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Abstract 
Multimodal deep learning systems that employ multiple modalities like text, image, 
audio, video, etc., are showing better performance than individual modalities (i.e., 
unimodal) systems. Multimodal machine learning involves multiple aspects: 
representation, translation, alignment, fusion, and co-learning. In the current state of 
multimodal machine learning, the assumptions are that all modalities are present, 
aligned, and noiseless during training and testing time. However, in real-world tasks, 
typically, it is observed that one or more modalities are missing, noisy, lacking annotated 
data, have unreliable labels, and are scarce in training or testing, and or both. This 
challenge is addressed by a learning paradigm called multimodal co-learning. The 
modeling of a (resource-poor) modality is aided by exploiting knowledge from another 
(resource-rich) modality using the transfer of knowledge between modalities, including 
their representations and predictive models.  

Co-learning being an emerging area, there are no dedicated reviews explicitly 
focusing on all challenges addressed by co-learning. To that end, in this work, we provide 
a comprehensive survey on the emerging area of multimodal co-learning that has not 
been explored in its entirety yet.  We review implementations that overcome one or more 
co-learning challenges without explicitly considering them as co-learning challenges. We 
present the comprehensive taxonomy of multimodal co-learning based on the challenges 
addressed by co-learning and associated implementations. The various techniques, 
including the latest ones, are reviewed along with some applications and datasets. 
Additionally, we review techniques that appear to be similar to multimodal co-learning 
and are being used primarily in unimodal or multi-view learning. The distinction 
between them is documented. Our final goal is to discuss challenges and perspectives 
and the important ideas and directions for future work that we hope will benefit for the 
entire research community focusing on this exciting domain. 
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1. Introduction 

Modality refers to how things are experienced in terms of sensory inputs as sight, 
touch, hearing, smell, and taste. There are devices like cameras, haptic sensors, 
microphones etc. which directly correspond to human senses for the computational 
world. There are devices like motion sensors, keyboards, and physiological sensors that 
are indirect. Some researchers define modality as how information is represented and 
communicated between people, such as gesture, speech, written language, gaze, etc. [1]. 
Multimodality combines multiple modalities such as language, vision, audio, 
physiological signals, physical sensor signals, etc. are different forms of modalities used 
to understand the world around us and provide a better user experience. Multimodal 
data helps us describe the objects or phenomena using different aspects or viewpoints 
with complementary or supplementary information. Applications with a single modality 
have achieved significantly higher performance owing to the advances in deep learning 
techniques, computing infrastructure, and large datasets. As early as 2009, studies [1] 
have shown that using multiple modalities can improve performance over a single 
modality. The recent research has shown further improvements with the latest deep 
learning methods. Hence, there is an increased research focus on multimodal machine 
learning or deep learning. 

1.1 Multimodal deep learning 
Multimodal applications provide more accuracy and robustness than single modality 

applications as they combine information from multiple sources at signal level or 
semantic level, referred as multimodal fusion. The systems which support 
communication with humans using different modalities are referred to as multimodal 
systems. Multimodality is also defined as capacity of a system to interact using 
multimodal communication by processing information automatically. The modalities 
can cooperate in six ways: equivalence, transfer, specialization, redundancy, 
complementarity and concurrency [2]. The study of multimodal systems started in the 
1980s with the system ‘put-that-there’, which had speech and the location of a cursor as 
input to create contextual reference [3]. Several studies followed involving different 
modalities and applications: speech and gesture for conversation understanding [4], 
audio, video, language for emotion analysis [5], image and text for sentiment analysis 
[6], mental health monitoring using wearable sensors [7], RGB and depth for medical 
imaging [8], radar images and optical images for weather mapping [9], language 
translation using text and image [10], cross-media retrieval using EEG and image [11]. 
The fusion of gas sensors and thermal images [12], provides better accuracy and 
robustness than individual models for gas detection. 

Multimodal machine learning taxonomy [13] provided a structured approach by 
classifying challenges into five core areas and sub-areas rather than just using early and 
late fusion classification. These five technical challenges are representation, translation, 
alignment, fusion, and co-learning, as shown in Fig. 2. Representation represents and 
summarizes multimodal data such that complementary and supplementary information 
is utilized in a model [14]. Alignment identifies mapping between modalities, and 
translation focuses on changing data from one modality to another. Fusion combines 
information from multiple modalities to achieve a prediction task. Co-learning, which is 
the focus of this paper, is about the transfer of knowledge between modalities. 

Although these five challenges appear distinct, there is an overlap among them. 



Multiple challenges are applied together to achieve several tasks using multimodal deep 
learning models. For example, we need representation to apprehend complementary 
and supplementary information before fusing those modalities. Likewise, representation 
is required for the tasks related to translation and alignment. For co-learning also, 
methods from all remaining four challenges are used to achieve its objectives. 

1.2 Need to study multimodal co-learning 
The higher performance of multimodal models depends on the availability of aligned, 
noiseless, and annotated modalities at training and testing. However, all modalities may 
not be available at all times; those may be noisy and may be in a limited amount. For 
example, the system must simultaneously process speech and gestures with poor acoustic 
and visual conditions, variations in dialects, and light conditions to understand speech 
well. Hence, multimodal systems need the capability to deal with missing or noisy 
conditions. This key practical consideration is addressed by multimodal co-learning, 
which uses the knowledge transfer from one modality (informative) to another modality 
(less informative). Empirical evaluation and theoretical studies [15] have shown that 
multimodal co-learning provides a higher performance on sentiment analysis when 
trained on audio, video, and language and tested on language than the models trained 
and tested only on the language modality. It has exhibited adaptability to another dataset 
of the same domain and datasets from a different domain.  

Thus, multimodal co-learning is critical to realize the potential of multimodal 
applications that can work in real-life-like situations. With the increasing use of sensors, 
cameras, physiological devices, mobile devices, medical imaging, etc., multimodal data 
became easily available for multimodal applications. The multimodal applications are 
used in multiple areas such as affective computing, industrial decision and control 
systems, multimedia, autonomous systems, medical systems, military equipment, 
satellite systems, etc. The multimodal systems in these applications need to be robust 
and provide the required prediction accuracy to poor signals or different conditions, to 
avoid life-threatening as well as catastrophic consequences.  

The multimodal co-learning can be treated as a dark horse of multimodal deep 
learning with its enormous potential to support practical life applications. However, co-
learning has not received the required focus as a separate topic, beyond initial 
classification [13] into three sub-areas using data parallelism, namely, parallel, non-
parallel and hybrid. There are a number of studies focusing representation [14,16–18], 
alignment [19–22], translation [21,23], and fusion [12,24–28]. However, the co-learning 
challenge is discussed only in [15] . Similarly, multiple surveys have focused on the use 
of multimodal deep learning in a particular domain. None of these surveys covered 
multimodal co-learning or attempted to define taxonomy. 

Hence, we conducted this research study to comprehensively examine the 
multimodal co-learning area, which can help the multimodal deep learning field leap 
ahead. 



 

Fig. 1. Our proposed multimodal co-learning taxonomy  

1.3 Contributions 
This paper endeavors to thoroughly investigate multimodal co-learning including, 

recent advances, challenges, datasets, and applications. We believe this is the first work 
to study multimodal co-learning beyond the initial co-learning taxonomy of data 
parallelism [13], as shown in Fig. 2. We reviewed the existing categories, identified 
additional categories based on recent literature, and presented the latest frameworks 
supporting multimodal co-learning and modality conditions during training and testing. 
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Also, we showed how methods from other areas, namely, representation, alignment, 
translation, and fusion, assist co-learning or overlap with co-learning. To bring a 
historical perspective, we reviewed and explained the techniques established in 
unimodal scenarios, used for co-learning in the early period of multimodal evolution. 
Finally, we presented key challenges, perspectives, datasets, applications, and important 
directions for future work.  

The goals of this survey can be summarized as follows: 
• As shown in Fig. 3, we established the co-learning objectives that can include 

existing co-learning work and are specific enough to clarify the purpose of co-
learning. 

• We expand the initial co-learning taxonomy to a comprehensive taxonomy, as 
shown in Fig. 1, which helps set future research directions in multimodal co-
learning. 

• We offer an extensive literature review and organize it as per the proposed 
taxonomy from the viewpoints of data, models, and applications. We also 
presented a summary of insights and a discussion on each objective, establishing a 
better understanding of co-learning. 

• We propose promising future directions for co-learning in problem setup, 
techniques, applications, and datasets. These recommendations are based on the 
analysis of current constraints to achieve co-learning objectives. 

1.4 Organization of the survey 

The rest of this paper is organized as follows: In Section 2, we set the direction by 
defining the objectives of multimodal co-learning and the research goals of this study. In 
Section 3, we explained the background with the help of single modality techniques 
supporting objectives of multimodal co-learning for unimodal tasks. In Section 4, we 
proposed comprehensive multimodal co-learning taxonomy with classification and sub-
classification. We presented our investigation of research studies that implemented 
multimodal co-learning objectives. Section 5, shared details on deep learning methods 
used for multimodal co-learning implementations, including the emerging ones. In 
Section 6, multimodal co-learning applications and available datasets are covered. 
Section 7 discussed open problems and future directions in this active field, and finally, 
we conclude in Section 8. 

 
2. Research goals and methodology 

A key objective of multimodal co-learning is to work in real-life conditions where one 
or more modalities are scarce during training and testing. Those may be noisy, un-
labeled, or with incorrect labels. We exerted these conditions as formal objectives of 
multimodal co-learning, as shown in Fig. 3, to guide our study of research papers in this 
area. 

Multimodal co-learning being less investigated area to date, only a few papers discuss 
multimodal co-learning. However, we have observed that research studies and 
implementations focus on one or more multimodal co-learning objectives without 
explicitly referring to them as co-learning objectives. Hence, we systematically searched 
and studied papers that mentioned one or more multimodal co-learning objectives to 
answer research questions as listed in Fig. 4.  



 

Fig. 2. Multimodal machine learning taxonomy based on challenges mentioned in [13])   



 

Fig. 3. Multimodal co-learning objectives 
 

 

Fig. 4. Research questions used for this study 
We also studied papers that mentioned co-learning objectives for single modality 

models to present comparison and historical perspective to the researchers. 
 
3. Historical perspective to multimodal co-learning 

Data from different sources, which can be grouped into different views, employ Multi-
View Learning. Single view models were not able to handle heterogeneous data, and each 
view has different statistical properties. Multi-view learning introduces one function to 
address one view, and the functions of all views are optimized to improve the performance 
[19]. For example, in remote sensing, optical images and synthetic aperture radar (SAR) 
images are captured using two different sensors providing two different views to predict 
land cover mapping. Similarly, image and text modalities in image captioning can be 
treated as two different views for multi-view learning methods. Therefore, we briefly 
discuss multi-view learning in this section.  

We also reviewed some prevalent techniques in unimodal space to address the co-
learning objectives for single modality tasks. This discussion provides the necessary 
background to set the context for multimodal co-learning while conveys clarity by 

Presence of Modality

Data Parallelism 

Noisy Modality

Modality Annotations

Domain Adaptation

Interpretability & Fairness

Should predict when one or more modality is missing 
fully or partly at test and training time

Should support strongly paired, weakly  paired and 
paired through shared modality

Should work in noisy conditions in data and  labels

Should handle annotated, partially annotated and 
non-annotated modalities during training

Should perform when there is a different dataset/ 
domain/ modality at training and testing 

Should provide interpretable and unbiased 
predictions with explanations and fairness

Objective Purpose



understanding similarities and differences. Although we have discussed these techniques 
in this section focusing on the historical perspective, these are still employed for multiple 
implementations. These techniques are getting improved in combination with the latest 
deep learning techniques for unimodal and multimodal tasks. 

3.1 Co-teaching 

Noisy labels are a common occurrence in real life and specifically mean label 
corruption from the ground truth. It affects the performance and robustness of the 
models. Noisy labels are challenging for deep neural networks, as these models can 
memorize even the noisy labels with high accuracy. The research for handling noisy labels 
in deep learning was initiated by estimating the noise transition matrix to focus on finding 
clean labels from noisy ones and updating the network. MentorNet [29] supervises the 
Student network training by providing a sample weighting scheme to select clean 
instances to guide the training. Decoupling [30] trains two networks and updates only in 
case of prediction disagreement between two rather than a label; this way, the 
disagreement decreases when predictors get better and maintain a constant rate of noisy 
labels. 

Lately, Co-teaching [31] showed better performance with high to low noisy labels 
(45%-20% noisy labels with multiple classes). The two networks are trained 
simultaneously, and each network views its small loss instances as useful in each mini-
batch. However, the model allows both networks to teach others in every mini-batch 
allowing error to flow between them.  

 
Fig. 5. Comparison of error flow among MentorNet (M-Net), Decoupling, Co-
teaching, Co-teaching+ and JoCoR (adapted from  [31], [32])  

With the increase in the number of training epochs, it is observed that two networks 
in the co-teaching model converge to consensus and lose their advantage over MentorNet. 
Co-teaching+ [33] addresses this issue by keeping two networks divergent even for a large 
number of epochs by modifying the ‘update by disagreement’ strategy by having data 
update (disagreement-update) step and parameters update (the cross-update) step. 
Another extension of co-teaching is named JoCoR (Joint Training with Co-
Regularization) [32], which trains two networks with a joint loss – supervised loss and 
the co-regularization loss. In Fig. 5, red and green arrows denote error flows in network 
A and network B assuming error comes from selecting training instances. Only one 
network (A) is maintained in M-Net, whereas two networks (A and B) are updated when 
their predictions disagree in decoupling. In co-teaching, each network considers its small 
loss predictions as helpful and trains its peer network. In co-teaching+, the peer network 
is updated in case of prediction disagreement. Co-teaching and co-teaching+ displays 
error flow in a zigzag shape. JoCoR also has two networks but trains them with a joint 
loss. 
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3.2 Teacher-Student networks 

Having a large volume of labeled data for deep learning is still a challenge; hence 
alternate approaches of having some labeled data and rest unlabeled data are in focus and 
termed as Semi-Supervised Learning (SSL). Proxy label methods generate proxy labels 
on unlabeled data using a prediction function. These methods are divided into two main 
classes: self-training and multi-view learning. In self-training, the model produces proxy 
labels, whereas, in multi-view learning, different data views are used to train models.  

Self-training typically has a similar or higher capacity student model. However, the 
self-training model cannot correct itself, and any bias or error in predictions is amplified, 
yielding confident but wrong proxy labels on unlabeled data [34]. Therefore, it is essential 
to decide which pseudo labels should be appended to the labeled dataset. This process is 
the underlying principle for the teacher-student network. Initially, the teacher-student 
network was introduced as a distillation to compress a large model (teacher) into a 
smaller one (student); the student model is typically smaller and faster than the teacher 
model.  

Recently, adding fine-tuning to student network on labeled images as a final step and 
improved data selection strategy [35] has shown the state of the art performance on image 
and video classification. The model utilizes 1 billion unlabeled images as a training set 
and the vanilla ResNet-50 [36] model. Another extension, as a robust teacher-student 
algorithm [37], adds robustness against perturbations (noise) to the student network. The 
robustness is added by modifying the objective function to minimize the difference 
between the gradients of student and teacher networks with Gaussian noise during 
training and testing. Like co-teaching, teacher-student deep semi-supervised learning 
(TS-DSSL) [38] also performs better with uniform and non-uniform noise distributions. 

Combining teacher-student network with a pre-trained language model [39] as a data 
augmentation approach is used to extract task-specific in-domain data from a large bank 
of web sentences. This model has improved performance over the pre-trained model 
baseline RoBERTa [40], knowledge distillation, and few-shot learning.  

3.3 Co-training 

Co-training is a form of multi-view learning algorithm of SSL methods and expects 
that two independent views represent every data point. The algorithm creates weak 
classifiers that utilize proxy labeling procedures to add more labeled data points using the 
threshold set on the prediction of classifiers. Blum and Mitchel [41] combined labeled and 
unlabeled data with co-training for creating more training samples for web page 
classification in their seminal work. They used two views – content on the web page itself 
and an anchor text in the hyperlink for the web page with Naïve Bayes as classifiers.  

Co-training needs two different views of the same data point; however, data has only 
one view in many cases. In some instances, multiple views are generated by adding noise 
or by using data augmentation techniques. Adversarial examples are employed to create 
different views [42] and to stop two networks from collapsing. The obtained deep co-
training model for semi-supervised image recognition showed performance improvement 
on Street View House Number (SVHN) [43], CIFAR 10/100 [44], and ImageNet [45] 
datasets. In the medical field, especially medical imaging, having labeled data is costly 
and time-consuming as experts must create masks or boundaries of objects. Hence, 3D 
volumes were rotated and permuted [8] to form multiple views for co-training for medical 
image segmentation of the pancreas segmentation dataset. Co-training based model is 
used for RGB-D object recognition [46] by having RGB and depth as two views and 
training two networks on these views. Convex clustering identifies different attributes for 



each class and adds samples from unlabeled to labeled datasets based on uniform 
distribution of attributes to deal with class imbalance. 

Co-training is extended [47] to classify weakly labeled videos downloaded from the 
web using five modalities - RGB, motion, audio, concatenation of RGB-motion-audio, and 
metadata. Multiple Kernel Learning (MKL) is employed to classify images using images 
and tags as two modalities in a semi-supervised manner [48]. In this, the image-only 
classifier is utilized during test time with missing tag data modality.     

3.4 Discussion 

In this section, we set the context by explaining how objectives promised by 
multimodal co-learning are achieved in unimodal settings and multi-view learning. Co-
training is well suited for multimodal data as each modality can be considered as different 
views.  One modality can assist other modalities during training that may not be present 
during testing. Teacher-student networks and other self-training methods help achieve 
the co-learning objectives of semi-supervised or weakly supervised annotations and deal 
with missing or noisy data samples. Co-teaching methods help noisy and weak label 
conditions, which are also co-learning objectives. This section provides information on 
some of the earlier methods, which started with unimodal data are extended to 
multimodal data.  

Further details on implementation of these multimodal co-learning methods are 
discussed in the following sections. The recent techniques like Encoder-Decoder [49], 
Attention models [50], Transformers [51], Generative Adversarial Networks (GAN) [52], 
Zero-Shot Learning (ZSL) [53], Multi-task Learning [54], Transfer Learning [55], Meta-
Learning [56], Multiple Instance Learning [57], and Domain Adaptation [58] also 
facilitate achievement of the multimodal co-learning objectives and are discussed in the 
following sections. 
 
4. Multimodal co-learning taxonomy  

In multimodal co-learning, one modality acts as a supporting modality and aids 
another modality with the transfer of knowledge between modalities during training. This 
supportive modality is usually not present at inference time. The same is applicable for 
more than two modalities. Earlier work [13] has classified multimodal co-learning based 
on data parallelism at training time, as shown in Fig. 2. Based on our analysis of research 
papers that addressed co-learning objectives, we believe it is crucial to expand the co-
learning taxonomy proposed earlier in [13], making it comprehensive to encourage new 
research activities.  

