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Abstract: 
 

The impact of ICT (information and communication technology) on economic 

performance has been the subject of academic research for several decades, and 

despite the remarkable and significant innovation in computer technology, usage, 

and investments, only a small growth in productivity was observed. This 

observations has been coined the productivity paradox. This paper meta-analytical 

methods to examine publication bias and size of ICT elasticity. The empirical part is 

based on a collection of more than 800 estimates of IT payoff effects from almost 70 

studies written in the last 20 years. The meta-analysis reveals strong presence of 

publication bias within ICT productivity literature and using mixed effect multilevel 

model estimates the ICT elasticity to be only 0.3%, which is more than ten times 

smaller than what was reported by previous meta-analysis 10 years ago. 
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1 INTRODUCTION

1 Introduction

Economic significance of productivity is well established and productivity as such is an indivisible part
of economic theory. Even Adam Smith discussed the importance of productivity in his literary work
Wealth of nations, published in 1776. Productivity determines wealth and economic growth and is also
an indicator of competitiveness. The level of productivity creates foundations formanagement decisions
not only at firm level, but also at the national level for policy makers. Productivity growth is a desirable
outcome of development and technological progress. In the second half of the twentieth century Infor-
mation and communication technology (ICT) gained in importance in production processes, especially
with the emergence of the so-called “new economy” (service-based economy) in the last decades of the
previous century.

Economics tries to find the most effective allocation of resources and ICT is more and more embed-
ded into the production process. The obvious question is how large are the gains from this production
factor? Are the gains worth the investments? In the 1980s, studies found no evidence of increased
productivity due to ICT investments (Mahmood & Mann, 1993). In 1987 Robert M. Solow, the Nobel
laureate in economics, wrote in a book review that: “You can see the computer age everywhere but in
the productivity statistics”. His famous quip may have been the starting point of decades of research
and discussions on the influence of the ICT on productivity. Economists such as Brynjolfsson (1993),
Harris (1994), Willcocks and Lester (1996), Brynjolfsson and Hitt (1998) point to this phenomena as the
“productivity paradox”, which is discussed in section 2 of this paper.

Attempts to explain why empirical results are contradicting the economic theory followed. David
(1990) put the productivity paradox into historical perspective by comparing computers to steam en-
gines and electricity. These inventions needed decades until their contribution became visible and the
same holds for computers, which are the backbone of ICT today. Such technology is called the General
Purpose Technology (GPT). Brynjolfsson (1993) formulated and discussed four possible reasons why
empirical literature failed to find positive returns of ICT investments. Later on Triplett (1999) discussed
seven possible explanations for Solow’s productivity paradox and empirical evidence dismissing the
paradox such as Oliner and Sichel (2000) followed. Dedrick, Gurbaxani, and Kraemer (2003) provided
a narrative review of published research and evidence from more than 50 articles refuting the produc-
tivity paradox. Kohli and Devaraj (2003) were the first to summarize empirical results at the firm level
in a meta-analysis and clearly stated that there is no productivity paradox. Later, Stiroh (2005) in his
meta-analysis included studies based also on more aggregated data and mentioned possible publication
bias among the results, but didn’t take any steps to check for such bias.

The size of the effect is important for businesses as well as for academia. In order to undertake
the best investment decisions, businesses need to know how ICT investments will influence the pro-
ductivity and if such estimate is biased in any direction then resources will be allocated inefficiently.
Investment decisions are based on returns and therefore precise and unbiased estimates are demanded.
For academic purposes, it is important that research produces unbiased results in the same way that for
economic theory it is important that data we have do correspond with what the theory expects. If this is
wrong, we need a different theory or different assumptions. If we are able to explain why results differ
among the literature, we can provide a very important information for researchers. As soon as key spots
of differences are identified, we can take a closer look at them and enhance current knowledge about
the topic.

How large are the productivity effects of ICT capital? We need to draw aside the shadow of bias to
answer such question properly. Stiroh (2005) said that: “evidence clearly points to a positive productiv-
ity effect from IT”, but we could compare this to the area of European monetary union and trade benefits.
So called Rose-effect also clearly pointed to a positive effect of European monetary union (EMU) (Rose,
2000), but Havranek (2010) found no significant return of EMU after he took publication bias into ac-
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2 PRODUCTIVITY PARADOX

count. Theory of currency unions expects that after integration the common trade will increase and this
argument is widely used in politics to promote such type of integration. Havranek’s (2010) examination
discovered skewed distribution of the estimates and subsequently no significant genuine effect¹. For
other monetary unions, the effect was found to be positive and significant. Possible explanation is that
European Union creates such a close type of integration that there are no significant gains from the
common currency. The same might be the case of ICT, with the studies in the 80s being right and the
only positive effect we can see in the literature is caused by the publication bias. These two concepts,
productivity paradox and the publication bias, create basis of this paper. From that stems the research
questions of this paper: Does publication bias influence productivity paradox? What is the true effect²
size of ICT investments on productivity?

In order to analyse available empirical results empirically again, meta-analytic methods which we
used in this paper have been developed. Meta-analysis also makes it possible to test for presence of
publication bias, therefore we can test the hypothesis made by Stiroh (2005) that such bias exists among
productivity paradox oriented literature. Furthermore meta-analysis allows us to estimate the true size
of the underlying effect even if publication bias is present. This paper therefore follows Dedrick et al.
(2003), Kohli and Devaraj (2003), Stiroh (2005), Stanley (2008) and uses meta-analytical technique to
test for publication bias in the literature about the productivity paradox, and also tries to explain how
different study characteristics influence the size of the estimate of the effect size of ICT investments on
productivity.

Compared to the previous studies in the area of meta-analysis and IT productivity payoff, performed
by Kohli and Devaraj (2003) and Stiroh (2005), there are several aspects that make this paper unique.
Firstly, publication bias treatment has not been done yet. Secondly, never have all the estimates from
each study been collected, so modern econometric framework, taking between study heterogeneity into
account, has not been used in this area of research until now. Thirdly, the only focus of Kohli and Devaraj
(2003) and Stiroh (2005) was to show differences between studies and thus determine what explains the
heterogeneity of the results, but this paper also targets to find the effect size of the IT payoff. Fourthly,
this study is the first one, to estimate the effect at the firm level using meta-analysis.

