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Abstract

Few-shot learning is a challenging problem in computer vision that aims to learn

a new visual concept from very limited data. A core issue is that there is a large10

amount of uncertainty introduced by the small training set. For example, the few

images may include cluttered backgrounds or different scales of objects. Existing

approaches mostly address this problem from either the original image space or

the embedding space by using meta-learning. To the best of our knowledge,

none of them tackle this problem from both spaces jointly. To this end, we15

propose a fusion spatial attention approach that performs spatial attention in

both image and embedding spaces. In the image space, we employ a Saliency

Object Detection (SOD) module to extract the saliency map of an image and

provide it to the network as an additional channel. In the embedding space, we

propose an Adaptive Pooling (Ada-P) module tailored to few-shot learning that20

introduces a meta-learner to adaptively fuse local features of the feature maps

for each individual embedding. The fusion process assigns different pooling

weights to the features at different spatial locations. Then, weighted pooling

can be conducted over an embedding to fuse local information, which can avoid

losing useful information by considering the spatial importance of the features.25

The SOD and Ada-P modules can be used within a plug-and-play module and

incorporated into various existing few-shot learning approaches. We empirically
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demonstrate that designing spatial attention methods for few-shot learning is

a nontrivial task and our method has proven effective for it. We evaluate our

method using both shallow and deeper networks on three widely used few-shot

learning benchmarks, miniImageNet, tieredImageNet and CUB, and demon-

strate very competitive performance.

Keywords: Few-shot learning, Meta-learning, Spatial attention, Saliency

object detection, Adaptive pooling, Feature aggregation

1. Introduction30

Deep learning techniques have achieved an impressive performance on arti-

ficial intelligence [30, 4]. However, humans have the ability to learn knowledge

from very few examples, while deep learning approaches fail to do so, often

requiring large numbers of examples to extract useful patterns. To fill the

gap, the relatively new research field of few-shot learning has emerged targeted35

at learning quickly from a limited number of labelled examples [18, 39]. It

has been widely studied in recent years within the computer vision community

[72, 68, 19, 71, 59].

To learn a new visual concept from very few labelled images, conventional

machine learning algorithms need to train repeatedly on the few available la-40

belled examples, which may easily result in overfitting. Since humans quickly

adapt already known knowledge to a new visual concept, a number of meta-

learning approaches have been inspired by this to tackle few-shot learning prob-

lems [19, 59, 71]. To mimic human learning, these methods extract meta-

knowledge from a large scale learning task or a collection of few-shot learning45

tasks, and then transfer this meta-knowledge to unseen few-shot learning tasks

comprising novel categories. Meta-knowledge can be represented by various

algorithm components, such as a general feature extractor [72, 68, 43], a dis-

tance metric [71], dynamic convolutional kernels [96], promising initial model

parameters [19, 20, 87], optimisation strategies [60, 49], model parameter pre-50

dictor [59, 26], or an example generator [16, 80, 12].
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Besides transferring meta-knowledge to new learning tasks, humans can ex-

tract and concentrate on the object of an image, so that they can learn quickly

without background interference. This ability is extremely useful when we learn

from very few samples, because the few images available may include a lot of55

uncertainty, such as background clutters or different scales of objects. This

ability can be achieved in either image space or embedding space when we use

Convolutional neural networks (CNNs) to extract features. In image space, the

approaches in [93, 83] used an object detection method to separate the fore-

ground and background of an image for few-shot learning. In embedding space,60

the approach in [86] applied an attention mechanism to focus on the salient

regions of an embedding. An embedding is an transformed representation of

an image, which preserves the spatial relationships of features. However, none

of the above methods leverage spatial attention in both the original image and

embedding space. When the data is limited, we do not want to miss any use-65

ful spatial information. Therefore, performing spatial attention in both spaces

potentially provides more information on where to focus in a visual learning

process.

To our knowledge no existing few-shot learning approach addresses the prob-

lem with respect to the downsampling used within a network. Most techniques70

use off-the-shelf pooling techniques, such as max-pooling and average-pooling.

The pooling operation is a process that loses information. This is not an is-

sue for standard learning tasks, since we have plenty of training data and the

testing classes are seen in the training set, the max or average pooling can

work well with a well-trained robust feature extractor. However, this may hin-75

der performance in few-shot learning. When labelled data is limited, training

samples may not be representative. The trained convolutional block may ex-

tract irrelevant features, and therefore the subsequent pooling operation may

lose relevant features (max-pooling) or mix up relevant and irrelevant features

(average-pooling), which would affect classification performance. In addition,80

the commonly used pooling techniques perform pooling independently in differ-

ent channels and ignore the correlation between the features at the same spatial
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location in different channels, which may lose spatial importance. Therefore,

a more appropriate pooling operation is needed to fuse local information for

few-shot learning problems. The fusion process should take into account spatial85

importance and be applicable to novel classes.

To address these issues, we propose a fusion few-shot learning approach that

incorporates spatial attention in both the original image space and embedding

space. Specifically, in image space, we design a saliency object detection (SOD)

module, in which an Edge Guidance Network (EGNet) [97] pre-trained on DUTS90

dataset [75] is employed to extract the saliency maps of samples, which are as

an additional channel to the original RGB images. This can be seen as a pre-

learning process that learns to tell the feature extractor where to focus. In

embedding space, we design a spatial attention based adaptive pooling (Ada-P)

module to replace the conventional pooling methods for few-shot learning, in95

which a learnable pooling weight generation block is trained to assign different

pooling weights to the features at different spatial locations for each individual

embedding. The module performs weighted pooling by taking into account

the importance of the features at different spatial locations, which can pay

more attention to the salient regions and avoid discarding useful information100

[93]. Since the sizes of receptive fields in different convolutional layers vary,

we learn a specific pooling module for each convolutional layer. To consider

the correlations between channels, we use CNNs as a meta-learner to assign

pooling weights. Different from regular CNNs, our CNNs-based meta-learner is

lightweight (only including one output channel) and can be incorporated into105

different CNNs-based few-shot learning approaches. Overall, our contribution

is as follows.

• We are the first in the few-shot learning field to perform fusion spatial

attentions in both original image space and embedding space, providing

attentional information to the feature extractor on where to concentrate.110

• We propose an adaptive pooling method for few-shot learning problems,

which uses a meta-learner to learn a proper pooling operator that reduces
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the loss of useful information when available data is limited. This module

is lightweight and both Ada-P and SOD can be used as plug-and-play

modules for varied few-shot learning problems.115

• We compare the performance of the proposed approach against the state-

of-the-art, testing its performance on 5-way 1-shot and 5-shot tasks on

three popular few-shot learning benchmarks, including miniImageNet [60],

tieredImageNet [61] and CUB [73] and achieve very competitive perfor-

mance.120

• We investigate the use of advanced spatial attention methods into few-shot

learning to illustrate the novelty of our work and compare our methods

with them. The results demonstrated designing spatial attention methods

for few-shot learning is a nontrivial task.

The rest of this paper is structured as follows. Section 2 presents the related125

work on few-shot learning, attention mechanism, pooling methods and SOD.

Section 3 describes a standard few-shot learning problem and introduces our

proposed few-shot learning approach. Section 4 defines the experimental set-

tings and Section 5 analyses the experimental results. Finally, conclusions and

future works are discussed in Section 6.130

2. Related work

This section briefly reviews related research fields to define and describe

our proposal. First, we present the background on few-shot learning (Section

2.1). Then, we briefly cover three closely related fields: attention mechanisms

(Section 2.2), pooling (Section 2.3) and SOD (Section 2.4).135

2.1. Few-shot learning

Few-shot learning [18], targeting learning with few labelled examples, has

been extensively studied in recent years [79]. Zero-shot learning [44, 46, 45]

is a related research field aiming at learning without any example, but some
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auxiliary information is provided, such as textual descriptions. Our focus in140

this paper is few-shot learning.

Generally speaking, existing approaches on few-shot learning can be classi-

fied into three main categories.

1. Fast parameterisation based approaches learn a general fast param-

eterisation strategy that can quickly fine-tune a learner or predict the145

parameters of a learner for each particular few-shot learning task. The

work in [15] provided a strong fine-tuning baseline. Another represen-

tative method learned a promising parameter initialisation that can be

quickly fine-tuned to different task-specific parameters [19]. A few exten-

sions of this work have been proposed by taking into account the compu-150

tational burden [2], optimisation strategies [60, 49], uncertainties [20, 89],

meta-level overfitting problems [32], the heterogeneity and homogeneity

of learning tasks [87, 64, 70], an update rule that preconditions gradients

[21], the robustness regularisation [76], the representation change rather

than representation reuse [55], and semi-supervised learning [48]. Some155

other approaches learned a meta-learner to predict the task-specific model

parameters without fine-tuning. Most of them learned a general feature

extractor and a meta-learner to predict the class-specific or task-specific

parameters of the fully connected layer [59, 25, 58, 26, 70].