Our proposed taxonomy is shown in Fig. 1, is based on key considerations of modality 
conditions at training and test time. These conditions are the type of noise, the number 
of missing modalities, availability of annotated modality data partially or entirely, the 
pairing of data and data from different datasets or domains. In the proposed co-learning 
taxonomy, we included the data parallelism category from multimodal machine learning 
taxonomy. Methods in data parallelism are not included in the proposed taxonomy as 
methods are part of the implementation.  

The subsequent sections cover each of the co-learning objectives in terms of objective 
definition, objective classification, recent studies and methods used, the outcome they 
achieved, data strategy, and applications addressed. We consider multimodal sentiment 
classification using three modalities, audio, video, and text, to illustrate some of the 
concepts. 

 



4.1 Presence of modality 

The foremost purpose of multimodal machine learning is to create models that utilize 
information from multiple modalities, to have higher accuracy than the unimodal models. 
The researcher’s focus has helped us to arrive at state-of-the-art multimodal deep 
learning models.  In various instances, it is assumed that all the modalities are available 
at training and test time. However, in real life, all the modalities may not be present at 
the test time and sometimes may not be present during training. This challenge is 
addressed by multimodal co-learning, making models robust for missing modalities and 
noisy data inputs. The development of models for missing modality conditions is also 
helping us answer a question: will the integration and fusion of multimodal information 
in training help even if the task is unimodal at test time? [15]. The presence of modality 
is a crucial factor for multimodal co-learning models. Hence, we consider it as one of the 
explicit classification criteria for the proposed comprehensive co-learning taxonomy.  

Various modality conditions at training and testing are shown in Fig. 6, namely, a) all 
modalities are present at train and test time, b) all modalities are present at train time, 
and one modality is missing at test time, c) all modalities are present at train time, and 
two modalities are missing at test time, d) one modality is missing at train time, and all 
modalities are present at test time, e) two modalities are missing at train time, and all 
modalities are present at test time, f) all modalities are present at train time, and one 
modality is missing partly at test time, g) all modalities are present at train time, and two  
modalities are missing partly at test time, and h) two modalities are missing partly at train 
time and two modalities are missing partly at test time. 

 

 

 
 

Fig. 6. Modality conditions at train and test time for three modalities - language, 
visual,  and audio (enhanced based on [59]) 

 

Train Test Train Test

Train Test Train Test

(a) (b)

(c) (d)

Train Test Train Test

Train Test Train Test

(e) (f)

(g) (h)

Audio 
Modality

Language 
Modality

Visual 
ModalityLegends Missing 

Modality



If we consider a standard multimodal task consisting of multiple modalities, all the 
modalities are present at training and test time. In co-learning, all the modalities are 
present at training time and some are missing at test time. The modalities which are not 
present at the test time support other modalities during training. As a natural extension, 
there are multiple modalities during training time and only one modality is present 
during testing, effectively making it a unimodal scenario at test time. We also considered 
further sub-classification based on if the missing modalities are entirely missing or 
missing for a certain period or percentage. The scenarios in which one or more modalities 
are missing at training time but available at the test time are also possible. Those can be 
considered under the domain adaptation category of co-learning. In Fig. 6, we consider 
three modalities: text, video, and audio and presented this in detail. 

The research studies also highlight that modality used at test time can be dominant 
or weak to understand if the weaker modality supports stronger or vice versa. Knowing 
the supportive modality leads us to think of another sub-classification - a) Stronger 
Enhancing Weaker (SEW) [21] and b) Weaker Enhancing Stronger (WES) based on which 
modalities are used at test time, as shown in Fig. 7. However, we have not considered this 
as an explicit sub-classification as this is applicable in all missing modalities scenarios 
unless the modalities have equal contribution or regulate each modality’s contribution. 
For unimodal cases, missing data is normally addressed by missing at random (MAR) 
methods, which find a good relationship with available data to replace the missing 
samples. 

However, in multimodality, the correlation between missing modality and 
available modality is complex and non-linear; even the relationship between missed 
entries and available entries for the same modality is complex. In the initial period of 
multimodal evolution, inferring missing modality from other modalities is achieved using 
probabilistic relations, with the models like Deep Boltzmann Machines [60]. Some 
techniques used modality imputations like cascaded residual autoencoder [61], imputing 
the kernel matrix of missing modality using kernel matrix of other modalities [62]. Lately, 
knowledge distillation like a teacher-student network [63] that learns from soft labels is 
utilized instead of imputation.  

Deep learning-based approaches like autoencoders, adversarial learning, multiple 
kernel learning methods are used, and further enhancements are in progress. We 
included some of these recent approaches here.  

4.1.1 Fully missing modality 

The easier approach to implement missing modality at test time could be late fusion, 
which uses two unimodal networks and a weighing scheme to predict the results. If one 
modality is absent during test time, other unimodal networks can make a prediction. 
However, late fusion considers each modality as independent and cannot learn 
multimodal interactions [64]; hence it is not preferred for co-learning.  

In some cases, co-training helped to handle missing modalities at test time.  The co-
training is extended to multimodal [47] to classify weakly labeled videos downloaded 
from the web with five modalities - RGB, motion, audio, concatenation of RGB-motion-
audio, and metadata using decision level fusion. During testing, video metadata is not 
used as it is normally not available for video classification implementing missing modality 
at test time.   

 



 
Fig. 7. Categorization based on dominant modalities at training time 

 
Missing modality is a well-known problem in the domain where data from multiple 

sensors is processed. For example, remote sensing like all-weather mapping uses 
synthetic aperture radar (SAR) images and optical images; however, optical images may 
not be available due to poor weather conditions. Knowledge transfer and distillation 
approaches are typically used to handle missing modalities for multisensory data using 
image registration. Instead, sensor variant and invariant representations are learned to 
arrive at meta-sensor representation [9]. A prototype network is trained which, can 
generate a network for missing modality. Knowledge distillation uses a teacher-student 
network and privileged information learning [65] to have a multimodal distillation 
network for video action recognition using RGB and depth modality. A hallucination 
network is trained to mimic depth network using RGB input by training it in a teacher-
student setup.  

To reconstruct missing modalities, the researchers added cross-modality to 
autoencoder [24] with deep canonical correlation analysis (DCCA), referred to as DCC-
CAE. Audio and visual modality is used in training, but only one modality is used at test 
time. Experiments on the CMU-MOSI [66] and CMU-MOSEI [5] datasets show better 
performance than the individual modalities as well as sequence-to-sequence multimodal 
models. Audio modality is a weaker modality, and both the combinations, i.e., audio at 
test time and video at test time, are evaluated. 

The approach to factorizing multimodal data [67] into discriminative and generative 
factors reconstructs missing modalities. The discriminative factors are common across all 
the modalities and used for discriminative tasks, and generative factors are specific to 
modality and are used to generate modality data. This approach follows the 
reconstruction of missing modalities from the observed modalities and also increases the 
discriminative performance. The multimodal factorization model shows better 
performance when one modality is missing at test time than seq-2-seq models; language 
modality is seen as dominant and hard to reconstruct compared to audio and video 
modalities.  

Vision-Language (VL) tasks like caption-image retrieval are trained on image and text 
modality; however, either image or text is provided as an input during test time, i.e., one 
modality is missing at test time. Also, cross-modal retrieval tasks in which the model is 
trained using image and text, but either text is used to retrieve image or image is used to 
retrieve text are examples of one full modality missing at test time. ViCo (word embedding 
from Visual Co-occurrences) using visual co-occurrences between object and attributes 
words [68] outperform text-only GloVe [69] embedding on VL tasks like image 
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captioning, image retrieval, which have only text modality at test time. Performance is 
also evaluated on unsupervised clustering, supervised partitioning, and the zero-shot 
setting. Four types of co-occurrences are used between image and text – attribute-
attribute, object-attribute, context, object-hypernym. 

The sentiment analysis model is trained on visual, acoustic, and language modalities 
and tested only on language modality outperforms the individual language modality 
models [15]. This scenario is the case where more than one modality is missing at test 
time. Memory Fusion Network (MFN) consists of a system of LSTMs with one LSTM 
network for each modality, Delta Memory Attention Network for cross-modality 
attention, and Multi-view Gated Memory to store history of cross-modality interactions 
over time is used as an end to end model. Language modality is a dominant modality, and 
hence this can be classified as a WES sub-class as mentioned in Fig. 7. Co-learning 
implementation using MFN also proved domain adaptation by showing better 
performance on a different dataset but from the same domain and a different dataset from 
another domain. 

Many multimodal sentiment analysis models employ language as a dominant 
modality while downplaying audio and video modalities. Hence, heterogeneous modality 
transfer learning (HMTL), which transfers knowledge of text modality as a source to 
audio-video modalities as a target, is proposed [70]. In this, text (source) modality 
representation is implemented to reconstruct audio-video modality (target) 
representations using a decoder to obtain a correlation between them. Higher sentiment 
classification performance is observed on CMU-MOSI [66] and IEMOCAP [71] datasets 
with HMTL. SoundNet [72] uses synchronization between audio and video in the 
unlabeled videos from the web instead of labeled data with a teacher-student network. A 
pre-trained ImageNet [45] and PlacesCNN [73] to extract objects and scenes from video 
frames is a teacher network, and the network for audio waveforms is a student network. 
This combination can transfer knowledge from the vision domain to sound without 
explicitly labeling videos for sound and used on sound modality at test time. 

Another way to manage missing modalities at test time is to have required 
representations of modalities together. In the Multimodal Cyclic Translation Network 
model (MCTN) [23], a translation process from one modality to another creates a 
representation of both when trained with cycle consistency and prediction loss together. 
MCTN is extended hierarchically to have more than two modalities - audio, video, text. 
MCTN with only text modality at test time shows better performance than current state-
of-the-art models including, co-learning implementation with MFN [15]. Like MFN, 
language is a dominant modality in MCTN and can be classified as WES.  

Multitask model [6] is used to handle missing modalities. The model contains 
multiple classifiers, one for image, one for text, and another for prediction using the 
fusion of both modalities. This approach is mentioned as multi-task as it involves two 
monomodal and one multimodal classification for predicting the same tasks across three, 
i.e., prediction of sentiment. Since there are two separate classifiers – one for each 
modality, missing modalities at training and testing time is handled easily. This model 
structure enables the monomodal classifier to be trained with image-only or text-only 
modalities if one modality is missing at train time. They also used unpaired images to 
train the model, proving the model’s ability to handle missing modality at training time. 
The model performs better when full multimodal data is used against the different 
proportions of multimodal data. 

In another implementation with multi-task learning [17], an overlapping relationship 
between different types of VL tasks is utilized.  A large-scale model is trained on 12 
different datasets for tasks like visual question answering (VQA), caption-based image 
retrieval, grounding referring expressions, and multimodal verification. This 



discriminative VL model uses a different head for each task, like branches of a common, 
shared ‘trunk’ ViLBERT. The different tasks would overfit at different times; hence a 
dynamic stop-go mechanism is used based on validation loss. Image retrieval and image 
caption generation use only one modality at test time, thereby supporting co-learning 
objectives. The use of multiple datasets of different tasks is a step towards the 
generalization of a task. 

Alignment and translation models together can be used for co-learning [21] to 
address the challenge of missing or poor quality modality at test time. A translator takes 
weaker modality features to generate stronger modality features; in the process, the 
encoder creates an intermediate representation, capturing information between 
modalities using a translation loss. The model performs better than unimodal on the 
RECOLA [74] dataset using audio modality at test time for valence and video modality at 
test time for arousal. Paired and annotated data is used for both modalities. The 
arrangement can be classified as a SEW sub-class. 

Cross-Modal Cycle Generative Adversarial Network (CMCGAN) [75] consists of four 
encoder-decoder subnetworks, audio-to-visual, visual-to-audio, audio-to-audio, video-
to-video creating four generations paths including four discriminators. This arrangement 
helps to generate any of the absent modalities. The use of shared latent space of modalities 
and a generator for each modality to create relationships between modalities is proposed 
[11] with adversarial learning for generating missing modalities on ImageNet-EEG [76] 
dataset.   

Thus, these representative implementations highlight the multiple methods to handle 
the fully missing modality scenarios. These implementations cannot be compared 
effectively as each method has pros and cons and is created for different tasks and 
datasets.  

4.1.2 Partly missing modality 

In the above section, we discussed the scenario in which one or more modalities are 
fully missing at test time. However, consider an audio-visual application with the 
following two scenarios - a) the video camera is not working for a brief span, or there is a 
darkness at the user place, but the audio is clear. Here, we cannot capture facial 
expressions needed for detecting emotions as visual modality is missing. Vice-versa, b) 
the camera is available, but the audio is not available for a short span. Here, we cannot 
consider audio to measure sound variations. The percentage of missing data for a 
modality could vary from mildly missing to severely missing. The co-learning model 
should be designed to work in these situations of partly missing modality with optimal 
performance. 

A multi-style training method is used in the speech enhancement multimodal model 
[77]. The audio-visual, visual-only, and audio-only inputs are selected randomly for the 
defined number of epochs during training. This arrangement assists in studying partly 
missing modalities for varying duration at test time and identifying the dominant 
modality and its contribution to overall performance. Multimodal learning with severely 
missing modality (SMIL) [59] approach considers severely missing scenarios (i.e., 90% 
modality is missing).  It shows if a model can support the missing modalities in training, 
testing, or both, and the model still produces comparable results. The Bayesian meta-
learning framework is proposed by having two auxiliary networks, one for reconstruction 
and another for regularization. The experiments on Multimodal IMDB [78], MOSI, and 
Audiovision MNIST [25] outperform other methods like variational autoencoder (VAE) 
and GAN when one modality is fully available, and another modality is severely missing. 
Other combinations such as a) training with full image + n% of audio and testing with 



only image and b) training with full image + n% of audio and testing with full image + full 
audio have been experimented. 

Thus, a partly missing modality at training or testing time poses a different challenge 
than a fully missing modality in which we consider the fully missing modality as the 
supporting modality. On the other hand, in the case of partly missing modality, we need 
to design models to support each other with a bi-directional transfer of knowledge 
warranting different training mechanisms. 

4.1.3 Discussion  

The presence of modality is a key consideration for multimodal co-learning. This 
situation is common in the real world and needs to be addressed for the robustness of 
multimodal models. With the progress in VL tasks and media retrieval tasks, the scenario 
of only one modality at test time is prevalent now. However, it is not explicitly mentioned 
as co-learning, and it is considered part of the alignment, translation, and representation 
learning. We defined sub-classes for the presence of modality based on full or part 
presence of it. We also highlighted that there are instances where more than one modality 
is missing. The modalities are missed at a testing time as well as training time partly or 
fully. There is generally one dominant modality that helps us to decide supporting 
modalities. The details explained in this section are summarized as highlights in Table 1. 

It is evident that the ability to handle missing modalities depends on the amount of 
co-learning achieved among the modalities. Hence, unimodal methods extended to 
handle missing data in multimodal applications are not sufficient. Autoencoder-based 
reconstruction and multimodal data factorization utilized co-learning among modalities 
and performed better than the extension of unimodal methods for multimodal 
applications. Attention models, multimodal embedding, transfer learning, and cyclic 
translations further enhanced co-learning among the modalities. Handling missing 
modalities at training time is challenging; however, GAN and meta-learning based 
frameworks seem to be a step forward.  
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*SAR - synthetic aperture radar images 
# Note: In all the above studies, modalities are missing at the testing time; in [39], [58], [62] and [64] 
modalities are missing at training and testing both.  
 

4.2 Data parallelism  

The modality data where a direct or strong alignment among modalities is observed 
is referred to as parallel data, e.g., in a speech dataset where each text and audio sample 
is aligned at a word level. In non-parallel data, there is no direct link between modalities 
at an observation level, but there is an overlap in terms of category. For example, audio-
video-textual samples in an instructional video may not be directly linked to each word. 
Still, they may be related at the step level, video level, or  video segment level [79]. When 
the two modalities are associated through a shared modality or a dataset, it is termed as 
a hybrid data approach, e.g., in multilingual image captioning; image modality would be 
paired with one language. Since data parallelism is dependent on a pairing of data 
between modalities, it can also be termed as a strongly paired and weakly paired data 
approach. Three types of data parallelism are depicted in Fig. 8. 

4.2.1 Parallel data or strongly paired modalities   

In this, all modalities samples are aligned among themselves, e.g., images and 
captions are paired in the image-captioning multimodal application, as shown in Fig. 8a. 
In another example, audio segments, video frames, language words are paired in 
multimodal sentiment analysis. The various VL tasks such as image captioning, scene 
description, video captioning, media retrieval, etc. [17] use paired modalities data at 
training time and only one modality test time, supporting the co-learning principle.  

Translation-based co-learning methods also demand strongly paired or parallel data 
[21] to achieve sentiment classification. The speech enhancement multimodal model [77] 
uses visual modality as a supporting modality to enhance audio modality using either lip 
sync visual data or facial expression data, strongly paired with audio utterances. 



The use of parallel data or strongly paired data is an intuitive approach for one 
modality to support other modalities with the transfer of knowledge. The multiple 
applications use parallel data for training and testing for multimodal tasks. Researchers 
are working to find alternatives as creating strong pairs is costly and time-consuming.  

4.2.2 Non-parallel data or weakly paired modalities  

Preparing parallel data is not efficient, and efforts increase with an increase in the 
number of modalities. Moreover, creating strong pairs needs offline pre-processing, 
thereby restricting the model’s end-to-end learning capability. There are chances that 
data is not aligned across modalities at finer levels but may be aligned at a coarse level. 
The first path-breaking approach started with the use of self-attention models that got 
popular in language modeling to handle long sequences. Promptly, attention is extended 
to cross-modality, creating automatic alignment between modalities, e.g., Co-attention 
maps words and image regions for phrase grounding creating alignment between 
different modalities for VQA tasks [80]. Hierarchical co-attention [81] is designed for 
attention at word, phrase, and a sentence level between question and image and then 
recursively combined from word to sentence level to obtain higher performance in the 
VQA task.  

Emotion recognition on Automatic Speech Recognition (ASR) is performed [82] by 
using an attention mechanism to align the transcript of text and audio signals than 
manually pairing data. The multimodal co-learning objectives have not been 
experimented with in the above attention-based implementation and would be of interest 
to check how the models perform for missing modality. 

Non-parallel data or weakly paired data approach does not require paired data; it 
utilizes a shared concept between the modalities, as shown in Fig. 8b. The deep visual 
semantic embedding model (DeViSE) [83] uses text to get better visual representations 
by coordinating text embedding features with convolutional neural network (CNN) based 
image features. At test time, the nearest neighbor of visual representation is found by 
referring to the embedding space for a new image. The model uses some paired data, and 
the rest is non-paired data to arrive at semantic embedding. 