This paper begins with the productivity paradox as such, the next part of this paper is devoted to
meta-analysis, an econometric technique that is used in the empirical part. Having described theoret-
ical framework and background of the research, data is introduced, regressions performed, and that is
followed by a description of results from conducted analysis. Interpretation of the results together with
final notes conclude.

2 Productivity paradox

Productivity growth arises from innovation and development of new production methods, procedures
and technology. Therefore ICT as a new technology was expected to boost productivity. However,
the initial results were inconclusive (Barua, Kriebel, & Mukhopadhyay, 1995; Teo, Wong, & Hui Chia,
2000) and hardly any positive effects of Information technology (IT) investments on productivity were
found. This paradox is called the productivity paradox, more precisely and formally defined by Turban,
McLean, and Wetherbe (2002, p. 592) as: ”The discrepancy between measures of investment in infor-
mation technology and measures of output at the national level.” Methods and models used to analyse
the quantitative data are mostly based on the neoclassical production theory that clearly predicts the
sign and magnitude of capital’s elasticity: in case of constant returns and competitive markets, elasticity
should be equal to the share of the factor. Initially, however, this relationship was not found in the data.

¹ Meta-analytic techniques connected to the publication bias and distribution of estimates are discussed in section 3 of
this paper.

² In meta-analyses “true effect” and “genuine effect” are interchangeably and commonly used terms identifying the under-
lying effect of the examined phenomena.
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2.1 Production process modelling 2 PRODUCTIVITY PARADOX

The productivity paradox opened up a wide debate, the continuous examination of the topic, and
also attempts to explain the theory contradicting results (Dedrick et al., 2003; Stiroh, 2005; Draca,
Sadun, & Reenen, 2006). First pieces of economic literature trying to clarify the paradox were of a nar-
rative and descriptive nature, then studies like Thatcher and Oliver (2001) employed microeconomic
theory and models, and also theoretical estimations of the elasticity of IT investments using simulated
data have been conducted by e.g. Yorukoglu (1998). Narrative explanations provided first by Baily, Gor-
don, Nordhaus, and Romer (1988), David (1990), Brynjolfsson (1993) and later by Triplett (1999), David
(2000), Horzella (2005), can be divided into three general categories, or perspectives, depending on how
they approach the productivity paradox: 1) measurement problems 2) context and mismanagement 3)
ICT as GPT. The researchers tried to reason why non-significant empirical results were found. Narrative
works were followed by empirical findings which create a base for our research.

Because of the huge research interest in IT payoff, researchers have done a few narrative studies
summarizing IT productivity, but let us focus on the empirical ones. Kohli and Devaraj (2003), unlike
a standard meta-analysis, do not examine the effect size, but only the research factors that contribute
to discovering a relation between IT and firm performance. Authors use a wide range of literature,
and use data from various research approaches and models. Therefore, only the signs of explanatory
variables having any effect can be interpreted, not the magnitude. Additionally to that, they mainly
compare studies reporting positive and negative estimates regardless of the magnitude of the effect.
Stiroh (2005) estimated also the underlying true effect – the elasticity of ICT investments – based on
the previous results. He calculated the pure arithmetic mean value from 20 estimates in range between
−Ͱ.ͰͶ and Ͱ.Ͳʹ, and got a result equal to Ͱ.Ͱ͵ʹ and using fixed effects and Ordinary least squares (OLS)
method he got significant estimate of Ͱ.ͰͶ͵. In this study, the researcher uses both firm level and more
aggregated level studies (industry and national), which is not done by Kohli and Devaraj (2003) nor by
this paper. Since we discussed IT payoff and meta-analysis research, we would like to mention also a
related study done by Lim, Dehning, Richardson, and Smith (2011). The focus of the authors is the effect
of IT on firms’ financial performance. This study uses again only one estimate per paper and does not
use regression techniques, only correlations and significance testing.

2.1 Production process modelling

To analyse contribution of factors of production to the output it is necessary to describe the produc-
tion process mathematically and create an economic model. We can simply imagine the process as a
functional relation between outputs and inputs. Therefore, the most used approach by economists to
the model production process is using specific production functions which algebraically formulate the
relation between inputs and outputs. A simple version of an aggregate production function that puts to-
gether similar inputs was described by Solow (1957) in form that is depicted in equation 1. Q represents
output, K capital, L labour, A is multiplicative factor, which captures technological development that
determines how efficiently inputs are used to produce output, and f(·) represents functional relation.

Q = Af(L,K) (1)

Standard approach in the economics literature is to consider Cobb-Douglass production function (Bryn-
jolfsson & Hitt, 2000; Stiroh, 2005; Venturini, 2009), expressed as:

Q = AKαLβ α, β > Ͱ (2)

For econometric estimation the logarithmic form (eq. 3) of the Cobb-Douglas production relation is
more useful. Coefficients of interest are α and β, which denote elasticity of capital and labour respec-

4



3 META-ANALYSIS AND PUBLICATION BIAS

tively.
lnQ = lnA+ α lnK+ β ln L α, β > Ͱ (3)

To estimate the effect of ICT, we need to separate capital into ICT (KICT) and non ICT (KICT). Next to
it studies may vary in additional firm or industry specific inputs (M) that are part of the production.
The simplest form of production function used for estimation that includes above mentioned 2 types of
capital, labour and intermediate inputs is depicted in equation 4, where ε stands for disturbance term.

lnQ = α + βIT lnKIT + βnonIT lnKnonIT + βL ln L+ βM lnM+ ε (4)

In general, using model 4 augmented by several inputs, we are able to determine how each factor
influences the production. Effects that are measured by the presented framework are mostly direct, but
since ICT costs are from its nature investments, indirect effects (spillovers) are also present. Evidence
about indirect effects provided e.g. Mittal and Nault (2009) or Han, Chang, and Hahn (2011), but in our
analysis we focus on direct effects which are important for decision making of individual firms.

3 Meta-analysis and publication bias

In his pioneering work Glass (1976, p.1) defined ”meta-analysis” as the statistical ”analysis of analyses”,
a tool for integrating findings from collection of individual studies, which is exactly what we are going
to do. Only models used in the empirical part are presented, see e. g. Nelson and Kennedy (2009) or
Stanley, Doucouliagos, and Jarrell (2008) for a more complex overview of contemporary methods used
in meta-analysis. The basic idea of meta-analysis is to examine factors that influence research results
of some phenomena. The dependent variable is the effect size of each estimate, while the independent
variables consist of various information about each study like data characteristics, method used for
analysis, sample size, sometimes even the occupation of the researcher.