2. Data generation based approaches tackle few-shot learning by gen-160

erating more synthetic data. Some approaches applied generative models,

such as generative adversarial networks [27], to generate more artificial

data to assist training [16, 80, 22, 95] or generate more auxiliary embed-

dings [9, 47]. Other methods augmented the few data by using differ-

ent data augmentation algorithms, such as mixing foregrounds and back-165

grounds [93], image deformation [12], and jigsaw augmentation [11]. Note

that the work in [93] also used a pre-trained saliency network to extract

the foreground and background of an image. However, we use a different

strategy to incorporate saliency maps into few-shot learning.
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3. Metric learning approaches address few-shot learning by comparing170

the similarities in a learned metric space. Specifically, they learn a general

feature extractor to transform the training and test examples into embed-

dings, then assigned a test embedding to its nearest training class based on

Euclidean, cosine distance or a learned distance metric [68, 72, 71]. A num-

ber of research works have been built upon this baseline and progressed on175

theoretical analysis [7] or proposed various strategies for similarity com-

parison, such as task-specific scaled metric [56], separating foregrounds

and backgrounds [83], finding task relevant features [43], introducing at-

tention mechanism [86], using multiple prototypes to represent each class

[3], comparing similarity in subspace [67], task-specific margin loss [42],180

and aggregating embeddings [88, 69]. Some other approaches constructed

graphs based on the extracted embeddings and transformed the metric

learning problems into label propagation or edge labelling problems using

graph neural networks [52, 36, 23]

Although the existing approaches can achieve impressive results, as far as185

we know none have performed spatial attention in both original image and

embedding space. Besides, they all used off-the-shelf max-pooling technique

to downsample embeddings, which could cause more information loss in few-

shot learning. Instead, we apply a SOD technique and a more tailored pooling

strategy to conduct spatial attention in both image and embedding space, so190

that the feature extractor would pay more attention to the salient regions and

avoid losing useful information.

2.2. Spatial Attention mechanisms

Spatial attention mechanisms [100] aim to let a machine learner focus on the

relevant parts of the features, and have been widely applied in visual recognition195

[94, 98] and natural language processing systems [8]. Our Ada-P module uses a

meta-learner to assign a specific pooling weight to the feature vector at each spa-

tial location, which can be seen as a spatial attention mechanism. Our method

is related to a few research works [84, 8, 74, 33, 53]. These methods applied
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different strategies, such as using CNNs or multilayer perceptron [84, 8, 74, 53],200

performing downsampling, upsampling operations and residual connections [74],

measure the compatibility between the final global feature and the features in

the intermediate layers [33], on embeddings to assign weights to the features at

different spatial locations. They performed attention after each convolutional

block while our adaptive pooling module is incorporated in each convolutional205

block serving as a pooling operator. They mostly introduced much more train-

able parameters while our Ada-P module is lightweight containing only one

convolutional kernel. Their aim is to refine embeddings whereas our target is

to find an appropriate way to downsample embeddings while preserving useful

information. In addition, these works all tackled standard learning tasks with210

sufficient training data, while our focus is on few-shot learning problems.

2.3. Pooling

Pooling [6] is widely used in deep learning, summarising locally extracted

features into statistics [57]. It is an important component in CNNs in order to

reduce the number of parameters and computational burden, and improve the215

translation invariance of the network. The most commonly used pooling tech-

niques are max-pooling and average-pooling, which downsample each sub-region

by taking either the max or mean value of that sub-region. These two methods

are simple and effective but have their own drawbacks. Max-pooling may lose

useful information while average-pooling ignores the importance of relevant and220

irrelevant features. To address the issues, a few works have been proposed that

explore a better way of pooling by theoretical analysis [6], using overcomplete

rectangular pooling blocks [34], learning a linear combination of max and aver-

age pooling [40], considering overlapping between adjacent pooling regions [38],

introducing detail-preserving image downscaling method [66], etc. The above225

approaches tackled standard recognition tasks, while in few-shot learning the

shortcomings of max or average pooling are more noticeable. When the labelled

data is limited, training samples may not be representative and the feature ex-

tractor may extract irrelevant features. The subsequent pooling operation may
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lose relevant features (max-pooling) or mix up relevant and irrelevant features230

(average-pooling). Besides, the standard learning problems are evaluated on

the same label space with the training set, which does not require too much

adaptability, since the relevant features have already been seen during training.

In contrast, few-shot learning tasks are tested on a different label space from

the training phase, in this scenario, max or average pooling cannot provide too235

much adaptability. Therefore, a more general and proper pooling module for

few-shot learning needs to be explored. Different from the above pooling meth-

ods, we take inspirations from meta-learning approaches for few-shot learning

and propose a meta-learner that assigns pooling weights to features at different

spatial locations for each individual embedding.240

2.4. Salient object detection

Salient object detection aims to predict the most distinctive objects in an im-

age, which has been widely applied to many object-level applications in various

areas such as object recognition [65], object detection [92, 62], image retrieval

[28], weekly supervised semantic segmentation [81, 78], image cropping [77] and245

image captioning [17, 14]. Normally, salient object detection includes two steps:

1) detecting the most salient object for a given image, 2) segmenting the salient

object in this image and generating a binary saliency map indicating the lo-

cations of salient pixels. Early SOD models mostly rely on low level features

[99, 35] or heuristic priors such as contrast [13] and background prior [82]. How-250

ever, early SOD models are not robust enough to handle complicated scenarios

since it is difficult for them to capture the high-level semantic information given

the hand-craft features. Recently research into CNNs has significantly stimu-

lated the development of SOD areas and many deep learning based SOD models

have emerged. These SOD models are able to generate saliency maps accurately255

without any prior knowledge such as information on the background. In this

paper, EGNet [97] was chosen to generate saliency maps as a recent approach

offering competitive performance on standard SOD benchmarks.
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3. Methodology

In this section we describe the proposed fusion spatial attention approach.260

We formulate the few-shot learning problem in Section 3.1. The overall pipeline

of our few-shot learning approach is depicted in Section 3.2. Section 3.3 describes

our SOD module. Section 3.4 presents our Ada-P module. Finally, Section 3.5

provides an overview of our training strategy.

3.1. Problem set-up265

A typical N -way K-shot classification task classifies a test example into one

of N unique classes based on K labelled training examples for each of N class.

For each N -way K-shot classification task, the training set D
train

= {Ti}Ni=1

includes N classes of the training data, in which Ti =
{
xij , y

i
}K
j=1

contains K

training examples. The test set D
test

consists of Nq test examples whose labels270

belong to Dtrain . A machine learner can be trained based on Dtrain to classify

test examples, however, the limited training examples often lead to overfitting.

In a typical meta-learning setting, there are three meta-datasets, meta-

training set Dmeta−train, meta-validation set Dmeta−validation and meta-testing

set Dmeta−test. Each of them consists of a number of few-shot learning tasks,275

such as Dmeta−train =
{(
Dj
train, D

j
test

)}Ntrain

j=1
. There is no overlapping among

their label spaces. Meta-learning approaches target to learn some transferable

meta-knowledge from a meta-training set Dmeta−train and apply it to tackle

unseen few-shot learning tasks in the meta-testing set Dmeta−test. The meta-

validation set is usually used to select hyper-parameters and the best performing280

model.

3.2. Few-shot learning pipeline

The workflow of our few-shot learning approach, as shown in Figure 1, is

built upon ProtoNet [68]. Note that our backbone is not limited to ProtoNet

and our SOD and Ada-P module can be incorporated into any few-shot learning285

pipeline. We choose ProtoNet as our backbone for several reasons. First, com-

pared to fast parameterisation and data generation based approaches, ProtoNet
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Next 
conv 
layer

Conv BN+ReLU

Adaptive Pooling Module

Weighted 
pooling

Embedding
W×H×C

Pooled embedding
Wp×Hp×C

Pooling weights
 W×H×1

EGNet

Image Image with 
saliency map

Saliency Detection Module Pooling weights 
generation block

Conv

Figure 1: Workflow of the proposed SOD and Ada-P module. Conv represents convolutions.

BN stands for batch normalisation [31]. In image space, a pre-trained saliency network is

applied to extract the saliency map of an image, then it is attached to the image as an

additional channel. In the embedding space, a pooling weights generation block is learned

to assign a specific pooling weight map (RW×H×1) for each embedding (RW×H×C); then

weighted pooling is conducted based on the generated pooling weights per channel.

is computationally efficient. It does not require any inner optimisation or data

generation process. Second, ProtoNet is simple and effective and has been used

as a backbone for a few advanced few-shot learning approaches [80, 71, 69]. This290

makes it a fair to use as a backbone when comparing with other state-of-the-art

methods. Third, from our experiments, ProtoNet can always achieve a relatively

good and stable performance on different datasets. Our pipeline includes the

following components: a SOD module, a feature extractor, a distance module,

a loss function and an inference mechanism. The whole training procedure of295

our few-shot learning pipeline is presented in Algorithm 1.

1. Saliency object detection module: This module employs the pre-

trained EGNet [97] to extract the saliency map sij of an image xij . A

saliency map highlights the most visually distinctive objects in an image

[97], which can guide the subsequent feature extraction. The extracted300

saliency map serves as an additional channel in the original image space

alongside the RGB channels, which will be fed into the feature extractor

as a whole [xij , s
i
j ], [, ] representing concatenation along the last dimension.

