𝐏𝑖

ℎ ← {𝒑
𝑖,𝑀𝑖

ℎ
ℎ } (4)

where 𝒑𝑖,𝑗
ℎ denotes the jth prototype at the hth layer of the ith hierarchy; 𝐏𝑖

ℎ is the collection of all prototypes at

this layer; 𝑀𝑖
ℎ is the cardinality of 𝐏𝑖

ℎ, and; 𝑆𝑖,𝑗
ℎ is the support/number of samples associated with 𝒑𝑖,𝑗

ℎ .

Then, the ith hierarchy is established by linking prototypes of successive layers (ℎ = 1,2, … , 𝐻 − 1):

 𝓵
𝑖,𝑀𝑖

ℎ
ℎ ← {𝒑

𝑖,𝑀𝑖
ℎ+1

ℎ+1 } (5)

where 𝓵𝑖,𝑗
ℎ is the collection of immediate subordinate prototypes at the ℎ+1th layer associated with 𝒑𝑖,𝑗

ℎ . After the

links between the 𝐻 layers are built, the initialization of the ith hierarchy is completed. Otherwise (namely, 𝒙𝑘 is

not the very first data sample of the ith class), 𝒙𝑘 is used for updating the hierarchy in a top-down manner starting

from the top layer, ℎ = 1. The nearest prototype, 𝒑𝑖,𝑛∗
ℎ at the ℎth layer is identified by Eq. (6) [18]:

 𝒑𝑖,𝑛∗
ℎ = {

argmin
𝒑∈𝐏𝑖

ℎ

(‖𝒑 − 𝒙𝑘‖) , ℎ = 1

argmin
𝒑∈𝓵𝑖,𝑛∗

ℎ−1

(‖𝒑 − 𝒙𝑘‖) , ℎ > 1
 (6)

where 𝓵𝑖,𝑛∗
ℎ−1 is the collection of immediate subordinates of the nearest prototype at the ℎ-1th layer.

Condition 1 is examined to determine whether 𝒙𝑘 is sufficiently distinctive to become a new prototype at the hth

layer [18]:

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 1:
𝐼𝑓 (‖𝒑𝑖,𝑛∗

ℎ − 𝒙𝑘‖
2

> 𝑟ℎ)

𝑇ℎ𝑒𝑛 (𝒙𝑘 𝑏𝑒𝑐𝑜𝑚𝑒𝑠 𝑎 𝑛𝑒𝑤 𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒 𝑎𝑡 𝑡ℎ𝑒 ℎ𝑡ℎ 𝑙𝑎𝑦𝑒𝑟)
 (7)

where 𝑟ℎ is the radius of the area of influence around the prototypes at the hth layer of hierarchies derived using

Eq. (8):

 𝑟ℎ = 2 (1 − 𝑐𝑜𝑠 (
𝜃0

2ℎ−1)) (8)

Here 𝜃0 specifies the maximum angle between any two similar samples at the first level of granularity. The

recommended value of 𝜃0 is
𝜋

3
.

The influence of 𝜃0 on the system performance will be investigated by numerical experiments later. However, it

is worth noting that the radii, 𝑟ℎ (ℎ = 1,2, … , 𝐻) can be determined based on user preference without prior

knowledge of the problem. The only constraint one needs to consider when setting manually their values is that

𝑟1 > 𝑟2 > ⋯ > 𝑟𝐻.

If Condition 1 is satisfied, 𝒙𝑘 becomes a new prototype at the hth layer and also the successive lower layers of the

ith hierarchy, adding a new branch to this hierarchy (𝑗 = ℎ, ℎ + 1, … , 𝐻).

 𝑀𝑖
𝑗

← 𝑀𝑖
𝑗

+ 1; 𝒑
𝑖,𝑀𝑖

𝑗
𝑗

← 𝒙𝑘 ; 𝑆
𝑖,𝑀𝑖

𝑗
𝑗

← 1; 𝐏𝑖
𝑗

← 𝐏𝑖
𝑗

∪ {𝒑
𝑖,𝑀𝑖

𝑗
𝑗 } (9)

If 𝒑
𝑖,𝑀𝑖

ℎ
ℎ is not an apex prototype, the nearest prototype at the h-1th layer, 𝒑𝑖,𝑛∗

ℎ−1 is recognized as the starting node

of this new branch, and 𝓵𝑖,𝑛∗
ℎ−1 is updated as:

 𝓵𝑖,𝑛∗
ℎ−1 ← 𝓵𝑖,𝑛∗

ℎ−1 ∪ {𝒑
𝑖,𝑀𝑖

ℎ
ℎ } (10)

and the links between 𝒑
𝑖,𝑀𝑖

ℎ
ℎ , 𝒑

𝑖,𝑀𝑖
ℎ+1

ℎ+1 , …, 𝒑
𝑖,𝑀𝑖

𝐻
𝐻 are built using Eq. (6). However, if 𝒙𝑘 fails to satisfy Condition 1,

it is used for updating the meta-parameters of 𝒑𝑖,𝑛∗
ℎ as follows:

 𝒑𝑖,𝑛∗
ℎ ←

𝑆
𝑖,𝑛∗
𝑗

𝒑𝑖,𝑛∗
ℎ +𝒙𝑘

𝑆
𝑖,𝑛∗
𝑗

+1
; 𝒑𝑖,𝑛∗

ℎ ←
𝒑𝑖,𝑛∗

ℎ

‖𝒑𝑖,𝑛∗
ℎ ‖

; 𝑆𝑖,𝑛∗
𝑗

← 𝑆𝑖,𝑛∗
𝑗

+ 1 (11)

Then, 𝒙𝑘 is passed to the next layer (ℎ ← ℎ + 1), and the same process starting from Eq. (6) is repeated until

Condition 1 is satisfied at a certain layer or 𝒙𝑘 reaches the bottom layer.

The STHP+ classifier starts a new learning cycle if the next labelled sample is available (𝑘 ← 𝑘 + 1), otherwise,

it starts the self-training process to learn from unlabelled samples.

The supervised learning process of the STHP+ classifier is summarized by the following pseudo-code [18].

Algorithm 1. STHP+ supervised learning procedure

inputs: 𝐗𝐿; 𝐘𝐿; 𝐻; 𝜃𝑜;

algorithm begins

for 𝑘 = 1 to 𝐿 do:

a. read 𝒙𝑘 and 𝑦𝑘 (𝑦𝑘 = 𝑖);
b. if (𝐏𝑖

1 = ∅) then:

i. for ℎ = 1 to 𝐻 do:

1. initialize 𝑀𝑖
ℎ, 𝒑

𝑖,𝑀𝑖
ℎ

ℎ , 𝑆
𝑖,𝑀𝑖

ℎ
ℎ , 𝐏𝑖

ℎ by (4);

ii. end for

iii. for ℎ = 1 to 𝐻 − 1 do:

1. initialize 𝓵
𝑖,𝑀𝑖

ℎ
ℎ by (5);

iv. end for

c. else:

i. for ℎ = 1 to 𝐻 do:

1. identify 𝒑𝑖,𝑛∗
ℎ by (6);

2. if (Condition 1 is satisfied) then:

* for 𝑗 = ℎ to 𝐻 do:

- update 𝑀𝑖
ℎ, 𝒑

𝑖,𝑀𝑖
ℎ

ℎ , 𝑆
𝑖,𝑀𝑖

ℎ
ℎ , 𝐏𝑖

ℎ by (9);

* end for

* if (ℎ ≠ 1) do:

- update 𝓵𝑖,𝑛∗
ℎ−1 by (10);

* end if

* for 𝑗 = ℎ to 𝐻 − 1 do:

- initialize 𝓵
𝑖,𝑀𝑖

ℎ
ℎ by (5)

* end for

* break for loop

3. else:

* update 𝒑𝑖,𝑛∗
ℎ and 𝑆𝑖,𝑛∗

𝑗
 by (11);

4. end if

ii. end for

d. end if

end for

algorithm ends

output: trained hierarchies

B. The self-training procedure

The self-training process selects a subset of samples from 𝐗́𝑗 = {𝒙𝑗,1, 𝒙𝑗,2, … , 𝒙𝑗,𝑄} as the jth data chunk, together

with corresponding pseudo-labels 𝐘𝑗 (𝑗 = 1,2, … , 𝐽; 𝐽 is the number of chunks and 𝐗́1 ∪ 𝐗́2 ∪ … ∪ 𝐗́𝐽 = 𝐗𝑈) that

STHP+ is highly confident about, and uses them to update the classifier. Thus, each self-training cycle is

composed of the following two steps. Note that it is assumed in this paper that the data chunks are of the same

size, 𝑄 for simplicity. However, the sizes of different data chunks do not necessarily have to be the same in real-

world applications.

Step 1. Pseudo-labelling data

The set of pseudo-labelled samples and their corresponding pseudo-labels are initialized as: 𝐗𝑗 ← ∅ and 𝐘𝑗 ← ∅.

Condition 2 is checked to identify the samples that locate in the areas of influence of prototypes of a single class

only, starting from the top layer (ℎ = 1) until the bottom layer (ℎ = 𝐻) [18].

 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 2:
If (‖𝒑𝑖,𝑛∗

ℎ − 𝒙𝑗,𝑘‖
2

≤ 𝑟ℎ) and (‖𝒑𝑙,𝑛∗
ℎ − 𝒙𝑗,𝑘‖

2
> 𝑟ℎ , ∀𝑙 ≠ 𝑖)

Then (𝒙𝑗,𝑘 is assigned with pseudo label 𝑦̂𝑗,𝑘 = 𝑖)
 (12)

where 𝒑𝑖,𝑛∗
ℎ is the nearest prototype to 𝒙𝑗,𝑘 at the hth layer of the ith hierarchy identified by Eq. (13) (𝑖 =

1,2, … , 𝐶):

 𝒑𝑖,𝑛∗
ℎ = argmin

𝒑∈𝐏𝑖
ℎ

(‖𝒑 − 𝒙𝑗,𝑘‖) (13)

Instead of using Eq. (6) to identify the nearest prototype as the original STHP classifier [18], which wastes multi-

granular information and may lead to errors due to the layer-by-layer searching process, Eq. (13) can identify the

prototypes closest to 𝒙𝑗,𝑘 in data space, thus, increasing the pseudo-labelling accuracy by Condition 2.

If Condition 2 is satisfied at the hth layer, 𝒙𝑗,𝑘 is spatially close to prototypes of the ith class (𝑖 = 1,2, … , 𝐶) and

is distant to prototypes of other classes. In such cases, it is highly likely that 𝒙𝑗,𝑘 belongs to the ith class, and 𝒙𝑗,𝑘

is pseudo-labelled as 𝑦̂𝑗,𝑘 = 𝑖. However, if 𝒙𝑗,𝑘 fails to satisfy Condition 2 at the bottom layer, every hierarchy

within the system will first produce a confidence score calculated by Eq. (2). Then, Condition 3 is examined to

check whether a pseudo-label can be assigned to 𝒙𝑗,𝑘 [18]:

 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 3:
If (λ𝑖(𝒙𝑗,𝑘) > 𝛾0 ∙ λ𝑙(𝒙𝑗,𝑘), ∀𝑖 ≠ 𝑙)

Then (𝒙𝑗,𝑘 𝑖s assigned with pseudo label 𝑦̂
𝑗,𝑘

= 𝑖)
 (14)

where 𝛾0 > 1 is a user-controlled parameter.