Studies provide estimates of different sizes, and in cases when the variance of the results is too large
to be justified by the disturbance terms, we speak about between study heterogeneity. We try to explain
this heterogeneity by specific differences between the studies. Thus, we code properties of the studies
into variables, and later on we test for the presence of heterogeneity. As Christensen (2003) describes,
there are two general types of heterogeneity present in the research: factual and methodological. Fac-
tual heterogeneity concerns real differences in the effect due to actual differences in the tested sample,
for example when a study was conducted at a different time or in a different country. In our case of ICT
capital, there could be a difference between developing countries, where the economy is based on man-
ufacturing, and developed countries with a service oriented economy. Methodological heterogeneity is
the result of different study approaches, it could be models used, data characteristics, or econometric
methods. Christensen (2003), Nelson and Kennedy (2009) present two common ways of how to deal
with the heterogeneity in the data. The first one uses moderating variables and meta-regression to de-
tect the sources of the heterogeneity, the second approach uses Random effect size (RES) models. This
paper uses both methods, but RES model is replaced with mixed effects model.

Sterne, Gavaghan, and Egger (2000) argue that published results are biased due to publication or
selection bias. Such bias stems from researchers’ motivation to get their work published. This means
to provide results that are unlikely to be rejected by journals’ reviewers. If the outcome of an empirical
study is not in line with the underlying economic theory then something is wrong and reviewers would
require proper explanation. It is easier to select such form of model or data that fits the expectations.

C. Doucouliagos and Stanley (2011) focused on publication bias, gathered and analysed several thou-
sands of estimates from approximately three and half thousand separate empirical studies from ͸ͷ dif-
ferent areas of empirical economic research (productivity paradox was not included). Large part of those
fields has been found to be burdened by publication bias. Especially macroeconomic research contained
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4 MODELS

evidence of severe selectivity that significantly distort empirical findings. This is a very serious problem
which might also be present in the productivity paradox literature.

When we want to determine which study characteristics influence the results, we might overlook
an important factor that might cause significant bias of the outcome – the researcher. Stanley (2005)
has for publication bias two categories. If the main motivation of the researcher is to get published,
findings contradicting previous studies or such that are in conflict with the theory may get concealed.
In many cases different model specification produces completely different outcome and thus modifying
of the model or data until results are acceptable can occur. Any modification (e.g. restraining dataset
or model modification) to obtain results that are in line with the theory is labelled as publication bias
of type I. Adjusting of models may also happen in case standard procedure has insignificant outcome
and it is not the deserved outcome. Type II of publication bias can be therefore described as reaching
the statistical significance no matter what the effect size would be.

Handling of results needs to be measured and taken into account when conducting empirical sum-
maries. Saying that such practices are common in all areas of research would be too strong, but we can
formulate a similar hypothesis, which can be tested and accepted or rejected. Hypothesis that a large
part of economic studies is affected by publication or selection is tested and supported by H. Doucou-
liagos and Stanley (2008). In their work based on Ͷ͵ distinct empirical economic literature, involving
approximately two thousand separate empirical studies. This only confirmed that publication bias has
been a serious issue in the empirical economics research (Long & Lang, 1992; Card & Krueger, 1995;
Ashenfelter & Greenstone, 2004; Stanley, 2005). Publication bias is usually detected using two methods
– graphical and quantitative. The first one is an informal examination but in some cases (e.g. publica-
tion bias in effect of currency unions discovered by Rose and Stanley (2005) and confirmed by Havranek
(2010)) provides sufficient evidence. Econometric methods can not only discover the presence of the
publication bias but also estimate the true effect beyond (Hunter & Schmidt, 2004).

4 Models

In empirical part models 8 and 9 are used. The logic behind those models is explained step by step in
the following part. The funnel plot, also called funnel diagram, is widely used in meta-analyses mainly
as a tool for detecting possible publication bias (Egger, Smith, Schneider, & Minder, 1997; Sterne, Egger,
& Smith, 2001). Individual observations (estimates of effect sizes) are plotted on the horizontal axis
against a measure of the precision, mostly inverted standard error or the square root of sample size,
on the vertical axis. Large studies will show lower variation then small studies that are less precise.
This should generate a plot that looks like an inverted funnel with the most precise estimates (with the
shortest confidence intervals) on the top and less precise estimates on the bottom. Theory of funnel
symmetry originates in the idea that there is one underlying population value – it can even be zero –
and probability distribution that would converge to normal distribution with the mean value equal to
the underlying true effect. In case of funnel asymmetry, especially when the plot is skewed or one side is
missing, we should be suspicious of publication bias. On the other hand, the apparent symmetry might
not foreclose the publication bias. Extensive description of funnel plots is provided by Stanley and H.
Doucouliagos (2010).

Econometric testing for publication bias follows this logic, thus if reported estimates are dependent
on their standard errors (Card & Krueger, 1995):

bi = β + αͰ · sei + ui, ui|sei ∼ N
(
Ͱ, δͲ

)
(5)

In the model 5 the estimate bi depends on its standard error (sei). The degree of dependence is measured
by the coefficient αͰ, which represents the degree of the publication bias and if it is significant, we have
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4 MODELS

a formal proof for funnel asymmetry. However, model 5 suffers from heteroskedastic sei. To solve this
issue, we follow recommendations of Stanley et al. (2008), who suggests the usage of Weighted least
squares (WLS) in the form of where standard errors are used as weights which will result in dependent
variable to be t-statistic:

bi
sei

= ti =
β
sei

+ αͰ + ξ i, ξ i|sei ∼ N
(
Ͱ, σͲ

)
(6)