End-to-end training on uncurated instructional videos using Multi-Instance Learning 
with Noise Contrastive Estimation (MIL-NCE) loss obtained joint embedding of video 
and text on HowTo100M dataset [79]. There is no strong pairing between video and text; 
however, both the modalities are aligned at the instructional video level. Action 
recognition, action-step localization, action localization, and action segmentation tasks 
are evaluated on text-to-video retrievals, which has text query at test time, thereby 
fulfilling the objective of co-learning. 

The recent advent of techniques that can process long temporal sequences [51] and 
store context for a longer duration enables the use of non-parallel data for multimodal 
co-learning, providing a level of performance as that of strongly paired data.           

4.2.3 Hybrid data or bridged data modalities 

A shared modality or a dataset is used to create a pairing between two modalities in a 
hybrid data approach. Hybrid data can also be called a bridge, as often a bridge is created 
between two modalities with the help of a dataset or a modality. Fig. 8c shows a one-to-
one bridge between modalities with the image as a pivot modality. Multiple datasets are 
available with images and captions in English. In contrast, the same number of datasets 
are not available with images and their captions in Russian, Hindi, Urdu, etc. These 
scenarios are addressed by considering the image as a pivot view. One can create 
translation from one language to another using networks like Bridge Correlational Neural 



Networks (Bridge CorrNets) [10]. The network learns aligned representations across 
multiple views using a pivot view and can be generalized to multiple modalities with one 
pivot modality, as shown in Fig. 8d. 

 

 
Fig. 8. Classification of data parallelism in multimodal co-learning (enhanced 
based on [13])   
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as an alignment and supervised data to create multimodal multilingual embedding; 
contrastive learning methods help form intra-modal, inter-modal, and cross-lingual pairs 
among data points. Transformers trained using video and multilingual text has 
outperformed transformers trained on just video and English text for video search using 
multilingual text. They performed better at zero-shot learning.   

In the year 2016, the conference on machine translation (WMT16) [85] had created a 
challenge for two tasks- a) create a translation of image description to the target language 
with or without clues from an image, b) generate the description of an image in the target 
language with or without clues from source language description, i.e., in first task image 
can be a pivot, and in the latter task, source language can be a pivot to have an aligned 
data. Participants proposed multiple methods like Recurrent Neural Network (RNN) and 
Region-based Convolutional Neural Networks (R-CNN), encoder-decoder with attention, 
and pre-training of models on another dataset. Although multimodal results were not 
encouraging, this set a direction for using shared relationships among source and target. 
This approach is classified as hybrid one-to-one, as shown in Fig. 8c. 

There is an inherent synchronization between audio and video in a video clip that can 
be utilized as bridge alignment. SoundNet [72] uses this relationship by extracting objects 
and scenes from video using pre-trained image networks, which act as teacher network 
and audio data as an input to student network. In this teacher-student arrangement, 
knowledge transfer from video to audio becomes possible, thereby obtaining sound 
representations. Here audio representations of 2 million sound clips are obtained using 
unlabeled videos. 

Instructional videos and textual instructions are readily available over the web for 
cooking recipes. The sequence of instructional steps in the two recipes is different among 
the text and video recipes. But, the relations between videos and textual instructions of 
the same recipe can be aligned by mapping to pivot modality. Video transcript and textual 
instructions can be aligned to arrive at the mapping between a video and textual 
instructions, which are different recipes of the same dish [86]. This approach is used to 
create a large Microsoft Research Multimodal Aligned Recipe Corpus dataset containing 
150,000 pairwise alignments between recipes across 4,262 dishes with rich 
commonsense information. In other instances, objects in a video are used to create the 
mapping between source and target videos, thereby aligning instructions. This approach 
can be classified as one-to-many hybrid data parallelism, as shown in Fig. 8d. 

Multiple studies show that multimodal models can have better word representations, 
i.e., embeddings, than just text embeddings. One way to create a multimodal embedding 
is to have a projection of aligned multiple modalities data into a common sub-space 
governed by a similarity matrix. In the absence of aligned modality data, alignment is 
created using shared pivot information among the modalities. Associate Multichannel 
Autoencoder [87] was used to learn associations among modalities using reconstruction 
of modalities and use associations of words to create a mapping between conceptual 
information, i.e., audio, video. Three different datasets, Glove for text, updated ImageNet 
with WordNet [88] synsets, Freesound for audio, and a word association dataset, are used 
for training. The model is tested on word similarity and word relatedness and showed a 
better performance than textual embeddings and other multimodal embeddings. This 
approach can be classified as one-to-many hybrid data parallelism, as shown in Fig. 8d. 

Thus, hybrid data can take advantage of large-scale data from the web with pivots or 
bridges generated through people’s actions. For example, captions for a movie in multiple 
languages create a bridge between various languages with video as a pivot modality. 

 
 



4.2.4 Discussion   

Multimodal co-learning methods should support three types of data parallelism for 
real-life conditions. The details explained in this section are summarized in Table 2 for 
data parallelism. Data parallelism can be further sub-classified based on data conditions 
at training and testing time as there could be differences. It is observed that with the latest 
techniques, non-parallel data, as well as hybrid data, are used for multimodal co-learning 
instead of always looking for strongly paired data which is costly and time-consuming.  

With the advent of internet technologies, huge data with weak relations or shared 
relations is getting generated and can be used. Relationship among modalities data points 
needs to be established in case of weakly paired data. Attention-based methods identify 
specific information which can be held in the temporal sequence. Attention types such as 
cross-modality attention, co-attention, and hierarchical attention proved helpful to create 
relationships among the modalities. Multimodal embedding, which creates associations 
among similar data points, is also used. The known shared relationship among the 
modalities, for example, language translations, objects in videos, steps of recipes, help to 
create a pairing of data points required to achieve co-learning.  

Table 2: Summary of studies for data parallelism objective of co-learning 
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Text 

Image 
Classification 

Multimodal 
Embedding  

The deep visual 
semantic model uses 
non-parallel data using 
the semantic 
relationship between 
image labels and word 
embeddings. 

[83] 

Representa
tion, Co-
learning 

Video, 
Audio 

Sound 
Classification 

Teacher-
Student 

Synchronization 
between audio and 
video is used as a 
bridge. Image 
classification with 
ImageNet, PlacesCCN, 
and mapping with 
sound on large 
unlabeled video data. 

[72] 

Representat
ion, Co-
learning 

Video, 
Text 

Text-Video 
retrievals 

Multi-Instance 
Learning with 
contrastive 
loss 

Data is aligned at video 
and instruction-level 
and not at word or 
frame 

[79] 

Hybrid 
(Bridge) 

One - 
One 

Representat
ion, 

Image, 
Text 

Language 
Translation 

Bridge 
Correlational 

Pivot modality is 
image, source and [10] 



Alignment, 
Co-learning 

Neural 
Networks 

target modalities are 
text only.  

One - 
Many 

Representat
ion, 
Alignment 

Video, 
Text 

Alignment 
Task 

Component 
Level 
Alignment 
(object in 
videos – text in 
the recipe) 

Multiple videos and 
textual recipes of a 
dish, thereby creating 
one-many relation. 
Alignment is created 
between text-text, 
text-video, and video-
video recipe pairs.  

[86] 

Representat
ion, 
Translation, 
Alignment 

Video, 
Text  
(9 
languages
) 

Multilingual 
Video Search 

Multilingual 
Multimodal 
Transformer  

Video as pivot 
modality for nine 
languages and 
contrastive learning 
used for multimodal 
embedding. 

[84] 

Representat
ion, Co-
learning 
 

Image, 
Text 

Multilingual 
Machine 
Translation 

Encoder-
Decoder with 
attention 

Image is a pivot 
modality for 
translation, and the 
source language is a 
pivot for cross-lingual 
image description. 

[85] 

Representat
ion, Fusion, 
Co-learning 
 

Audio, 
Video, 
Text 

Multimodal 
Word 
Representation 

Multimodal 
Embedding 

Association of words is 
used to create a 
mapping with audio-
video. Different weight 
to each modality for a 
word 

[87] 

1 https://github.com/srubin/p2fa-vislab  
 

4.3 Noisy Modality 

Another challenge addressed by multimodal co-learning is robustness and 
performance in the presence of noisy conditions. Noise could be of two types- a) Label 
Noise b) Data Sample Noise. Earlier, techniques like teacher-student, co-sampling, co-
teaching, as mentioned in Section 3, were used to handle label noise and data noise. 
Recently deep learning-based techniques such as adversarial networks, generative 
networks, etc., are showing promising results. 

4.3.1 Label noise 

Label Noise can be due to human errors by annotators, lack of expert annotators, the 
complexity of annotations (e.g., medical imaging), faulty annotating conditions, poor 
quality of data samples, subjective classification, use of associated meta-data for 
classification, or even cost concerns due to which weak annotations are sought. The noisy 
label conditions are normal in real life, contrary to the assumptions during model 
development. Mislabeled data affects the application performance, needs more training 
data, and may create class imbalance. Label noise is classified into three types [89], as 
described in Table 3. Other label categorizations can be based on the level of noise. There 
are also some occasions of out-of-distribution label noise when an incorrect label 
corresponds to an unknown class that is not in a dataset.  
 

Table 3: Classification of label noise [89] 

Abbreviation Label Noise Category Description 



NCAR Noisy Completely at 
Random 

Noise is random and does not depend on instance 
features or true class labels. It is also referred to as 
symmetric noise as it is the same for all classes. 

NAR Noisy at Random 
Noise is independent of the label’s feature but 
depends on its class, e.g., certain classes may have 
more incorrect labels. 

NNAR Noisy Not at Random Noise depends on the feature and a true class label. 

 
The simplest approach is to remove samples that appear mislabeled [90]; other 

methods include looking at the impact of those labels on classification performance and 
remove them. A semi-supervised approach is used by removing only labels but keeping 
samples and then reclassifying them. However, detecting label noise is difficult; instead, 
we can have machine learning models to handle label noise. These models should look at 
classification accuracy, model complexity, and estimation of noisy labels. Deep learning 
models are error-prone as they learn along with noise conditions quickly and overfit on 
it. Label noise needs to be handled during training time so that trained models can gain 
the required performance level. 

Domain knowledge helps to address label noise by understanding inherent structure 
among different data classes. An ontology-based approach uses a hierarchical structure 
among different sound categories for classification tasks. Multi-task Graph Convolution 
Network (MT-GCN) [91] model is trained on well labeled and noisy-labeled samples and 
graph network creates an ontology between the two tasks encoding label relationship. 
Conditional GAN (cGAN) [92] and auxiliary classifier GAN (AC-GAN) [93] are the 
extensions of GAN, which selectively generates data based on class labels. Label noise-
robust GAN (rGAN) [94] adds noise transition module in which discriminator finds 
decision boundary between real and generated data on noisy labels, and generator tries 
to generate data non-distinguishable by the discriminator.  

Adding symmetric noise to labels of test samples for few-shot learning, Cross-Modal 
Alignment (CROMA) [95] based modality generalization model shows more robustness. 
The following datasets with label noise are published to investigate label noise conditions 
– a) Clothing1M [96] dataset contains 1M images for 14 classes of clothes with noisy labels 
and 74,000 clean labels across train, validation, and test split, b) WebVision [97] dataset 
contains 4.5M million images from Flickr [98] and Google with tags, captions, etc., across 
1000 classes, and 50 images per class as clean labels. 

Thus, methods to handle label noise evolve from earlier co-teaching methods to the 
latest GAN-based methods, making models ready to manage label noise at inference time 
to meet the co-learning objective. 

4.3.2 Data noise 

As discussed in Section 3, student-teacher networks increase robustness against noisy 
conditions in unimodal and multi-view learning models. Multimodal deep learning 
models are robust than unimodal models as they use supplementary information among 
the modalities. For image modality, noise can be classified into two types - a) adversarial 
perturbations b) common corruptions [99], which can be extended to other modalities. 
Common corruptions include Gaussian noise, real-life variations like snow, rain, smoke, 
motion, zoom blurs, etc. For further study, corrupted versions of standard datasets [100] 
- ImageNet-C, Tiny ImageNet-C, and CIFAR10-C are published and used. The 
physiological signals [101] from wearable devices, including electroencephalogram (EEG) 
and electrocardiography (ECG), are usually noisy, susceptible to environmental 



interferences, non-stationary, and require time series analysis. This section covers how 
multimodal models provide robustness against data noise using co-learning and how the 
techniques being used here support missing modality and other objectives of co-learning.  

Speech enhancement (SE) tasks focus on improving speech quality by reducing noise 
from the noisy speech input. Audio-visual multimodal models for speech processing 
showed higher performance over only audio modality. Convolutional Neural Network 
(CNN) based model is used [77] to process audio and visual modality data separately and 
then fused. Noisy speech and visual data are used for training as input, and clean speech 
and visual data are used at output, forming an encoder-decoder structure of a model. This 
structure created a multi-task model with reconstructed visual output as auxiliary output 
supporting missing visual modality at test time. Ambient and interference noise added 
with different noise to interference ratios. Multiple types of noise are used during training 
and testing to test the model’s robustness to unseen noise types. A multi-style training 
method is used to study the impact of the dominant modality. The audio-visual, visual-
only, and audio-only inputs are selected randomly after a defined number of epochs. 
Here, audio modality noise is addressed using visual modality as a supporting modality 
to audio modality in a co-learning arrangement.  

With adversarial examples on a convolution attention network for audio-visual event 
recognition [102], the robustness of fusion techniques early/late/hybrid is presented. The 
perturbations are added only to the audio modality of the Google Audio Set dataset. 
Adversarial noise at low frequencies tends to have higher attack potential than at higher 
frequencies, even though low frequencies features are not stable. Classes trained on more 
data have the robustness to attack than classes trained on fewer data for an imbalanced 
dataset. The late fusion proved to be robust compared to early and hybrid fusion. A trade-
off between robustness and accuracy is crucial while choosing the architecture of a neural 
network.  

Pre-trained VL models are more robust than their task-specific state-of-the-art 
models. But this robustness is still limited and demands techniques to increase the same. 
Multimodal Adversarial Noise GeneratOr (MANGO), which adds the noise in the 
embedding space of VL models, is proposed [103] to study four types of the robustness of 
VL models, namely, robustness against a) linguistic variation; b) logical reasoning; c) 
visual content manipulation; and d) answer distribution shift using nine diverse datasets. 
Rather than creating local perturbations that eventually get learned by the model, 
MANGO is a neural network-based noise generator that won’t allow a model to adapt to 
it. Additionally, some regions of input images are masked, and some tokens of text are 
dropped to increase diversity as it impacts distribution. Models trained using MANGO 
show better performance on current benchmarks. 

There is good progress in handling noisy data, particularly in the visual modality 
domain, including adversarial noise generation for images. These matured techniques are 
now studied for multimodal data, and adversarial techniques are the leading ones.  

4.3.3 Data imbalance 

One of the challenges of machine learning is the lack of balanced data across all the 
classes, and the same is applicable for multimodal models. Class imbalance leads to 
reduced model performance, over-representation of majority classes, and sometimes 
minor classes are ignored or treated as noise by classification models. Some of the earliest 
techniques to handle data imbalance are oversampling, under-sampling, the synthetic 
minority oversampling technique (SMOTE) [104], and adaptive synthetic sampling 
(ADASYN) [105].  SMOTE and ADASYN both generate synthetic samples based on a 
linear combination of two nearby samples instead of following the real distribution of a 



minority class, and noise gets added when the boundary between major and minor classes 
is unclear. 

In GAN, the generator learns the latent distribution of real data and produces real-
like fake samples. Deep Multimodal Fusion Generative Adversarial Network (DMGAN) 
[106] uses a GAN to generate samples for each modality and a discriminator for each 
modality to discriminate real from fake samples. Overall fusion with inputs from all real 
samples and generated fake samples is used to maintain joint distribution. This model is 
used to classify faculty web pages using multimodal features – text, image, and HTML 
layout. The model can extend to missing and noisy modalities. 

Although data imbalance is always viewed from a class imbalance perspective, there 
could be data imbalance among the modalities. GAN framework is used to generate visual 
features from the textual descriptions to balance the data in both modalities [107] to 
classify images using only visual data at test time.    

4.3.4 Discussion 

Initially, noise handling and creation of noisy data focused on images, i.e., visual 
domain; now, this is expanded to other modalities like text, audio, EEG, and physiological 
data. Each modality has different noisy conditions based on modality feature space, and 
there are various ways to generate the noisy data. Noise generators with adversarial 
learning generate noise based on local image distribution and global and universal 
features across the modalities or dataset. The adversarial techniques also overcome the 
challenge of deep learning models learning noise as features. Common corruptions like a 
blur, low light conditions, background noise get added when a real-life scenario dataset 
is prepared. The summary of representative studies is presented in Table 4. Similar to 
unimodal ones, noisy datasets are required for multimodal applications also. Co-learning 
among the modalities increases the robustness of multimodal applications compared to 
unimodal applications. GAN-based methods are the leading ones to handle label noise, 
data noise, and data imbalance. More studies are required to evaluate robustness to 
missing, noisy, and imbalanced modalities together.  

Table 4: Summary of studies for noisy modalities co-learning objective 

Noisy 
Modali

ty 

Sub-
class 

Multimod
al 

Taxonom
y Area 

Summary of the studies Observations and 
features 

Refer
ences 

Modalitie
s Applications Methods 

 
Label 
Noise 

Rand
om/ 
Sym
metri
c 

 

Represent
ation, 
Fusion 

Audio, 
Ontology 

Audio 
Tagging 

Multi-task 
Graph 
Convolutio
n Network  

An ontology-based 
knowledge graph 
using the hierarchical 
structure of sound 
categories. 

[91] 

Represent
ation 

Image Image 
Classification 

Label noise 
robust GAN 
(rGAN) 

cGAN, AC-GAN use 
label conditions. The 
noise transition 
module uses 
adversarial learning. 

[94] 

Represent
ation, 
Alignmen
t, Co-
learning 

Image, 
Audio 

Audio 
Classification 

Cross-
Modal 
Alignment 
– Meta-
Learning 

Robust for 0-60% 
symmetric noisy 
labels for a few shot 
learning and domain 
generalization using 
meta-learning. 

[95] 



 
Data 

Source 
Noise 

Adve
rsari
al 
noise 

Represent
ation 

Image, 
Text 

Vision-
language 
Tasks 

Adversarial 
Learning 
with 
Transforme
rs 

Noise Generator 
adds noise in 
embedding space of 
VL models with 
image masking and 
text token dropping. 