If 𝒙𝑗,𝑘 satisfies Conditions 2 or 3, 𝒙𝑗,𝑘 is put into 𝐗𝑗 after being removed from 𝐗́𝑗, and 𝑦̂𝑗,𝑘 is put into 𝐘𝑗 such that

𝒙𝑗,𝑘 and 𝑦̂𝑗,𝑘 are used to update the classifier in Step 2:

𝐗̂𝑗 ← 𝐗̂𝑗 ∪ {𝒙𝑗,𝑘}; 𝐘̂𝑗 ← 𝐘̂𝑗 ∪ {𝑦̂𝑗,𝑘 = 𝑖}; 𝐗́𝑗 ← 𝐗́𝑗\{𝒙𝑗,𝑘} (15)

However, if both conditions are not met, 𝒙𝑗,𝑘 will put back to 𝐗́𝑗. After all samples in the current chunk have been

examined by Conditions 2 and/or 3, the second step of the current cycle begins.

Step 2. Self-updating with pseudo-labelled data

With the obtained 𝐗𝑗 and 𝐘𝑗, the STHP+ classifier self-evolves to expand its knowledge base by following the

same supervised learning procedure as described before. It then goes back to Step 1 and looks for more eligible

samples from the remaining 𝐗́𝑗 to update the system. The current self-training cycle ends when there is no sample

in 𝐗́𝑗 that can meet Conditions 2 or 3 anymore. The STHP+ classifier enters a new self-training cycle if a new

data chunk 𝐗́𝑗+1 is available.

The self-training process of the STHP+ classifier is summarized by the following pseudo-code.

Algorithm 2. STHP+ self-training procedure

inputs: 𝐗́1, 𝐗́2, … , 𝐗́𝐽; 𝛾0;

algorithm begins

for 𝑗 = 1 to 𝐽 do:

a. read 𝐗́𝑗;

b. 𝑄 ← |𝐗́𝑗|;

c. while (𝐗́𝑗 ≠ ∅):

// Step 1. Pseudo-labelling //

i. 𝐗𝑗 ← ∅; 𝐘𝑗 ← ∅;

ii. for 𝑘 = 1 to 𝑄 do:

1. for ℎ = 1 to 𝐻 do:

* if (Condition 2 is satisfied) then:

- 𝐗𝑗 ← 𝐗𝑗 ∪ {𝒙𝑗,𝑘}; 𝐘𝑗 ← 𝐘𝑗 ∪ {𝑦̂𝑗,𝑘 = 𝑖}; 𝐗́𝑗 ← 𝐗́𝑗\{𝒙𝑗,𝑘};

- break for loop;

* end if

* if (Condition 3 is satisfied) then:

- 𝐗𝑗 ← 𝐗𝑗 ∪ {𝒙𝑗,𝑘}; 𝐘𝑗 ← 𝐘𝑗 ∪ {𝑦̂𝑗,𝑘 = 𝑖}; 𝐗́𝑗 ← 𝐗́𝑗\{𝒙𝑗,𝑘};

- break for loop;

* end if

2. end for

iii. end for

// Step 2. Self-updating //

d. if (𝐗𝑗 = ∅) then:

1. break while loop;

e. else:

1. update the hierarchies with 𝐗𝑗 and 𝐘𝑗 using Algorithm 1;

f. end if

g. 𝑄 ← |𝐗́𝑗|;

h. end while
end for

algorithm ends

output: self-trained hierarchies

4. Proposed Ensemble System
The main aim of STHPEF is to learn an ensemble classification model from both labelled and unlabelled training

images to perform more accurate classification. As for an ensemble component STHP+, the learning process, as

shown in Fig. 2, is composed of two stages, namely, i) supervised learning and ii) self-training. In the first stage,

STHPEF is primed with labelled training images. In the second stage, STHPEF further self-improves with

unlabelled training images on a chunk-by-chunk basis by exploiting the “pseudo-labelling” technique. Unlike

traditional ensemble systems where each ensemble component is trained separately, the STHPEF system involves

a novel cross-checking mechanism such that each ensemble learner exchanges information with other ensemble

components during the self-training process to maximize pseudo-labelling precision.

Fig. 2. Learning process of the STHPEF system

The zoomed-in architecture of the proposed ensemble framework is shown in Fig. 3. STHPEF consists of five

components: 1) an image pool; 2) an image pre-processing module; 3) 𝐸 feature descriptors of different types; 4)

𝐸 STHP+ classifiers as the base learners, and 5) a joint decision-maker.

Fig. 3. Detailed architecture of the STHPEF system.

The image pool collects images and can store a maximum of 𝑄 images. During the supervised learning stage, the

image pool will pass the newly received images directly to the pre-processing module. During the self-training

stage, all the images in the pool will be packaged as an input image chunk once the pool is full, and then passed

to the pre-processing module. The image pool becomes empty again and starts to collect new images for

constructing the next chunk.

The pre-processing module serves mainly the following two purposes: to prepare the received images for feature

extraction; and to increase the generalization ability of STHPEF and reduce over-fitting by image augmentation.

Therefore, it involves various image pre-processing techniques, including scaling, segmentation, flipping,

normalization and rotation.

After the input images have been processed by the pre-processing module, they are passed to the 𝐸 feature

descriptors for feature extraction. Each (assuming the ith one) of the 𝐸 feature descriptors extracts a unique feature

vector, denoted by 𝒙𝑘
𝑖 ← DR𝑖(𝐈𝑘) (DR𝑖(∙) denotes the ith feature descriptor; 𝑖 = 1,2, … , 𝐸) from every input

image, 𝐈𝑘 and passes it to the connected data pool. The feature descriptors used by STHPEF could be of any types

that are used in computer vision (e.g., high-level ones such as pre-trained and/or fine-tuned DCNNs [55], or low-

level ones such as Gist [56] and HOG [57]). The different types of feature descriptors in the ensemble framework

can provide different views of input images and enhance the diversity of the base learners.

With new input images available, the 𝐸 STHP+ classifiers self-learn from their input feature vectors to expand

their knowledge bases following the same learning procedure as described in Section 3. Since each STHP+

classifier within the ensemble framework is trained with a different set of feature vectors extracted from input

images by a different feature descriptor, these base learners will inevitably produce some disagreements on the

pseudo-labelling outcomes. The disagreements occur when the base learners assign contradictory pseudo-labels

to the feature vectors, 𝒙𝑘
𝑖 (𝑖 = 1,2, … , 𝐸) of the same image, 𝐈𝑘 or some of them refuse to assign pseudo-labels

due to low confidence levels. The disagreements are typically caused by the different descriptive abilities and foci

of the employed feature descriptors. Such disagreements should be avoided because involving these images in

self-training may significantly undermine the overall performance of the ensemble system as the base classifiers

may contradict each other.

As one of its key features, the proposed ensemble framework has a cross-checking mechanism to avoid

disagreements amongst the base learners, leading to increased precision. During the self-training process,

assuming 𝐗́𝑗
𝑖 is the collection of the feature vectors of the jth input image chunk, 𝕀𝑗 passed to the ith STHP+

classifier (𝑖 = 1,2, … , 𝐸), the base learner chooses a set of pseudo-labelled feature vectors from 𝐗́𝑗
𝑖 with the

corresponding pseudo-labels denoted as 𝐗𝑗
𝑖 and 𝐘𝑗

𝑖. Before using 𝐗𝑗
𝑖 and 𝐘𝑗

𝑖 to update the base learner, the cross-

checking mechanism of STHPEF examines the pseudo-labels produced by all base classifiers together to avoid

discrepancies.

 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 4:
If (𝑦̂𝑘

𝑖 = 𝑦̂𝑘
𝑙 , ∀𝑖 ≠ 𝑙)

Then (no pseudo labelling discrepancy is observed on 𝐈𝑘)
 (16)

Here 𝑦̂𝑘
𝑖 is the pseudo-label of 𝐈𝑘 produced by the ith base classifier added to 𝐘𝑗

𝑖 during the pseudo-labelling

process. If Condition 4 is satisfied, 𝒙𝑘
𝑖 and 𝑦̂𝑘

𝑖 are put into 𝐗̃𝑗
𝑖 and 𝑦̂𝑘

𝑖 , respectively (𝑖 = 1,2, … , 𝐸):

 𝐗̃𝑗
𝑖 ← 𝐗̃𝑗

𝑖 ∪ {𝒙𝑘
𝑖 }; 𝐘̃𝑗

𝑖 ← 𝐘̃𝑗
𝑖 ∪ {𝑦̂𝑘

𝑖 } (17)

where 𝒙𝑘
𝑖 ∈ 𝐗𝑗

𝑖 is the feature vector of the unlabelled image 𝐈𝑘 extracted by the ith feature descriptor; 𝐗̃𝑗
𝑖 is a subset

of 𝐗𝑗
𝑖 consisting of the feature vectors of these images such that all the base learners give the same pseudo-labels;

and 𝐘̃𝑗
𝑖 represents the corresponding pseudo-labels.

Fig. 4. Flowchart of the self-training process with cross-checking

Instead of 𝐗𝑗
𝑖 and 𝐘𝑗

𝑖, 𝐗̃𝑗
𝑖 and 𝐘̃𝑗

𝑖 are used for updating the ith base learner, and the feature vectors within 𝐗𝑗
𝑖 that

fail to satisfy Condition 4 are put back to 𝐗́𝑗
𝑖 for the next round of pseudo-labelling. Fig. 4 provides a flowchart is

given to depict the self-training process of the ith base classifier in STHPEF.

A joint decision-maker is used to determine the class labels of the unlabelled images after the self-training process

has been completed. For each unlabelled image, 𝐈𝑘, each STHP+ classifier produces a set of confidence scores

using Eq. (2), denoted as 𝚲𝑖(𝐈𝑘) = [λ1
𝑖 (𝒙𝑘

𝑖), λ2
𝑖 (𝐈𝑘), … , λ𝐶

𝑖 (𝐈𝑘)]
𝑇
. The joint decision-maker then combines the 𝐸

sets of confidence scores together using multiplication and determines the class label of 𝐈𝑘 following the “winner

takes all” principle:

 𝑦̂𝑘 ← 𝑗∗; 𝑗∗ = argmax
𝑗=1,2,..,𝐶

(𝜆𝑗(𝐈𝑘)) (18)

where 𝜆𝑗(𝐈𝑘) is the aggregated confidence score of the jth class, λj(𝐈𝑘) = ∏ 𝜆𝑗
𝑖(𝒙𝑘

𝑖)𝐸
𝑖=1 .

The supervised learning, self-training and decision-making procedures of STHPEF are summarized by the

following pseudo-codes.