There is also an issue of within study heterogeneity. Studies usually present more than one estimate
of the effect size. Estimates thus share the same dataset, methods and are likely to be highly correlated,
and as a result, we cannot handle them as independent values. This issue has been known for a long
time (Stanley & Jarrell, 1989). Examples and discussions how to solve possible dependence can be found
in Johnston, Besedin, and Wardwell (2003), Bateman and Jones (2003), Bickel (2007), Gelman and
Hill (2006), Hox (1995), Hox and Leeuw (2003), Peters et al. (2010) and the mostly used remedy
is described by Nelson and Kennedy (2009), H. Doucouliagos and Laroche (2009) and called mixed-
effects multilevel model. As Nelson and Kennedy (2009) further elaborate, the mixed-effects multilevel
model is analogous to the random-effects model widely used in panel-data econometrics. Mixed-effect
model is a combination of models with fixed effects (β) and random part

(
ζ j
)

that gives the flexibility
to the model and is therefore better for meta-analytic purposes. It considers diversity of the data and
also allows multiple random effects. Extending model 6 we obtain model following Havranek and Irsova
(2011):

tij =
β
seij

+ αͰ + ζ j + εij, ζ j|seij ∼ N (Ͱ,ψ) , εij|eij ∼ N (Ͱ, θ) (7)

In the final specification of model (7) j and i denote index of the study and of the estimate within the
study, t-statistics are therefore analogically labelled (tij). As we have j studies we have in total J =

∑
Jj

estimates. The overall error term (ξ ij) consists of study-level random effects (ζ j) and estimate distur-
bances (εij). We assume independence of both values thus we can simply sum their variance to get the
composite error: Var

(
ξ ij
)
= ψ + θ with θ being within-study variance and ψ between study variance.

The closer the value ofψ is to zero, the less advantageous is the usage ofmixed-effects framework instead
of OLS.

Since the aim of this paper is not only to determine effect of ICT investments, but also to explain
the variation of reported values, we use characteristics of individual studies and following Stanley and
Jarrell (1989), Stanley et al. (2008) add vector of explanatory variables Zk to model 7:

tij =
β
seij

+ αͰ +

K∑
k=ͱ

γkZkij + ζ j + εij, ζ i|seij ∼ N (Ͱ,ψ) , εij|eij ∼ N (Ͱ, θ) (8)

Explained variable is the t-statistic and not the estimate of effect size, but since we are interested in
sign and significance of coefficients, it does not raise any concerns.

As we aim at finding also the magnitude of the ICT payoff, we follow Stanley and C. Doucouliagos
(2007), Havranek, Irsova, and Janda (2012), Stanley and H. Doucouliagos (2014) and augment model 7
by additional standard error variable (which stems from the possibility that standard errors effect can
be quadratic), which results in so call Heckman meta-regression.

tij =
β
seij

+ αͰ · seij + ζ j + εij, ζ j|seij ∼ N (Ͱ,ψ) , εij|eij ∼ N (Ͱ, θ) (9)
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5 DATASET

where β reports the magnitude of the underlying effect corrected for the publication bias. This last
specification completes framework needed for our analysis. In the next part, dataset used for that is
described.

5 Dataset

For our purposes no dataset exists, and thus all data had to be retrieved manually. Base for the list of
studieswas provided by the twometa-analysesmentioned in the introduction, namelyKohli andDevaraj
(2003) and Stiroh (2005). Getting all studies used by Stiroh (2005) was without any problem³, though
not all of them were used due to level of data aggregation. On the other hand, retrieval and usage of
studies included in the second meta-analysis by Kohli and Devaraj (2003) was more problematic. First,
we were not able to get the complete list of studies due to limited availability⁴ and secondly some of
the studies were not suitable for this meta-analysis – reasons are described in the following paragraphs.
Since researches are still investigating effects of ICT on productivity, the literature sample was further
extended by searching on RePEc website. This database not only covers all journals⁵ used by the two
previous studies but also extends the searching area.

Search criteria followed previous empirical studies who took included only papers written after 1990,
and therefore search was focused on “productivity paradox”, “ICT productivity” and “information tech-
nology”⁶, and only items with empirical firm level research written in English since 1990 were taken into
account. This search restriction makes this study comparable to the previous research.

For proper meta-analysis it is important to have a coherent research design so we can compare the
results, especially when we focus on publication bias. We checked whether all studies use the produc-
tion function framework as introduced in the second chapter, and work with ICT capital as a separate
explanatory variable, thus we excluded papers testing probability of e.g. product innovation via probit
or logit models. Next, we only included studies that somehow calculated the value of the ICT capital –
therefore we did not take into account studies using only dummy variable for usage or non-usage of IT
like e.g. Atrostic and Nguyen (2005). All these restrictions are needed for the studies to be comparable
and suitable for an aggregated analysis, and that is also the reason why several studies which Kohli and
Devaraj (2003) used were excluded due to an inconsistent framework.

We need a framework where we can observe ICT elasticity, therefore log-log or translog models, as
we cannot compare coefficients’ estimates to e.g. level-log models. Let us recall equation 4:

lnQ = α + βIT lnKIT + βnonIT lnKnonIT + βL ln L+ βM lnM+ ε

For us, the important coefficient is βIT which is the elasticity of IT capital, in other words it tells us
that increase in KIT by 1 percent increases Q by βIT percent. We focus on ICT investments related to
productivity or profitability, therefore studies analysing e.g. effect of ICT on the technological progress
represented by some index could not be used. Neither studies where the target is to lower something –
e.g. mortality (Devaraj & Kohli, 2003) or measures on scale of e.g. process changes (Grover, Teng, Segars,
& Fiedler, 1998) or production hours (Kelley, 1994) can be used. Additionally, studies using pure growth

³ Additionally e.g. study Brynjolfsson and Hitt (2000) was replaced by Brynjolfsson and Hitt (2003) as it is a newer and in
a journal published version.

⁴ Availability issue relates mainly to dissertations, studies retrieved from books, and articles published in journals not
accessible from Charles University.

⁵With the exception of Information SystemsResearch, Information&Management and Journal ofManagement Information
Systems, which were searched using isr.journal.informs.org

⁶ Exact search query used in RePEc was firm + ((information + technology + (productivity | payoff)) | (productivity +
paradox) | (ICT + (productivity | payoff ))) + estimate and also term ((information+technology)|ICT)+ investment + firm +
productivity, searched in abstract since 1990.
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accounting approach or correlations only like (Kivijärvi & Saarinen, 1995; Lubbe, Parker, & Hoard, 1995)
and therefore no regression were excluded, as we do not have the precisions indicators in such studies.