[103] 

Represent
ation, 
Fusion, 
Co-
learning 

Audio, 
Video 

Audio Visual 
Event 
recognition 

Convolutio
nal 
Attention 
network 

Adversarial noise is 
added to the audio. 
Robustness-accuracy 
trade-off evaluated 
for fusion models. 

[102] 

Com
mon 
Corr
uptio
ns 

Represent
ation, 
Fusion, 
Co-
learning 

Audio, 
Video 

Speech 
Enhancemen
t  
 

Encoder-
Decoder 
using CNN 

Ambient and 
interference noise as 
input and clean 
speech visual data as 
output in encoder-
decoder. 

[77] 

Data 
Imbala

nce 

NA Represent
ation, 
Fusion 

Text, 
Image, 
HTML 
layout 

Web page 
classification 

GAN GAN generates 
samples for 

imbalanced data, and 
fusion preserves the 

joint distribution. 

[106] 

NA Represent
ation, Co-
learning 

Text, 
Image 

Image 
classification 

GAN GAN generates 
samples for 
imbalanced data of 
visual modality 

[107] 

 

4.4 Modality annotations  

Preparing the required amount of labeled data is challenging and costly. 
Multimodality adds further difficulty as each modality may need separate annotation and 
an expert. Hence, unsupervised, semi-supervised, and weakly supervised learning 
techniques evolved. These are well established for individual modality data and are being 
explored for multimodal data.  

4.4.1 Supervised learning 

In supervised models, labels are available for all the samples in training data for all 
modalities. The initial multimodal implementations started with supervised learning 
using labeled data. Audio segments, video frames, and words are paired and labeled for 
multimodal sentiment analysis. Memory Fusion network (MFN) is trained using labeled 
data of three paired modalities while tested only on language [15].  

The various VL tasks such as image captioning, scene description, video captioning, 
media retrieval, etc. [17] use paired and fully labeled data in training and only one 
modality at test time, supporting the co-learning principle. Labels are created in the form 
of captions, descriptions, or class names of images. Translation-based approaches for co-
learning need labeled and strongly paired data [21] to achieve sentiment classification. 
The speech enhancement multimodal model [77] uses visual modality as a supporting 
modality to enhance audio modality which uses fully labeled utterance data for arousal 
and valence. Thus, supervised learning-based multimodal models are able to achieve co-
learning objectives, as shown through studies in this section and previous sections. 

4.4.2 Semi-supervised learning 



In semi-supervised models, a small volume of data is annotated along with large un-
annotated data. However, for multimodal models, two scenarios arise- a) some amount 
of annotated data is available in all the modalities, b) One modality data is annotated, and 
another modality data is un-annotated and vice versa. There can be multiple 
combinations based on the number of modalities being used. The earliest approach for 
semi-supervised learning is proxy label methods, which generate proxy labels on 
unlabeled data using a prediction function trained on the small labeled dataset. These 
methods are divided into two main classes self-training and multi-view learning, as 
discussed in Section 3.  

An approach similar to co-training is adopted to classify images using images and 
their tags in a semi-supervised manner with a small set of labeled and rest unlabeled 
image-tag pairs [48]. Images and tags are treated as two modalities, and tags are used as 
a supporting modality to classify the images using a multiple kernel learning classifier. 
Deep Visual Semantic Embedding (DeViSE) [83] consists of labeled images and uses 
semantic information from large unannotated text data. It creates a semantic relationship 
between labels and textual data. Here part of the data is annotated, and another part is 
unannotated. When an image is presented for predicting labels at test time, its visual 
representation is used to look for the nearest label in the embedding space. The model 
also supports ZSL for the labels never observed visually.   

4.4.3 Weakly-supervised learning 

In weakly supervised models, annotations at a higher level are used to perform a task 
on the low level of data without explicitly creating labels at the lower level. Phrase 
grounding establishes a mapping between image parts and language phrases. Multimodal 
Alignment Framework (MAF) [22] uses image-caption mapping to arrive at the mapping 
between objects in the image and phrases using contrastive learning. A pre-trained object 
detector is used to extract objects from an image and predict labels, attributes, and 
features to form visual features. Textual features are obtained from captions, and an 
attention mechanism is used to have visually aware language representations. Contrastive 
loss maximizes the similarity scores between paired image-caption samples and 
minimizes the score between other negative samples. This study shows that the weakly 
supervised techniques for multimodal tasks can be extended to co-learning objectives. 
Likewise, to achieve contrastive learning, negative samples are created by substituting 
words in captions [108] and then maximize mapping between regions and corresponding 
captions compared to non-related areas and captions for a weakly supervised phrase 
grounding problem.  

High-level relationships are used as weak supervision in multimodal co-training [47] 
to classify weakly labeled videos downloaded from the web using five modalities - RGB, 
motion, audio, concatenation of RGB-motion-audio, and metadata. Video metadata is 
used as weak supervision between video content and video class. 

The multimodal content on the web is increasing with social media and content 
sharing platforms, and there is inherent weak supervision between multimodal content. 
Hence, co-learning with weak supervision is an important area for the future. 

4.4.4 Un-supervised learning 

In un-supervised models, training data is not labeled, and there are multiple 
approaches to use un-annotated multimodal data for various tasks. MAF for phrase 
localization is one way to achieve an un-supervised multimodal model [22]. In MAF, a 
pre-trained object detector is used to extract objects from images, and their labels are 
mapped with textual captions using contrastive objectives. Obtaining real-world labeled 



high stake deception detection data is difficult and costly. Hence, unsupervised audio-
visual subspace transfer learning is proposed [109] to detect high-stakes deception using 
easily available lab-controlled low-stake deception data. This method is categorized as 
Unsupervised Domain Adaptation (UDA), which uses labeled source domain knowledge 
to perform tasks in the unlabeled related target domain. This approach does not consider 
missing modality conditions of co-learning. 

Instructional videos and text instructions of cooking recipes are readily available on 
the web. The sequence of instructional steps in the two recipes is different among the text 
and video recipes but are the same for a cuisine dish. An unsupervised alignment 
algorithm [86] is used to create alignments between two text recipes, two video recipes, 
text and video recipes. One method is to create an alignment between text and video by 
mapping between words in sentences to objects in a video. Another approach uses text 
instructions and transcripts of a video to create mapping based on word similarity as 
words offer better semantic information than videos. The latter approach is used to create 
alignment between text-text, video-video, and text-video. With this approach, 
performance better than the current benchmark is obtained for the human-annotated 
YouCook2 [110] dataset. Temporal relationship in unlabeled videos is used by creating 
text-video and audio-video pairs to train multimodal transformers using MIL-NCE [111] 
for image classification, video action recognition, audio event classification, and zero-shot 
video retrieval. The transformers share weights among the text, audio, video modalities 
creating a general-purpose model for all modalities with separate tokenization and linear 
projection.    

Thus, creating an alignment using unsupervised techniques can facilitate co-learning. 
Alignment among the modalities is crucial for the transfer of knowledge. The methods 
like contrastive learning are showing promising results for multimodal tasks. 

4.4.5 Discussion 

The supervised multimodal models using labeled data support co-learning objectives 
of missing or noisy modality. However, annotation is costly. It is a time-consuming 
manual process that is error-prone. It demands expertise, and the complexity increases 
for multimodal data. Along with annotation, alignment among modalities and noise also 
needs to be ensured. Hence, it is essential to have techniques that can achieve co-learning 
without labeling. Creating semantic embedding spaces with available labeled data and 
using it for multimodal tasks with only one modality at test time is possible using semi-
supervised learning. The pre-trained models like object detectors and sentiment 
classifiers can create labels for one modality and the inherent relationship among 
modalities is used for creating multimodal labelled data. This approach is promising for 
co-learning with semi-supervised and un-supervised learning.  

The summary of key co-learning studies which use semi-supervised, unsupervised, 
and weakly supervised techniques is presented in Table 5.   
 

Table 5: Summary of studies for modality annotation objective of co-learning   
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Learning, 
Sub-space 
Alignmen
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high stake deception 
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tion, 
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Audio, 
Video, 
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Video 
retrieval 
using a text 
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MIL-NCE 

Temporal 
relationship within 
an unlabeled video is 
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[111] 

Representa
tion, 
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Video, 
Text 
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Alignmen
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objects – 
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overlap among 
different modality 
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ng 
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4.5 Multimodal domain adaptation  

Having labeled data for the target task sometimes is challenging; instead, we get 
labeled data from a different dataset but related to the domain of a target task. Domain 
adaptation (DA) [58] creates models for a target domain by training on labeled samples 
from the source domain and leveraging unlabeled samples from the target domain as 



supplementary information during training. There may be few labeled target samples at 
training time for few-shot learning methods. In domain generalization (DG) [112], 
labeled data is available from multiple source domains, but no target domain samples are 
available. Both DA and DG have common label space in source and target domains.  

Domain adaptation is further classified as homogenous and heterogeneous DA [113]. 
The source and target domains have similar or the same dimensionality feature spaces in 
homogenous DA and different feature spaces in heterogeneous DA. Domain 
generalization can also be classified as homogenous and heterogeneous DG [114]. In 
homogenous DG, label data is not available from the target domain, but the target label 
space is the same as the source label space. Whereas in heterogeneous DG, label spaces 
are different or disjoint at the source and target [115]. Domain adaptation is classified as 
Supervised, Unsupervised, and Semi-supervised based on the availability of labels for the 
source domain.  

Unimodal DA focuses on domain shift between source and target domain, e.g., source 
dataset is MNIST, and the target dataset is SVHN or source is one type of product reviews, 
and target is another type of product reviews. In the case of homogenous multimodal DA, 
dimension of modality gets added, e.g., if the source domain audio and video modality 
dataset recorded in the controlled conditions, and the target dataset is collected in the 
wild conditions; hence there is a difference of domain for background, scenes, sound 
conditions, etc. For multimodal DA, each modality has different structures, content and 
may have different domain shifts. In heterogeneous multimodal DA, source and target 
domains have distinct representations with different modalities, such as image and text. 

4.5.1 Homogenous multimodal domain adaptation 

Homogenous multimodal DA has multiple modalities at source and target domain 
instead of one modality at both. For example, image and text in Flickr dataset as a source 
and image and text in Google News as target domain having different noisy conditions, 
i.e., domain shift.  

Intra-modality, inter-modality, and inter-domain properties are used for multimodal 
DA with video and audio modality for emotion recognition and image and text for cross-
modal retrieval tasks [116]. The domain invariant features of each modality are learned 
using an adversarial network on a modality from the source domain and the same 
modality from the target domain. The objective is to train a model such that fused output 
features cannot discriminate between the source and target, removing multimodal 
domain shift.  

In the application of social media event rumor detection [117], social post is 
disentangled into content-specific information and rumor style specific information. This 
approach helps to train a classifier on rumor-specific information rather than content 
information to meet the objective of rumor detection irrespective of its content, as rumor 
can occur for different types of events. The adversarial domain adaptation method is used 
to tackle the lack of labeled data in the new event. Here, the missing modality condition 
of co-learning is not achieved, but the source domain dataset helping a task on the target 
domain is achieved. For emotion recognition [118], cross-corpora, cross-language, cross-
speaker, cross-modality, and emotion elicitation are considered domain shifts. 
Adversarial training is employed to capture emotion-related information and remove 
domain-specific information to achieve domain adaptation.   

4.5.2 Heterogeneous multimodal domain adaptation 



In unimodal heterogeneous DA, there are different feature spaces in the source and 
target domain. This definition can be extended to multimodal when the source and target 
domains have different modalities.  

Transfer learning utilizes knowledge from the source domain to predict tasks on an 
unknown target domain. In multimodal transfer learning, it is assumed that both source 
and target modalities are available at training time. However, that’s not always true, and 
there may be a missing modality in the target domain. This scenario is classified as 
heterogeneous multimodal DA. The challenge is addressed by having an auxiliary 
database with complete modalities [119]. Assuming that if one modality can transfer 
knowledge to another in an auxiliary database and there is a knowledge transfer between 
databases, then the available modality in the main database can transfer knowledge to the 
missing modality. Here, knowledge transfer is in two directions - cross-modality and 
cross-database using a latent low-rank constraint on subspace. It is implemented with 
various modalities of an image that can be extended to modalities like image-text. 

Heterogeneous DA is related to multi-view learning. Multiple views provide better 
representation and can work when both views are not available. This concept is used to 
solve heterogeneous DA problems using multi-view auxiliary data, which relates two 
views that otherwise are different in source and target. This auxiliary data could be co-
occurrence data or embedding spaces formed by projecting source and target domain data 
samples. The projection of each domain in domain invariant latent space is called 
symmetric transformation. A transformation from source domain space to target domain 
space is called asymmetric transformation-based heterogeneous DA [113]. Some of the 
latest deep DA methods are based on Siamese architecture, having two streams for source 
and target domains with classification loss and discrepancy or adversarial loss. 
Discrepancy loss works to reduce the domain shift, whereas adversarial loss forms a 
common space. Domain translator function learned from multimodal source data can 
predict class even if one modality is absent [120] using weakly shared deep transfer 
networks for domain adaptation. 

For multimodal sentiment analysis, text modality is used as a source domain and 
audio-video modalities as a target domain [70], forming a heterogeneous DA set-up. Text 
(source) modality representation is used to reconstruct audio-video modality (target) 
representations using a decoder to correlate. GAN generates the samples for the target 
domain for audio-visual cross-modal mapping in [121] dacssGAN (Domain Adaptation 
Conditional Semi-Supervised Generative Adversarial Network). The baseline approach 
would be to provide noise and samples of a dataset, having target domain distribution as 
an input to the generator to generate samples of the target domain discriminated by the 
discriminator for genuineness.  

Thus, heterogeneous multimodal DA can be achieved with auxiliary datasets, 
embedding spaces using co-occurrences, transfer learning approach or GANs.   

4.5.3 Homogenous multimodal domain generalization 

Homogenous multimodal DG is defined as labeled multimodal data is available from 
multiple source domains, but no target domain multimodal samples are available. The 
number of modalities can be the same or different at source and target, but the target 
label space is the same as the source label space. Deep transfer learning with score fusion 
[122] predicts emotions on wild emotion data when trained on acted emotion data having 
audio and video modality. For abnormal gait recognition [123], motion features, RGB-D, 
and electromyography (EMG) data are employed with an autoencoder. Different person’s 
data is used during training and testing to achieve cross-subject cross-modal domain 
generalization. 



4.5.4 Heterogeneous multimodal domain generalization 

Heterogeneous multimodal DG is employed when labeled multimodal data is 
available from multiple source domains, but no target domain samples are available. The 
number of modalities can be the same or different at source and target, but label spaces 
are different at the source and target.  

Cross-modal generalization is defined when the model has one modality at source and 
another modality at target and can perform a new task in a target domain [95]. For 
example, the source is the image, and the target is an audio, and the objective is to align 
shared knowledge from image to audio. The generalization won’t need samples or labels 
from the target domain except for few samples for few-shot learning. Here cross-modal 
meta-alignment is proposed to create a space where representations of similar concepts 
in different modalities are closer while ensuring generalization to new tasks using a 
classifier. CROMA (Cross-modal Meta-Alignment) algorithm is proposed in which 
alignment is done by using Noise Contrastive Estimation (NCE) instead of using a 
translation model with Maximum Likelihood Error (MLE) while mapping. Meta-
alignment trains encoder on the source and target modalities across multiple alignment 
tasks. Model is evaluated for text-image, image-audio, text-speech and performed better 
than meta-learning and domain adaptation models.  

In cross-modal data programming [124], labeling functions are used on an auxiliary 
dataset of clinical reports and medical imaging instead of manually labeling any part of 
data. In this weak-supervised approach, medical images are used as target modality at 
test time. Multi-domain and Multi-modality Event Dataset (MMED) [125] is released to 
enable domain generalization for cross-modal retrieval. Text data from different news 
portals and associated images from social media are utilized in a weakly supervised 
manner. Cross-domain cross-modality transfer learning [126] exploiting dictionary base 
alignment is proposed for cross-modal retrieval.       

4.5.5 Discussion 

Domain adaptation has gained a lot of focus recently as it takes deep learning more 
towards real-life conditions where we have different conditions at inference time than at 
training time. There is significant progress for unimodal applications, and efforts are on 
for multimodal DA. The definitions and classifications of multimodal DA are still 
evolving. We reviewed available unimodal literature for definition and classification and 
searched research papers for multimodal DA applications. The objective is to highlight 
how co-learning among the modalities can achieve DA.  

Domain adaptation is a step to achieve co-learning objectives as it supports 
modalities having different distributions in source and target domains and also missing 
modalities at the target domain for heterogenous DA. Intra-modality and inter-modality 
attributes, along with inter-domain attributes, are used to arrive at domain-invariant 
features to address domain shift. Also, auxiliary databases enable knowledge transfer 
from a modality of one database to a modality of another database to achieve the missing 
modality objective of co-learning. Domain adaptation, along with co-learning among the 
modalities, is a promising technique to address real-life conditions. The multimodal 
domain adaptation studies presented are summarized in Table 6. 

Table 6: Summary of studies for domain adaptation objective of co-learning 

Summary of the studies 



Adap
tatio

n 
Type 

Sub-
class 

Multimodal 
Taxonomy 

Area 
Modalities Application

s Methods Observations and 
features 

Refer
ences 

Multi
mod

al 
Dom
ain 

Adap
tatio

n 
(DA) 

Homo
genous 
Multi
modal 

DA 

Representa
tion, 
Fusion 

a) Audio, 
Video 
b) Image-
Text 

Emotion 
Recogniti
on, Cross-
Media 
Retrieval 

Covariant 
attention 
with 
adversari
al 
learning  

Constraints at intra and 
inter-modality and at 
prediction to learn 
discriminative and 
domain adaptive 
features. 

[116] 

Representa
tion 

Image, 
Text 

Social 
Media 
Rumor 
Detection 

Multimod
al 
disentang
lement 

Social media post is 
disentangled into 
content and rumor 
specific information. 

[117] 

Representa
tion 

Audio, 
Video 

Emotion 
Recogniti
on 

Adversari
al 
learning 

Emotion elicitation is 
considered as domain 
shift 

[118] 

Hetero
geneo

us 
Multi
modal 

DA 

Representa
tion, Co-
learning 

Image Face 
Recogniti
on, Image 
Classificat
ion 

Transfer 
learning 
(Heteroge
neous)  

An auxiliary database 
with complete 
modalities used for 
cross-modality and 
cross-database 
knowledge transfer.  

[119] 

Representa
tion, Co-
learning 

Audio, 
Video 

Emotion 
Predictio
n 

GAN 
(dacssGA
N)  
 

Video used to generate 
audio target using cGAN 
and class labels. 
Conformal prediction is 
used for semi-
supervised learning.  