Algorithm 3. STHPEF supervised learning procedure

inputs: 𝐈1, 𝐈2, … , 𝐈𝐿; 𝑦1, 𝑦2,…, 𝑦𝐿; 𝐻; 𝜃𝑜;

algorithm begins

for 𝑘 = 1 to 𝐿 do:

a. read 𝐈𝑘 and 𝑦𝑘, and store them in the image pool;
b. pass 𝐈𝑘 and 𝑦𝑘 to the pre-processing module;

c. empty the image pool;
d. pre-process 𝐈𝑘 ;
e. for 𝑖 = 1 to 𝐸 do:

i. extract feature vector: 𝒙𝑘
𝑖 ← DR𝑖(𝐈𝑘);

ii. update the ith base learner with 𝒙𝑘
𝑖 and 𝑦𝑘 (Algorithm 1);

f. end for

end for

algorithm ends

output: trained ensemble system

 Algorithm 4. STHPEF self-training procedure

inputs: 𝐈1, 𝐈2, … , 𝐈𝐾; 𝛾0;

algorithm begins

for 𝑘 = 1 to 𝐾 do:

a. read 𝐈𝑘 and store it in the image pool;

b. if (image pool is full) then:

i. pass 𝕀𝐽 to the pre-processing module;

ii. empty the image pool;

iii. pre-process 𝕀𝐽;

iv. for 𝑖 = 1 to 𝐸 do:

1. 𝐗́𝐽
𝑖 ← DR𝑖(𝕀𝑗);

2. pass 𝐗́𝐽
𝑖 to the ith base learner;

v. end for

vi. while (𝐗́𝐽
𝑖 ≠ ∅; ∀𝑖 = 1,2, . . , 𝐸):

1. for 𝑖 = 1 to 𝐸 do:

* obtain 𝐗𝐽
𝑖 and 𝐘𝐽

𝑖 from 𝐗́𝐽
𝑖 by Conditions 2 and 3 (Step 1, Algorithm 2);

2. end for

3. for 𝑖 = 1 to 𝐸 do:

* obtain 𝐗̃𝐽
𝑖 and 𝐘̃𝐽

𝑖 from 𝐗𝐽
𝑖 and 𝐘𝐽

𝑖 by Condition 4 (Cross-checking);

4. end for

5. if (𝐗̃𝐽
𝑖 ≠ ∅; ∀𝑖 = 1,2, . . , 𝐸) then:

* for 𝑖 = 1 to 𝐸 do:

- update the ith base learner with 𝐗̃𝐽
𝑖 and 𝐘̃𝐽

𝑖 (Step 2, Algorithm 2);

* end for

6. else:

* break while loop;

7. end if

vii. end while

viii. 𝐽 ← 𝐽 + 1;
c. end if

end for

algorithm ends

output: self-trained ensemble system

Algorithm 5. STHPEF decision-making procedure

inputs:𝐈1, 𝐈2, … , 𝐈𝐾;

algorithm begins

for 𝑘 = 1 to 𝐾 do:

a. read 𝐈𝑘 and store it in the image pool;
b. pass 𝐈𝑘 to the pre-processing module;

c. pre-process 𝐈𝑘 ;
d. for 𝑖 = 1 to 𝐸 do:

i. 𝒙𝑘
𝑖 ← DR𝑖(𝐈𝑘);

ii. pass 𝒙𝑘
𝑖 to the ith base learner;

iii. produce 𝚲𝑖(𝒙𝑘
𝑖) by (2);

e. end for

f. estimate 𝑦̂𝑘 by (19);

end for

algorithm ends

output: 𝑦̂1, 𝑦̂2, … , 𝑦̂𝐾;

5. Numerical Experiments and Results
Numerical experiments were conducted to evaluate the performance of the proposed STHPEF system for remote

sensing scene classification. The STHP+ and STHPEF algorithms were developed on a MATLAB R2018a

platform using a laptop with a dual core i7 CPU and 16 GB RAM. The DCNNs employed for feature extraction

by the proposed approach were implemented using Tensorflow and fined-tuned on a Linux server with two

NVIDIA GP100GL GPUs.

5.1. STHPEF System Implementation
The pre-processing module is composed of three sub-layers: i) scaling layer; ii) segmentation layer; iii) flipping

layer. The image augmentation process of “centre, four corners and horizontal flipping” [58], [59] was adopted.

The scaling layer resizes the remote sensing scenes into the uniform size of 248 × 248 pixels. The segmentation

layer crops the centre and four corners from each image 𝐈, and creates five new segments, 𝐬1, 𝐬2, … , 𝐬5 with the

same size of 224 × 224 pixels. The flipping layer creates five additional new segments, 𝐬6, 𝐬7, … , 𝐬10 from 𝐈 by

flipping horizontally 𝐬1, 𝐬2, … , 𝐬5. A total of 10 new sub-images were created from each labelled/unlabelled image

by the pre-processing module.

The proposed STHPEF system employs three DCNNs for feature extraction (𝐸 = 3), namely, i) ResNet50 [60],

ii) DenseNet121 [61] and iii) InceptionV3 [62]. The three DCNNs demonstrated strong performances in remote

sensing scene classification [63]–[65]. To enhance their descriptive abilities, transfer learning [66] was leveraged

to fine-tune the three DCNNs for extracting discriminative representations from remote sensing scenes. The

NWPU45 (NWP) dataset [4] was employed for fine-tuning. The final prediction layers of the three employed

DCNNs were replaced with two fully connected layers (each one consists of 1024 ReLUs with a dropout rate of

0.3) and a 45 way soft-max layer, given NWP has 45 different land-use categories. The size of input images for

the three DCNNs was adjusted to 224 × 224 pixels. The remaining parameters were frozen prior to fine-tuning.

The adaptive moment estimation (Adam) [67] algorithm was used to optimize the hyper-parameters of the two

fully connected layers and the soft-max layer to minimize the categorical cross-entropy loss function.

During the fine-tuning process, 80% of the images of the full dataset were used as the training set and the

remaining images were retained for validation. Both the training and validation sets were augmented five times

larger by replacing each original image with five new images cropped from its central area and four corners.

Following [68] with additional vertical flipping, the augmentation techniques (Table 2) were applied randomly to

the training set to further increase the generalization capability of the fine-tuned DCNNs. The three DCNNs were

fine-tuned for 25 epochs to avoid overfitting, where the batch size was set as 10 and the learning rate as 10−5 .

Table 2. Settings for augmentation [68]

Augmentation Value

Rotation range 22

Width shifting range 0.19

Height shifting range 0.18

Horizontal flipping True

Vertical flipping True

Fill mode Nearest

The final soft-max layers of the modified DCNNs were removed and the 1024 × 1 dimensional activations from

the second fully connected layers extracted as the feature vectors of input images. The general architecture of the

fine-tuned DCNNs used as feature descriptors of STHPEF is shown in Fig. 5.

Each feature descriptor extracts a 1024 × 1 dimensional unique discriminative representation, denoted as 𝒙𝑖 from

every labelled/unlabelled image as the arithmetic mean of feature vectors of its 𝑆0 sub-images (produced by the

pre-processing module), namely:

 𝒙𝑖 ← DR𝑖(𝐈) =
1

𝑆0
∑ DR𝑖(𝐬𝑗)𝑆0

𝑗=1 (19)

where 𝑆0 = 10; 𝒙𝑖 is the discriminative representation of 𝐈 extracted by the ith feature descriptor, DR𝑖; DR𝑖(𝐬𝑗)

is the feature vector extracted from the jth segment of 𝐈.

Fig. 5. Architecture of fine-tuned DCNNs used as feature descriptors.

Unless specifically declared otherwise, the externally controlled parameters for STHPEF were set as: 𝜃0 =
𝜋

3
;

𝐻 = 3; 𝛾0 = 1.1; 𝑊0 = 4 and 𝑄 = 500 for all numerical examples presented in this research. A sensitivity

analysis was performed to investigate the impact of these parameters on system performance. In addition, an

ablation analysis was also performed to test the effectiveness of STHPEF. Both analysis results were shown in

the Appendix.

5.2. Dataset Description
Eight benchmark datasets for land-use scene classification were used: 1) NWP [4]; 2) WHU-RS19 (WHU) [69];

3) UCMerced (UCM) [23]; 4) RSSCN7 (RSS) [70]; 5) AID [2]; 6) OPTIMAL-31 (OPT) [39]; 7) PatternNet

(PTN) [71], and 8) RSI-CB256 (RSI) [72] (see Table 3). Web links to these datasets are provided in Table 4.

Except for the NWP dataset used for fine-tuning the three employed high-level feature descriptors, all the other

seven datasets were used for benchmark comparison.

Table 3. Key information on the benchmark remote sensing scenes

Dataset Images Categories Images per

category

Image size Spatial

resolution (m)

NWP 31500 45 700 256 × 256 0.2~30

WHU 950 19 50 600 × 600 up to 0.5

UCM 2100 21 100 256 × 256 0.3

RSS 2800 7 400 400 × 400 -

AID 10000 30 220~420 600 × 600 0.5~8

OPT 1860 31 60 256 × 256 -

PTN 30400 38 800 256 × 256 0.062~4.693

RSI 24747 35 198~1331 256 × 256 0.22~3

Table 4. Web links to the benchmark datasets

Dataset Web link

NWP https://www.tensorflow.org/datasets/catalog/resisc45

WHU https://captain-whu.github.io/BED4RS/#

UCM http://weegee.vision.ucmerced.edu/datasets/landuse.html

RSS https://github.com/palewithout/RSSCN7

AID https://captain-whu.github.io/AID/

OPT https://drive.google.com/file/d/1Fk9a0DW8UyyQsR8dP2Qdakmr69NVBhq9/

PTN https://sites.google.com/view/zhouwx/dataset

RSI https://github.com/lehaifeng/RSI-CB

5.3. Performance Demonstration
The influence of different number of labelled images on the performance of STHPEF was investigated first using

WHU, UCM and RSS datasets. The amount of labelled training images varied from 5% to 60% during the

experiment, and the accuracy curves on the unlabelled images are shown in Fig. 6. It can be seen that STHPEF is

https://www.tensorflow.org/datasets/catalog/resisc45
https://captain-whu.github.io/BED4RS/
http://weegee.vision.ucmerced.edu/datasets/landuse.html
https://github.com/palewithout/RSSCN7
https://captain-whu.github.io/AID/
https://drive.google.com/file/d/1Fk9a0DW8UyyQsR8dP2Qdakmr69NVBhq9/
https://sites.google.com/view/zhouwx/dataset
https://github.com/lehaifeng/RSI-CB

able to achieve 98.0%, 94.0% and 90.5% classification accuracy on the three datasets with 10% labelled images

only, and the accuracy reaches up to 98.5%, 97.0% and 93.5% using 50% labelled training images.

Fig. 6. Evolution of classification accuracy of STHPEF using different number of labelled training images

Next, the performance of STHPEF was compared with representative semi-supervised learning approaches on the

WHU, UCM, RSS and AID datasets under the same experimental protocol as a benchmark comparison, including

1) SeRBIA [9]; 2) Local and global consistency (LGC) [52]; 3) Laplacian SVM (LapSVM) [51]; 4) Anchor graph

regularization with kernel weights (AGRK) [53]; 5) Anchor graph regularization with local anchor embedding

weights (AGRL) [53], and; 6) Efficient anchor graph regularization (EAGR) [73]. In the numerical examples,

four different split ratios between labelled and unlabelled images were considered, namely 1:19, 1:9, 1:4 and 3:7.

The obtained accuracy results on unlabelled images of the four datasets are reported in Table 5 using 𝑚𝑒𝑎𝑛 ±

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛.

In this paper, the user-controlled parameters of SeRBIA are set as 𝜑 = 1.1 (the soft threshold for pseudo-

labelling), 𝛾 = 0 (the threshold for identifying new classes) and 𝑊 = 500 (the chunk size). Note that 𝛾 = 0

means SeRBIA will not learn new classes from unlabelled training images. LGC uses the 𝑘-nearest neighbour

graph with 𝑘 = 5, and the other parameter, 𝛼 is set as 𝛼 = 0.99 [52]. LapSVM employs the “one versus all”

strategy and uses the radial basis function kernel. Since the performance of LapSVM is highly sensitive to

externally controlled parameters, three different parameter settings are considered here, namely, i) 𝜎 = 10, 𝜇𝐼 =

 1, 𝜇𝐴 = 10−6 , 𝑘 = 15 (as suggested by [51]); ii) 𝜎 = 10, 𝜇𝐼 = 0.5, 𝜇𝐴 = 10−6 , 𝑘 = 15, and; iii) 𝜎 = 1,

𝜇𝐼 = 1, 𝜇𝐴 = 10−5 , 𝑘 = 10. During the experiments, AGRK, AGRL and EAGR identify a total of 0.1𝐾

anchors from both labelled and unlabelled data. The number of closest anchors 𝑠 for AnchorK, AnchorL and

EAnchor is set as 3, and the iteration number of local anchor embedding for AnchorL is 10 [53].