In total, we identified 49 published studies and 19 working papers. These 68 works written between
1992 and 2012 report more than 830 estimates of IT elasticity. To get an idea about the size of those
numbers we can compare them to the numbers from Nelson and Kennedy (2009) who report mean
and median of 191 and 92 observations and mean and median of number of studies equal to 42 and 33
respectively. All those values are based on the survey consisting of 125meta-analyses. Our sample greatly
exceeds both indicators. The list of the studies together with the number of estimates and indication if
they were previously used in one of the mentioned meta-analysis is presented in table A3.

After suitable studies were identified, gathering and coding of all variables was carried out. The
most important variables were of course the estimate of ICT elasticity and respective t-statistic, standard
error or significance level only when reported. If neither the significance level nor any other measure of
precision was reported, the estimate was dropped (17 observations). Various measures of productivity
can be used at firm-level, thus we created two groups of dependent variables and coded the measures
according to it. The first group aggregates productivity measures such as output or sales and second
group is related to profitability, thus mostly financial measures like Return on asset (ROA) or Return
on equity (ROE). In most cases, the industry type was not reported or industries were mixed, thus the
dummy for services and production types of industry was not used.

As the main target of this paper is to determine publication related effects, variables that are likely to
have influence on the effect size were collected – econometric method used for estimation, sample size,
data source, time span and average year of the data in the sample. Primary connected to the publication
bias, we are not only interested when and if the work was published or not, but also how the study is
further used. As a proxy we use the number of citations of the study provided by Google Scholar in early
November 2012. Using absolute number of citations would handicap newly published works, thus we
normalize the number of citations using the year of publication. Journals or other place of publication
were also coded which will allow us use the multi-level mixed-effects model. Regional differences are
captured in region dummies – we created 2 main regions based on the data source: US and the rest of
the world. Table A2 provides list of variables used.

5.1 Data description

We collected a pretty much complete data matrix⁷: number of observations in the studies varies from 24
to 36305 (Tambe & Hitt, 2012) and an average study uses 2609 observations for estimates. We gathered
most estimates (113) fromBrynjolfsson andHitt (2003), but half of the studies report less than 9 estimates
of the effect size. Average and median of publication year is 2002 – this year the dataset for the last
meta-analysis by Stiroh (2005) ends. In total, we identified 64 Journals and working paper sources and
21 sources of data. 39 studies – more than the half – have not been used before for meta-analysis of IT
productivity. Further basic dataset description is provided in table 1.

Table 1: Basic dataset description

Min Max Mean Median

γ̂ per study ͱ ͱͱͳ ͱͲ ͹
observations in study Ͳʹ ͳͶͳͰ͵ ͲͶͰ͹ ͱͰͷʹ
time span ͱ ͳͰ ͷ Ͷ
γ̂ – estimate of IT elasticity
numbers are rounded to the nearest integer

⁷We were not able to determine only the sample size for Steindel (1992), but it should not affect the results much
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A bit closer look on collected estimates is provided in table 2. We divided the estimates into groups
depending on some of the characteristics related to publication bias. The minimum and maximum
values are in all samples far away from the mean value. The highest estimates - close to one - are from
Rai, Patnayakuni, and Patnayakuni (1996). This study uses the whole Information systems (IS) budget
and the production function lacks several explanatory variables. The next highest results come from
Zwick (2003), where the anomaly is caused by Maximum likelihood estimation (MLE) method and data
selection procedure. Results on non-selected data are around 0,05 when estimated with OLS method.
The other side of the interval, with largely negative values, is covered by Paton, Siegel, and Williams
(2004) who conduct a case study of the gaming industry.

Table 2: Descriptive statistics of the dataset – elasticity estimates

Mean Std. Dev. Min Max Average∗ Obs

Full sample Ͱ.ͰͶ͵ͳ Ͱ.ͱͳ͹Ͱ −ͱ.ͱͲʹ Ͱ.͹͹ʹ Ͱ.ͰͰͳ͵ ͸ͳ͵
Kohli Ͱ.ͰͷʹͰ Ͱ.ͱ͹͸͵ −Ͱ.͵ͱͶ Ͱ.͹͹ʹ Ͱ.ͰͱͱͰ ͱͳͳ
Stiroh Ͱ.Ͱͳͳʹ Ͱ.ͰʹͳͲ −Ͱ.Ͱ͸Ͷ Ͱ.ͲͲͲ Ͱ.ͰͰͳͳ Ͳ͵ͳ
new studies Ͱ.Ͱͷ͸Ͳ Ͱ.ͱʹͳ͸ −ͱ.ͱͲʹ Ͱ.͹͸ Ͱ.ͰͲͱͰ ʹ͹͵
Working paper Ͱ.Ͱ͵Ͱʹ Ͱ.ͱͶͳ͵ −ͱ.ͱͲʹ Ͱ.͹͸ Ͱ.Ͱͳͷͳ ͲͱͶ
Published Ͱ.ͰͷͰ͵ Ͱ.ͱͲ͹ͱ −Ͱ.͵ͱͶ Ͱ.͹͹ʹ Ͱ.ͰͰͳͲ Ͷͱ͹
∗
average = weighted average calculated using formula 10

Kohli – studies also included in Kohli and Devaraj (2003)
Stiroh – studies also included in Stiroh (2005)
new studies – not used by Kohli or Stiroh

One of the basic meta-analytic techniques is a calculation of weighted averages of all available esti-
mates. Such approach to IT productivity literature was done by Lim, Richardson, and Roberts (2004) but
the aim of this work was to determine differences between specific groups of firms, not to find out the
underlying true effect of ICT investments. Calculated weighted average for each group is also included
in table 2 using formula 10. As weights the inverted variance of the estimate is used.

rw =

∑n
i=ͱ wiγi∑n
i=ͱ wi

, wi =
ͱ

Var(γi)
(10)

Weighted averages are much smaller than simple averages and there is no common ration for all
groups, thus smaller mean in one group does not necessarily results also in smaller weighted average,
like for working papers. On average working papers report smaller effect size than published papers, but
weighted average of published estimates is less than half of weighted average of working paper estimates.
The more precise values count more and the more the estimate is close the zero, the more precise it has
to be, in order to be significant at generally respected 5% significance level. There is also difference
between studies selected by Stiroh (2005) and Kohli and Devaraj (2003). The latter one uses studies
with higher and more diversified estimates (larger variance). Also studies that were not used in any
of those two papers contain on average higher effect sizes. This may be the time effect or e.g. due to
selection process. The main conclusion of the basic stratification of the data is that mean value of effect
size is around Ͱ.ͰͶ but weighted average is close to zero with values around Ͱ.Ͱͱ. If we use inverted
standard errors as weights, the values are around Ͱ.Ͱͳ.