[121] 

Dom
ain 
Gene
raliza
tion 
(DG) 

Homo
genous 
DG 

Representa
tion, 
Fusion 

Audio, 
Video 

Emotion 
Predictio
n 

Transfer 
learning 

Trained on acted 
emotion dataset and 
tested on wild emotion 
dataset 

[122] 

Representa
tion 

Motion, 
EMG, 
RGBD 

Gait 
Predictio
n 

Multimod
al 
autoenco
der 

Cross-subject cross-
modal knowledge 
transfer for domain 
generalization. 

[123] 

Hetero
geneo
us DG 

Representa
tion, Co-
learning 

Image, 
Audio 

Audio 
Classificat
ion 

Cross-
Modal 
Alignmen
t – Meta-
Learning 

Meta-alignment trains 
encoder on the source 
and target modalities 
across multiple 
alignment tasks. 

[95] 

Representa
tion, Co-
learning 

Text, 
Image 

Medical 
Image 
classificat
ion 

Cross-
modal 
retrieval  

Cross-modal data 
programming using an 
auxiliary dataset in a 
weak supervision.  

[124] 

 Representa
tion, Co-
learning 

Text, 
Image 

Media 
Event 
Classificat
ion 

Cross-
modal 
retrieval 

Data from different 
sources combined with 
weak supervision [125] 

 Representa
tion, 
Alignment, 
Co-learning 

Text, 
Image 

Cross-
modal 
retrieval 

Transfer 
Learning  

Dictionary-based 
alignment with cross-
domain cross-modality 
transfer learning  

[126] 



 

4.6 Interpretability and fairness 

The objectives like interpretability, explainability, fairness, and bias are emerging 
research areas and are very relevant in multimodal deep learning applications. We 
specifically included and discussed them in the co-learning taxonomy. The researchers 
should ensure the interpretability and fairness objectives along with co-learning 
objectives. The goal is to understand if multimodality at training time improves 
interpretability and fairness for unimodality at test time.   

4.6.1 Interpretability and explainability 

Machine learning marks widespread adoption across many real-world applications, 
including high risk and critical applications like healthcare, finance, regulatory 
compliance, and human-machine interaction [127]. With the recent advancement in deep 
learning, accuracies have increased. Still, their results are less interpretable [128] as 
models are inherently complex and have deep hidden layers to establish a non-linear 
relationship. Hence there is a need for users to understand results provided by machine 
learning models. Models are interpretable when it is evident why the decisions are made 
and explainable when it is evident how the system made the decisions [129].  

Multiple survey studies presented interpretable machine learning classification, 
challenges, and methods [130,131]; however, many of these studies are focused on 
unimodal model interpretation. Multiple modalities provide complementary 
information, which is leveraged for better explanations. It is showed that multimodal 
models designed for explainability are robust towards adversarial attacks and less biased. 
Multimodal explainability, challenges, methods to achieve explainability, datasets, and 
tools are covered in [132]. In this paper, we highlight the relation between multimodal co-
learning and interpretability and explainability, i.e., does multimodal co-learning help 
achieve interpretability and explainability, or is there an impact on interpretability and 
explainability by adding a co-learning mechanism. Also, can recent methods like 
disentanglement, multimodal factorization, contrastive learning, and counterfactuality, 
which are used for co-learning implementation, help achieve interpretability and 
explainability.  

Multimodal models are more interpretable and explainable [132] than unimodal 
ones. Multimodal co-learning aids in interpreting multimodal model results; it shows 
how each modality contributes to overall prediction or which are shared factors and 
modality-specific factors among the modalities. Multimodal Factorization Model (MFM) 
[67] factorizes multimodal data into a) discriminative factors, which are common across 
all modalities, and b) generative factors, which are specific to modality. Information-
based interpretation over the entire dataset and gradient-based interpretation over a 
video segment is performed to study the contribution of each modality, and results are 
the same as human observations attributing to either presence of specific words or facial 
expressions. 

The disentanglement based on fashion attributes such as color, style, etc., creates 
representations that can correspond to specific features rather than creating a common 
representation in space for image and text [133]. This implementation based on the 
autoencoder approach helps deal with missing and noisy modalities for cross-modal 
image retrieval using natural language queries with higher interpretability.  

Cross-Modal Cycle Generative Adversarial Network (CMCGAN) [75] helps to 
generate any of the absent modality, label noise-robust GAN (rGAN) [94] using 
Conditional GAN (cGAN) and auxiliary classifier GAN (AC-GAN) can handle noisy labels, 



and dacssGAN (Domain Adaptation Conditional Semi-Supervised Generative Adversarial 
Network) is used to generate audio modality using visual modality [121] under 
multimodal domain adaptation set up. By maximizing mutual information between noise 
variables and observation, GAN produces interpretable representation with InfoGAN 
[134]. It indicates that GAN-based architecture can help both co-learning as well as 
interpretability.  

Counterfactual explanations are based on conditions of observations; for example, 
certain observations are present or missing leading to a specific output. Multimodal co-
learning implementation inherently supports working with missing modalities partly or 
fully and various noisy conditions. Making text input absent in VQA models, bias towards 
language modality is studied using a counterfactual approach [135]. Similarly, visual 
biases are studied by making visual input absent or distorted or replaced by wrong ones 
using a counterfactual approach [136]. It highlights that multimodal co-learning, which 
does model work when the modality is missing, removes bias towards a modality and 
makes models more interpretable. In the phrase grounding, the association between an 
image region and a phrase from a caption is created for downstream tasks like VQA, image 
captioning, and image-text retrieval. This approach allows the model to use weak 
supervision at the image and caption level and increases the interpretability of the model’s 
output [137]. Adding contrastive learning in phrase grounding setup [108] to maximize 
mapping between regions and corresponding captions compared to non-related regions 
and captions improves the accuracy and interpretability.  

Thus, multimodal co-learning enables the interpretability and explainability of 
multimodal models via multimodal factorization, disentanglement, variants of GANs, 
counterfactual explanations, and contrastive learning methods.  

4.6.2 Fairness and bias  

Training data, algorithms, choice of output classes all contribute to bias and impact 
the fairness of machine learning models. Even the choice of output class should be well 
thought else model tries to show some output forcefully, which could be biased. Other 
sources of bias are annotators’ personal biases and affiliations, imbalanced data, and 
feature selections. The taxonomy of bias in machine learning has been classified into 22 
different categories the biases [138]. In multimodal data, these sources of bias can impact 
multiple modalities, impacting model predictions. Each modality has unique 
representations and contributions in the decision-making process, thereby making 
models biased towards a particular modality while ignoring the contribution of other 
modalities. 

In VQA tasks, language often becomes the dominant modality and neglects clues from 
the visual modality. It impacts the performance of the model when unseen data is 
provided during inference [139]. Also, the model creates a bias towards a dataset, thereby 
failing to generalize cross-dataset for a VQA task [140]. For detecting bias in the 
recruitment process, Fair Automatic Recruitment (FairCVtest) [141] testbed is designed 
using 24,000 synthetic resumes and made available to the public for further research. 
The testbed showed that bias towards gender and ethnicity in the recruitment process 
exists even when certain information is masked; this could be very harmful to the 
recruitment process. 

Recently, Contrastive Language-Image Pre-training (CLIP) [142], in spite of using a 
pre-training image-captioning on 400 million image-text pairs of data, has a social bias 
in the model. They designed probes to study bias in the model by focusing on geography, 
social conditions, race, color, age, etc. Model is biased in many conditions, e.g., more men 
images are classified as crime-related than women, terrorism got biased towards Asians 



and immigration towards Latin America. CLIP is evaluated on FairFace [143] dataset. 
MANGO [103], which adds the noise in the embedding space of VL models, helps 
reducing bias at the embedding layer. Additionally, some regions of the input images are 
masked, and some tokens of text are dropped which, further helps to remove the bias 
towards data samples. 

4.6.3 Discussion 

Multimodal co-learning objective to handle missing and noisy helps to remove bias 
caused due to various reasons. The missing modality helps to interpret multimodal model 
results as it shows how each modality contributes to overall prediction. Multimodal 
factorization and attributes disentanglement support missing modality along with 
interpretability of results. GAN frameworks that generate missing and noisy modalities 
also increase interpretability using its discriminative property. Thus, experiments to 
ascertain co-learning objectives can also help to understand interpretability and bias 
multimodal systems. The summary of studies for interpretability and fairness is 
presented in Table 7. 

Table 7: Summary of studies for interpretability and fairness objective 

Interp
retabili
ty and 
Explai
nabilit

y 

Sub-
class 

Multimod
al 

Challenge 
area 

Summary of the studies 
 

Observations and 
features 

Refere
nces Modalities Application

s Methods 

Interp
retabili
ty and 
Explai
nabilit

y 

NA 

Represen
tation, 
Fusion, 
Co-
learning 

Audio, 
Video, 
Text 

Sentiment 
Analysis 

Multimodal 
Factorizatio
n 

Interpretation using 
information and 
gradient-based 
methods to know 
contributions of 
individual factors 
towards prediction. 

[67] 

Represen
tation, 
Fusion, 
Co-
learning 

Image, 
Text 

Cross 
Media 
Retrieval 

Multimoda
l 
Disentangl
ement 

Disentanglement of 
fashion attributes 
using encoder-decoder 
and increasing 
interpretability. 

[133] 

Represen
tation 

Image Image 
Classificati
on 

Disentangl
ed 
Representa
tion 

Provides interpretable 
representations - style 
& digit shape for 
MNIST, and eyeglasses 
and emotions on 
CelebA dataset using 
GAN. 

[134] 

Represen
tation 

Image, 
Text 

Visual 
Question 
Answering 

Counterfac
tual 
generation 

Counterfactual images 
change the image 
semantics and the 
output of VQA shows 
internal mechanism 
models. 

[136] 

Represen
tation, 
Fusion 

Image, 
Text 

Image 
Phrase 
Grounding 

CNN, 
Attention, 
Counterfact
uals 

Decomposes text into 
the entity, semantic 
attribute, color, etc. 
 

[137] 

Fairne
ss and 
Bias 

NA 
Represent
ation, 
Fusion 

Image, 
Text 

Recruitmen
t 

CNN with 
Fusion on 
Structured 
and 

Fair-Cvtest bed is 
open-sourced. Users 
can select features to 
check gender and 

[141] 



Unstructur
ed data  

ethnicity bias varying 
bias levels in the 
model. 

NA 

Represent
ation, 
Fusion, 
Co-
learning 

Image, 
Text 

Object 
Classificati
on, Action 
recognition
, OCR 

Multimodal 
Embedding 
with 
Contrastive 
Learning 

CLIP pre-trained on 
400 million image-text 
pairs of data still got a 
social bias. The probes 
were designed to 
detect bias. FairFace 
dataset is used as a 
benchmark. 

[142] 

*NA – Not Applicable 

4.7 Summary of multimodal co-learning taxonomy  

Throughout this section, we discussed key research studies which implemented one 
or more objectives of multimodal co-learning. We also included some studies which don’t 
have any missing modality at test time but achieved other co-learning objectives. We 
created the consolidated view of studies discussed for each co-learning objective in Table 
8 and included corresponding multimodal challenge areas (as discussed in Section 1.1). 
This consolidated view helps to understand which co-learning objectives are widely 
addressed and which need further focus in the future.  

 



 
 

Table 8: Summary of key studies and co-learning objectives achieved by them 
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1 Image, 
Text 

Image 
                      

[48] 

2 Audio, 
Video, 
Text 

Audio, 
Video 

                      

[47] 

3 Audio, 
Video 

Audio 
                      

[72] 

4 SAR, 
Optical 
Image 

Optical 
Image 

                      

[9] 

5 RGB, 
Depth RGB 

 

   
 

 
 

  
 

  
 

 
 

       [65] 

6 Audio, 
Video 

Audio or 
Video 

                      [24] 

7 
Audio, 
Video, 
Text 

Audio-
Video, 
Audio-
Text, 

Video-
Text 

 

                     [67] 

8 Image, 
Text 

Image or 
Text or 
Image-

Text 
        

  
   

  
   

    
   

  
  

    
   

              
[68] 



9 Audio, 
Video 

Audio or 
Video 

                                                   [21] 

10 Image, 
Text 

Image or 
Text or 
Image-

Text 

     

      
    

  
    

    
   

        
     

      
     

  
  

  
[17] 

11 Image, 
Text 

Image or 
Text 

                                                             [6] 

12 Audio, 
Video, 
Text 

Text 
     

         
     

                                           
[15] 

13 Audio, 
Video, 
Text 

Text                                                               [23] 

14 Audio, 
Video 

Audio                                                            [77] 

15 Image-
Text 

Audio-
Image 

Text or 
Image        

  
    

  
            

  
  

    
  

              
[59] 

16 Image, 
Text 

Image                                                         [83] 

17 Video, 
Text 

Text                                                               [79] 

18 Image, 
Text 

Text                                                               [10] 

19 Video, 
Text 

Video, 
Text 

          

  

                                    
[86] 

20 Video, 
Text  

Text                                                   [84] 

21 Image, 
Text 

Image or 
Text 

                                                  [85] 

22 Audio, 
Ontology 

Audio                                                    [91] 

23 Image Image                                                 [94] 
24 Image Audio                                                       [95] 
25 Image, 

Text 
Image, 

Text 
           

  
                                       [103] 



26 Audio, 
Video 

Audio                                         
 

                [102] 

27 Text, 
Image, 
HTML 
layout 

Text, 
Image, 
HTML 
layout 

          
  

  
  

    
   

  
  

    
   

              
[106] 

28 Text, 
Image 

Text, 
Image 

                                                         [22] 

29 Text, 
Image 

Text                               
       

  
    

               
[108] 

30 Audio, 
Video 

Audio, 
Video 

                 
  

                                            [109] 

31 a) Audio, 
Video 
b) Image, 
Text 

a) Audio, 
Video 
b) Image, 
Text 

              
  

   
    

   
  

  
    

   
      

   
  

  
  

[116] 

32 Image, 
Text 

Image, 
Text 

           
                                      [117] 

33 Image Image -
different 
domain 

        
  

  

  
   

    
   

  
  

    
   

      
   

  
  

  
[119] 

34 Video Audio                                                    [121] 
35 Image, 

Text 
Image or 

Text 
   

    
      

  
   

    
   

    
   

  
   

          
   

  [133] 

36 Image Image    
                              

   
      

   
  [134] 

37 Image, 
Text 

Image, 
Text 

   
                

   
          

   
        

   
  

[136] 

38 Image, 
Text 

Image, 
Text                     

                             [137] 

39 Image, 
Text 

Image, 
Text 

                                                 [141] 

40 Image, 
Text 

Image                                                   [142] 

41 Audio, 
Video, 
Text 

Audio, 
Video  

 
 

  
  

 
  

   
 

    
 

 
 

  
 

  
 [70] 

42 Audio, 
Image 

Audio or 
Image 

          
   

 
 
 

  
 

       [75] 



43 Audio, 
Video, 
Text 

Text     
  

 
 

   
 

 
 

   
 

 
 

  
 

  
 [87] 

44 EEG, 
Image 

EEG     
 

    
 

              [11] 

45 Audio, 
Video, 
Text 

Text 
 

 
 

  
  

 
 

   
 

  
 

   
 

    
 [111] 

46 Image, 
Text 

Image   
 

        
         

 
  

 
  [124] 

47 Motion, 
RGB-D, 

EMG 

Motion, 
RGB-D, 

EMG 
 

 
 

  
 

 
 

   
  

  
 

  
 

 
 

   
 

 
 [123] 

48 Audio, 
Video 

Audio, 
Video 

    
       

          
 

   [118] 

49 Image, 
Text 

Image, 
Text 

  
 

          
 

      
 

  
 

  [126] 

50 Audio, 
Video 

Audio, 
Video 

    
       

    
 

  
 

     
 

  [122] 
 

2 Domain Generalization 
3 Interpretability and Explainability 



5. Computational approaches for multimodal co-learning 

Implementation of co-learning objectives and sub-objectives can be achieved using 
multiple multimodal deep learning techniques, as discussed in Section 4. Until a few 
decades ago, the multimodal problem was treated as a multi-view learning problem with 
co-teaching, teacher-student network, co-training, etc., methods. Recently the 
implementation has focused on using different types of fusion techniques. However, all 
five areas, namely, representation, alignment, translation, fusion, and co-learning, are 
being used to address tasks. Specifically, co-learning, which supports real-life conditions, 
is an emerging area of high importance in multimodal deep learning. 

This section elaborates on some of these latest computational approaches and how 
they support the co-learning objectives.  

5.1 Fusion 

The first step to designing multimodal systems is to take two or more modalities and 
fuse them to solve downstream tasks. The fusion techniques are classified as early 
(feature), late (decision), or intermediate (hybrid) fusion [13], depending on the level in 
the network at which representations are fused. Fusion is still specific to the data, domain, 
and task at hand, and there are no generalized fusion rules. Early fusion cannot consider 
intra-modality specifics, and late fusion cannot capture inter-modality specifics; hence, 
hybrid fusion is more commonly used. Hybrid fusion provides the ability to fuse data at 
the required level and obtains better joint representation in the combined feature space. 
The modalities are fused using concatenation, multiplication, or weighted sum.  

Several researchers have reported various fusion techniques to facilitate better 
representation. Tensor fusion [27] captures intra and inter-modality features better than 
early, late, and hybrid fusion techniques, forming a large representation space. Low-rank 
multimodal fusion [26] reduced the representation dimensions and computation 
complexity. The approach to combine two modalities (e.g., text, video) first and then to 
add the third modality (e.g., audio) to learn bimodal and trimodal correlations is termed 
as a hierarchical fusion [144]. Multimodal fusion architecture search space [145] is used 
to decide which layers to use for fusion from each modality and which non-linear function 
to be used for fusion. Heterogeneous representations of modalities need different 
learning rates and optimization strategies. The same optimization strategy for all 
modalities leads to overfitting. Hence, the overfitting-to-generalization ratio [146] is used 
to control loss weighing in the training phase. 

Late fusion can manage missing modalities at test time but is often underperforms 
compared to intermediate fusion. Hence hybrid fusion, multi-task learning, memory 
networks, and attention mechanisms are utilized for missing and noisy modalities 
conditions. Memory fusion network [15] creates view-specific and cross-view-specific 
interactions to handle missing modalities. Audio, video, and text modalities are used 
during training, whereas only text modality is used during testing, proving that co-
learning increases performance compared to unimodal text. The gap between fusion and 
representation learning is closing. Both are used with other multimodal concepts such as 
alignment and translation to implement multimodal co-learning effectively. 

 
 

5.2 Attention and transformers 



The sequence-to-sequence models with encoders like LSTM [147] can process 
variable-length input sequences and generate output sequences for language tasks. 
However, sequence-to-sequence models cannot handle long sequences [49]. 