Since the six comparative algorithms are all single-model approaches, ensemble models are created for them as

the respective base classifiers for a fair comparison. In particular, since SeRBIA has a similar semi-supervised

learning mechanism as STHP and its new version STHP+, the same framework as in Fig. 3 was used to create an

ensemble system with SeRBIA, which was denoted as SeRBIAEF. For the other five approaches, the ensemble

systems were created following the ensemble framework illustrated in Fig. 7. The key differences between the

ensemble frameworks in Figs. 3 and 7 are 1) all the labelled and unlabelled images are given at once in the

ensemble framework depicted in Fig. 7, and 2) there is no cross-checking between different base classifiers. The

constructed ensemble systems with the five semi-supervised classifiers are named as AGRKEF, AGRLEF,

LGCEF, LapSVMEF and EAGREF, respectively. The five ensemble classifiers determine the class labels of the

unlabelled images based on the soft labels produced by the base learners jointly. As LapSVM used three different

parameter settings, the created ensemble systems were re-denoted as LapSVMEF1, LapSVMEF2 and

LapSVMEF3, respectively to differentiate between them.

Fig. 7. Architecture of ensemble systems for comparison

One of the most popular semi-supervised ensemble frameworks, tri-training [54] was used in the experimental

comparison. The tri-training framework employed a decision tree classifier as its base classifier. Thus, this tri-

training ensemble framework is denoted as TriDTEF. In this paper, each of the three base classifiers within the

tri-training framework learns from the feature vectors of both labelled and unlabelled training images extracted

by its corresponding high-level feature descriptor. In addition, the k-nearest neighbour (KNN) and multi-layer

perceptron (MLP) classifiers were also applied in the numerical comparison as the base learners of the tri-training

framework. Here KNN uses 𝑘 = 5 and the MLP has one hidden layer with 128 neurons. The hyper-parameters of

the MLP were trained using gradient descent through backpropagation. The obtained ensemble frameworks with

two types of base learners are denoted as TriKNNEF and TriMLPEF, respectively. The performances of TriDTEF,

TriKNN and TriMLPEF are reported in Table 5.

Table 5. Classification accuracy comparison between different semi-supervised ensemble models

Algorithm Split Ratio WHU UCM RSS AID

STHPEF 1:19 0.9635±0.0181 0.9276±0.0104 0.8873±0.0135 0.8765±0.0044

SeRBIAEF 0.9502±0.0198 0.9277±0.0107 0.8844±0.0153 0.8728±0.0050

AGRKEF 0.9163±0.0591 0.9165±0.0134 0.8749±0.0112 0.8700±0.0045

AGRLEF 0.8988±0.1088 0.9134±0.0094 0.8760±0.0118 0.8672±0.0029

LGCEF 0.8267±0.1554 0.9180±0.0089 0.8923±0.0058 0.8666±0.0043

LapSVMEF1 0.2719±0.2388 0.9041±0.0147 0.8835±0.0094 0.6139±0.1505

LapSVMEF2 0.4698±0.4134 0.9076±0.0161 0.8830±0.0101 0.7694±0.0821

LapSVMEF3 0.2900±0.2593 0.9057±0.0178 0.8817±0.0105 0.6665±0.1308

EAGREF 0.9684±0.0032 0.9326±0.0102 0.8922±0.0069 0.8850±0.0033

TriDTEF 0.3621±0.0562 0.7102±0.0257 0.7882±0.0141 0.7040±0.0155

TriKNNEF 0.6768±0.0858 0.8630±0.0229 0.8548±0.0189 0.8415±0.0191

TriMLPEF 0.6184±0.1064 0.8099±0.0217 0.8717±0.0202 0.6431±0.0298

STHPEF 1:9 0.9808±0.0042 0.9433±0.0067 0.9044±0.0049 0.8988±0.0029

SeRBIAEF 0.9657±0.0106 0.9405±0.0066 0.9027±0.0060 0.8987±0.0033

AGRKEF 0.9509±0.0090 0.9408±0.0069 0.8864±0.0098 0.8850±0.0023

AGRLEF 0.9577±0.0112 0.9349±0.0070 0.8865±0.0116 0.8836±0.0056

LGCEF 0.8236±0.0841 0.9333±0.0072 0.8950±0.0077 0.8740±0.0039

LapSVMEF1 0.3797±0.2139 0.9341±0.0056 0.9031±0.0077 0.8244±0.0253

LapSVMEF2 0.6712±0.1438 0.9359±0.0052 0.9017±0.0074 0.8624±0.0114

LapSVMEF3 0.4125±0.2201 0.9361±0.0064 0.9024±0.0086 0.8422±0.0177

EAGREF 0.9667±0.0039 0.9423±0.0034 0.8975±0.0067 0.8970±0.0023

TriDTEF 0.6646±0.0398 0.7921±0.0159 0.8183±0.0104 0.7375±0.0264

TriKNNEF 0.9185±0.0299 0.9194±0.0105 0.8802±0.0113 0.8680±0.0120

TriMLPEF 0.8375±0.0359 0.8684±0.0111 0.8881±0.0071 0.6460±0.0239

STHPEF 1:4 0.9800±0.0034 0.9561±0.0034 0.9197±0.0067 0.9147±0.0021

SeRBIAEF 0.9787±0.0034 0.9557±0.0046 0.9196±0.0058 0.9152±0.0032

AGRKEF 0.9635±0.0053 0.9455±0.0057 0.9055±0.0076 0.9024±0.0029

AGRLEF 0.9693±0.0063 0.9476±0.0074 0.9039±0.0082 0.9035±0.0038

LGCEF 0.9274±0.0406 0.9385±0.0056 0.9015±0.0045 0.8798±0.0032

LapSVMEF1 0.8974±0.0397 0.9442±0.0044 0.9164±0.0051 0.8835±0.0039

LapSVMEF2 0.9402±0.0169 0.9448±0.0055 0.9165±0.0051 0.8957±0.0044

LapSVMEF3 0.9052±0.0398 0.9436±0.0045 0.9197±0.0043 0.8829±0.0046

EAGREF 0.9730±0.0038 0.9482±0.0035 0.9056±0.0055 0.9076±0.0025

TriDTEF 0.8080±0.0184 0.8289±0.0109 0.8417±0.0121 0.7710±0.0191

TriKNNEF 0.9605±0.0090 0.9320±0.0097 0.8999±0.0057 0.8854±0.0081

TriMLPEF 0.9298±0.0125 0.8846±0.0097 0.9003±0.0075 0.6309±0.0270

STHPEF 3:7 0.9814±0.0034 0.9636±0.0050 0.9243±0.0053 0.9229±0.0013

SeRBIAEF 0.9798±0.0039 0.9653±0.0039 0.9221±0.0063 0.9226±0.0014

AGRKEF 0.9637±0.0047 0.9549±0.0037 0.9107±0.0079 0.9095±0.0019

AGRLEF 0.9710±0.0063 0.9554±0.0062 0.9116±0.0078 0.9117±0.0019

LGCEF 0.9124±0.0395 0.9387±0.0044 0.9014±0.0086 0.8809±0.0033

LapSVMEF1 0.9387±0.0158 0.9467±0.0038 0.9160±0.0073 0.8927±0.0062

LapSVMEF2 0.9566±0.0061 0.9471±0.0040 0.9136±0.0078 0.9051±0.0052

LapSVMEF3 0.9443±0.0139 0.9469±0.0036 0.9181±0.0064 0.8947±0.0034

EAGREF 0.9724±0.0042 0.9519±0.0060 0.9097±0.0070 0.9102±0.0014

TriDTEF 0.8492±0.0213 0.8544±0.0071 0.8472±0.0111 0.7787±0.0183

TriKNNEF 0.9698±0.0084 0.9401±0.0082 0.9081±0.0079 0.8952±0.0052

TriMLPEF 0.9360±0.0120 0.8952±0.0087 0.9041±0.0083 0.6318±0.0310

For clear demonstration, the average classification accuracy rates of the 12 semi-supervised ensemble models

across the four datasets are presented in Fig. 8. In addition, the average accuracies of the 12 models on each dataset

are ranked in descending order in Table 6. The overall ranks are also provided in the same table. The STHPEF

achieved the highest classification accuracy on the unlabelled images of the four benchmarks with 10%, 20% and

30% of labelled training images. Clearly, the superior performance of STHPEF is shown by ranking at the top in

Table 6.

Table 6. Classification accuracy ranks of different models from the highest to the lowest.

Algorithm Split Ratio Overall

1:19 1:9 1:4 3:7

STHPEF 2.5000 1.0000 1.3750 1.2500 1.5313

SeRBIAEF 3.0000 3.0000 2.0000 1.7500 2.4375

AGRKEF 5.5000 5.5000 5.5000 5.5000 5.5000

AGRLEF 6.0000 6.2500 5.0000 4.0000 5.3125

LGCEF 4.2500 7.5000 9.2500 10.5000 7.8750

LapSVMEF1 9.5000 8.0000 7.7500 7.5000 8.1875

LapSVMEF2 7.5000 7.0000 5.7500 6.0000 6.5625

LapSVMEF3 9.0000 7.2500 7.1250 6.5000 7.4688

EAGREF 1.2500 3.2500 3.7500 5.0000 3.3125

TriDTEF 10.7500 11.2500 11.7500 11.7500 11.3750

TriKNNEF 8.7500 8.5000 8.5000 7.5000 8.3125

TriMLPEF 10.0000 9.5000 10.2500 10.7500 10.1250

Fig. 8. Average classification accuracy rates of different semi-supervised ensemble models across four datasets

It is crucial to show whether the accuracy increase of STHPEF over the rest is of statistical significance. Wilcoxon

signed rank tests were applied and the test outcomes for each individual model are reported in Table 7 in terms of

p-value and z-score obtained during the experiments with 10% of data used as labelled images. The majority of

p-values returned by the tests are zero or approximately zero, far below the level of significance specified by α =

0.05, suggesting that the accuracy of STHPEF is significantly greater than for the other methods.

Table 7. Statistical Wilcoxon signed-rank test analysis results.

STHPEF vs WHU UCM RSS AID

p-value z-value p-value z-value p-value z-value p-value z-value

SeRBIAEF 0.1040 1.6258 0.0097 -2.5880 0.0002 3.7215 0.0000 -10.1000

AGRKEF 0.0000 -6.1027 0.0137 2.4650 0.0000 15.3228 0.0000 -4.5657

AGRLEF 0.0059 -2.7516 0.0106 2.5540 0.0000 13.2246 0.0000 -5.0600

LGCEF 0.0000 8.4408 0.0012 -3.2479 0.0000 23.9263 0.0000 20.0189

LapSVMEF1 0.6518 0.4512 0.0000 -4.2797 0.0000 17.9199 0.0013 3.2085

LapSVMEF2 0.0000 5.4629 0.0003 -3.6052 0.0000 19.6135 0.0000 4.4528

LapSVMEF3 0.5941 0.5329 0.0000 -5.8269 0.0000 18.4499 0.0000 6.2499

EAGREF 0.0001 -3.9570 0.0055 -2.7784 0.0000 19.6585 0.0011 3.2554

TriDTEF 0.0000 38.6686 0.0000 37.9060 0.0000 33.6535 0.0000 99.7485

TriKNNEF 0.0000 11.5691 0.0000 13.9545 0.0000 26.5347 0.0000 62.9152

TriMLPEF 0.0000 16.3617 0.0000 26.3243 0.0000 26.4937 0.0000 100.0786

Computational efficiency is one of key factors for evaluating the proposed ensemble system in real-world

applications, particularly in the context of green computing [74]. With 10% of data used as labelled images, we

report the computational time used for different models in Table 8. For visual clarity, the average computational

times of these ensemble models across the four datasets are depicted in Fig. 9. The STHPEF achieves comparable

computational efficiency with other methods, and significantly faster than LGCEF, LapSVMEF, and TriMLPEF.

Unlike other semi-supervised learning models, STHPEF is able to learn from data chunk-by-chunk similar to

SeRBIA [9], which provides flexibility to handle large-scale datasets. As such, the computational efficiency of

STHPEF does not decrease significantly with large remote sensing dataset (e.g. AID).