As for the groups, weighted average was calculated for each of 68 studies with the weights equal to
inverse of variance. The result is depicted by the forest graph on figure 1, where the dashed line close
to zero represents the weighted average of all studies estimated with Fixed effect size (FES) method
(model 5) equal to Ͱ.ͰͰʹ with z-stat. = ͵Ͱ.ʹͳ. This is the simplest model used in meta-analysis, yet it
has some disadvantages. The most significant one is, that result is influenced by studies like Lehr and
Lichtenberg (1999) and Hitt and Brynjolfsson (1996) who report significant estimates very close to zero
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(Ͱ.ͰͰͰͶͱ and −Ͱ.ͰͰͰ͸ respectively). Weight of each study in the final result is illustrated by grey a
square in the figure, and above mentioned studies dominate above all other. For the other estimates,
squares and therefore the weights aremuch smaller. If we remove these two studies, we immediately end
up with a weighted average equal to Ͱ.ͰͲ͹ and z-statistic equal to ͱͳʹ.Ͷ. Without any data modification,
the basic model with random effect provides γ̂ = Ͱ.ͰͳͶ and CI = (Ͱ.Ͱͳʹ;Ͱ.Ͱͳͷ), z-stat. = ʹ͹.͵ʹ. We
can clearly see, how different methodology provides us with completely different result. This is the
reason why for the final analysis we use multilevel mixed effects model – estimates from each study
are mutually correlated because they are based on the same data set and methodology and have to be
treated that way. We combine the fixed effect within the study with random component among the
studies.
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Figure 1: Forrest plot – weighted averages γ by study
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6 Results

In case some of the estimates are more likely to be published, the simple arithmetic averages will be
deviated from the “true” value (Havranek et al., 2012). Figure 2 depicts the Epanechnikov kernel density
of the estimates as density plot is commonly used analytical tool. The distribution of estimates deviates
form the normal distribution represented by the dashed line. Since the normal distribution is a stan-
dard assumption in the meta-analysis framework for the absence of publication bias, striking difference
between plotted distribution of estimates and normal distribution leads to the suspicion of publication
bias presence. Assumption of normal distribution presence results from an econometric approach to
the estimates determination by researchers. With respect to the several sources of publication bias, its
presence should be one of the assumption for every meta-analysis (Stanley, 2005, 2008). To reject or
accept the hypothesis about publication bias presence, we will continue with graphical tests.
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Figure 2: Kernel density of estimates

Graphical tests provide the easiest and fastest way for publication bias detection. First, funnel plots
are depicted on Figure 3 for all studies and the detail on Figure 4. The size of estimates (on the x-axis) is
plotted against its precision (inverted standard error) on the y-axis. The vertical dashed line depicts the
value of Ͱ.Ͱͳ, which represents the weighted average when using inverse of standard error for weighting
the effect sizes. The detail view allows us to observe that the estimates are clouded more on the positive
part of the x-axis. A funnel plot usually identifies publication bias of type I – only estimates that fit the
theory are accepted, as described in section 3.
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To see the difference between studies included in last meta-analysis and this study, we can split the
sample by year 2002 (as mentioned in chapter 5.1). These two groups are of about the same size and
the difference is clearly observable. On one hand, the funnel graph on Figure 5, depicting estimates
from studies written before 2002, is more or less symmetric, but on the other hand Figure 6 depicts
an obviously skewed funnel graph. Mostly, the deviation from the symmetry is caused by “missing”
negative values of effect sizes, which is consistent with the type I of publication bias.
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Figure 5: Funnel graph – before 2002 Figure 6: Funnel graph – after 2002

Graphical testing of publication bias is vivid and possible selection can be easily revealed, but it is
necessary to verify the visual results with precise econometric testing. Formal testing for publication
bias use the same logic as graphical tests of funnel plots, as described in the previous section. We
estimated model 7 and for robustness check, OLS method with clustered standard errors was used (in
tables labelled as “Clustered OLS”). Table 3 summarizes the results. In all cases, publication bias is
positive and significant at 1% significance level in all specifications. Magnitude of the publication bias
is around 3, which according to H. Doucouliagos and Stanley (2008) means that publication bias is so
strong, that it can produce significant results even if there is no true underlying effect. Positive and
significant effect of ICT capital is found only for productivity using mixed-effects method and reaching
only Ͱ.ͰͰͳ, while effect on profitability is not significantly different fromzero. To estimate the true effect
more precisely, we use model 9 proposed by Stanley and C. Doucouliagos (2007), results are reported in
table 4. We again use mixed-effect method for estimation and clustered OLS with clustered standard
errors for robustness check.

Table 3: Publication bias testing

Mixed-effects multilevel Clustered OLS

Profitability Productivity All Profitability Productivity All

prec −Ͱ.ͰͰͰͰͶ͵ͳ Ͱ.ͰͰͲͶͷ∗∗ Ͱ.ͰͰͲͱ͵∗∗ −Ͱ.ͰͰͱͱ͹† Ͱ.ͰͰͲͳͶ Ͱ.ͰͰͱ͹ͱ
(effect size) (−Ͱ.Ͱ͸) (͵.Ͱͷ) (͵.Ͱ͸) (−ͱ.͸͹) (ͱ.ͱͲ) (ͱ.Ͱʹ)
Constant ͳ.Ͱͷͳ∗∗ ͳ.ͱͷͱ∗∗ ͳ.ͱͳͶ∗∗ ͳ.ͳͲͳ∗∗ Ͳ.ͷ͸ͱ∗∗ Ͳ.͹ͱͲ∗∗

(publication bias) (Ͷ.ͱͷ) (ʹ.ͲͰ) (͵.͵ͷ) (ͱͲ.ʹͷ) (ͱͰ.ͱͰ) (ͱͲ.͵ͱ)