Attention focuses on certain aspects of information, like specific features, regions in 
an image, or a time step in the sequence. Attention can be soft (attention is obtained by 
looking at all features or image regions) or hard attention (attention is obtained by 
looking at pre-determined regions or features) [148]. Soft attention is preferred in 
practice because of its ease of optimization. Based on the context used for attention, those 
are also classified as local and global attention. The attention used on information in the 
same modality to capture the temporal relationship and obtain better representation is 
called self-attention. Graph-based attention [149] uses domain knowledge to extract the 
relationship between different entities of modalities. Using individual attention at the 
sentence and word levels and passing information from lower level to higher levels as 
hierarchical attention [150] is effective in a document classification task. Co-attention 
[81] is used to learn the correlation between two paired entities like two documents or 
paired modality data samples. Attention has been the important step to create alignment 
between modalities instead of creating alignment manually. In multimodal caption 
generation or phrase grounding models, attention establishes the mapping between 
words and image regions, thereby explaining how the model makes a prediction.      

Co-attention is used to create alignment between different modalities; for example, 
words in a question are mapped to objects in the image for VQA tasks [80]. Co-attention 
enables multimodal co-learning by creating alignment among the modalities. 
Hierarchical co-attention [81] is designed to focus at a word, phrase, and sentence level 
between question and image and then recursively combined from word to sentence level 
in VQA task.  The co-attention encoder module [151] correlates latent features of each 
view in GAN to provide weightage to input features. It provides interpretability as 
weightage to each view is known in the multi-view subspace learning space. The weighing 
scheme is extended to noisy and good features, thereby increasing robustness to noisy 
samples. Joint co-attention [152] employs joint representation of audio and video to 
create co-attention with individual modalities instead of co-attention between two 
modalities. It improved accuracy for audio-visual event localization even in the presence 
of noisy inputs.   

Transformers consist of two networks, an encoder and decoder, and an attention 
mechanism to capture temporal information. These can perform parallel computation 
and handle large datasets compared to sequence-to-sequence [147] LSTM or RNN 
models. The use of transformers for the language domain outperformed many state-of-
the-art results and generated huge research interest to adapt it for multiple modalities. 
LXMERT [153] consists of object relationship encoder, language encoder, and cross-
modality transformer encoders. It is trained on five different tasks that enable the model 
to learn features from the same modality or aligned elements in other modalities. 
Bidirectional representation learning is added to the transformer to get pre-trained model 
BERT [51], which can be fine-tuned for specific tasks. It is extended to mBERT by training 
on 104 languages from wiki using masked language modeling to have a multilingual 
capability in the transformer. The BERT models extended to VideoBERT [154], ViLBERT 
[155], and VisualBERT [156] for multimodal tasks like video captioning, image 
captioning, VQA, etc. Text-video and audio-video pairs from unlabeled videos are used to 
train multimodal transformers using MIL-NCE [111].  

Three transformers were employed for the emotion and sentiment recognition task 
[157], one for each modality – text, audio, and video. Joint encoding with co-attention 
module helped to achieve state-of-the-art performance. The transformer is modified to 
process multimodal input. The addition of co-attention block [158] followed by fusion 



helps to select and use required features based on the similarity between the features of 
different modalities providing better accuracy of the image-text classification task. The 
multilingual transformer has been extended to handle video modality [84] for video 
search using multilingual text. Video modality is considered as pivot modality, which got 
an inherent relationship with multilingual captions.  

Thus, attention, co-attention, and transformers enable multimodal co-learning to 
manage missing modality, noisy conditions, data parallelism, and data annotations 
(unsupervised).   

5.3 Encoder-decoders 

In the Encoder-decoder framework, the encoder encodes a source sentence into a 
fixed-length state, from which a decoder translates into a variable-length sentence. The 
encoder-decoder framework is extended for multimodal data in which input is a source 
modality and output is a target modality. CNN [159] as encoder and RNN [147] as decoder 
with visual attention is used for image captioning [148] and to generate video description 
[160]. The latent vector can capture shared information between source and target as an 
error is flown from output to input during training. Attention mechanism helps as it 
focuses on intermediate representations between source and targets and selects 
important features, avoiding loss of information. An encoder [161], with self-attention on 
features of questions and a decoder with question-guided attention on the image and self-
attention on an image, creates features of an image to provide better accuracy on VQA 
task. Encoder-decoder helps generate target modality representation based on the source 
modality representation, but the application of the encoder-decoder mechanism for more 
than two modalities is complex. 

Autoencoder is the same as encoder-decoder, but input and output are the same, 
i.e., decoder reconstructs input to minimize reconstruction loss. The denoising 
autoencoder works when some of the values are missing, and robust encoders modify the 
loss function to get robustness against noisy conditions [162]. Autoencoder is extended 
to use for multimodal data and is called multimodal autoencoder [163]. Two encoder-
decoder modules are used separately but combined with having a shared representation. 
Each encoder-decoder module handles one modality, i.e., audio and video, and the 
decoder reconstructs these modalities using two decoders to minimize the reconstruction 
loss.  

Correspondence Autoencoder (Corr-AE) [164] does representation and correlation-
learning together. Reconstruction loss and the similarity between representations of two 
modalities are used to perform the cross-modal retrieval task of image-text. Thus, 
autoencoders can extract shared information from latent space and reconstruct input. 
Autoencoder is treated as a generative model and classified as a variational and 
adversarial autoencoder considering its reconstruction capability.  

The ability of autoencoder to handle missing data, its robustness against noisy 
conditions, and training in an unsupervised manner helps in the implementation of co-
learning objectives. 

5.4 Generative adversarial networks (GAN) 

Generative Adversarial Networks [52] have become very popular recently due to their 
success for unimodal applications such as image synthesis, image to image translation, 
enhanced image resolution, etc. GAN can generate high-quality samples based on input 
data distribution in an unsupervised manner. Like other popular methods, GAN is also 
extended to multimodal applications with the main objective to reduce the distributional 
difference between the modalities. In cross-modal translation, shared semantics among 



the modalities is captured, whereas, in cross-modal retrieval, the similarity between 
modality representation is captured. 

In text-to-image synthesis [165], encoded text information is fed along with the noise 
to a generator to be translated to an image. The discriminator identifies if generated 
image and encoded text are the same or not. In cross-modal retrieval applications, GANs 
are used to obtain similar representations in a subspace. The objective is to have a 
mapping between modalities in a subspace. For instance, the discriminator cannot 
distinguish the source modality for the features, i.e., similar data from different 
modalities are next to each other in space. In the training process, the discriminator tries 
to classify where a feature comes from, and the generator tries to obtain modality 
invariant representations. Cross-Modal GAN (CM-GAN) [166] creates joint distribution 
between modalities to promote cross-modal correlation learning for inter-modality and 
intra-modality correlation for the image-text retrieval, as generators and discriminators 
act adversely. A cross-modal convolutional autoencoder with weight sharing constraints 
is used as a generator.  

As highlighted in earlier sections of this paper, GAN, along with its variants, is used 
to generate missing modality [75], handle imbalanced data [106], domain adaptation 
[121], and noisy conditions [94] for multimodal co-learning. 

5.5 Multi-task learning 

In Multi-task learning (MTL), models are trained on multiple tasks simultaneously. 
The use of shared representation to learn multiple related tasks results in data efficiency, 
reduction in overfitting, and faster computations [54]. However, learning multiple tasks 
together brings its own difficulties. Each task has different needs, and tuning for one task 
may impact another task, referred to as negative transfer. Designing MTL systems to 
have positive transfer is an active area of research [167]. In visual systems, MTL focuses 
on extracting task-specific information and shared information. In language modality, 
one can ask multiple questions on the same piece of text, enabling MTL. Task-agnostic 
language representations, like embeddings and pre-trained models being used for MTL.  

In multi-task multimodal models, representations are shared across modalities and 
tasks, thereby increasing generalization. Sentiment and emotions are related tasks that 
can be modeled using MTL [168] using audio, video, and language modalities. In some 
instances, high-level tasks are divided into multiple low-level tasks, and models are 
trained on these tasks using MTL. Scene understanding [169] can be divided into object 
detection, scene graph generation and region captioning, and joint learning across these 
three tasks showed better performance over the prevalent models.  

For the VQA task [170], a shared encoder with co-attention layers can be developed, 
and a separate decoder for each task in the MTL set-up. Each task receives representation 
from its intermediate level, which represents the previous task, thereby creating a 
hierarchical structure. The vision-language tasks considered are image caption retrieval, 
VQA, and visual grounding with periodic task switching mechanisms during the training 
phase. A similar concept is recently extended to train 12 tasks together using a multi-task 
approach [17] using overlapping relationships between different types of vision-and-
language (VL) tasks. It uses ViLBERT with a separate head for each task, like branches of 
a common, shared ‘trunk’ ViLBERT along with a dynamic stop-go mechanism for each 
task during training. The use of a large number of datasets created for different individual 
tasks can be a step towards generalization. Multi-task models can handle missing 
modalities [6], and multi-task graph convolution can handle audio classification in the 
presence of noisy labels.  



Thus, multi-task learning methods enable multimodal co-learning, supporting 
objectives of modality availability and noisy conditions.  

5.6 Transfer learning 

In transfer learning [55], source domain knowledge is transferred to a different but 
related target domain. Transfer learning helps to reduce demand on labeled data, taking 
the benefit of an already trained model to improve the performance. However, sometimes 
there is a negative impact on the learner’s ability termed, as a negative transfer. A negative 
transfer depends on the learner’s ability to find transferable and beneficial parts of 
knowledge and relevance between the source and target domains. Transfer learning is 
further divided into homogenous and heterogeneous transfer learning based on if 
domains have the same or different feature spaces [113]. Transfer learning is used for 
various applications in the vision and language domain by having plenty of pre-trained 
models and embeddings. Domain adaptation which is one of the topics of transfer 
learning, is researched now actively.  

In the case of multimodal transfer learning, it can be a transfer of knowledge from a 
pre-trained multimodal model or a multimodal embedding to the target domain. It can 
be a knowledge transfer from one modality to another modality. For example, pre-trained 
VL models like ViLBERT [155] are trained on large unsupervised data for few tasks, but 
knowledge can be transferred to multiple other VL tasks with or without fine-tuning. In 
the teacher-student model, when the teacher is trained on visual modality and the student 
is trained on sound modality, transfer of knowledge occurs to achieve sound classification 
using unlabeled video [72]. In DeViSE [83], text information is used to improve visual 
representation by creating a mapping between visual representation and word2vec [171] 
embeddings. Heterogeneous Modality Transfer Learning (HMTL) [70] transfers 
knowledge from text modality, normally a dominant modality in sentiment analysis, to 
audio and visual modalities.  

The embedding layer is trained using adversarial learning so that it is unable to 
distinguish representations from the source and target model. Transfer learning by 
creating semantic mappings between embedding layers of audio and visual unimodal 
networks [172] helps the model to perform audio-video recognition tasks in the absence 
of audio signals at test time. Knowledge transfer between labeled source domain to 
unlabeled target domain [173] is used for cross-modal retrieval tasks using pseudo 
labeling strategy. Similarly, using an auxiliary database with complete modalities enables 
transfer learning  [119] to learn missing modalities in the target using a latent low-rank 
constraint on subspace.  

Thus, transfer learning helps achieve objectives of co-learning by training models on 
data-rich and clean modalities and transferring that knowledge to data-scarce or noisy 
modalities. Transfer learning also enables the model to work on missing modalities at test 
time. 

5.7 Multimodal embeddings and pre-trained models 

Language embeddings like Word2vec [171] and Gloves [69]  are extensively used for 
various natural language processing tasks. Recently contextual embeddings that assign a 
representation to each word based on the context have emerged. A family of the pre-
trained models like ELMO [174], BERT [51], GPT [175], etc., which are trained on a large 
corpus, achieved the state-of-the-art performance for language tasks. Likewise, pre-
trained models or standard architectures like ImageNet, ResNet, VGG [176], etc., are used 
in visual domain tasks. 



Multimodal pre-trained models like multimodal transformers are becoming popular 
for multimodal tasks, as discussed in Section 5.2. Similar to language embeddings where 
similar word representations are considered together, similar representations across the 
modalities are associated together in the case of multimodal embeddings. Multimodal 
embeddings are based on cross-modal similarity measurements. Various approaches are 
used to have a minimum distance between the same semantics samples and a maximum 
distance between samples with different semantics. In finding similarities, shared 
representations among the modalities are captured, which can be used to transfer 
knowledge from one modality to another. Widely used constraints for similarity 
measurements are cross-modal ranking loss [14] and a Euclidian distance [177]. The 
visual-semantic embedding model (DeViSE) [83] uses dot product and rank loss to create 
embedding for visual recognition tasks using text and image modalities. Multimodal 
embedding showed performance improvement for zero-shot learning. Recently, the use 
of adversarial learning [166], contrastive learning [178], and meta-learning [56] to obtain 
better multimodal embeddings. Un-supervised [179] [180], semi-supervised, and weakly 
supervised [181] learning methods are also used for multimodal embeddings.  

Thus, multimodal embeddings and pre-trained multimodal models effectively 
achieve and bring about the co-learning objectives of missing modality, noisy modality, 
data parallelism, and modality annotations in the multimodal tasks. 

5.8 Few-shot learning 

All the data classes are generally seen during training time in machine learning 
classification models. However, in some situations, there is a need to classify instances 
whose classes are not seen or very few seen in the training phase. These situations can 
arise due to a large number of target classes, rare target classes, changing target classes 
over time, or expensive labeling of target classes [182]. When there is no labeled example 
at test time, it is called zero-shot learning (ZSL) [53], when there is one labeled example 
at test time, it is called one-shot learning [183], and when there are few labeled examples 
at test time, it is called as few-shot learning [184]. Few-shot learning is implemented in 
three ways [185]: a) augment the data with prior knowledge, b) use prior knowledge of 
model to have reduced hypothesis for a function, and c) using prior algorithmic 
knowledge for parameters, regularization, optimization, etc. Few-shot learning and 
especially zero-shot learning achieved very high performance on visual tasks and are now 
being investigated for multimodal applications. 

For zero-shot image captioning [186], the YOLO [187] model’s prediction function is 
modified to include class embeddings (class names or attributes) to get a zero-shot object 
detector. Zero-shot object detector and generation template can generate image captions 
for unseen classes at training time. A new dataset zero-shot transfer VQA [188] is 
designed so that some words only occur in questions or answers. During testing time, 
those would be unseen words to VQA model.  

Visual representations are projected onto word embedding space to form a joint space 
[189], which is used to classify objects not seen during the training phase under ZSL 
settings. Creating a joint embedding space for audio, video, and text labels such that 
similar classes have lower distances than dissimilar classes [181]. ZSL cross-modal 
retrieval and classification are achieved using the nearest neighbor search in the 
embedding space. 

Few-shot learning can effectively transfer knowledge from high resource modality to 
low resource modality and can handle the missing modality at test time. Therefore, few-
shot learning enables multimodal co-learning. 



5.9 Meta-Learning 

Meta-Learning is a learning-to-learn algorithm that learns while learning multiple 
tasks on training data to handle new tasks at test time. Meta-learning improves data 
efficiency, enables knowledge transfer, and supports unsupervised learning, and it is 
useful for task-agnostics and task-specific scenarios. Meta-learning is classified into 
metric-based, model-based, and optimization-based [56]. Transfer learning, multi-task 
learning, domain adaptation, and meta-learning are often seem similar as all of them try 
to use prior knowledge. Table 9 highlights the differences among them. Meta-learning 
became very popular for vision tasks, reinforcement learning tasks, environment 
learning, neural architecture search, and unsupervised meta-learning. With the success 
of few-shot learning in language modeling and speech recognition, meta-learning can 
handle many tasks such as machine translation, low-resource language modeling, etc. 
Meta-learning is also robust for label noise and adversarial attacks.  

Table 9: Differences among supervised learning, transfer learning, multi-task learning, domain 
adaptation and meta-learning methods based on the variation of tasks at training and test time 

Method Train Test Domain Shift 

Supervised Learning Task 1 Task 2 No 

Transfer Learning Task 1 Task 2 No 

Multi-task learning Task 1, Task 2, …. 
Task N 

Task 1, Task 2, 
.... Task N No 

Domain Adaptation Task 1 Task 1 Instance-level shift 

Meta-Learning Task 1, Task 2.... 
Task N Task N+1 No 

Model-Agnostic Meta-Learning (MAML) algorithm is extended to reconstruct 
missing modality [59] by using two auxiliary networks to handle severely missing 
modality at training and testing time. The meta-learning definition is extended to cross-
modal generalization [95], having different modalities at source and target. Cross-Modal 
Meta-Alignment (CROMA) algorithm is used to capture a space where representations of 
similar concepts in different modalities are close together. Meta-learning is widely used 
in reinforcement learning, where an agent needs to operate in new target environments. 
Memory Vision-Voice Indoor Navigation [190] uses voice commands for the agent to 
move using RGB and depth information with meta-learning. 

Thus, meta-learning enables multimodal co-learning by handling missing and noisy 
modalities.    

5.10 Multi-instance learning (MIL) 

In multi-instance learning (also referred to as multiple instance learning) [57], the 
dataset consists of labeled bags containing multiple instances. Labels of the instances in 
the bags are not provided. The bag is labeled as positive if it contains at least one positive 
instance or negative when all the instances are negative. These assumptions of MIL are 
relaxed to include a limit on the positive number of instances or a combination of 
instances [191]. The objective function for MIL is to classify unseen bags accurately and 
sometimes even classify each instance separately and, in the process, learn a 
representation that detects positive instances. MIL is used where data is available in sets, 
and recently, it has become popular for applications with weakly annotated data. For 
audio-video classification, MIL utilizes weak supervision among them. MIL algorithms 



are classified into three types – instance space algorithms, bag-space algorithms, and 
embedding-space algorithms. Based on the success of MIL for unimodal tasks, it is now 
becoming popular for multimodal applications, especially where weakly annotated data 
is available. The use of weakly annotated data reduces the labeling cost, and large data 
becomes available mostly from the web. 

Large-scale sound classification is performed using weak supervision between audio-
video with MIL [192]. Each video segment is treated as a bag, and frames in a video are 
treated as instances; similarly, for audio modality, each segment is treated as a bag and 
frames with Mel spectrograms as instances. There is no labeling at the frame’s level, but 
video segments are labeled with the sound it contains.  

Complex objects [193] like an image with multiple objects can be divided into multiple 
regions with Fast-RCNN, and corresponding tags can be divided into multiple word 
vectors. Regions and word vectors become instances of bags of image and caption. Weak 
supervision between image and caption, i.e., bag level, is used with multi-instance 
learning for object classification. Detection of violent videos [194] by classifying videos 
based on video scenes and audio sounds into positive and negative bags and using 
associated text attributes in the set-up of multimodal MIL is developed. 

Thus, multi-instance learning, which supports weakly supervised learning without 
explicit data alignment, is helpful to achieve co-learning objectives. 