Fig. 9. Average computational times of the different semi-supervised ensemble models across the four datasets

Table 8. Average execution time (in second) amongst different semi-supervised ensemble models

Algorithm WHU UCM RSS AID

STHPEF 3.4607 8.4301 22.2339 151.8168

SeRBIAEF 0.8375 3.4113 8.0086 51.7548

AGRKEF 0.4142 1.7168 3.1758 37.1372

AGRLEF 3.6571 8.5552 13.0320 71.0997

LGCEF 0.9080 5.0580 11.3423 335.1835

LapSVMEF1 4.6270 20.7529 12.0283 601.5974

LapSVMEF2 4.6185 20.5077 12.1135 603.5129

LapSVMEF3 4.5565 20.5365 11.9407 586.3214

EAGREF 0.6292 2.1736 3.8455 40.4778

TriDTEF 0.6257 1.6889 1.2469 21.4427

TriKNNEF 1.7904 4.2290 5.1440 65.4547

TriMLPEF 64.6624 53.8152 68.5902 190.4936

5.4. Benchmark Comparison

The proposed ensemble framework was compared with mainstream methods on seven benchmark datasets for

remote sensing scene classification. Similar to [2], [75], [76], the train/test split ratios of WHU dataset were set

as 4:6 and 6:4. For the UCM and RSI datasets, the split ratios were set as 5:5 and 8:2. The RSS and AID datasets

were split in the ratios of 2:8 and 5:5. The train/test split ratios of OPT and PTN datasets were both set as 8:2. The

training set was used for priming STHPEF, and the testing set left as the unlabelled set to self-train and build an

accurate predictive ensemble model. The accuracy of STHPEF was measured by comparing the predicted class

labels of unlabelled images with ‘ground’ reference data. The accuracies of STHPEF on the seven benchmark

datasets were compared with a selected group of benchmark algorithms (Table 9). The reported results for the

alternative approaches were obtained from the literature under the standard experimental protocols.

Since STHPEF is a semi-supervised learning framework, it can learn from both labelled and unlabelled images.

To compare with the fully supervised counterparts, the numerical experiments were repeated with modified

experimental protocols, such that only half of the training set was used for priming STHPEF and the other half

was joined to the testing unlabelled set for STHPEF to self-learn. Therefore, the number of labelled training

images was reduced to half for priming STHPEF. The prediction accuracy of STHPEF under the modified

experimental protocols is reported using an asterisk “*” (STHPEF*) in Table 9.

The proposed ensemble framework can achieve comparable results or even be more accurate than the popular

models, but with only half of the labelled training samples (Table 9). For example, STHPEF is able to achieve

accuracy of 96.67%, 99.91%, 98.67% and 99.07% on UCM, OPT, PTN and RSI using only 40% of the images as

the labelled training sets, compared with the accuracy of 97.60%, 99.73%, 98.87% and 99.34% using 80% of

labelled training images. The accuracy maintains as 95.75%, 92.34%, 91.99% and 98.85% on UCM, RSS, AID

and PTN with 25% labelled training images only, in comparison with 97.22%, 93.69%, 93.18%, 99.15% using

50% labelled training images. The maximum difference is extremely small in the two cases (0.93% and 1.47%).

This clearly shows that STHPEF can utilise the unlabelled images effectively to construct a highly precise

ensemble model. Thus, STHEPF has a much reduced requirement for labelled images, but can achieve the same

level of accuracy as the popular benchmark approaches.

Table 9. Performance comparison between STHEPF and benchmark approaches

Algorithm WHU UCM

4:6 6:4 1:1 4:1

STHPEF* 0.9800±0.0034 0.9814±0.0034 0.9575±0.0027 0.9667±0.0040

STHPEF 0.9810±0.0041 0.9840±0.0053 0.9722±0.0050 0.9760±0.0064

CaffeNet [2] 0.9511±0.0120 0.9624±0.0056 0.9398±0.0067 0.9502±0.0081

VGG-VD-16 [2] 0.9544±0.0060 0.9605±0.0091 0.9414±0.0069 0.9521±0.0120

GoogLeNet [2] 0.9312±0.0082 0.9471±0.0133 0.9270±0.0060 0.9431±0.0089

Two-stream deep fusion [55] 0.9823±0.0056 0.9892±0.0052 - -

TEX-Net-LF [40] 0.9848±0.0037 0.9888±0.0049 - -

SalM3LBP-CLM [77] 0.9535±0.0076 0.9638±0.0082 0.9421±0.0075 0.9575±0.0080

GBNet [75] 0.9732±0.0032 0.9925±0.0050 0.9705±0.0019 0.9857±0.0048

ARCNet-VGG16 [39] - - 0.9681±0.0014 0.9912±0.0040

CAD [1] - - 0.9857±0.0033 0.9916±0.0027

Fine-tune MobileNet V2 [33] 0.9682±0.0035 0.9815±0.0033 - -

SE-MDPMNet [33] 0.9864±0.0021 0.9897±0.0024 - -

EfficientNetB3-Basic [38] 0.9728±0.0024 0.9768±0.0010 0.9763±0.0006 0.9873±0.0020

EfficientNetB3-Attn-2 [38] 0.9860±0.0040 0.9868±0.0093 0.9790±0.0036 0.9912±0.0022

Algorithm RSS AID

1:4 1:1 1:4 1:1

STHPEF* 0.9044±0.0049 0.9234±0.0051 0.8988±0.0029 0.9199±0.0022

STHPEF 0.9197±0.0067 0.9369±0.0042 0.9147±0.0021 0.9318±0.0022

CaffeNet [2] 0.8557±0.0095 0.8825±0.0062 0.8686±0.0047 0.8953±0.0031

VGG-VD-16 [2] 0.8398±0.0091 0.8718±0.0094 0.8659±0.0029 0.8964±0.0036

GoogLeNet [2] 0.8255±0.0111 0.8584±0.0092 0.8344±0.0040 0.8639±0.0055

TEX-Net-LF [40] 0.9245±0.0045 0.9400±0.0057 - -

MARTA GAN [8] - - 0.7539±0.0049 0.8157±0.0033

Attention GAN [28] - - 0.7895±0.0023 0.8452±0.0018

SalM3LBP-CLM [77] - - 0.8692±0.0035 0.8976±0.0045

GBNet [75] - - 0.9220±0.0023 0.9548±0.0012

MSNet [76] - - 0.9559±0.0015 0.9697±0.0027

ARCNet-VGG16 [39] - - 0.8875±0.0040 0.9310±0.0055

CAD [1] - - 0.9573±0.0022 0.9716±0.0026

GANet [78] - - 0.8796±0.0023 0.9136±0.0018

LANet [78] - - 0.8941±0.0024 0.9235±0.0024

GLANet [78] - - 0.9502±0.0028 0.9666±0.0019

MAA-CNN [27] - - 0.9554±0.0008 0.9748±0.0007

Fine-tune MobileNet V2 [33] 0.8904±0.0017 0.9246±0.0066 0.9413±0.0028 0.9596±0.0027

SE-MDPMNet [33] 0.9265±0.0013 0.9471±0.0015 0.9468±0.0017 0.9714±0.0015

EfficientNetB3-Basic [38] 0.9206±0.0039 0.9439±0.0010 0.9343±0.0033 0.9537±0.0041

EfficientNetB3-Attn-2 [38] 0.9330±0.0019 0.9617±0.0023 0.9445±0.0073 0.9656±0.0012

Algorithm OPT PTN RSI

4:1 4:1 1:1 4:1

STHPEF* 0.9991±0.0000 0.9867±0.0007 0.9885±0.0006 0.9907±0.0008

STHPEF 0.9973±0.0000 0.9887±0.0016 0.9915±0.0011 0.9934±0.0009

GBNet [75] 0.9328±0.0027 - - -

MSNet [76] 0.9392±0.0041 - - -

ARCNet-VGG16 [39] 0.9270±0.0035 - - -

ARCNet-ResNet34 [39] 0.9128±0.0045 - - -

ARCNet-AlexNet [39] 0.8575±0.0035 - - -

Fine-tune VGGNet16 [39] 0.8745±0.0045 - - -

Fine-tune GoogLeNet [39] 0.8257±0.0012 - - -

Fine-tune AlexNet [39] 0.8122±0.0019 - - -

MAA-CNN [27] 0.9570±0.0054 - - -

GANet [78] - 0.9970±0.0026 - -

LANet [78] - 0.9961±0.0023 - -

GLANet [78] - 0.9970±0.0015 - -

EfficientNetB3-Basic [38] 0.9476±0.0026 - - -

EfficientNetB3-Attn-2 [38] 0.9586±0.0022 - - -

SIFT [72] - - 0.3796±0.0027 0.4012±0.0034

LBP [72] - - 0.6910±0.0020 0.7198±0.0036

CH [72] - - 0.8408±0.0026 0.8472±0.0033

Gist [72] - - 0.6174±0.0035 0.6359±0.0045

ResNet [72] - - - 0.9502

GoogLeNet [72] - - - 0.9407

VGG-VD-16 [72] - - - 0.9513

Enhanced Fusion of DCNNs [65] - 0.9970 - 0.9950
 * Results obtained under the modified experimental protocols.

Some existing research has reported highly accurate results. For example, CAD [1] provides the highest accuracy

on the UCM and AID datasets, SE-MDPMNet [33] and GBNet [75] performs the best on the WHU datasets,

EfficientNetB3-Attn-2 [38] achieves the highest accuracy on the RSS dataset, etc.. However, these approaches

[1], [27], [33], [38], [75] trained or fine-tuned their DNN models directly on the targeted datasets. Although these

approaches claimed to report the classification accuracy rates on the testing sets, the testing sets were already

involved in DCNN training as validation sets. As a consequence, the ground reference data of the testing set was

utilized in the training process to some extent. In addition, these approaches [27], [65] also used a carefully

selected set of image augmentation techniques to augment the sizes of the training sets significantly. As

aforementioned, the classification accuracy can be increased, but they are likely to be overfitting.

In contrast, STHPEF employs DCNNs that are fine-tuned on a separate NWP dataset as the feature descriptors,

instead of on the targeted datasets. In this way, STHPEF performs knowledge transfer twice during the

experiments. The first knowledge transfer occurs during the fine-tuning process from natural images to remote

sensing images and the second knowledge transfer occurs during feature extraction from one remote sensing scene

to another. Although STHPEF is given both the labelled training and unlabelled testing sets together to perform

semi-supervised learning, the labelling information of the testing sets is not utilized at all during the self-training

process. In addition, only basic image augmentation techniques are employed by the proposed framework, and

this can be easily expanded. Hence, the reported results by STHPEF are more realistic for real-world application

scenarios, where commonly only limited prior knowledge and labelled training images are available. On the other

hand, it is worth noting that the architecture of the STHPEN system is highly flexible and can be adjusted for

different classification purposes. One may further apply other image augmentation techniques, such as rotation,

shifting and zooming [65], or employ more advanced feature descriptors with other base learners for joint

decision-making, these are all interesting subjects of research deserving future investigation.

5.5. Application to Satellite Sensor Images
In this subsection, examples based on large-scale satellite sensor images were presented to demonstrate the

applicability of STHPEF to fully automated image analysis in real-world scenarios.

The UCM dataset was used to initialise the proposed ensemble framework. This dataset contains 21 commonly

seen land-use categories (Fig. 10). Thanks to the relatively smaller image size, simpler geometrical structures and

lesser variety in terms of semantic content within individual images, this dataset is suitable for priming the

knowledge base of STHPEF.

Six satellite sensor images, given by Figs. 11-16, captured from different areas of the UK were captured from

Google Earth (Google Inc.) with the same size of 800 × 1200 pixels. The spatial resolutions of these images vary

from 0.3 m to 30 m. Great variation in terms of geometric structure, spatial patterns and semantic content are

observable in these images.