Observations Ͳ͹Ͱ ͵Ͳ͸ ͸ͱ͸ Ͳ͹Ͱ ͵Ͳ͸ ͸ͱ͸
rmse ͳ.ͱͶʹ Ͷ.ͳ͹ʹ ͵.ʹ͹͵
t statistics in parentheses, for OLS clustered at the study level
† p < Ͱ.ͱͰ, ∗ p < Ͱ.Ͱ͵, ∗∗ p < Ͱ.Ͱͱ
Dependent variable: tstat
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Table 4: True ICT payoff

Mixed-effects multilevel Clustered OLS

Profitability Productivity All Profitability Productivity All

prec Ͱ.ͰͰͰͷ͹ͳ Ͱ.ͰͰͲͷͷ∗∗ Ͱ.ͰͰͲͲʹ∗∗ Ͱ.ͰͰͲʹͱ Ͱ.ͰͰͳͷͱ† Ͱ.ͰͰͳ͵͵†

(true effect) (Ͱ.͸͵) (͵.ͲͶ) (͵.Ͳ͸) (ͱ.Ͳ͵) (ͱ.ͷͰ) (ͱ.͸Ͷ)
se −͸.ͰͶ͵∗ −ͳ.Ͱͳ͹ −ͳ.͹͸Ͷ ͱ͵.ʹͷ∗∗ ͸.͹ͳͳ∗∗ ͱͰ.ͳͷ∗∗

(−ͱ.͹ͷ) (−Ͱ.ͷͷ) (−ͱ.Ͳ͸) (ͳ.͵Ͱ) (Ͳ.͸ͳ) (ͳ.͵Ͷ)

Observations Ͳ͹Ͱ ͵Ͳ͸ ͸ͱ͸ Ͳ͹Ͱ ͵Ͳ͸ ͸ͱ͸
rmse ʹ.ͳ͵ͱ Ͷ.͸͸ͷ Ͷ.ͱͱͱ
t statistics in parentheses, for OLS clustered at the study level
† p < Ͱ.ͱͰ, ∗ p < Ͱ.Ͱ͵, ∗∗ p < Ͱ.Ͱͱ
Dependent variable: tstat

Results in table 4 which are corrected for publication bias in line with findings reported in table 3.
Effect on profitability is found to be insignificantly different from zero and corrected effect on produc-
tivity is Ͱ.ͰͰͳ and significant at 1% level. These results are in strong contrast to weighted average of all
estimates, but is close to weighted average of published studies.

We found publication bias in the IT productivity literature, the highest reliable estimate of IT elas-
ticity being Ͱ.ͰͰͳ and some estimates not being significant even at 10% level. Our next question is
how study characteristics influence the results. Variables collected in the data gathering process will be
used in a simple explanatory Meta-regression analysis (MRA), which aims at heterogeneity of the esti-
mates. Disparateness between estimates from studies is given not only by some random error, but also
by other factors including data source or used methodology. Explaining differences between studies was
the main target of previous meta-analyses Kohli and Devaraj (2003), Stiroh (2005), but neither of them
considered publication bias. We also use all estimates from every study and even those estimates vary.
One of the limitation of meta-analysis is that we have only a limited number of possible explanatory
variables for this kind of differences and we cannot capture all of it mainly because of limited degrees
of freedom. Variables used in MRA are selected with respect to the previous studies and summarized
in Table A2. For heterogeneity modelling we used multilevel mixed effects model, specified in model 8
which is best suits for explaining diversity of studies.

Results of multilevel mixed-effect model (model 8) observing effects on productivity, profitability
are reported in Table 5. Explanatory meta-regression analysis is sensitive to its specification and the in-
terpretation of results is not straightforward. The dependent variable is the t-statistic, thus coefficients
of explanatory variables do not provide the magnitude of the effect, we can only interpret the sign and
significance. In case the coefficient is negative, corresponding variable underestimates the effect and if
the coefficient is positive than it results in an overestimation.

The findings are not revealing much evidence about factors influencing results: only a few of gath-
ered explanatory variables turned out to be significant and thus influencing research outcomes. Number
of observations used in regression for estimation is found to be meaningful. The higher the number of
observations (nobs), the higher also the effect. ICT effect on profitability is higher in the US than in the
rest of the world, but there is not difference in productivity. We found no difference between working
papers and published works. On 10% significance level specification for profitability finds lower effects
of IT when the dependent variable is normalized with labour. Interestingly, the length of the period
used for estimating the IT effects as well as average year (more recent studies) diminish the reported
effect on productivity.The number of citation references are also not related to the size of the effect
estimate as well as the methodology used.
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6 RESULTS

Table 5: Explanatory meta-regression analysis

Mixed-effects multilevel Clustered OLS

Profitability Productivity All Profitability Productivity All

prec −Ͱ.ͰͰͰͰͱͳͲ Ͱ.ͰͰͳʹ͸∗∗ Ͱ.ͰͰͲ͵͸∗∗ Ͱ.ͰͰͰ͸͸ͳ Ͱ.ͰͰͲͳͳ Ͱ.ͰͰͱͷ͸
(−Ͱ.Ͱͱ) (Ͷ.Ͳ͸) (͵.͹Ͷ) (Ͱ.ͷͰ) (ͱ.ͱͱ) (Ͱ.͹Ͷ)

nobs Ͱ.ͰͰͰͲͳͶ∗∗ Ͱ.ͰͰͰͲͷͰ∗∗ Ͱ.ͰͰͰͳͰͰ∗∗ Ͱ.ͰͰͰͲͳ͹∗∗ Ͱ.ͰͰͰͱͳ͸ Ͱ.ͰͰͰͲͲͲ∗∗

(Ͷ.Ͷ͸) (Ͳ.Ͷͱ) (͵.͵ͷ) (ͷ.͸Ͷ) (ͱ.Ͳ͹) (ʹ.Ͷ͸)
Years Ͱ.ͰͷͰ͹ −Ͱ.ͳͲͲ∗ −Ͱ.Ͱ͹Ͱͳ Ͱ.Ͱʹͷʹ −Ͱ.Ͳ͵ͱ −Ͱ.Ͱ͹͹͹