2. Feature extractor: The feature extractor f{φ,ψ} aims to transform an

example into a high-level representation, φ and ψ are learnable parame-305

ters of CNNs and our Ada-P module, respectively. Given a training set
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Dtrain = {Ti}Ni=1, Ti =
{
xij , y

i
}K
j=1

, a testing set Dtest = {(qj , ỹj)}Nq

j=1

and their corresponding extracted saliency maps
{
sij
}K
j=1

,
{
sqj
}Nq

j=1
, the

feature extractor f{φ,ψ} transforms a training example [xij , s
i
j ] and a test

example [qj , s
q
j ] into an embedding f{φ,ψ}([x

i
j , s

i
j ]) and f{φ,ψ}([qj , s

q
j ]). fφ310

is usually represented by CNNs or ResNet [29], in which several operators

are stacked, such as convolutions, the batch normalisation (BN) [31], an

activation function and a pooling operator. Following the idea of Pro-

toNet, the prototype of each class is the mean embedding of the training

examples belonging to its class:315

pi =
1

K

K∑
j=1

f{φ,ψ}([x
i
j , s

i
j ]) (1)

3. Distance module: This module applies a distance metric ρ(·) to measure

the similarity between the embedding of a test example f{φ,ψ}([qj , s
q
j ]) and

the prototype of each class pi as ρ(pi, f{φ,ψ}([qj , s
q
j ])). The commonly used

distance metrics are negative Euclidean distance, cosine distance, scaled

Euclidean or cosine distance or a learned distance metric. In our approach,320

we use scaled Euclidean and cosine distance for shallow and deeper CNNs-

based feature extractors, respectively. These settings are widely used in

preivours works [56, 25].

4. Loss function: We choose cross-entropy loss to train each task. First, the

softmax function is applied over the distance between the test embeddings

and the prototypes as follows:

p{φ,ψ}(y = yi | [qj , sqj ]) =
exp(ρ(pi, f{φ,ψ}([qj , s

q
j ])))∑

i′ exp(ρ(pi′ , f{φ,ψ}([qj , s
q
j ])))

(2)

Then, the loss function can be formulated as

L(φ, ψ) = − 1

Nq

Nq∑
j=1

log p{φ,ψ}(y = ỹj | [qj , sqj ]) (3)

where Nq is the number of test examples in each training task, ỹj is the

true label of qj .325
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5. Inference: The inference is conducted on the meta-testing set Dmeta−test,

whose label space has no overlapping with the meta-training set Dmeta−train.

The procedure is nearly the same with the meta-training phase through

the trained feature extractor, distance module and a softmax function.

Then, a test example can be classified into one class by taking its highest

probability:

lt = argmax
i

p{φ,ψ}(y = yi | xqt) (4)

where xqt is a test example in a meta-testing task and lt is its predicted

label.

3.3. Saliency object detection moduel

The SOD module aims to extract the salient object from an image and use it

to guide the subsequent feature extraction. We employ a promising saliency ob-330

ject detection method, EGNet, which explicitly models complementary salient

object information and salient edge information within a single network to pre-

serve object boundaries and localise salient objects simultaneously. To leverage

the extracted saliency maps for few-shot learning, we have explored several av-

enues to incorporate saliency maps into few-shot leaning approaches, which are335

presented in Section 5.1. Based on our experiments, we found providing the

extracted saliency map as an additional channel alongside RGB channels offers

the best performance. Therefore, we choose this method to be our main avenue

of leveraging saliency maps for few-shot learning. Note that the work in [93] also

used a pre-trained saliency network to extract the foreground and background of340

an image. They designed a complex module, which includes much more convo-

lutional layers than our method, to mix the foregrounds and backgrounds from

a batch of images. While we treat a saliency map as an additional image channel

and further employs Ada-P modules to perform spatial attention in embedding

space. Compared to their approach, our Ada-P module is more lightweight and345

our avenue of utilising saliency maps is simpler, while we achieve similar or even

better performance on some few-shot learning tasks.
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3.4. Adaptive pooling module

The Ada-P module can be placed in the feature extractor after each convo-

lutional operation as shown in Figure 1. The pooling weight generation block

learns to adaptively generate feature fusing weights for each embedding. Then

local features in a sliding window can be fused based on the generated weights

by taking into account the spatial importance. Let E ∈ RW×H×C be an embed-

ding serving as the input of a convolutional layer, where W,H,C represent the

width, height of feature maps and the number of channels, respectively. After

a standard convolutional operation followed by BN and an activation function,

we obtain Ẽ = Conv(E), Ẽ ∈ RW×H×C . Then, the embedding Ẽ is fed into

the pooling weight generation block gψ(·) : RW×H×C → RW×H×1 to generate

the adaptive pooling weights for the features at different spatial locations:

w = gψ(Ẽ)÷ t2, w ∈ RW×H×1 (5)

Specifically, our pooling weight generation block is represented by a convolu-

tional layer with a single convolutional kernel, which is much more lightweight350

compared to the convolutional operation in the feature extractor. We choose

convolutions to be the meta-learner because it provides a larger receptive field

and considers the features in all channels at the same spatial location. Further-

more, gψ also includes a BN layer followed by a sigmoid function. We use a

sigmoid function to limit the pooling weight values between 0 and 1. We fur-355

ther divide the generated weights by t2 for quick convergence, t is the pooling

window size.

Then, weighted pooling is conducted over the embedding Ẽ to fuse local

features. The generated pooling weights w are shared among different chan-

nels. Therefore, for each pooling sub-region Ωk whose size is determined by the

pooling window size, the weighted pooling can be computed as:

Ẽpooled[k] =
∑
i∈Ωk

w[i]Ẽ[i] (6)

where Ẽpooled[k] ∈ R1×1×C is the pooled embedding for sub-region Ωk, w[i] ∈

R1×1×1 and Ẽ[i] ∈ R1×1×C are the generated pooling weight and the embedding
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at i−th location in sub-region Ωk. After performing weighted pooling for all the360

sub-regions, the fused embedding Ẽpooled will feed into the next convolutional

layer. Pseudocode for our Ada-P module is provided in Algorithm 2.

It is noteworthy that our adaptive pooling module is not limited to be used

in metric learning approaches described in Section 3.2. It can also be applied

in other methods, such as fast parameterisation approaches as a plug-and-play365

module, as we will show in Section 5.

3.5. Training strategies

The training strategies of the existing meta-learning approaches can be

broadly categorised into two classes, namely episode-based training [68, 19]

and large scale training [59, 70]. Both train on the meta-training set, which370

is a fair test. We adopted both of them for training the models with different

architectures.

1. Episode-based training aims to imitate the learning processes in meta-

testing during meta-training. In each meta-training iteration, a num-

ber of N -way K-shot learning tasks
{(
Dj
train, D

j
test

)}Nm

j=1
are sampled375

from the meta-training set Dmeta−train, Nm is the meta-batch size. The

meta-training is performed based on the tasks sampled on the fly, which

can be seen as episodes. We adopt episode-based training strategy for

4-convolutional-layers models for fair comparison with other methods.

2. Large scale training utilises the meta-training set as a whole. Specif-380

ically, it adds a fully-connected (FC) layer on the feature extractor and

classifies all the classes in the meta-training set simultaneously based on

all the available training examples of each class, which is similar to the pre-

training on ImageNet for recognition tasks. After the large scale training,

the FC layer is removed, the feature extractor can be directly applied to385

few-shot classification tasks or be fine-tuned for a few epochs by episode-

based training. This large scale training usually provides better perfor-

mance on a deep model. Therefore, we adopt the large scale training

strategy for ResNet models.
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Algorithm 1 The training procedure of our few-shot learning pipeline

Input: Meta-training set Dmeta−train

Input: The number of classes N , the number of training exampels K and the

number of test samples Nq in each task, the number of convolutional layers

C, the ProtoNet-based classifier P based on equation (1) and (2), the pre-

trained SOD model SOD(·).

1: randomly initialize ϕ and φ

2: while not done do

3: Randomly sample a batch of tasks Ti from Dmeta−train

4: L = 0 //Initialise loss

5: for all Ti do

6: Randomly sampleDi
train, D

i
test for Ti, D

i
train

=
{(
xij , y

i
j

)}N×K
j=1

, Di
test

={(
xii, y

i
i

)}Nq

j=1

7: for all xij in Di
train

and Di
test

do

8: sij = SOD(xij) //Obtain the saliency map of each sample

9: Eij = [xij , s
i
j ] //Add a saliency map as an additional channel

10: for c = 1 to C do

11: Ẽij = Convφc(Eij) //Feed forward each Conv block

12: Ẽij,pooled = Ada-Pψc
(Ẽij) //Feed forward Ada-P module

13: Eij = Ẽij,pooled

14: end for

15: end for

16: Eitrain =
{
Eij
}

, Eij is derived from xij ∈ Di
train //Training embeddings

17: Eitest =
{
Eij
}

, Eij is derived from xij ∈ Di
test //Testing embeddings

18: Litest =
∑Nq

j=1 L(P (Eitrain, E
i
j), y

i
j), E

i
j ∈ Eitest, yij ∈ Di

test //Compute

loss for each task

19: L = L+ Litest //Accumulate losses for a batch of tasks

20: end for

21: Update φ and ψ based on 5φ,ψL //Update the parameters of feature

extractor and Ada-P module

22: end while

16



Algorithm 2 Ada-P module

Input: Embedding Ẽ ∈ RW×H×C , pooling region Ω = W ×H, pooling weights

generation block gψ, window size t, strides s, padding p

Output: Ẽpooled

1: w = gψ(Ẽ)÷ t2, w ∈ RW×H×1 //Obtain adaptive pooling weights

2: for Ωk in Ω do

3: Ẽpooled[k] =
∑
i∈Ωk

w[i]Ẽ[i], Ẽpooled[k] ∈ R1×1×C //Weighted pooling

for each sub-region

4: end for

4. Experimental framework390

In this section, we present the experimental framework. Details of the three

widely used datasets we use for few-shot learning as well as a dataset for SOD are

described in Section 4.1. We provide an enumeration of the selected comparison

algorithms and the commonly used network architecture of feature extractors in

Section 4.2. We describe the meta-learning based evaluation approach in Section395

4.3, including the few-shot learning tasks chosen for evaluation, evaluation and

statistical measurements, and training settings.