Fig. 10. Example images of UCM dataset

During each experiment, the satellite sensor image was segmented by a 4 × 6 grid net into 24 sub-images, denoted

as 𝐈𝑘 (𝑘 = 1,2, … ,24). Each image segment contains a non-overlapping local region within the large-size image,

and the size of these segments is 200 × 200 pixels. 24 image segments were used as unlabelled images for

STHPEF to self-improve its knowledge base using Algorithm 4, and STHPEF assigned different land-use class

labels to these segments based on the semantic content presented in these local regions.

Since a local region of a satellite sensor image may exhibit high-level semantic features of different land-use

categories, assigning only one land-use class label to each subregion may result in a significant loss of information.

Instead, a feasible solution is to assign one or multiple land-use class labels to the image segments based on the

semantic content presented in these local regions [9]. Hence, Condition 5 was used to identify the relevant land-

use categories that share similar semantic features with each image segment, 𝐈𝑘 [9]:

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 5:
If (𝛾1 ∙ λ𝑗(𝐈𝑘) > max

𝑙=1,2,..,𝐶
(λ𝑙(𝐈𝑘)))

Then (𝐈𝑘 possesses the semantic feature of the jth category)
 (20)

where 𝛾1 = 𝛾0
𝐸. Assuming that there are 𝑇𝑘 land-use categories satisfising Condition 5, the likelihoods (ratios of

importance of distinctive semantic features) of the 𝑇𝑘 categories in 𝐈𝑘 are calculated using Eq. (21) [9]:

 ℒ𝑗
∗(𝐈𝑘) =

𝜆̅𝑗
∗(𝐈𝑘)

∑ 𝜆̅𝑙
∗(𝐈𝑘)

𝑇𝑘
𝑙=1

 (21)

where ℒ𝑗
∗(𝐈𝑘) is the likelihood of the jth land-use category satisfying Condition 5; 𝜆̅𝑗

∗(𝐈𝑘) is the standardized

confidence score calculated using Eq. (22):

 𝜆̅𝑗
∗(𝐈𝑘) =

𝜆𝑗
∗(𝐈𝑘)−𝜇𝑗,𝑘

𝜎𝑗,𝑘
 (22)

Here 𝜇𝑗,𝑘 and 𝜎𝑗,𝑘 are the mean and standard deviation of the 𝐶 aggregated confidence scores that 𝐈𝑘 receives.

Results for the six satellite sensor images produced by STHPEF are presented in Figs. 11-16 in the form of a

4 × 6 table with the background in white and blue colours. In this research, the maximum value of 𝑇𝑘 was set to

five for visual clarity.

Fig. 11. Classification result for satellite sensor image 1

From Figs. 11-16, it is clear that STHPEF (primed by UCM dataset) is capable of self-expanding its knowledge

base with these unlabelled image segments, capturing the most distinctive semantic features and assigning one or

multiple land-use class labels to each local region of the satellite sensor images with great precision. In most cases,

the respective likelihoods of the relevant land-use categories associated with the local regions of these images are

also described accurately. These illustrative examples demonstrate the great promise of the proposed STHPEF in

real-world applications.

On the other hand, one may also notice that in some rare cases, STHPEF failed to make correct categorizations.

For example, STHPEF assigned the land-use class label “river” to the local regions “D1” and “D2” of Fig. 13

instead of the correct label “forest”. In addition, it wrongly allocated the local regions “B2” of Fig. 14, “B2” of

Fig. 15 and “D4” of Fig. 16 to the land-use categories “overpass”, “beach” and “mobile home park”, which should

be “buildings”, “river” and “residential”/“building”, respectively. The main reason for such mis-categorisations

is the very high similarity amongst high-level semantic features shared by different land-use categories.

Nevertheless, this issue can be addressed by making a pre-selection on benchmark datasets and removing the less

representative images [9].

Fig. 12. Classification result for satellite sensor image 2

6. Conclusion
In this paper, a novel semi-supervised ensemble framework (STHPEF) was proposed for remote sensing scene

classification. Using STHP+ as its base classifiers and multiple different feature descriptors, STHPEF is capable

of self-learning a multi-layered prototype-based ensemble system structure from both labelled and unlabelled

images at multiple levels of granularity. Thanks to its unique pseudo-labelling and cross-checking mechanisms,

STHPEF constructs a highly accurate ensemble predictive model with a much reduced requirement for human

effort. Importantly, STHPEF performs self-learning on a chunk-by-chunk basis, enabling the proposed ensemble

model to self-adapt to unfamiliar patterns of new images. Extensive numerical experiments demonstrated the

effectiveness of the proposed ensemble framework.

There are several directions for future research. First, in the numerical examples, three DCNN models (ResNet50,

DenseNet121 and InceptionV3) were employed for feature extraction. The main reason for employing the three

DCNNs is because they are the most popular models for remote sensing scene classification. However, it is worth

investigating the optimal combination of DCNNs through comprehensive comparison. Second, the employed

DCNNs were fine-tuned on the NWP dataset during the experiments and only basic image augmentation

techniques were used during the experiments. This can be further expanded using different levels of scale,

illumination and resolution, or through generative adversarial networks for model fine-turning. Third, the chunk-

by-chunk semi-supervised learning mechanism gives STHP+ and its ensemble STHPEF the opportunity to handle

data streams and self-adapt to new unfamiliar data patterns, which opens up vast potential for real-world

application scenarios, such as using time-series streaming data. Finally, a better semi-supervised learning

mechanism with self-adaptive parameters can also be adopted for STHPEF. Currently, it requires four parameters

predefined by users. Although these externally controlled parameters can be determined without prior knowledge,

they may impose some challenges to users with no or little knowledge or relevant expertise.

Fig. 13. Classification result for satellite sensor image 3

Fig. 14. Classification result for satellite sensor image 4

Appendix

A. Sensitivity Analysis
The proposed STHPEF system has five externally controlled parameters, namely, i) 𝜃0 , the maximum angle

between any two similar samples at the first level of granularity; ii) 𝐻, the number of layers of the hierarchies;

iii) 𝛾0 , the threshold used by Condition 3 for pseudo-labelling; iv) 𝑊0 , the number of nearest prototypes considered

for pseudo-labelling and decision-making; v) 𝑄, the size of data chunks. These parameters are investigated via a

sensitivity analysis of the proposed ensemble system.

First, the influences of 𝜃0 and 𝐻 are examined. The WHU and UCM datasets are used here, with 10% used as the

labelled training set and the remaining data as the unlabelled training set. The values of 𝜃0 and 𝐻 vary from
𝜋

6
 to

𝜋

2
 and 1 to 4, respectively. Other parameters are set as: 𝛾0 = 1.1; 𝑊0 = 4; 𝑄 = 500. The classification accuracy

rates of STHPEF on the unlabelled image sets after self-training are reported in Table 10. To understand the

influences of the two parameters on system complexity, the average number of prototypes per layer per base

classifier is reported in the same table.

Fig. 15. Classification result for satellite sensor image 5

From Table 10, both 𝜃0 and 𝐻 influence the performance of STHPEF by determining the minimum and maximum

levels of granularity it can achieve for data partitioning and prototype identification. With finer data partitioning,

STHPEF can identify more prototypes from training data and learn more details. In particular, a smaller 𝜃0 enables

STHPEF to identify more apex prototypes from training data and achieve finer data partitioning in the successive

layers. A greater 𝐻 enables its base classifier STHP+ to partition the data with a high level of granularity at its

bottom layer. In this paper, 𝜃0 =
𝜋

3
 and 𝐻 = 3 are used for the rest of the numerical experiments.

Second, the influence of 𝛾0 on system performance was investigated. The value of 𝛾0 varies from 1.01 and 1.35,

and other parameters were set as 𝜃0 =
𝜋

3
; 𝐻 = 3; 𝑊0 = 4; 𝑄 = 500. The same experimental protocol was applied

here with the results reported in Table 11. A greater 𝛾0 makes STHP+ more cautious and selective during the

pseudo-labelling process, leading to greater accuracy thanks to high pseudo-labelling precision. However, the

performance of STHPEF decreases if 𝛾0 is set to be too large since fewer unlabelled samples will be used to

expand the knowledge base of the system, leading to a waste of important information from unlabelled images.

From Table 11, the recommended value range of 𝛾0 is [1.05,1.15]. Therefore, 𝛾0 = 1.1 was used as the average

for the numerical experiments.

Fig. 16. Classification result for satellite sensor image 6

Third, the influence of 𝑊0 on the unlabelled images and system complexity was investigated in terms of

classification precision. Here, the value of 𝑊0 varies from 1 to 8, and the rest of the externally controlled

parameters were set to be: 𝜃0 =
𝜋

3
; 𝐻 = 3; 𝛾0 = 1.1; 𝑄 = 500. Other experimental settings remain the same.

From Table 12, a greater 𝑊0 helps STHPEF to identify more prototypes from the data. This is because the pseudo-

labelling process is mostly based on the confidence scores, which are calculated based on the similarities between

unlabelled samples and the prototypes. A greater 𝑊0 means that the system will consider the fitness of the

unlabelled samples in multiple local patterns of data distribution represented by prototypes, which increases the

robustness of the pseudo-labelling processes effectively. Nevertheless, if 𝑊0 is too large, the precision of pseudo-

labelling will decrease since too many irrelevant local patterns spatially distant from the input samples are taken

into account. The recommended values of 𝑊0 are 3, 4 and 5. 𝑊0 = 4 is used hereafter.

Table 10. Impact of 𝜃0 and 𝐻 on system performance (𝛾0 = 1.1; 𝑊0 = 4; 𝑄 = 500)

Dataset 𝐻 Meas. 𝜃0
𝜋

6

𝜋

4

𝜋

3

𝜋

2

WHU 1 𝐴𝑐𝑐 0.8340 0.7462 0.9573 0.9599

𝑀1 4.6947 1.4175 1.0053 1.0000

2 𝐴𝑐𝑐 0.9766 0.9771 0.9599 0.8818

𝑀1 10.1544 1.4509 1.0105 1.0000

𝑀2 40.6123 24.6825 8.5719 1.4281

3 𝐴𝑐𝑐 0.9800 0.9808 0.9808 0.9774

𝑀1 10.0737 1.4649 1.0053 1.0000

𝑀2 40.3544 24.7000 10.3860 1.4561

𝑀3 44.2088 43.8123 40.9912 24.8649

4 𝐴𝑐𝑐 0.9786 0.9800 0.9803 0.9811

𝑀1 9.9754 1.4772 1.0053 1.0000

𝑀2 40.1842 24.6544 10.2789 1.4649

𝑀3 44.0456 43.7842 40.7825 24.8579

𝑀4 44.2544 44.6386 44.6509 43.9842

UCM 1 𝐴𝑐𝑐 0.9204 0.5341 0.9024 0.9182

𝑀1 10.0508 2.0095 1.0175 1.0000

2 𝐴𝑐𝑐 0.9415 0.9432 0.9403 0.7704

𝑀1 17.0032 2.0905 1.0175 1.0000

𝑀2 66.2444 38.6143 15.7540 2.0397

3 𝐴𝑐𝑐 0.9425 0.9433 0.9433 0.9454

𝑀1 16.8460 2.0984 1.0175 1.0000

𝑀2 66.0317 38.3254 17.1159 2.0968

𝑀3 82.4222 76.5730 66.4540 38.5905

4 𝐴𝑐𝑐 0.9421 0.9434 0.9423 0.9449

𝑀1 16.7238 2.1175 1.0175 1.0000

𝑀2 65.5984 38.3587 17.0032 2.1111

𝑀3 82.0032 76.5651 66.3159 38.6000

𝑀4 82.6238 82.6651 82.7302 76.8238

Table 11. Impact of 𝛾0 on system performance (𝜃0 =
𝜋

3
; 𝐻 = 3; 𝑊0 = 4; 𝑄 = 500)

Dataset Meas. 𝛾0

1.01 1.05 1.10 1.15 1.20 1.25 1.30 1.35

WHU 𝐴𝑐𝑐 0.9808 0.9810 0.9808 0.9810 0.9804 0.9791 0.9786 0.9756

𝑀1 1.0053 1.0053 1.0053 1.0053 1.0053 1.0053 1.0053 1.0053

𝑀2 10.9772 10.7211 10.3860 10.0289 9.6895 9.3667 9.0807 8.7965

𝑀3 42.0035 41.5368 40.9912 40.3579 39.5982 39.0158 38.4070 37.8333

UCM 𝐴𝑐𝑐 0.9453 0.9429 0.9433 0.9440 0.9413 0.9408 0.9411 0.9411

𝑀1 1.0175 1.0175 1.0175 1.0175 1.0175 1.0175 1.0175 1.0175

𝑀2 17.9968 17.5683 17.1159 16.6667 16.2317 15.7317 15.2111 14.6857

𝑀3 68.6397 67.5048 66.4540 65.4127 64.3111 63.1651 61.8968 60.6095

Finally, the influence of 𝑄 on system performance was investigated. The value of 𝑄 varies from 50 and 700, and

other parameters were set as 𝜃0 =
𝜋

3
; 𝐻 = 3; 𝛾0 = 1.1; 𝑊0 = 4. Table 13 shows that a larger chunk size allows

STHPEF to identify more prototypes from data because pseudo-labelling becomes more robust and accurate with

more unlabelled samples available. Nevertheless, the ensemble system becomes less computational efficient if 𝑄

is too large since it consumes more time and system memory to process a huge chunk of images. The

recommended value range of 𝑄 is [400, 600]. 𝑄 = 500 is used here for the rest of the experiments.