5.11 Contrastive learning 

In self-supervised learning, an internal representation of the data is created for the 
downstream tasks. For example, more images and labels can be prepared by image 
augmentation like rotations, cropping, contrasting, and colorization. These augmented 
images form a pair of similar images and are dissimilar from the rest of the images in a 
dataset. If we can learn a representation function on this data, it can help in the 
downstream task. These representations are learned by contrastive learning using 
contrastive triplet loss and sub-sampling of negative samples. A feature memory bank 
[195] to store the representation of images instead of computing every time and 
Momentum Contrast (MoCo) [196] with a dictionary as a queue of data samples are the 
latest sub-sampling techniques.   

SimCLR [197] proposed a simple contrastive framework for visual representations 
that do not need a memory bank or special architectures. It is achieved by choosing 
effective data augmentation of images, namely, random cropping-resizing back to the 
original size, random color distortion, and random Gaussian blur. Two encoders are 
trained to maximize contrastive loss for a similar instance, and in the process, the best 
representation is obtained, which is used for downstream tasks. Contrastive learning is 
extended to patch level within an image to achieve unpaired image-image translation 
[198]. Adversarial perturbation of images creates more samples for contrastive learning. 

The success of contrastive learning in unimodal tasks and its principle of using 
multiple views of single input make it suitable for multimodal data. Using two versions of 
MNIST [199] and brain imaging dataset [18] proved that multimodal contrastive learning 
performs better than unimodal with a proper choice of the loss function and adds a 
regularization effect. The contrastive learning applied to multi-view settings [200] to 
maximize the representation of two views outperforms popular multiview methods.   

For multimodal VL applications, models create embeddings for each modality in a 
common space. However, these embeddings cannot address inter-class dynamics and 
intra-class relationships. Contrastive Bimodal Representation Algorithm (COBRA) uses 
contrastive learning to create joint cross-modal embeddings [201]. The projected 
representation of data samples belonging to the same class and the same modality is 



considered positive pairs. The projected representations of data samples belonging to 
different classes of the same or different modalities are considered negative pairs. Noise 
Contrastive Estimation is used in a loss function. 

Multimodal generative models make use of the commonality shared between the 
related pairs; however, the information from the unrelated pairs information is not 
utilized; contrastive learning uses both related and unrelated pairs information [202], 
thereby reducing the need for paired multimodal data to achieve the same level of 
performance as that of a generative model. 

Vision language pre-training models like ViLBERT [155] and LXMERT [153] use 
feature regression or classification based on visual region and masked word. These 
models inherit the bias and suffer from noisy labels of the pre-training dataset. It is 
overcome by Contrastive Vision-Language Pretraining (CVLP) model [178] using 
contrastive loss on the visual branch. CVLP outperformed ViLBERT, LXMERT, and other 
pre-trained vision-language models on VQA datasets. 

In phrase grounding, the association between image and region and a phrase and 
caption is required, preferably with weak supervision. Creating negative samples by 
substituting words in captions [108] and then maximizing the mapping between regions 
and corresponding captions against non-related regions with contrastive learning and 
captions showed better performance for weakly phrase grounding. The contrastive 
learning to align the representation of modalities by maximizing the agreement among 
them for music genre classification [203] improves the model’s accuracy over regular 
prediction-based models or collaborative filtering.  

Thus, multimodal co-learning is benefiting from contrastive learning for performance 
and weakly supervised data from the web.   

5.12 Domain adaptation 

As discussed in Section 4.5, applications like emotion recognition and image and 
cross-modal retrieval [116], social media event rumor detection [117] using 
disentanglement, multimodal sentiment analysis with text as a source and audio-video as 
target domain [70], and audio-visual cross-modal mapping [121] using dacssGAN 
(Domain Adaptation Conditional Semi-Supervised Generative Adversarial Network) used 
domain adaptation. 

The complete modalities auxiliary database [119] and its cross-modality and cross-
database knowledge addresses missing modalities. The auxiliary data could be co-
occurrence data or embedding spaces formed by projecting source and target domain data 
samples [113]. Domain translator function [120] learned from multimodal source data 
can predict class even if one modality is absent using weakly shared deep transfer 
networks. Cross-modal generalization [95], e.g., the source is an image and the target is 
audio, is achieved using cross-modal meta-alignment with contrastive learning. 

Thus, homogenous and heterogeneous multimodal domain adaptation and 
generalization methods support missing modalities, noisy conditions, lack of annotated 
data and use of cross-domain knowledge. 

5.13 Multimodal co-learning computational methods summary 

In this section, we discussed various methods for multimodal co-learning 
implementations. Multimodal deep learning is adapting all the latest deep learning 
methods and models. The fusion, attention, and transformers-based methods provide a 
better representation of multimodal data and achieve higher accuracies addressing the 
challenge of having strongly paired data. Attention networks enable working with weakly 
supervised data. Graph-based networks use domain knowledge to work with hybrid data 



relationships and weak supervision. Encoder-decoder, autoencoder, and multi-task 
learning can handle missing modalities at test time. The multimodal embedding helps in 
non-parallel data, semi-supervised, and unsupervised data conditions. Disentanglement 
and counterfactuals enable interpretability and fairness in models. Transfer learning and 
meta-learning for domain adaptation, adversarial learning for building robustness 
against noise, and contrastive learning for unsupervised data models. GAN-based models 
to support missing modality, noise robustness, and domain adaptation. The summary of 
methods is shown in Table 10.   
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6. Datasets and Applications of multimodal co-learning 
Applications from various domains use multiple modalities to improve the 

performance of tasks involved. These applications and tasks must support multimodal 
co-learning objectives to cater to real-life situations. Multimodal co-learning is used for 
applications ranging from classification, regression, action recognition, event detection, 
sentiment and emotion detection, speech enhancement, sound classification, remote 
sensing, rumor detection, deception detection, recruitment, vision-language tasks, VQA, 
phrase grounding, machine translation, cross-modal retrieval, etc. 

Here in Table 11, we summarize representative applications from our investigation of 
research studies. The details of applications with their categories, modalities involved, 
methods used, and the corresponding datasets are presented. 

 
Table 11: Summary of multimodal co-learning applications and datasets 

Task 
Categori

zation 
Application/ 

Task 
Modaliti

es 
Involved 

Methods Datasets Notes Refere
nces 

Classific
ation 

Image 
Classification  

Image, 
Text 

Multiple 
Kernel 
Learning 

PASCAL VOC’07, 
MIR Flickr 

Semi-supervised 
image-tags [48] 

Image Meta-
alignment 
& NCE 

CIFAR-10, 
CIFAR-100 

Robust to label noise 
[94] 

Image Disentangle
ment 

MNIST, SVHN, 
CelebA 

Maximizing mutual 
information - InfoGAN [134] 

Image, 
Text 

Multimodal 
Embedding 

ImageNet 
(ILSVRC) 2012 1K 

Image labels and un-
annotated tags [83] 

Object 
Classification
, Action 
recognition 

Image, 
Text 

Multimodal 
Embedding 

400 Million 
Image-Text pairs 

Cosine similarity 
[142] 

Video 
Classification 

Audio, 
Video, 
Text 

Co-training Fudan-Columbia 
Video Dataset 
(FCVID) 

Video meta-data as 
textual-modality [47] 

Sound 
Classification 
using Video 

Audio, 
Video 

Teacher-
Student 

2M Videos from 
Flickr & YouTube 

Object and scene 
detectors used to 
extract from videos 

[72] 

Classification 
of web pages 

Text, 
Image, 
HTML 
layout 

GAN Faculty Web 
pages 

Imbalanced data 
handling [106] 

Audio 
tagging 

Audio, 
Ontolog

y 

Graph-
based 
Network 

Google Audio 
Dataset 

Ontological 
relationship between 
sound events 

[91] 

Remote 
Sensing 

SAR 
Image, 
Optical 
Image 

Prototype 
Network 

Multi-Sensor 
All-Weather 
Mapping (MSAW) 
dataset 

Meta-sensor 
representation [9] 

Video 
activity 
Recognition 

RGB, 
Depth 

Knowledge 
Distillation 
& 
Privileged 
Learning 

NTU RGB+D Hallucination Network 
to generate missing 
modality data [65] 



Audio Visual 
Event 
Recognition 

Audio, 
Video 

Attention 
Network 

Google Audio 
Dataset 

Adversarial noise is 
added to audio 
modality 

[102] 

Sentiment 
Analysis 

Audio, 
Video 

Autoencode
r (AE) 

MOSI & MOSEI Reconstruct missing 
modality using AE [24] 

Sentiment 
Analysis 

Audio, 
Video, 
Text 

Transfer 
Learning 

MOSI, IEMOCAP Text as source 
modality for domain 
adaptation 

[70] 

Sentiment 
Analysis 

Audio, 
Video, 
Text 

Multimodal 
Factorizatio
n 

CMU MOSI, 
POM,  
MNIST, SVHN 

Discriminative and 
generative factors [67] 

 Sentiment 
Analysis 

Audio, 
Video 

Encoder-
Decoder 

RECOLA Translation based 
representation [21] 

Sentiment 
Analysis 

Audio, 
Video, 
Text 

Memory 
Fusion 
Network 

CMU MOSI, 
POM,  
IMDB, SST 

Fusion and Attention 
on LSTM [15] 

Sentiment 
Analysis 

Audio, 
Video, 
Text 

Encoder-
Decoder 

MOSI, ICT-MMO, 
YouTube 

Cyclic Translation loss 
[23] 

Sentiment 
Analysis 

Image-
Text 

Audio-
Image 

Meta-
learning 

Multimodal 
IMDB, MOSI, 
Audiovision 
MNIST  

Modality complete 
dataset is required [59] 

Emotion 
Prediction 

Image, 
Text 

Multi-task 
Learning 

Flickr Emotion, 
Visual Sentiment 
Ontology (VSO)  

Multi-task like model 
and fusion [6] 

Emotion 
Prediction 

Audio, 
Video 

Fusion and 
Adversarial 
learning 

MSP-IMPROV Acted and improvised 
emotions are 
considered a domain 
shift. 

[118] 

Emotion 
Prediction 

Audio, 
Video 

GAN CREMA-D, 
RAVDEES 

Conditional GAN 
[121] 

Emotion 
Prediction 

Audio, 
Video 

Pre-
training 
and Fusion 

EmotiW, 
ChaLearn 

Pre-training on VGG 
Face and finetuning on 
FER 

[122] 

Emotion 
Prediction, 
Cross-media 
Retrieval 

a) 
Audio, 
Video 
b) 
Image, 
Text 

Domain 
Adaptation 

IEMOCAP & 
AFEW, 
MSCOCO & CUB-
200 

Attention network 

[116] 

Gait 
Recognition 

Motion, 
RGB-D, 

EMG 

Multimodal 
Autoencode
r 

Abnormal Gait 
Dataset 

Cross-subject, cross-
modal transfer 
learning for domain 
generalization 

[123] 

Deception 
Detection 

Audio, 
Video 

Transfer 
learning 

Videos of a real 
court trial for 
high stake and 
UR Lying as low 
stake deception 

Domain adaptation 
from low stake to high 
stake deceptions [109] 

Face 
Recognition, 
Image 
Classification 

Image, 
different 
domain 
Image 

Transfer 
Learning  

CMU-PIE and 
Yale B Face, 
BUAA and Oulu 
VIS-NIR Face,  
ALOI-100 and 
COIL-100 Dataset 

Heterogeneous 
domain adaptation 

[119] 

Speech 
Enhancemen
t 

Audio, 
Video 

Encoder-
Decoder 

Video of a native 
speaker for 320 
Mandarin 
sentences 

Fusion 
[77] 



Modality 
generalizatio
n 

Image, 
Audio 

Encoder-
Decoder 

Text-Image: 
Yummly-28K 
Image-Audio: 
CIFAR & ESC50 
Text-speech: 
Wilderness 

Meta-alignment 
algorithm with Noise 
Contrastive 
Estimation. [95] 

Generati
on  

VL Tasks Image, 
Text 

Multimodal 
Embedding  

Visual Genome, 
CIFAR 100 

Visual co-occurrences 
between object and  
attributes words. 

[68] 

VL Tasks Image, 
Text 

Multi-task 
Learning 

12 datasets from 
VQA tasks 

ViLBERT as an 
underlying model. [17] 

VL Tasks Image, 
Text 

Adversarial 
Learning  

9 VL Datasets Noise injecting in 
embedding space. [103] 

Image-sound 
generation 

Image, 
Audio 

Cycle GAN Sub-URMP 
(University of 
Rochester 
Musical 
Performance) 
dataset 

Four encoders-
decoders for 
generating all 
combinations [75] 

Translat
ion  

Language 
Translation 

Image, 
Text 

Bridge 
Correlation
al Networks 

Multilingual TED 
corpus, MSCOCO 

Image is a pivot 
modality, and source-
target are texts. 

[10] 

VQA Image, 
Text 

Counterfact
ual 

VQAv1 Counterfactual images 
are generated. [136] 

Machine 
Translation, 
Crosslingual 
Image 
description 

Image, 
Text 

Graph-
based 
Network 

Multi30K 
extension of 
Flickr30K for 
English and 
German language  

Source language as 
pivot modality for an 
image description. [85] 

Alignme
nt 

Alignment 
Task 

Video, 
Text 

Graph 
based 
Network 

Microsoft 
Research  
Multimodal 
Aligned Recipe 
Corpus 

Alignment is created 
for text-text, video-
video, and text-video 
using text and video 
transcript. 

[86] 

Multimodal 
Embedding 

Audio, 
Image, 

Text 

Autoencode
r 

Glove, ImageNet 
with WordNet 
synsets, 
Freesound for 
audio, Word 
association 
dataset 

Word association is 
used to create 
alignment among 
datasets [87] 

Cross-
Media 

Retrieva
ls 
 

EEG-Image 
retrieval 

EEG, 
Image 

Cycle GAN, 
Triangle 
GAN 
 

ImageNet-EEG Shared latent space is 
divided into semantic 
and semantic-free 
latent variables.  

[11] 

Text-Video 
retrieval 

Video, 
Text 

Multi-
Instance 
Learning 

HowTo100M ASR is used for 
alignment. [79] 

Multilingual 
Video Search 

Video, 
Text (9 
languages
) 

Transforme
rs 

Multi-
HowTo100M (1.2 
M videos with 
nine language 
subtitles 

Visual concepts are 
used as a pivot for all 
language sentences. [84] 

Text-Video 
retrieval 

Audio, 
Video, 
Text 

Multimodal 
Transforme
rs with 
MIL-NCE 

YouCook2, 
MSRVTT 

Weights are shared 
among three 
modalities with 
separate tokenization 
and projection heads, 

[111] 



Image-Text 
retrieval 

Image, 
Text 

Cross 
modal data 
programmi
ng with a 
generative 
model  

Medical dataset 
with image and 
text 

Rule-based weak 
supervision using an 
auxiliary dataset [124] 

cross-modal 
(event) 
retrieval 

Image, 
Text 

Transfer 
learning 

MMED Cross-domain 
cross-modality 
transfer learning with 
dictionary alignment 

[126] 

Cross-Media 
Retrieval 

Image, 
Text 

Encoder-
Decoder 

0.72 million 
fashion 
products and 
accessories 

Disentanglement 
based on fashion 
attributes such as 
color, style, etc. 

[133] 

Phrase 
Groundi

ng  

Phrase 
Grounding 

Text, 
Image 

Contrastive 
Learning 

 Flickr30k Pre-trained object 
detectors to extract 
objects. 

[22] 

Phrase 
Grounding 

Text, 
Image 

Contrastive 
Learning 

 Flickr30k, 
MSCOCO 

Contrastive learning 
by adding negative 
words in captions 

[108] 

Phrase 
Grounding 

Image, 
Text 

Counterfact
ual 

COCO2017 
dataset and 
Flickr30k Entities 
dataset 

Decomposition helps 
in interpretability and 
Counterfactuals in 
robustness 

[137] 

Social 
Media 

Rumor 
Detection 

Image, 
Text 

Disentangle
ment 

PHEME and  
PHEME_veracity 

Disentanglement into 
content  and  rumor 
style  

[117] 

Human 
Resourc

e 

Recruitment Image, 
Text 

Fusion 24,000 resumes 
with faces, text 

Gender Ethnicity Bias 
[141] 

 
 

7. Open problems and future research directions 
Tackling real-life conditions is of paramount importance for any computational 

application. Unimodal deep learning systems can meet some of these requirements. 
However, for multimodal applications, the capability to work in real-life situations is 
emerging in which multimodal co-learning plays a vital role. While there are some 
advancements in tools and techniques for implementing multimodal co-learning 
objectives, there are many exciting research problems that need to be solved. Multimodal 
co-learning is constrained by the current multimodal problems like universal 
representation, multimodal dataset availability, and evaluation tools. The solution to co-
learning open problems will also help to resolve some of the issues encountered for 
multimodal architecture development and implementation. In this section, we present 
open problems and future directions.    

7.1 Multimodal representation for co-learning 

Vision, language, audio, video encoders, pre-trained models, or word embeddings are 
used for representation. Multimodal deep learning systems capture inter-modality 
information which is complementary or supplementary to each other. However, there is 
a challenge to have a universal representation of multiple modalities that can take care of 
complementary and supplementary information preserving intra-modality structures. At 
present, two prevalent techniques - joint representation and coordinated representation 
cannot meet this objective in spite of enhancing those with the latest deep learning 
techniques. Most of the multimodal representations proposed are designed for domain-
specific data inputs and are not effective on different data combinations. 



There is also a need for generic representation for co-learning, which is easy to 
implement and provides better performance to missing and noisy modalities scenarios. 
The representation should be configurable to support different types and a number of 
modalities for co-learning.     

Creating multimodal embeddings and enhancing them using the latest deep learning 
techniques is one approach to a have better representation of multiple modalities in a 
joint space. The issue of preserving intra-modality similarity or dissimilarity structure is 
addressed using a discriminative algorithm. Generative adversarial network (GAN), 
which consists of generator-discriminator mechanism, offers solutions as generators try 
to generate modality invariant and a discriminator distinguishes the features from 
different modalities. Thus, multimodal embeddings with pre-trained models and GAN 
frameworks can be focused on arriving at generic representations which can support 
multiple and different types of modalities.  

7.2 Multimodal dataset availability 

Image and language modalities have achieved higher performances due to the 
progress in deep learning and the availability of large and quality datasets. Pre-trained 
models are developed to transfer knowledge for new applications with fewer data and 
achieve required performances. However, pre-trained models are not yet available for 
audio and video modality as there is a lack of large audio-video datasets. It has led to 
either audio-video models getting overfitted or relying on language modality as a 
dominant modality.  