4.1. Datasets

We evaluate our methods on three widely studied few-shot learning datasets,

miniImageNet, tieredImageNet and CUB. Note that Omniglot [39] is also a well-400

known benchmark for few-shot learning. However, we do not choose it because

recent methods have achieved nearly 100% accuracy, leaving limited space for

improvement. The EGNet in SOD module is pre-trained on DUTS dataset for

SOD tasks as per [97].

1. miniImageNet was proposed by [72] derived from the original ILSVRC-405

12 dataset [63]. It comprises 100 classes of colour images with 600 of

each (60,000 in total). In our experiments, we use the widely used splits

proposed by [60], which divides the 100 classes into 64 for meta-training,
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16 for meta-validation and 20 for meta-testing. All the input images are

resized to 84×84 as done by most few-shot learning approaches [60, 68, 19].410

2. tieredImageNet was proposed by [61], which is a larger subset of ILSVRC-

12 dataset [63] consisting of 608 classes of colour images (779,165 in total).

These classes are grouped into 34 broader categories based on the higher-

level nodes in the ImageNet hierarchy, in which 20 of them are used for

meta-training, 6 for meta-validation and 8 for meta-testing. Therefore,415

there are 351, 97 and 160 classes for meta-training, meta-validation and

meta-testing in total. All the images are resized to 84 × 84 following the

existing approaches [61]. This dataset is more challenging and realistic

compared to miniImageNet, since the meta-training and meta-testing set

are less similar in the semantic space.420

3. CUB: CUB-200-2011 proposed by [73] is an image dataset with photos of

200 bird species. It is comprised by 200 classes of colour images (11,788

in total). In our experiments, we use 100 of them for meta-training, 50

for meta-validation and 50 for meta-testing, following the split proposed

by [10]. All the images are resized to 84 × 84 as done by [10]. Since425

the dataset only contains bird species, the few-shot learning tasks on this

dataset can be seen as fine-grained classification tasks.

4. DUTS: DUTS [75] is the largest salient object detection benchmark,

which includes 10,553 training images and 5,019 testing images. Most

images are challenging with various locations and scales. We pre-train430

EGNet based on this dataset. All the images are resized to 84 × 84 to

keep them the same size as those in datasets for few-shot learning. Note

that there are a few overlappings, 245 images, between the meta-testing

set of miniImageNet and the training set of DUTS. To strictly follow the

meta-learning setting that the meta-testing samples should be unseen, we435

exclude those overlapping images from DUTS when pre-training EGNet

for miniImageNet.
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4.2. Comparison algorithms and network architecture

The existing few-shot learning approaches are not strictly comparable, since

they use networks with different depths as a feature extractor or different train-440

ing strategies. Since the few-shot learning community focuses on the effective-

ness of the meta-learning strategy rather than the complexity of networks, we

choose two widely used network architectures, 4Conv and Res12, as a feature

extractor and select representative state-of-the-art methods based on the same

network architecture for comparison. We also include several recent methods445

using deeper networks, which can further demonstrate the superiority of our

SOD and Ada-P module.

Concretely, for 4Conv based feature extractor, we choose MAML [19], A2P

[59], MetaOptNet [41], R2D2 [5] from fast parameterisation based approaches,

MetaGAN+RN [95], SalNet [93] from data generation based approaches, Pro-450

toNet [68], RN [71], L2AE-D [69], TPN [52], GNN [23] from metric learning

approaches. For Res12 based feature extractor, we compare with LEO [64],

A2P [59], MetaOptNet [41], MTL [70] from fast parameterisation based ap-

proaches, SNAIL [54], TADAM [56], DC [50], CTM [43], ProtoNet [68] from

metric learning approaches. Note that we only compare against methods that455

provide results on a given dataset, therefore the selected comparison algorithms

on different datasets can be different. Besides, we would like to acknowledge

that comparing our SOD module with those methods that do not use saliency

maps may not be completely fair, as they are not using exactly the same data,

network architectures or experimental settings. However, our goal with the SOD460

module is to demonstrate that it is beneficial and compatible with them.

To demonstrate that Ada-P is particularly suitable for few-shot learning, we

compare our module with several widely used and advanced pooling methods,

namely max-pooling [6], average-pooling [6], overlapping-pooling [38], stochastic-

pooling [90], mixed-pooling [40] and gated-pooling [40].465

The architecture of EGNet is described in [97]. We slightly modify its archi-

tecture by removing the max-pooling layer and setting the stride of second layer

as 1 to make it compatible with lower resolution images (84 × 84) in few-shot
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learning datasets. The detailed architecture of 4Conv and Res12 are described

as follows:470

1. 4Conv consists of 4 convolutional blocks. Each block is composed of a

3 × 3 convolution with 64 filters, followed by BN, a ReLU nonlinearity

and a 2×2 max-pooling. In our approach, we replace max-pooling by our

Ada-P module, in which the pooling weight generation block contains a

3×3 convolution with 1 filter, followed by BN and a sigmoid function. The475

pooling window size is 2 × 2. Following [41], we also include a dropblock

[24] layer after each convolutional block to reduce meta-level over-fitting.

The keep rate and block size are set as 0.85 and 3 respectively for all 4

layers on miniImageNet and tieredImageNet. For the distance metric, we

choose scaled Euclidean distance following [88], the scale is set 64.480

2. Res12 consists of 4 residual blocks, each of them is composed of 3 convo-

lutional layers. Max-pooling is performed after each residual block while

in our approach we use adaptive pooling module, in which the pooling

weight generation block contains a 3×3 convolution with 1 filter, followed

by BN and a sigmoid function. Each convolutional layer in the residual485

block consists of a 3 × 3 convolution with k filters, followed by BN, a

Leaky ReLU (0.1) nonlinearity. k is set to be 64 in the first residual block

and is doubled every next block. A dropblock layer is added after each

residual block following [41] to reduce meta-level overfitting. The keep

rate and block size are the same as those for 4Conv model. Moreover, we490

choose cosine distance as distance metric following [25], since we found

that cosine distance works better with Res12 model empirically.

4.3. Meta-learning evaluation

We evaluate our method on 5-way 1-shot, 5-way 5-shot learning tasks on all

three datasets. Like most approaches based on 4Conv [68, 19, 52], we train our495

4Conv based approach in episodic manner for a fair comparison. For training

Res12 based approaches, we adopted large scale training strategy following [70,

88, 64, 43] for better performance. During meta-testing, the previous works
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mostly evaluated their methods on 600 or 1,000 randomly sampled C-way K-

shot classification tasks from the meta-testing set. To get a more reliable result,500

we evaluate our approach on 6,000 randomly sampled tasks for all three datasets.

The average classification accuracy and 95% confidence interval are reported.

All experiments are performed using TensorFlow [1] on a Titan Xp GPU.

1. Episode-based training: During meta-training, the meta-batch size is

set as 3 for both 1-shot and 5-shot tasks. Note that a larger meta-batch505

size could contribute to faster convergence while we set our meta-batch

size taking into account the limitation of GPU memory. For each few-

shot task, besides the N × K training examples, we randomly sample

6 test examples per class to compute the meta-training loss. Following

[68, 19, 52], we train our model with Adam [37] with an initial learning rate510

of 0.001. On miniImageNet and tieredImageNet, we train 300,000 episodes

for 1-shot tasks and 200,000 episodes for 5-shot tasks. The learning rate

is cut in half every 60,000 and 40,000 episodes for 1-shot and 5-shot tasks,

respectively. On CUB dataset, we train 100,000 episodes for both 1-shot

and 5-shot tasks and cut the learning rate in half every 20,000 episodes.515

2. Large scale training: Following [70, 88, 43], we perform large scale

training on Res12 using the whole meta-training set. A FC layer is added

to the Res12 based feature extractor. Then the meta-training process is

transformed into a 64, 351 and 100 classes classification problem for mini-

ImageNet, tieredImageNet and CUB, respectively. Following [70, 41], we520

train our model with stochastic gradient descent with Nesterov momentum

of 0.9 with an initial learning rate of 0.1 for 30,000 episodes on miniIma-

geNet and CUB, 100,000 episodes on tieredImageNet. The learning rate

is divided by 10 every 10,000 episodes for miniImageNet and CUB, 20,000

episodes for tieredImageNet. The batch size is set as 128. The weight525

decay is set to be 0.0005. We adopt random horizontal flip and random

crop data augmentations as in [41, 43, 70]. After the large scale training,

the feature extractor can be used in few-shot classification tasks without
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any fine-tuning.

5. Results and analysis530

In this section, we analyse the results obtained from different experimental

studies. Specifically, our aims are:

• To explore and compare different methods of leveraging the extracted

saliency maps for few-shot learning (Section 5.1).