Table 12. Impact of 𝑊0 on system performance (𝜃0 =
𝜋

3
; 𝐻 = 3; 𝛾0 = 1.1; 𝑄 = 500)

Dataset Meas. 𝑊0

1 2 3 4 5 6 7 8

WHU 𝐴𝑐𝑐 0.9677 0.9797 0.9812 0.9808 0.9797 0.9791 0.9788 0.9787

𝑀1 1.0053 1.0053 1.0053 1.0053 1.0053 1.0053 1.0053 1.0053

𝑀2 7.4053 9.4298 10.1246 10.3860 10.4789 10.5965 10.6333 10.5737

𝑀3 34.6105 39.0158 40.4509 40.9912 41.1789 41.2860 41.3000 41.2825

UCM 𝐴𝑐𝑐 0.9406 0.9440 0.9441 0.9433 0.9430 0.9421 0.9411 0.9405

𝑀1 1.0175 1.0175 1.0175 1.0175 1.0175 1.0175 1.0175 1.0175

𝑀2 12.1286 15.4429 16.6619 17.1159 17.3159 17.4587 17.6095 17.6508

𝑀3 53.3857 62.0651 65.5540 66.4540 66.9032 67.2556 67.5206 67.5968

Table 13. Impact of 𝑄 on system performance (𝜃0 =
𝜋

3
; 𝐻 = 3; 𝛾0 = 1.1; 𝑊0 = 4)

Dataset Meas. 𝑄

50 100 200 300 400 500 600 700

WHU 𝐴𝑐𝑐 0.9692 0.9711 0.9736 0.9793 0.9807 0.9808 0.9806 0.9803

𝑀1 1.0053 1.0053 1.0053 1.0053 1.0053 1.0053 1.0053 1.0053

𝑀2 7.9491 9.1018 9.8175 10.1947 10.1965 10.3860 10.4667 10.5632

𝑀3 27.2298 34.0175 37.9193 39.7368 40.0105 40.9912 41.0456 41.3053

UCM 𝐴𝑐𝑐 0.9373 0.9419 0.9422 0.9426 0.9423 0.9433 0.9443 0.9440

𝑀1 1.0175 1.0175 1.0175 1.0175 1.0175 1.0175 1.0175 1.0175

𝑀2 13.4349 15.2683 16.2429 16.5667 16.9667 17.1159 17.1889 17.3762

𝑀3 44.4683 54.9810 61.5238 63.8159 65.4762 66.4540 66.6698 67.6238

B. Ablation Analysis
An ablation analysis was performed to test the effectiveness of the proposed ensemble framework. Here, the

WHU, UCM and RSS datasets were used as numerical examples. For the three datasets, two different split ratios

between labelled and unlabelled images were considered, namely 1:19 and 1:9.

The performance of STHPEF was compared with its single-model base learner (STHP+) in terms of classification

accuracy on unlabelled images. In this experiment, STHP+ employs the same pre-processing module as STHPEF

and uses one of the three high-level feature descriptors. The prediction accuracies of STHPEF and STHP+ on the

three datasets with different split ratios are reported in Table 14, and the respective average accuracies across the

experiment are presented in Fig. 17 for visual clarity. From Table 14 and Fig. 17, the proposed ensemble

framework enhances the prediction accuracy of the base classifiers greatly. For example, using a single feature

descriptor, and with 5% images only as labelled ones, the accuracies of the most accurate STHP+ on three datasets

are 89.66%, 88.31% and 85.19%. With the proposed ensemble framework, the classification accuracy increased

to 96.35%, 92.76% and 88.73%, respectively, which is 7.46%, 5.04% and 4.27% higher than the best-performing

single models.

Table 14. Performance comparison between STHPEF and STHP+

Algorithm Feature Descriptor Split Ratio WHU UCM RSS

STHP+ ResNet50 1:19 0.8790 0.8825 0.8519

DenseNet121 0.8966 0.8806 0.8403

InceptionV3 0.8960 0.8831 0.8351

STHPEF 0.9635 0.9276 0.8873

STHP+ ResNet50 1:9 0.9133 0.9125 0.8800

DenseNet121 0.9235 0.9088 0.8600

InceptionV3 0.9170 0.9043 0.8573

STHPEF 0.9808 0.9433 0.9044

Fig. 17. Average prediction accuracies of STHPEF and STHP+

Four variations of STHPEF are considered: 1) STHPEF1: the same ensemble framework without semi-supervised

learning; 2) STHPEF2: the same ensemble framework without cross-checking; 3) STHPEF3: the same ensemble

framework with the original STHP as base classifier; 4) STHPEF4: the same ensemble framework with the original

STHP as base classifier and no cross-checking. The accuracies of the four versions as well as the original STHPEF

obtained on the three datasets under the two different split ratios are reported in Table 15. Correspondingly, the

average accuracies of the original STHPEF and its four versions across the experiment are presented in Fig. 18.

Comparing between STHPEF and STHPEF1, the proposed semi-supervised learning mechanism can effectively

enhance the overall classification precision of the proposed ensemble framework because the unlabelled images

are also involved in producing the predictive ensemble model. In addition, by comparing between STHPEF,

STHPEF1 and STHPEF2, without cross-checking, STHPEF2 performs less accurately if the available labelled

training images are insufficient for precise pseudo-labelling. However, with crossing-checking, STHPEF is able

to classify more accurately. Finally, by comparing between STHPEF and STHPEF3, STHPEF2 and STHPEF4, one

can conclude that STHP+ plays a better role in the proposed ensemble framework than the original STHP system

thanks to the more robust “multi-nearest prototypes” principle for pseudo-labelling and decision-making.

Table 15. Performance comparison between STHPEF and its variations as ablation analysis

Algorithm Split Ratio WHU UCM RSS

STHPEF 1:19 0.9635 0.9276 0.8873

STHPEF1 0.9590 0.9270 0.8848

STHPEF2 0.9425 0.9173 0.8809

STHPEF3 0.9456 0.9070 0.8843

STHPEF4 0.9502 0.9222 0.8862

STHPEF 1:9 0.9808 0.9433 0.9044

STHPEF1 0.9600 0.9360 0.8987

STHPEF2 0.9736 0.9428 0.9000

STHPEF3 0.9526 0.9358 0.8961

STHPEF4 0.9612 0.9359 0.8974

Fig. 18. Average prediction accuracies of STHPEF and its four versions

References
[1] W. Tong, W. Chen, W. Han, X. Li, and L. Wang, “Channel-attention-based DenseNet network for remote

sensing image scene classification,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 13, pp. 4121–

4132, 2020.

[2] G. Xia et al., “AID: a benchmark dataset for performance evaluation of aerial scene classification,” IEEE

Trans. Geosci. Remote Sens., vol. 55, no. 7, pp. 3965–3981, 2017.

[3] S. Salcedo-Sanz et al., “Machine learning information fusion in Earth observation: A comprehensive

review of methods, applications and data sources,” Inf. Fusion, vol. 63, pp. 256–272, 2020.

[4] G. Cheng, J. Han, and X. Lu, “Remote sensing image scene classification: benchmark and state of the

art,” Proc. IEEE, vol. 105, no. 10, pp. 1865–1883, 2017.

[5] Y. Li, H. Zhang, X. Xue, Y. Jiang, and Q. Shen, “Deep learning for remote sensing image classification:

a survey,” WIREs Data Min. Knowl. Discov., vol. 8, no. 6, p. e1264, 2018.

[6] H. Zhang, Y. Li, Y. Zhang, and Q. Shen, “Spectral-spatial classification of hyperspectral imagery using a

dual-channel convolutional neural network,” Remote Sens. Lett., vol. 8, no. 5, pp. 438–447, 2017.

[7] H. Zhu, W. Ma, L. Li, L. Jiao, S. Yang, and B. Hou, “A dual–branch attention fusion deep network for

multiresolution remote sensing image classification,” Inf. Fusion, vol. 58, pp. 116–131, 2020.

[8] D. Lin, K. Fu, Y. Wang, G. Xu, and X. Sun, “MARTA GANs: unsupervised representation learning for

remote sensing image classification,” IEEE Geosci. Remote Sens. Lett., vol. 14, no. 11, pp. 2092–2096,

2017.

[9] X. Gu, P. Angelov, C. Zhang, and P. M. Atkinson, “A semi-supervised deep rule-based approach for

complex satellite sensor image analysis,” IEEE Trans. Pattern Anal. Mach. Intell., DOI:

10.1109/TPAMI.2020.3048268, 2020.

[10] J. E. van Engelen and H. H. Hoos, “A survey on semi-supervised learning,” Mach. Learn., vol. 109, no.

2, pp. 373–440, 2020.

[11] L. Gómez-Chova, G. Camps-Valls, J. Munoz-Mari, and J. Calpe, “Semisupervised image classification

with Laplacian support vector machines,” IEEE Geosci. Remote Sens. Lett., vol. 5, no. 3, pp. 336–340,

2008.

[12] L. Bruzzone, M. Chi, and M. Marconcini, “A novel transductive SVM for semisupervised classification

of remote-sensing images,” IEEE Trans. Geosci. Remote Sens., vol. 44, no. 11, pp. 3363–3373, 2006.

[13] N. S. Kothari, S. K. Meher, and G. Panda, “Improved spatial information based semisupervised

classification of remote sensing images,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 13, pp.

329–340, 2020.

[14] F. Ratle, G. Camps-Valls, and J. Weston, “Semisupervised neural networks for efficient hyperspectral

image classification,” IEEE Trans. Geosci. Remote Sens., vol. 48, no. 5, pp. 2271–2282, 2010.

[15] L. Bruzzone, R. Cossu, and G. Vernazza, “Combining parametric and non-parametric algorithms for a

partially unsupervised classification of multitemporal remote-sensing images,” Inf. Fusion, vol. 3, no. 4,

pp. 289–297, 2002.

[16] J. Liu et al., “Urban green plastic cover mapping based on VHR remote sensing images and a deep semi-

supervised learning framework,” ISPRS Int. J. Geo-Information, vol. 9, no. 9, p. 527, 2020.

[17] S. Wang et al., “Semi-supervised PolSAR image classification based on improved tri-training with a

minimum spanning tree,” IEEE Trans. Geosci. Remote Sens., vol. 58, no. 12, pp. 8583–8597, 2020.

[18] X. Gu, “A self-training hierarchical prototype-based approach for semi-supervised classification,” Inf. Sci.