The available multimodal datasets are mostly generated and collected in a controlled 
setting and do not truthfully represent real-life situations truthfully [204]. For example - 
videos for emotion detection are in recorded controlled conditions, videos available on 
YouTube for activities like cooking recipes, reviews, conversations, debates are all 
recorded in certain controlled conditions. Current studies drop samples or modalities 
from the well-processed datasets to simulate missing modality scenarios. There is a need 
for a real-life dataset of missing modalities that may contain noise or low power signals. 
The different training strategies will require to implement co-learning on real-life 
datasets. 

Multimodal datasets are available for visual-language tasks, sentiment and emotion 
classification, instructional videos, social media, etc.  

There is a lack of multimodal datasets in other fields like product recommendation 
engines, mechanical machine conditions monitoring, agricultural field and crop 
conditions, medical conditions, transportation, chemical engineering, communication, 
etc. All these fields have a multimodal nature of data; in fact, it is more complex than the 
currently available multimodal datasets. These domains are more prone to sensor faults, 
dust, humidity, weather conditions, etc., which adds noise and impacts the availability of 
modalities. The multimodal co-learning will help to achieve robustness and avoid 
industrial accidents causing severe economic losses, environmental impact, and harm to 
human lives. Hence, the datasets with modalities – EEG, ECG, gas sensors, chemical 
sensors, network traffic, thermal images, industrial machine health, satellite, crop yield 
prediction, crop diseases, etc. are required to expand co-learning in these domains. 

The availability of multiple datasets for similar tasks [17] enables models to achieve 
generalizability. Hence, there is an urgent need to have large multimodal datasets in 
different areas. However, it is challenging to have a multimodal dataset as each modality 
with a different structure and content often demands particular expertise for annotation. 
The initiatives using unsupervised, semi-supervised, and weakly supervised techniques 
are in progress and should be increased to obtain large-scale datasets using free and 



abundant data available on the internet [86]. Pre-trained multimodal models should be 
used CLIP [142] to obtain large paired data from the internet without manually aligning 
and labeling.  

7.3 Evaluation and diagnostic tools 

Multiple evaluations and diagnostic tools and techniques evolved with the continuous 
improvements in deep learning models and algorithms. For image and language 
modalities, evaluation methods and diagnostic tools are standardized now. Areas like 
interpretability, fairness, and bias also started designing and developing evaluation and 
diagnostics tools. Likewise, increased research efforts are required in designing and 
developing evaluation and diagnostic tools for multimodal models. The tools to measure 
the contribution of each modality in the final prediction will also help evaluate co-
learning.   

At present, the most widely used evaluation criterion is the comparison of multimodal 
model results with unimodal baselines, which is an important measurement but not 
sufficient to understand the contribution of multimodality. The performance metrics such 
as accuracy, precision, recall, F1-scores, which were designed for unimodal, are also used 
for multimodal and same are used for co-learning performance measurement. Recently, 
Empirical Multimodally-Additive function Projection (EMAP) [205] diagnostic tool is 
proposed to analyze multimodal classification models. In this tool, less expressive space 
is used to project the multimodal classifier’s prediction to be compared with an ensemble 
of individual unimodal classifiers. It is observed that even the performance gain of models 
like transformers with cross-modal attention is not fully due to multimodality. It is 
recommended that all multimodal classifier models should report EMAP along with 
multimodal and unimodal classifier baselines.  

In the multimodal machine translation model [206], to check if the visual modality is 
beneficial, language input and visual input are gradually degraded. It is observed that 
visual modality is useful only when language modality is noisy. It is one step towards 
understanding when to use additional modalities for multimodal applications. Similar 
evaluation will also help to test the co-learning objective of noisy modality. Taking the 
clue from how probes are intended for language embedding, multimodal embedding 
probes [207] are designed to know if visual information is used by language modality.  

The efforts towards developing succinct evaluation techniques and appropriate 
diagnostics tools are essential. These tools should evaluate the effectiveness of co-learning 
techniques for each of its objectives. The co-learning evaluation approach should 
ascertain the number and combination of modalities during training, acceptable amount 
and types of noise, amount of pairing required, type of domain shifts, and interpretability 
and fairness index.  

7.4 Presence of modality  

The primary objective of multimodal co-learning is to perform even if one or more 
modalities are missing at test time against the number of modalities used during training. 
It is a very important aspect of multimodal applications as in real-life conditions, often 
all modalities are not present test time, i.e., at actual usage. Based on our investigation, 
very few multimodal models are designed to meet this objective, although this has been 
mentioned as one of the challenges in early studies of multimodal deep learning.  

Lately, the research community has started to focus on the objective of missing 
modality so that models can perform within an acceptable level without any adverse 
impact on accuracy and robustness. The absence of modality at test time is addressed in 
some of the applications by the nature of the application itself. E.g., VL applications such 



as image captioning and cross-media retrieval have one modality at test time. Training 
models for tackling missing modality is also helpful to obtain modality-invariant 
representations. Interpretability, fairness, and robustness of models are increased if 
designed for managing missing modalities. The open problems and future directions for 
the presence of modality co-learning objectives are presented in Table 12. 

   
Table 12: Open problems and future directions for the presence of modality objective 

Problem Area Problem Description Future Directions 
Modality 
Availability at 
training or 
testing time 

• Few studies are designed to handle 
missing modality that too at test time 
only. 

• No recommended guidelines on how to 
handle missing modalities is available 

• Design and test the multimodal models to 
handle missing modalities at test time. 

• Increase focus on missing modality at 
training time with GAN, meta-learning, and 
domain adaptation techniques. 

• Compare the methods to handle missing 
modalities and create a baseline. 

Partly missing 
modalities 

• Models are not designed for a real-world 
scenario of alternatively or partly 
present modalities, as shown in Fig. 6g 
and 6h. 

• Design special training mechanisms like 
multi-style or dynamic stop-and-go train 
models on expected and random scenarios. 

Dominant 
modality 

• Lack of guidance on which modality and 
when it is supportive at train and test 
time. 

• Many studies rely on already-dominant 
text modality for co-learning 

• Models should be evaluated for SEW and 
WES combinations to decide on modalities to 
be used.  

• Modality conditions must be varied to know 
when it is actually supportive.  

Auxiliary 
Datasets  

• Auxiliary modality-complete datasets 
are not available, which are required as 
a prior to handle missing modality using 
meta-learning or domain adaptation 
techniques. 

• The relationships must be established among 
the application-wise existing datasets to act 
as auxiliary datasets. It is available for some 
vision-language datasets. 

	

7.5 Data parallelism  

Current multimodal deep learning models demand alignment among the 
constituent’s unimodal signals, and often alignment is created manually. Audio, video 
and text modalities datasets are manually transcribed to extract spoken words and each 
utterance’s start time and end time.  The text is aligned to audio at phoneme and word-
level using a forced aligner like P2FA. This data pre-processing step creates a restriction 
on using these multimodal models in real-time and takes significant effort.  

Attention models can learn the relationship between non-aligned multiple modality 
data. It helps to increase the performance of models as well as the need to have fine-
grained alignment. Attention is also used to understand the intra-modality and inter-
modality relationship. Attention coupled with memory networks can handle long-
duration temporal signals as they can remember important clues for predicting that 
sequence. However, the success of attention is limited to two modalities data, and it is 
challenging to handle three and more modalities signals.  

Finding similarities and constructing a multimodal embedding using coordinated 
representation is also perceived as an alternative to strong pairing conditions. Lately, 
contrastive learning has been used to achieve better alignment as contrastive learning 
uses negative (unpaired) samples along with positive ones from the dataset.  

Another approach to address alignment is to use higher-level alignment, which is 
either easy to create or available intrinsically in the data. For example, a textual recipe 
and a video of the recipe are aligned at a higher level as both will have the same or similar 



steps even though those are not exactly aligned. This relationship is used by techniques 
like MIL and attention avoiding explicit finer alignment. Another example is phrase 
grounding, where alignment at image and caption creates a mapping of objects in image 
and phrases in a caption. Hybrid data or shared data can be treated as a third modality or 
a view of modality, which aligns with the other two modalities even though those two 
modalities are not aligned. The open problems and future directions for the data 
parallelism objective are listed in Table 13. 

 
Table 13: Open problems and future directions in data parallelism objective 

Problem Area Problem Description Future Directions 

Parallel or 
strongly paired 
data 

• Offline pre-processing and alignment at 
a finer level, i.e., word level, utterance 
level, is required, which is time-
consuming, error-prone as well as 
restricts real-time online usage. 

• Extend attention and memory networks to 
more than two modalities. 

• Multimodal embedding and coordinated 
representations along with contrastive 
learning should be explored. 

Non-parallel or 
weakly paired 
data 

• No established methods to create 
models using weakly paired modality 
data. 

• In many cases, weak relationships are 
not present among the modalities.  

• Use pre-trained models like object detectors 
to create pairing. 

• Graph networks that capture domain 
relationships or MIL are promising and are 
to be explored. 

Hybrid or 
shared data 

• There is limited availability of datasets 
that have shared relationships. It is 
available mainly for multilingual 
translation tasks. 

• Create shared relationships using pivots, e.g., 
visual modality is a pivot for captions in 
multiple languages to have alignment and 
supervised relationships. 

• Use task-specific relationships, e.g., 
sentiment and emotions can be related or 
multi-tasks applications with primary and 
secondary tasks. 

	

7.6 Noisy modality 

Noisy labels impact the robustness and performance of the machine learning models, 
and the methods to address those are evolving. As discussed in Section 3.1, the co-
teaching family of networks handles noisy labels by training on clean labels first and using 
that network to classify remaining samples. Generative models, graphical models, 
adversarial and contrastive learning are being used to handle label noise and data noise 
conditions. We have observed that models are not designed to be robust against various 
noisy conditions, and there are no uniform practices across applications and modalities. 
We outlined open problems and future directions in Table 14. 

 
Table 14: Open problems and future directions in noisy modality objective 

Problem Area Problem Description Future Directions 

Label Noise • Methods to handle label noise are 
not established for multimodal 
models.  

• Lack of noisy labeled multimodal 
datasets like unimodal ones.  

• Develop multimodal models for different label 
noise conditions. 

• Use contrastive learning, adversarial training, 
meta-learning, MIL methods to handle noisy 
label conditions.  

• Design proper loss functions to handle label 
noise.  

Data Noise • Simulating noisy conditions and 
noise levels require a domain 

• Develop application-specific noise generator 
APIs4 as a part of deep learning libraries. 



expertise and differs from task to 
task. 
 

• Using these APIs, train and test the models to 
arrive at a trade-off between accuracy and 
robustness to noise.  

• Measure and report acceptable noise types and 
their limits for specified tasks and models. 

• Use GAN, contrastive learning, adversarial 
training, and modality-specific noises to 
generate noisy data. 

• Create noisy multimodal datasets similar to 
ImageNet-C, Tiny ImageNet-C, and CIFAR10-C. 

4 APIs – Application Programming Interfaces 
 

7.7 Modality annotations 

Availability of annotated data in large quantities is one of the driving factors in the 
success of deep learning models. There are good datasets available for image and language 
modalities. However, the available multimodal datasets are still limited to some common 
tasks, and there is a need to have datasets for applications in other domains. But it is not 
easy to annotate data; hence there is ongoing research to benefit from semi-supervised, 
weakly supervised, and unsupervised learning. We highlight some of the problems in this 
area and future directions to address those in Table 15.    

 
Table 15: Open problems and future directions for modality annotations objective 

Problem Area Problem Description Future Directions 

Semi-
supervised 

• Often it is assumed that the unlabeled 
part has the same class distribution as 
the labeled part of data. 

• Need approach when one modality is 
labeled and the other is unlabeled 

• Develop multimodal semi-supervised learning 
methods to handle class imbalance and bias and 
test those for missing and noisy modalities. 

• Measure model performance with a single 
modality, both labeled, and one labeled and 
another unlabeled. This is to check if domain 
knowledge in unlabeled modality supports co-
learning.    

Weakly 
supervised 

• It needs to identify relationships 
among the modalities, which may not 
be possible or correct.  

• It uses standard tools (like pre-trained 
object detectors to capture objects in 
an image), and overall performance 
depends on standard tools’ 
performance.     

• Experiment with different degrees of 
supervision to arrive at the preferred level (i.e., 
component, concept). 

• Create recommendations on the type of 
knowledge (e.g., objects, color, context) to be 
extracted from available modalities to create 
supervised relationships.  

Un-
supervised 

• The performance of the unsupervised 
multimodal models depends upon the 
kind of supervised information 
available in the data structure itself. 

• Enhance established techniques from vision 
domain to multimodal domain, i.e., contrastive 
learning with data augmentation without any 
supervised data. 

7.8 Multimodal domain adaptation 

Domain adaptation is a step towards the generalization of machine learning models 
that can use available data from one domain to predict tasks with fewer data from another 
domain. Multimodal domain adaptation can take advantage of a large amount of 
multimodal data available on the web. Multimodal domain adaptation fulfills co-learning 
objectives as it deals with missing and noisy modalities supporting different distributions 



in source and target domains. The open problems and future directions in multimodal 
domain adaptation are as in Table 16.  

 
Table 16: Open problems and future directions in domain adaptation objective 

Problem Area Problem Description Future Directions 
Domain 
Datasets  

• Availability of multiple domains labeled 
datasets is a challenge for domain 
adaptation’s success.  

• Domain datasets with different modalities 
at source and target are not available. 

• Create multiple domain multimodal 
datasets using weakly supervised and 
unsupervised multimodal deep learning. 

• Curate auxiliary datasets with relationship 
to source and target datasets. These are 
required as a prior for meta-learning.  

 

7.9 Multimodal interpretability and fairness 

Users demand reasons for machine learning-based decisions across walks of life. 
Models need to be interpretable and explainable in their work. The initial focus has been 
on unimodal applications, and now multimodal interpretability and explainability are 
being investigated [132]. 

Bias gets introduced through various sources, impacting the fairness of machine 
learning models [132]. Bias can be of different levels such as sentence-level or embedding 
level, and sometimes model replicates and amplify bias in the data. Multimodality 
increases the chances of bias as each modality, besides having heterogeneous nature, can 
be subject to bias sources. Removal of bias is a challenging task; despite using pre-training 
on 400 million image-text pairs of data, CLIP [142] still has a social bias in the model. 
There has been good progress in understanding fairness and bias in unimodal models 
than multimodal models. Some of the problems and future directions for multimodal 
interpretability, explainability, fairness, and bias are highlighted in Table 17. 

 
Table 17: Summary of challenges and future directions in interpretability and fairness objective 

Problem Area Problem Description Future Directions 

Interpretability and 
Explainability 

• Lack of tools to measure multimodal 
interpretability and explainability 
like the ones evolved for unimodal 
applications. 

• As observed in VL models, there is an 
inherent bias in multimodal 
applications towards a certain 
modality. 

• Develop interactive tools to measure 
multimodal interpretability and 
explainability, which can take human 
feedback and correct themselves.  

• Avoid human bias by having multiple 
human inputs or setting dynamic and 
adaptive limits. 

• Use domain knowledge with graph-
based methods to improve 
interpretability and explainability. 

• Measure robustness of explainability 
techniques for co-learning objectives - 
adversarial perturbations, missing 
modalities, and noisy conditions.  

Bias and Fairness • Definition of fairness score for the 
multimodal system is not available.  

• All biases are not well represented; 
e.g., race and gender are mostly 
covered in various applications. 

• The impact of the increase in 
modalities and implementation of 

• Create definitions of fairness score 
based on bias in algorithms, data, and 
models for multimodality or an 
approach to combine unimodal fairness 
scores. 

• Have a common framework to test the 
fairness of multimodal models like 



co-learning objectives on bias and 
fairness is not well understood. 

FairCVtest and balanced datasets like 
FairFace [143] even for missing and 
noisy modalities scenarios 

• Consider all possible biases, including 
those trivial for humans, and test those 
using co-learning techniques. 

 
 

7.10 Summary of open problems and future directions for multimodal co-learning 

In this survey, we discussed multimodal deep learning challenges which are pertinent 
to co-learning and challenges faced by researchers to achieve multimodal co-learning 
objectives. Lack of common representation, availability of multimodal datasets, and lack 
of evaluations tools and techniques are three key open problems in multimodal deep 
learning relevant for co-learning. The key open problems in multimodal co-learning are - 
all multimodal models should support missing modalities at training and testing fully or 
partly, need mechanisms to measure the amount of co-learning among the modalities, 
implementation of co-learning for non-parallel modality data, utilize co-learning to 
handle label and data noise conditions, reduce dependency on labeled data, availability 
of multiple domain datasets for domain adaptation, and to ensure interpretability and 
fairness along with co-learning objectives. These keys challenges are summarized in Table 
18.   
 

Table 18: Summary of challenges and future directions for multimodal co-learning 
 

Problem Area Problem Description Future Directions 

Representation Existing multimodal representations 
are task dependant and limit their use 
across different tasks and modalities. 

Design configurable representation to 
process varied modalities using pre-
trained multimodal models. 

Datasets  Available datasets are small in sizes, 
for selected applications and domains, 
and in the controlled environments 
only. 

Leading researchers and institutes 
should collaborate to create open 
multimodal datasets taking advantage of 
the internet along with synthetic data 
techniques.   

Evaluation  Require performance evaluation 
metrics and tools specific to 
multimodality and to assess co-
learning objectives.   

Create performance and robustness 
measures and report their baselines for 
major tasks. 

Missing and 
Noisy Modalities 

Models are not designed to handle 
real-life conditions of missing and 
noisy modalities. 

Design and test all multimodal models 
for missing modalities and noise 
conditions by creating APIs in deep 
learning library  

Paired and 
Labelled data 

Dependency on paired and labeled 
data to achieve co-learning in 
multimodal applications 

The ability to process longer sequences 
and utilize domain knowledge without 
annotation is required. 

Interpretability 
and fairness 

Ensuring interpretability and fairness 
along with co-learning objectives 

Measure if missing and noisy modality 
impacts interpretability and fairness 
scores. 

 
 

8. Conclusion 
In this survey, we presented a systematic review of the literature on multimodal co-

learning for its objectives, taxonomy, current implementation methods, applications, 



datasets, open problems, and future directions. We have carried out an in-depth and 
comprehensive survey on multimodal co-learning along with a detailed taxonomy 
including objectives, categories and sub-categories. Taxonomy includes multimodal co-
learning objectives – the presence of modalities, data parallelism, noisy modalities, 
modality annotations, domain adaptation and interpretability and fairness.  

Throughout the paper, we have identified and discussed the representative studies 
that implemented co-learning objectives and listed modalities involved. We believe that 
the proposed taxonomy will help researchers to check if all aspects of co-learning are 
considered and direct their efforts to meet those. Further, we highlight the recent 
multimodal deep learning methods, which are evolving and can be future directions for 
multimodal co-learning. We hope this survey will help the audience understand the co-
learning objectives, current research progress, and significant background for future 
research. 
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