• To compare the performance of our Ada-P module with several widely used535

and advanced pooling methods in few-shot learning problems (Section 5.2).

• To perform ablation studies that tests whether pooling operations are

really needed in few-shot learning, verifies the working of Ada-P is not

caused by adding more parameters (Section 5.3).

• To analyse the benefits and flexibility of our SOD and Ada-P module when540

they are incorporated into existing few-shot learning approaches (Section

5.4).

• To check whether the superiority of our few-shot learning approach is

maintained on various datasets (small, large, fine-grained datasets) based

on both shallow and deep models (Section 5.5).545

• To illustrate the novelty of designing effective spatial attention methods

for few-shot learning problems, comparing the performance of our Ada-P

and SOD modules against advanced spatial attention methods (Section

5.6).

5.1. Comparisons with different methods of leveraging saliency maps550

To maximise the benefits of using saliency maps for few-shot learning, we

explore a few avenues of incorporating them: (a) adding a saliency map as

an additional channel alongside RGB channels; (b) normalising a saliency map

between 0 and 1, then removing background by multiplying the saliency map
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with each of RGB channels; (c) using 2 networks to extract features from a555

saliency map and an image respectively, then adding the saliency embedding to

the image embedding in each layer; (d) using 2 networks to extract features from

a saliency map and an image respectively, then multiplying the image embedding

by the saliency embedding in each layer. We choose ProtoNet as a baseline,

since it is a widely used effective method for few-shot learning. To compare560

each approach we trained a 4Conv network on the miniImageNet dataset and

report final testing performance. We present a comparison of each method in

Table 1. Removing the background by pre-multiplying with the saliency map

produces a marked drop in performance, likely due to the loss of additional

contextual information, and the fact that the feature extractor focuses more on565

the outline rather than the texture of a salient object. Performance across other

techniques is closer, but adding a saliency map as an additional channel offers

the best performance on both 1-shot and 5-shot tasks. Therefore, we choose

this method to incorporate saliency maps in most of our experiments.

Table 1: Comparisons with several methods of leveraging saliency maps for few-shot learning.

Archt. represents the architecture of the feature extractor.The last number of Archt. stands

for the number of filters in each convolutional layer. The average accuracy (%) with 95%

confidence intervals are reported. + represents an enhanced version of ProtoNet.

miniImageNet 5-way

Methods Archt. 1-shot(%) 5-shot(%)

ProtoNet+ [68] 4Conv-64 52.34 ± 0.26 69.90 ± 0.18

ProtoNet+ [68] - (a) adding 1 channel 4Conv-64 55.00 ± 0.26 72.77 ± 0.18

ProtoNet+ [68] - (b) removing background 4Conv-64 46.28 ± 0.26 66.48 ± 0.18

ProtoNet+ [68] - (c) 2 networks - add 4Conv-64 54.39 ± 0.26 72.73 ± 0.18

ProtoNet+ [68] - (d) 2 networks - mul 4Conv-64 54.43 ± 0.26 71.33 ± 0.18

5.2. Comparisons with pooling baselines570

To demonstrate the superiority of Ada-P, we first compare our Ada-P with

a few pooling baselines on few-shot learning problems in Table 2. The same
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as before, we choose ProtoNet as the baseline. We compare Ada-P with a few

pooling baselines mentioned in Section 4.2. From Table 2, we can see that our

approach outperforms all these baselines, which verifies Ada-P is more suitable575

for few-shot learning problems.

Table 2: Comparisons with several pooling baselines. Archt. represents the architecture of

the feature extractor.The last number of Archt. stands for the number of filters in each

convolutional layer. The average accuracy (%) with 95% confidence intervals are reported. +

represents an enhanced version of ProtoNet.

miniImageNet 5-way

Methods Archt. 1-shot(%) 5-shot(%)

ProtoNet+ [68] w/ Max-pooling 4Conv-64 52.34 ± 0.26 69.90 ± 0.18

ProtoNet+ [68] w/ Avg-pooling 4Conv-64 53.01 ± 0.26 70.12 ± 0.18

ProtoNet+ [68] w/ Max-pooling-overlap [38] 4Conv-64 53.23 ± 0.26 70.14 ± 0.18

ProtoNet+ [68] w/ Avg-pooling-overlap [38] 4Conv-64 52.59 ± 0.26 70.43 ± 0.18

ProtoNet+ [68] w/ Stochastic-pooling [90] 4Conv-64 51.98 ± 0.26 69.92 ± 0.20

ProtoNet+ [68] w/ Mixed-pooling [40] 4Conv-64 52.88 ± 0.26 70.87 ± 0.18

ProtoNet+ [68] w/ Gated-pooling [40] 4Conv-64 53.16 ± 0.26 70.77 ± 0.18

ProtoNet+ [68] w/ Ada-P 4Conv-64 54.75 ± 0.26 71.63 ± 0.20

To further show how our adaptive pooling works in comparison to commonly

used pooling methods, we visualise the embeddings after the pooling operation

in some convolutional layers of a few samples. Specifically, we use two ways

to visual convolutional feature maps. First, we simply compress the multiple580

channels into a single channel by mean operation as shown in Figure 2. Second,

we apply a famous CNNs based visualisation technique [91] by mapping the

convolutional features to the input pixel space as shown in Figure 3. Figures

2 and 3 show the visualisation of the training embeddings in the first three

convolutional layers using different pooling methods from a 5-way 1-shot task.585

The categories are trifle, Alaskan malamute, vase, lion and hourglass from left to

right. We can see that in the first layer, the embeddings of max-pooling and avg-

pooling look similar. These two pooling methods seize a few relevant features,
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such as the shape of the Alaskan malamute and the vase, the eyes and noses

of the lions, while our Ada-P module preserves more details, such as the hair590

features of the Alaskan malamute and the lions. For few-shot learning, we do not

want to lose any useful information from the beginning when the training data

is very small. Therefore, the end-to-end trained Ada-P module in the first layer

learns to preserve more details, which is more suitable for few-shot learning.

In the second and third layers, the feature maps are downsampled to a low-595

resolution space and the blurred mean feature maps in Figure 2 cannot provide

much insight. However, taking advantage of the visualisation technique in [91],

we can map the low-resolution feature maps back to the input pixel space. In

Figure 3, we can see that the embeddings of Ada-P in the third layer focus more

on the target objects, while the other pooling methods include more background600

noise. We can easily recognise the target object from the embeddings of Ada-P

in the third layer compared to the original images. However, the embeddings of

max-pooling and avg-pooling look blurred and it is difficult to distinguish the

target object and the background. Therefore, we can conclude the Ada-P in

the higher layers learns to perform spatial attention and suppresses background605

noise, which is aligned with our motivation.

5.3. Ablation studies on Ada-P

We further conduct two ablation studies shown in Table 3 to show the ac-

tual working of our Ada-P. Specifically, we first remove the pooling operations

in ProtoNet and set convolutional stride as 2 to perform downsampling. It can610

be seen that all other pooling methods including ours outperform convolutional

stride based downsampling, which shows that pooling is necessary for few-shot

learning. Besides, we test whether our improvements are caused by adding more

learnable parameters in CNNs. Since our meta-learner only includes one convo-

lutional kernel, we add one more kernel in each convolutional layer in ProtoNet615

with max-pooling and average-pooling for a fair comparison. The results show

our method outperforms ProtoNet with additional kernels significantly, which

demonstrates that our improvements are not caused by adding more parameters
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Figure 2: Visualisation of feature maps by compressing multiple feature maps into a mean

one. The first row shows five input images. The Figures between dash lines represent the

embeddings of different pooling operations in different layers.
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Figure 3: Visualisation of feature maps by Deconvolution [91]. The first row shows five

input images. The Figures between dash lines represent the embeddings of different pooling

operations in different layers.
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but learning to assign adaptive pooling weights.

Table 3: Ablation study. Archt. represents the architecture of the feature extractor.The last

number of Archt. stands for the number of filters in each convolutional layer. The average

accuracy (%) with 95% confidence intervals are reported. + represents an enhanced version

of ProtoNet.

miniImageNet 5-way

Methods Archt. 1-shot(%) 5-shot(%)