(Ny)., vol. 535, pp. 204–224, 2020.

[19] A. Oliva and A. Torralba, “Modeling the shape of the scene: a holistic representation of the spatial

envelope,” Int. J. Comput. Vis., vol. 42, no. 3, pp. 145–175, 2001.

[20] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis., vol. 60, no.

2, pp. 91–110, 2004.

[21] T. Ojala, M. Pietikäinen, and T. Mäenpää, “Multiresolution gray-scale and rotation invariant texture

classification with local binary patterns,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 971–

987, 2002.

[22] M. J. Swain and D. H. Ballard, “Color indexing,” Int. J. Comput. Vis., vol. 7, no. 1, pp. 11–32, 1991.

[23] Y. Yang and S. Newsam, “Bag-of-visual-words and spatial extensions for land-use classification,” in

International Conference on Advances in Geographic Information Systems, 2010, pp. 270–279.

[24] A. M. Cheriyadat, “Unsupervised feature learning for aerial scene classification,” IEEE Trans. Geosci.

Remote Sens., vol. 52, no. 1, pp. 439–451, 2014.

[25] J. Fan, T. Chen, and S. Lu, “Unsupervised feature learning for land-use scene recognition,” IEEE Trans.

Geosci. Remote Sens., vol. 55, no. 4, pp. 2250–2261, 2017.

[26] S. Gao, Y. Zhang, K. Jia, J. Lu, and Y. Zhang, “Single sample face recognition via learning deep

supervised auto-encoders,” IEEE Trans. Inf. Forensics Secur., vol. 6013, no. c, pp. 1–1, 2015.

[27] F. Li, R. Feng, W. Han, and L. Wang, “An augmentation attention mechanism for high-spatial-resolution

remote sensing image scene classification,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 13, pp.

3862–3878, 2020.

[28] Y. Yu, X. Li, and F. Liu, “Attention GANs: unsupervised deep feature learning for aerial scene

classification,” IEEE Trans. Geosci. Remote Sens., vol. 58, no. 1, pp. 519–531, 2020.

[29] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nat. Methods, vol. 13, no. 1, pp. 35–35, 2015.

[30] C. Zhang, G. Li, and S. Du, “Multi-scale dense networks for hyperspectral remote sensing image

classification,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 11, pp. 9201–9222, 2019.

[31] X. Lu, H. Sun, and X. Zheng, “A feature aggregation convolutional neural network for remote sensing

scene classification,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 10, pp. 7894–7906, 2019.

[32] X. Liu, Y. Zhou, J. Zhao, R. Yao, B. Liu, and Y. Zheng, “Siamese convolutional neural networks for
remote sensing scene classification,” IEEE Geosci. Remote Sens. Lett., vol. 16, no. 8, pp. 1200–1204,

2019.

[33] B. Zhang, Y. Zhang, and S. Wang, “A lightweight and discriminative model for remote sensing scene

classification with multidilation pooling module,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol.

12, no. 8, pp. 2636–2653, 2019.

[34] B. Cui, X. Chen, and Y. Lu, “Semantic segmentation of remote sensing images using transfer learning

and deep convolutional neural network with dense connection,” IEEE Access, vol. 8, pp. 116744–116755,

2020.

[35] O. Russakovsky et al., “ImageNet large scale visual recognition challenge,” Int. J. Comput. Vis., vol. 115,

no. 3, pp. 211–252, 2015.

[36] A. Fotso Kamga Guy, T. Akram, B. Laurent, S. Rameez, M. Mbom, and N. Muhammad, “A deep

heterogeneous feature fusion approach for automatic land-use classification,” Inf. Sci. (Ny)., vol. 467, pp.

199–218, 2018.

[37] B. Zhao, B. Huang, and Y. Zhong, “Transfer learning with fully pretrained deep convolution networks for

land-use classification,” IEEE Geosci. Remote Sens. Lett., vol. 14, no. 9, pp. 1436–1440, 2017.

[38] H. Alhichri, A. S. Alswayed, Y. Bazi, N. Ammour, and N. A. Alajlan, “Classification of remote sensing

images using EfficientNet-B3 CNN model with attention,” IEEE Access, vol. 9, pp. 14078–14094, 2021.

[39] Q. Wang, S. Liu, and J. Chanussot, “Scene classification with recurrent attention of VHR remote sensing

images,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 2, pp. 1155–1167, 2019.

[40] R. M. Anwer, F. S. Khan, J. van de Weijer, M. Molinier, and J. Laaksonen, “Binary patterns encoded

convolutional neural networks for texture recognition and remote sensing scene classification,” ISPRS J.

Photogramm. Remote Sens., vol. 138, pp. 74–85, 2018.

[41] F. Sun et al., “An impartial semi-supervised learning strategy for imbalanced classification on VHR

images,” Sensors (Switzerland), vol. 20, no. 22, pp. 1–20, 2020.

[42] D. Hong, N. Yokoya, N. Ge, J. Chanussot, and X. X. Zhu, “Learnable manifold alignment (LeMA): a

semi-supervised cross-modality learning framework for land cover and land use classification,” ISPRS J.

Photogramm. Remote Sens., vol. 147, pp. 193–205, 2019.

[43] F. Zhao, M. Tian, W. Xie, and H. Liu, “A new parallel dual-channel fully convolutional network via semi-

supervised FCM for polsar image classification,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol.

13, pp. 4493–4505, 2020.

[44] S. Ren and F. Zhou, “Semi-supervised classification for PolSAR data with multi-scale evolving weighted

graph convolutional network,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 14, pp. 2911–2927,

2021.

[45] X. Zhu, “Semi-supervised learning literature survey,” 2008.

[46] J. Thorsten, “Transductive inference for text classification using support vector machines,” in

International conference on Machine learning, 1999, pp. 200–209.

[47] Y. F. Li and Z. H. Zhou, “Towards making unlabeled data never hurt,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 37, no. 1, pp. 175–188, 2015.

[48] D.-H. Lee, “Pseudo-label: the simple and efficient semi-supervised learning method for deep neural

networks,” in Workshop on Challenges in Representation Learning, ICML, 2013, p. 2.

[49] Z.-H. Zhou and M. Li, “Semi-supervised regression with co-training,” in International Joint Conference

on Artificial Intelligence, 2005, pp. 908–913.

[50] P. K. Mallapragada, R. Jin, A. K. Jain, and Y. Liu, “SemiBoost: boosting for semi-supervised learning,”

IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 11, pp. 2000–2014, 2008.

[51] M. Belkin, P. Niyogi, and V. Sindhwani, “Manifold regularization: a geometric framework for learning

from labeled and unlabeled examples,” J. Mach. Learn. Res., vol. 7, no. 2006, pp. 2399–2434, 2006.

[52] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf, “Learning with local and global

consistency,” in Adv. Neural. Inform. Process Syst, 2004, pp. 321–328.

[53] W. Liu, J. He, and S.-F. Chang, “Large graph construction for scalable semi-supervised learning,” in

International Conference on Machine Learning, 2010, pp. 679–689.

[54] Z. H. Zhou and M. Li, “Tri-training: exploiting unlabeled data using three classifiers,” IEEE Trans.

Knowl. Data Eng., vol. 17, no. 11, pp. 1529–1541, 2005.

[55] Y. Yu and F. Liu, “A two-stream deep fusion framework for high-resolution aerial scene classification,”

Comput. Intell. Neurosci., p. 8639367, 2018.

[56] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu, Spatial tessellations: concepts and applications of

Voronoi diagrams, 2nd ed. Chichester, England: John Wiley & Sons., 1999.

[57] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, 2005, pp. 886–893.

[58] M. I. Lakhal, H. Çevikalp, S. Escalera, and F. Ofli, “Recurrent neural networks for remote sensing image

classification,” IET Comput. Vis., vol. 12, no. 7, pp. 1040–1045, 2018.

[59] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural

networks,” in Advances In Neural Information Processing Systems, 2012, pp. 1097–1105.

[60] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.

[61] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely connected convolutional

networks,” in IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 4700–4708.

[62] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception architecture for

computer vision,” in IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 2818–

2826.

[63] R. P. de Lima and K. Marfurt, “Convolutional neural network for remote-sensing scene classification:

transfer learning analysis,” Remote Sens., vol. 12, no. 1, p. 86, 2020.

[64] W. Li et al., “Classification of high-spatial-resolution remote sensing scenes method using transfer

learning and deep convolutional neural network,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol.

13, pp. 1986–1995, 2020.

[65] G. J. Scott, K. C. Hagan, R. A. Marcum, J. A. Hurt, D. T. Anderson, and C. H. Davis, “Enhanced fusion

of deep neural networks for classification of benchmark high-resolution image data sets,” IEEE Geosci.

Remote Sens. Lett., vol. 15, no. 9, pp. 1451–1455, 2018.

[66] F. Hu, G. S. Xia, J. Hu, and L. Zhang, “Transferring deep convolutional neural networks for the scene

classification of high-resolution remote sensing imagery,” Remote Sens., vol. 7, no. 11, pp. 14680–14707,

2015.

[67] D. P. Kingma and J. L. Ba, “Adam: a method for stochastic optimization,” in International Conference

on Learning Representations, 2015, pp. 1–15.

[68] A. Bahri, S. Ghofrani Majelan, S. Mohammadi, M. Noori, and K. Mohammadi, “Remote sensing image

classification via improved cross-entropy loss and transfer learning strategy based on deep convolutional

neural networks,” IEEE Geosci. Remote Sens. Lett., vol. 17, no. 6, pp. 1087–1091, 2020.

[69] G. Xia, W. Yang, J. Delon, Y. Gousseau, H. Sun, and H. Maitre, “Structural High-resolution Satellite

image indexing,” in ISPRS, TC VII Symposium Part A: 100 Years ISPRS—Advancing Remote Sensing

Science, 2010, pp. 298–303.

[70] Q. Zou, L. Ni, T. Zhang, and Q. Wang, “Deep learning based feature selection for remote sensing scene

classification,” IEEE Geosci. Remote Sens. Lett., vol. 12, no. 11, pp. 2321–2325, 2015.

[71] W. Zhou, S. Newsam, C. Li, and Z. Shao, “PatternNet: a benchmark dataset for performance evaluation

of remote sensing image retrieval,” ISPRS J. Photogramm. Remote Sens., vol. 145, pp. 197–209, 2018.

[72] H. Li et al., “RSI-CB: a large-scale remote sensing image classification benchmark using crowdsourced

data,” Sensors, vol. 20, no. 6, pp. 28–32, 2020.

[73] M. Wang, W. Fu, S. Hao, D. Tao, and X. Wu, “Scalable semi-supervised learning by efficient anchor

graph regularization,” IEEE Trans. Knowl. Data Eng., vol. 28, no. 7, pp. 1864–1877, 2016.

[74] R. Schwartz, J. Dodge, N. A. Smith, and O. Etzioni, “Green ai,” arXiv Prepr. arXiv1907.10597, 2019.

[75] H. Sun, S. Li, X. Zheng, and X. Lu, “Remote sensing scene classification by gated bidirectional network,”

IEEE Trans. Geosci. Remote Sens., vol. 58, no. 1, pp. 82–96, 2020.

[76] N. Liu, T. Celik, and H. Li, “MSNet: a multiple supervision network for remote sensing scene

classification,” IEEE Geosci. Remote Sens. Lett., DOI: 10.1109/LGRS.2020.3043020, 2020.

[77] X. Bian, C. Chen, L. Tian, and Q. Du, “Fusing local and global features for high-resolution scene

classification,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 10, no. 6, pp. 2889–2901, 2017.

[78] Y. Guo, J. Ji, X. Lu, H. Huo, T. Fang, and D. Li, “Global-local attention network for aerial scene

classification,” IEEE Access, vol. 7, pp. 67200–67212, 2019.