ProtoNet+ [68] w/ Conv-stride(2) 4Conv-64 49.98 ± 0.25 66.91 ± 0.17

ProtoNet+ [68] w/ Max-pooling 4Conv-65 52.59 ± 0.26 70.37 ± 0.18

ProtoNet+ [68] w/ Avg-pooling 4Conv-65 53.13 ± 0.26 70.67 ± 0.18

ProtoNet+ [68] w/ Ada-P 4Conv-64 54.75 ± 0.26 71.63 ± 0.20

5.4. Incorporating Ada-P and SOD into existing approaches.620

To verify the effectiveness and compatibility of our SOD and Ada-P module,

we incorporate either and both of them into a few existing few-shot learning

approaches based on a simple backbone, 4Conv. We choose MAML [19], RN

[71], ProtoNet [68], L2AE-D [69] and TPN [52], because they are representative

approaches from different few-shot learning branches and also include transduc-625

tive and inductive methods. We perform comparison on miniImageNet using the

4Conv model. For ProtoNet, we use an enhanced version with dropblock and

meta-batch training strategy. For the other methods, we do not add any train-

ing strategies described in Section 4.1, such as dropblock and augmentation. We

reuse their released code and incorporate our SOD and Ada-p module, strictly630

following their respective experimental setting. Table 4 shows the comparison

results. We can see our SOD and Ada-P module improves all the methods

on 1-shot and 5-shot tasks, especially for MAML, it improves significantly by

around 7%. When the Ada-P and SOD module is introduced individually, we

can see all the approaches are improved. Note that SOD module improves635

more than Ada-P module on all the approaches. This is probably because the

SOD module leverages auxiliary information (SOD datasets) to guide few-shot
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learning, while Ada-P is only trained from a few-shot learning dataset. The

auxiliary information can be seen as prior knowledge that provides more spatial

information of an object, therefore, the SOD module generally performs better640

than Ada-P. When these two modules are incorporated together, we see that

most of the tasks demonstrate further improvements compared to solely adding

one of them. Since they can both be seen as a spatial attention mechanism,

their positive influence on performance may overlap a bit. However, the SOD

module is placed before the feature extractor to provide prior knowledge and645

Ada-P module is located in each convolutional layer to refine embeddings. Be-

sides, the SOD module is pre-trained based on a SOD dataset and Ada-P is

trained with the feature extractor based on few-shot learning dataset in an end-

to-end manner. They should play a different role in few-shot learning, which

is reflected by the visualisation in Figure 4 and 5, and we will provide more650

discussions in Section 5.6. Therefore, incorporating both of them can achieve

better performance. Overall, this experiment verifies our Ada-P and SOD mod-

ules are beneficial for and compatible with different types of few-shot learning

frameworks, including fast parameterisation and metric learning approaches or

inductive and transductive methods.655

5.5. Comparisons with state-of-the-art approaches on various datasets based on

both shallow and deep models

In this section, we compare our method with state-of-the-art approaches

on 5-way 1-shot and 5-shot classification tasks on various datasets using both

4Conv and Res12 models. The results and analysis are presented as follows.660

Results on miniImageNet: The comparisons on miniImageNet using

4Conv and Res12 models are shown in Table 5. We choose comparable state-of-

the-art methods from different branches for comparison. Based on the 4Conv

feature extractor, our approach achieves state-of-the-art performance on 5-shot

tasks and a comparable result to the best performance on 1-shot tasks. Note665

that SalNet [93] also utilised SOD in their approach, however, they incorporated

a more complex network to mix foregrounds and backgrounds, introducing more
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Table 4: Results after incorporating Ada-P and/or SOD into several existing approaches on

miniImageNet. Trans represents if a method is a transductive method. BN represents a BN

based transductive method. The last number of Archt. stands for the number of filters in

each convolutional layer. The average accuracy (%) with 95% confidence intervals is reported.

↑ shows the improvements after incorporating Ada-P and/or SOD. + represents an enhanced

version of ProtoNet.

miniImageNet 5-way

Methods Trans Archt. 1-shot(%) 5-shot(%)

MAML [19] BN 4Conv-32 48.70 ± 1.84 63.74 ± 0.92

MAML [19] w/ Ada-P BN 4Conv-32 50.74 ± 1.82 ↑ 2.04 66.85 ± 0.87 ↑ 3.11

MAML [19] w/ SOD BN 4Conv-32 54.56 ± 1.82 ↑ 5.86 68.12 ± 0.87 ↑ 4.38

MAML [19] w/ SOD & Ada-P BN 4Conv-32 55.76 ± 1.82 ↑ 7.06 70.11 ± 0.87 ↑ 6.37

RN [71] BN 4Conv-64 50.44 ± 0.82 65.32 ± 0.70

RN [71] w/ Ada-P BN 4Conv-64 50.95 ± 0.86 ↑ 0.51 66.46 ± 0.69 ↑ 1.14

RN [71] w/ SOD BN 4Conv-64 54.02 ± 0.86 ↑ 3.58 67.81 ± 0.69 ↑ 2.49

RN [71] w/ SOD & Ada-P BN 4Conv-64 53.95 ± 0.86 ↑ 3.51 68.59 ± 0.69 ↑ 3.27

ProtoNet+ [68] N 4Conv-64 52.34 ± 0.26 69.90 ± 0.18

ProtoNet+ [68] w/ Ada-P N 4Conv-64 54.75 ± 0.26 ↑ 2.41 71.63 ± 0.20 ↑ 1.73

ProtoNet+ [68] w/ SOD N 4Conv-64 55.00 ± 0.26 ↑ 2.66 72.77 ± 0.20 ↑ 2.87

ProtoNet+ [68] w/ SOD & Ada-P N 4Conv-64 57.29 ± 0.26 ↑ 4.95 74.60 ± 0.20 ↑ 4.70

L2AE-D [69] BN 4Conv-64 53.85 ± 0.85 70.16 ± 0.65

L2AE-D [69] w/ Ada-P BN 4Conv-64 55.12 ± 0.87 ↑ 1.27 70.55 ± 0.67 ↑ 0.39

L2AE-D [69] w/ SOD BN 4Conv-64 56.16 ± 0.87 ↑ 2.31 72.00 ± 0.67 ↑ 1.84

L2AE-D [69] w/ SOD & Ada-P BN 4Conv-64 56.90 ± 0.87 ↑ 3.05 73.06 ± 0.67 ↑ 2.90

TPN [52] Y 4Conv-64 53.75 ± 0.86 69.43 ± 0.68

TPN [52] w/ Ada-P Y 4Conv-64 55.19 ± 0.86 ↑ 1.44 70.90 ± 0.69 ↑ 1.47

TPN [52] w/ SOD Y 4Conv-64 56.74 ± 0.86 ↑ 2.99 72.53 ± 0.64 ↑ 3.10

TPN [52] w/ SOD & Ada-P Y 4Conv-64 57.08 ± 0.86 ↑ 3.33 73.68 ± 0.65 ↑ 4.25

convolutional layers, increasing the complexity when incorporating SOD beyond

our approach. Instead, we perform a simpler method that adds a saliency map

as an additional channel in image space and incorporates lightweight Ada-P670

modules, achieving similar performance on 1-shot tasks and a better result on
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Table 5: Results on miniImageNet and tieredImageNet. The average accuracy (%) with 95%

confidence intervals is reported. The best two performances are highlighted in bold. Res12

represents Res12 models and the behind number stands for the number of filters in the last

residual block. WRN represents wide residual networks. Res18 represents ResNet-18 models.

† uses the results of MetaOptNet with SVM trained only on the meta-training set. + represents

an enhanced version of ProtoNet.

miniImageNet 5-way tieredImageNet 5-way

Methods Archt. 1-shot(%) 5-shot(%) 1-shot(%) 5-shot(%)

MAML [19] 4Conv-32 48.70±1.84 63.74±0.92 51.76±1.81 70.30±1.75

RN [71] 4Conv-64 50.44±0.82 65.32±0.70 54.48±0.93 71.32±0.78

MetaGAN+RN [95] 4Conv-64 52.71±0.64 68.63±0.67

L2AE-D [69] 4Conv-64 53.85±0.85 70.16±0.65

TPN [52] 4Conv-64 53.75±0.86 69.43±0.68 59.91±0.94 73.30±0.75

A2P [59] 4Conv-64 54.53±0.40 67.87±0.20

SalNet [93] 4Conv-64 57.45±0.88 72.01±0.67

ProtoNet+ [68] 4Conv-64 52.34±0.26 69.90±0.18 52.44±0.27 70.91±0.23

[68] /w Ada-P & SOD 4Conv-64 57.29±0.26 74.60±0.20 58.40±0.28 76.06±0.23

SNAIL [54] Res12-256 55.71±0.99 68.88±0.92

TADAM [56] Res12-512 58.50±0.30 76.70±0.30

A2P [59] WRN28 59.60±0.41 73.74±0.19

LEO [64] WRN28 61.76±0.08 77.59±0.12 66.33±0.05 81.44±0.09

MTL [70] Res12-512 61.20±1.80 75.50±0.80

DC [50] Res12-512 62.53±0.19 79.77±0.19

MetaOptNet† [41] Res12-640 62.64±0.61 78.64±0.46 65.99±0.72 81.56±0.53

CTM [43] Res18 64.12±0.82 80.51±0.13 68.41±0.39 84.28±1.73

ProtoNet+ [68] Res12-512 61.27±0.26 77.79±0.18 67.95±0.30 83.30±0.21

[68] w/ Ada-P & SOD Res12-512 63.29±0.27 80.10±0.19 70.28±0.30 84.92±0.21

5-shot tasks. Based on the Res12 feature extractor, our approach achieves the

second best performance on both 5-way 1-shot and 5-shot tasks. It is noteworthy

that these methods are not strictly comparable since their network architectures

are not exactly the same. For example, the best performing method, CTM, use675

ResNet-18 backbone, which represents a deeper architecture (11 million pa-
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rameters) with around 37% more parameters than our Res12 model (8 million

parameters). We apply the architecture that the majority of previous meth-

ods used and achieve competitive performance on both 1-shot and 5-shot tasks

compared to the state-of-the-art results based on this backbone. Our method680

also improves upon ProtoNet+ by around 2.0% on both 1-shot and 5-shot tasks.

Since our approach is built upon ProtoNet+ under the same experimental set-

ting, these improvements also verify the effectiveness of our few-shot learning

approach when using a deeper model.

Results on tieredImageNet: In Table 5, we also compare our approach685

with recent state-of-the-art methods that provide evaluations on 5-way 1-shot

and 5-shot classification tasks on tieredImageNet using a 4Conv and Res12

based model. Note that the missing values in Table 5 indicate the methods are

not tested on tiredImageNet. TieredImageNet is a more challenging benchmark

compared to miniImageNet as discussed before, however, our approach still690

achieves a promising performance. Based on the 4Conv model, our approach

achieves the best performance on 5-shot tasks and the second best on 1-shot

tasks. The best performing method, TPN, is a transductive method that uses a

few unlabelled examples to assist learning, while our method is an inductive ap-

proach that only uses labelled training examples to predict test examples. Based695

on the Res12 model, Ada-P achieves state-of-the-art performance on both 1-shot

and 5-shot tasks, even compared to other approaches with a deeper model or

more kernels. In addition, our method improves upon our baseline, ProtoNet+,

using both 4Conv and Res12 model.

Results on CUB: Finally, we test our approach on fine-grained few-shot700

classification tasks on CUB. Table 6 summarises the comparison of our and

other few-shot learning approaches using both 4Conv and Res12 backbones.

Note that some recent approaches achieve much higher performance on CUB

based on a much deeper backbone, such as Res18 or WRN28. We do not

include them in our comparison for fairness. From Table 6, we can see that705

our approach surpasses all the other methods by a large margin based on both

shallow and deep backbones on both 1-shot and 5-shot tasks. They achieve
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Table 6: Results on CUB. The average accuracy (%) with 95% confidence intervals is reported.

The best two performances are highlighted in bold. + represents an enhanced version of

ProtoNet. — indicates the method does not provide confidence interval. ∗ represents results

from [10].

CUB 5-way

Methods Archt. 1-shot(%) 5-shot(%)

MatchingNet∗ [72] 4Conv-64 60.52 ± 0.88 75.29 ± 0.75

MAML∗ [19] 4Conv-64 54.73 ± 0.97 75.75 ± 0.76

RN∗ [71] 4Conv-64 62.34 ± 0.94 77.84 ± 0.68

ProtoNet+ [68] 4Conv-64 57.61 ± 0.29 74.51 ± 0.18

ProtoNet+ [68] w/ Ada-P 4Conv-64 62.40 ± 0.30 77.65 ± 0.18

ProtoNet+ [68] w/ SOD 4Conv-64 66.41 ± 0.30 81.86 ± 0.18

ProtoNet+ [68] w/ Ada-P & SOD 4Conv-64 69.29 ± 0.30 83.86 ± 0.18

MatchingNet∗ [72] Res10-512 71.29 ± 0.87 83.47 ± 0.58

MAML∗ [19] Res10-512 70.32 ± 0.99 80.93 ± 0.71

RN∗ [71] Res10-512 70.47 ± 0.99 83.70 ± 0.55

ProtoNet+ [68] Res12-512 68.60 ± 0.26 85.51 ± 0.20

ProtoNet+ [68] w/ Ada-P Res12-512 70.22 ± 0.26 85.81 ± 0.20

ProtoNet+ [68] w/ SOD Res12-512 72.47 ± 0.27 88.03 ± 0.20

ProtoNet+ [68] w/ Ada-P & SOD Res12-512 73.65 ± 0.27 88.39 ± 0.20

further improvements when collaborating with each other, which demonstrates

Ada-P and SOD are effective for fine-grained few-shot classification tasks.

5.6. Comparisons with other spatial attention methods on few-shot learning710

problems

Since both SOD and Ada-P modules can be seen as spatial attention mech-

anisms, to illustrate the novelty of our Ada-P and SOD modules for few-shot

learning, we integrate a few recent representative spatial attention approaches

into the few-shot learning framework and compare with our method. Our aim715

33



is to show simply applying off-the-shelf spatial attention methods does not work

satisfactorily for few-shot learning and we need to specifically design an effective

approach. The selected advanced spatial attention methods are SCA [8], CBAM

[84], Residual-AT [74], Interpret-SA [53], L2-pay-AT [33] from the computer vi-

sion field. It is noteworthy that these methods are not specifically designed for720

few-shot learning, some of them need to be tweaked a bit to be compatible with

the few-shot learning framework. The same as before, we choose ProtoNet as a

baseline and incorporate each spatial attention method into it respectively. To

compare the meta-testing performance, we train a 4Conv backbone on miniIm-

ageNet dataset in an episodic manner. The results are shown in Table 7, where725

we can observe that simply incorporating the selected spatial attention methods

into few-shot learning does not improve too much. SCA and Residual-AT even

degrade the performance. They work well on standard learning tasks, while

they may not be a good choice for few-shot learning tasks. This demonstrates

designing an effective spatial attention method for few-shot learning is a non-730

trivial task. We can not simply introduce off-the-shelf spatial attention methods

to improve few-shot learning. From Table 7, we can also see that our Ada-P

and SOD modules outperform other spatial attention methods, respectively, on

both 1-shot and 5-shot tasks, and incorporating both of them surpasses other

methods by a large margin. This illustrates our Ada-P and SOD modules are735

especially effective for few-shot learning.

To better show how these spatial attention methods influence the feature ex-

traction, we visualise the embedding space in the first two convolutional layers

of a few samples as shown in Figure 4 and 5. The same as before, we compress

the multiple channels into a single one by mean operation. From Figure 4, we740

can see that in the first layer the SOD module helps to outline the object from

the background, while the Ada-P module preserves more details of the object.

When incorporating both of them, the embeddings well preserve the shape and

texture of the object and suppress the background noise. Other spatial atten-

tion methods either include more background noise or focus too much on a745

specific feature on the object, such as the eyes of lions. In the second layer, as
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shown in Figure 5, our Ada-P module suppresses the background noise and the

SOD module still helps emphasising the outline of the objects. Compared to

other spatial attention methods, our Ada-P and SOD modules assist the fea-

ture extractor to focus more on the objects. We can clearly recognise the target750

object in the mean feature maps using our Ada-P and SOD modules while the

embeddings of other methods look more blurred.

Based on the above analysis, we can conclude that simply incorporating other

spatial attention methods into few-shot learning improves marginally, while our

Ada-P and SOD modules are carefully designed and especially effective for few-755

shot learning problems, which demonstrates our contributions and novelty.

Table 7: Comparisons with several spatial attention methods on few-shot learning problems.

Archt. represents the architecture of the feature extractor.The last number of Archt. stands

for the number of filters in each convolutional layer. The average accuracy (%) with 95%

confidence intervals are reported. + represents an enhanced version of ProtoNet.

miniImageNet 5-way

Methods Archt. 1-shot(%) 5-shot(%)

ProtoNet+ [68] 4Conv-64 52.34 ± 0.26 69.90 ± 0.18

ProtoNet+ [68] w/ SCA [8] 4Conv-64 51.45 ± 0.26 68.83 ± 0.18

ProtoNet+ [68] w/ CBAM [84] 4Conv-64 53.54 ± 0.26 70.19 ± 0.18

ProtoNet+ [68] w/ Residual-AT [74] 4Conv-64 51.91 ± 0.26 70.35 ± 0.18

ProtoNet+ [68] w/ Interpret-SA [53] 4Conv-64 53.70 ± 0.26 71.18 ± 0.18

ProtoNet+ [68] w/ L2-pay-AT [33] 4Conv-64 52.52 ± 0.26 69.97 ± 0.18

ProtoNet+ [68] w/ Ada-P 4Conv-64 54.75 ± 0.26 71.63 ± 0.20

ProtoNet+ [68] w/ SOD 4Conv-64 55.00 ± 0.26 72.77 ± 0.20

ProtoNet+ [68] w/ SOD & Ada-P 4Conv-64 57.29 ± 0.26 74.60 ± 0.20

5.7. Analysis summary and discussions

Based on the above results and analysis, we can conclude the following re-

marks, which also reflect the aims of different experiments at the beginning of
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Figure 4: Visualisation of feature maps by compressing multiple feature maps into a mean

one. The first row shows five input images. The Figures between dash lines represent the

embeddings of different spatial attention methods in the first layer.

this section.760

1. Adding a saliency map as an additional channel alongside RGB channels
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Figure 5: Visualisation of feature maps by compressing multiple feature maps into a mean

one. The first row shows five input images. The Figures between dash lines represent the

embeddings of different spatial attention methods in the second layer.

is the best way of leveraging saliency maps for few-shot learning, which is

simple but effective.
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2. Our Ada-P module performs better than a few pooling baselines in few-

shot learning problems, such as max-pooling, average-pooling, overlapping-765

pooling, mixed-pooling and gated-pooling. This demonstrates our Ada-P

is more suitable for few-shot learning.

3. The ablation studies show that pooling is a necessary component of a

feature extractor for few-shot learning and the working of Ada-P is not

simply caused by adding more learnable parameters.770

4. Both of our SOD and Ada-P modules are compatible with and beneficial

for most existing few-shot learning approaches. The results in Table 4

show significant improvements when incorporating Ada-P and SOD into

representative few-shot learning methods.

5. The performance of our approach based on both shallow (4Conv) and775

deep (Res12) backbones on various datasets (small, large and fine-grained

datasets) remains superior compared to the state-of-the-art approaches,

which illustrates the effectiveness and robustness of our modules.

6. Both our Ada-P and SOD outperform advanced spatial attention meth-

ods on few-shot learning problems. The visualisation of the embedding780

space further shows our two modules help focus on target objects. These

demonstrate our Ada-P and SOD modules are more effective for few-shot

learning than other spatial attention methods.

Looking at the above summary, we point out several discussions, lessons learnt

and future work directions as follows.785

1. Currently, our Ada-P module concentrates on generating adaptive pooling

weights, while a fixed-shape pooling window is applied as standard pooling

methods. We argue that an adaptive-shape pooling window could provide

more adaptability, which could further benefit few-shot learning problems.

Therefore, we plan to explore the adaptive-shape pooling window along790

with the adaptive pooling weights for few-shot learning.

2. The experimental results show introducing saliency maps is helpful for few-

shot learning. Some recent approaches incorporate some other additional
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knowledge, such as semantic attributes [85, 42] or a category graph [51] and

demonstrated their effectiveness. All these methods including ours aim to795

utilise additional knowledge to assist in learning a good representation,

since few-shot learning problems suffer from a limited training data. We

believe there would be some other additional knowledge beneficial for few-

shot learning and also various ways to utilise it, which needs to be explored.

Another potential future direction could be a fusion of all the available800

additional knowledge for few-shot learning.

3. In this work, we explore various avenues to incorporate the extracted

saliency maps for few-shot learning. Rather than directly using them as

an input, we could also utilise them as a supervisory signal to train a

feature extractor to focus more on the salient region, so that during the805

meta-testing phase, there is no need to extract saliency maps for new

images, which would potentially be more efficient.

4. In our SOD module, we choose EGNet as our saliency extraction method.

As future work, we will explore and compare various saliency object de-

tection approaches for few-shot learning on both high and low resolution810

images.

6. Conclusion

In this paper, we have presented a fusion spatial attention approach for

few-shot learning problems, which introduces spatial attention in both original

image space and embedding space. In image space, our SOD module extracts815

the saliency map of an image and provides it as an additional channel alongside

the RGB image. In embedding space, our Ada-P module learns a meta-learner

to assign adaptive pooling weights to the features at different spatial locations

for each individual embedding. Our SOD and Ada-P modules can be used as

a plug-and-play module and applied in various existing few-shot learning ap-820

proaches, which has been demonstrated in experiments and achieved significant

improvements. We have empirically demonstrated that using existing spatial
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attention methods do not work well in few-shot learning, and our solution has

shown to address that problem effectively. We evaluated our approach on three

widely used benchmarks, miniImangeNet, tieredImageNet, CUB and achieved825

very competitive performance compared to state-of-the-art.
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[69] Song, H., Torres, M.T., Özcan, E., Triguero, I., 2019. L2AE-D: Learning1050

to aggregate embeddings for few-shot learning with meta-level dropout.

arXiv preprint arXiv:1904.04339 .

[70] Sun, Q., Liu, Y., Chua, T.S., Schiele, B., 2019. Meta-transfer learning for

few-shot learning, in: Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 403–412.1055

[71] Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M.,

2018. Learning to compare: Relation network for few-shot learning, in:

Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 1199–1208.

[72] Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al., 2016. Match-1060

ing networks for one shot learning, in: Advances in Neural Information

Processing Systems, pp. 3630–3638.

[73] Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S., 2011. The

caltech-ucsd birds-200-2011 dataset .

[74] Wang, F., Jiang, M., Qian, C., Yang, S., Li, C., Zhang, H., Wang, X.,1065

Tang, X., 2017a. Residual attention network for image classification, in:

Proceedings of the IEEE conference on computer vision and pattern recog-

nition, pp. 3156–3164.

[75] Wang, L., Lu, H., Wang, Y., Feng, M., Wang, D., Yin, B., Ruan, X.,

2017b. Learning to detect salient objects with image-level supervision,1070

in: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 136–145.

[76] Wang, R., Xu, K., Liu, S., Chen, P.Y., Weng, T.W., Gan, C., Wang,

M., 2021. On fast adversarial robustness adaptation in model-agnostic

meta-learning, in: International Conference on Learning Representations.1075

49



[77] Wang, W., Shen, J., Ling, H., 2018a. A deep network solution for atten-

tion and aesthetics aware photo cropping. IEEE transactions on pattern

analysis and machine intelligence 41, 1531–1544.

[78] Wang, X., You, S., Li, X., Ma, H., 2018b. Weakly-supervised semantic

segmentation by iteratively mining common object features, in: Proceed-1080

ings of the IEEE conference on computer vision and pattern recognition,

pp. 1354–1362.

[79] Wang, Y., Yao, Q., Kwok, J.T., Ni, L.M., 2020. Generalizing from a few

examples: A survey on few-shot learning. ACM Computing Surveys .

[80] Wang, Y.X., Girshick, R., Hebert, M., Hariharan, B., 2018c. Low-shot1085

learning from imaginary data, in: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 7278–7286.

[81] Wei, Y., Liang, X., Chen, Y., Shen, X., Cheng, M.M., Feng, J., Zhao, Y.,

Yan, S., 2016. Stc: A simple to complex framework for weakly-supervised

semantic segmentation. IEEE transactions on pattern analysis and ma-1090

chine intelligence 39, 2314–2320.

[82] Wei, Y., Wen, F., Zhu, W., Sun, J., 2012. Geodesic saliency using back-

ground priors, in: European conference on computer vision, Springer. pp.

29–42.

[83] Wertheimer, D., Hariharan, B., 2019. Few-shot learning with localization1095

in realistic settings, in: Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 6558–6567.

[84] Woo, S., Park, J., Lee, J.Y., So Kweon, I., 2018. CBAM: Convolutional

block attention module, in: Proceedings of the European Conference on

Computer Vision, pp. 3–19.1100

[85] Xing, C., Rostamzadeh, N., Oreshkin, B., Pinheiro, P.O., 2019. Adap-

tive cross-modal few-shot learning, in: Advances in Neural Information

Processing Systems, pp. 4848–4858.

50



[86] Yan, S., Zhang, S., He, X., et al., 2019. A dual attention network with

semantic embedding for few-shot learning, in: Proceedings of the AAAI1105

Conference on Artificial Intelligence, pp. 9079–9086.

[87] Yao, H., Wei, Y., Huang, J., Li, Z., 2019. Hierarchically structured meta-

learning, in: International Conference on Machine Learning, pp. 7045–

7054.

[88] Ye, H.J., Hu, H., Zhan, D.C., Sha, F., 2020. Few-shot learning via em-1110

bedding adaptation with set-to-set functions, in: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition.

[89] Yoon, J., Kim, T., Dia, O., Kim, S., Bengio, Y., Ahn, S., 2018. Bayesian

model-agnostic meta-learning, in: Advances in Neural Information Pro-

cessing Systems, pp. 7332–7342.1115

[90] Zeiler, M.D., Fergus, R., 2013. Stochastic pooling for regularization

of deep convolutional neural networks, in: International Conference on

Learning Representations.

[91] Zeiler, M.D., Fergus, R., 2014. Visualizing and understanding convolu-

tional networks, in: Proceedings of the European Conference on Computer1120

Vision, pp. 818–833.

[92] Zhang, D., Meng, D., Zhao, L., Han, J., 2017. Bridging saliency detec-

tion to weakly supervised object detection based on self-paced curriculum

learning. arXiv preprint arXiv:1703.01290 .

[93] Zhang, H., Zhang, J., Koniusz, P., 2019a. Few-shot learning via saliency-1125

guided hallucination of samples, in: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pp. 2770–2779.

[94] Zhang, L., Liu, Z., Zhang, S., Yang, X., Qiao, H., Huang, K., Hussain,

A., 2019b. Cross-modality interactive attention network for multispectral

pedestrian detection. Information Fusion 50, 20–29.1130

51



[95] Zhang, R., Che, T., Ghahramani, Z., Bengio, Y., Song, Y., 2018. Meta-

GAN: An adversarial approach to few-shot learning, in: Advances in Neu-

ral Information Processing Systems, pp. 2365–2374.

[96] Zhao, F., Zhao, J., Yan, S., Feng, J., 2018. Dynamic conditional networks

for few-shot learning, in: Proceedings of the European Conference on1135

Computer Vision, pp. 19–35.

[97] Zhao, J.X., Liu, J.J., Fan, D.P., Cao, Y., Yang, J., Cheng, M.M., 2019.

EGNet: Edge guidance network for salient object detection, in: Proceed-

ings of the IEEE International Conference on Computer Vision, pp. 8779–

8788.1140

[98] Zhu, H., Ma, W., Li, L., Jiao, L., Yang, S., Hou, B., 2020. A dual–branch

attention fusion deep network for multiresolution remote–sensing image

classification. Information Fusion 58, 116–131.

[99] Zhu, W., Liang, S., Wei, Y., Sun, J., 2014. Saliency optimization from

robust background detection, in: Proceedings of the IEEE conference on1145

computer vision and pattern recognition, pp. 2814–2821.

[100] Zhu, X., Cheng, D., Zhang, Z., Lin, S., Dai, J., 2019. An empirical study

of spatial attention mechanisms in deep networks, in: Proceedings of the

IEEE International Conference on Computer Vision, pp. 6688–6697.

52