(ͱ.ͱ͵) (−Ͳ.ͳͲ) (−ͱ.ͱͰ) (Ͱ.͸ͷ) (−ͱ.Ͳ͹) (−ͱ.Ͱͷ)
Labour −ʹ.͹ͷͳ† −ͱ.Ͱ͸͸ −Ͳ.ͱͱͶ∗ −Ͷ.͹͹͸∗∗ −Ͱ.ͱͰͱ −Ͱ.͸ͲͶ

(−ͱ.ͷͳ) (−Ͱ.ͷʹ) (−ͱ.͹͹) (−ͳ.͹͹) (−Ͱ.ͱͶ) (−ͱ.ʹͶ)
year −Ͱ.ͰͶͶͰ Ͱ.Ͷͷ͹∗ Ͱ.ͲͱͰ −Ͱ.Ͱ͹͵ͳ∗ Ͱ.͵͵͸† Ͱ.Ͳͱͷ†

(−Ͱ.Ͷͱ) (Ͳ.͵ʹ) (ͱ.ʹͱ) (−Ͳ.ͰͰ) (ͱ.͸ͱ) (ͱ.Ͷͷ)
Citations −Ͱ.ͰͰͶͰͲ −Ͱ.ͰͰʹ͸ͳ −Ͱ.Ͱͱͱ͹ −Ͱ.ͰͰͲʹ͵ Ͱ.ͰͰͲͲͲ Ͱ.ͰͰͰ͸Ͷʹ

(−Ͱ.͵ʹ) (−Ͱ.ͱ͵) (−Ͱ.Ͷ͵) (−Ͱ.Ͷʹ) (Ͱ.Ͳͱ) (Ͱ.ͱͳ)
isWP −Ͱ.ͲͰͱ Ͱ.ͷ͹͵ Ͱ.ͳͰͲ −Ͱ.Ͳ͵Ͱ Ͳ.ͱʹʹ† ͱ.ͰͶͳ†

(−Ͱ.ͱ͹) (Ͱ.ͳ͹) (Ͱ.ͲͲ) (−Ͱ.͵ͷ) (ͱ.ͷ͵) (ͱ.͹Ͳ)
ols Ͱ.ͳ͵Ͱ Ͱ.ͰͳͷͶ Ͱ.ͱ͵͵ Ͱ.͹Ͱʹ∗ Ͱ.ͲͱͶ Ͱ.ͷ͹Ͷ∗

(Ͱ.͸ʹ) (Ͱ.Ͱ͵) (Ͱ.ͳͱ) (Ͳ.ͶͰ) (Ͱ.ʹͱ) (Ͳ.ʹʹ)
countryUS Ͳ.͵͸͸∗ Ͱ.Ͳͳ͹ Ͱ.ͶͶ͵ Ͳ.ͰͰ͸∗∗ ͱ.Ͱ͹͸† ͱ.ͰͲʹ†

(Ͳ.ͱ͵) (Ͱ.ͱͱ) (Ͱ.ʹ͵) (ͳ.ͷͶ) (ͱ.͹Ͷ) (ͱ.ͷʹ)
avgYear Ͱ.Ͱ͹ͲͰ −Ͱ.ͷͱͷ∗∗ −Ͱ.Ͳͷ͹∗ Ͱ.Ͱͷ͹͸ −Ͱ.ʹʹͶ −Ͱ.ͱͶͲ

(ͱ.Ͱ͸) (−ͳ.Ͷͳ) (−Ͳ.ʹ͵) (ͱ.Ͳͳ) (−ͱ.ͳͲ) (−Ͱ.͹ͱ)
depvar −Ͱ.Ͷ͸Ͱ −Ͱ.Ͷͱͷ

(−ͱ.Ͱʹ) (−ͱ.Ͷʹ)
Constant −͵Ͱ.͸͹ ͷʹ.Ͷͳ ͱͳ͹.ͷ ͳͲ.Ͳͳ −ͲͲ͵.ͳ∗ −ͱͱͰ.ʹ

(−Ͱ.ͲͰ) (Ͱ.ͱ͹) (Ͱ.͵Ͳ) (Ͱ.ͳʹ) (−ͱ.͹ͷ) (−Ͱ.͹ͱ)

Observations Ͳ͹Ͱ ͵ͲͰ ͸ͱͰ Ͳ͹Ͱ ͵ͲͰ ͸ͱͰ
rmse Ͳ.͵Ͳ͵ Ͷ.ͳͰʹ ͵.ͳ͵Ͱ
t statistics in parentheses, for OLS clustered at the study level
† p < Ͱ.ͱͰ, ∗ p < Ͱ.Ͱ͵, ∗∗ p < Ͱ.Ͱͱ
Dependent variable: tstat
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6.1 Discussion of results

Previous meta-analyses aimed at explaining heterogeneity between studies, and for this reason the re-
sults of performed MRA are comparable to the previous findings in the literature. Table 6 captures
main findings of two previous meta-analyses and compares them to this paper. As mentioned, focus
of the previous studies was a bit different and thus we did not included all of their propositions. We
also wanted to test for difference of IT payoff between sectors, but data we managed to gather were not
suitable for such analysis as the vast majority of estimates is not industry sector specific.

Table 6: Summary and comparison of findings

Proposition Kohli (2003) Stiroh (2005) This paper (2014)

IT payoff differ among industry
sector

Supported Mixed results –

Larger sample size leads to
greater IT payoff

Supported – Supported

Estimates of profitability-base
dependent variable differ from
productivity based

Supported Not supported Supported

Labour productivity differ
form not-per-labour normal-
ized dependent variable

– Not supported Mixed results

Longitudinal estimates are
higher than short term

Not supported – Mixed results*

Estimates base on more recent
data show higher estimates

– Supported Mixed results*

There is publication bias in IT
payoff literature

– – Supported

Genuine effect size – Ͱ.ͰͶ Ͱ.ͰͰͲ – Ͱ.ͰͰͳ

* proposition not supported by all specifications

My main focus was on publication bias and its presence was found in all specifications. Next to
publication bias detection also estimation of the underlying effect was performed, whichwas found to be
positive for the productivity. However, we were unable to clearly identify the sources of the publication
bias.

First, no difference was found between OLS and other methods of estimation. Furthermore, most
of the study characteristics related to publication bias were found insignificant. Nor relation to number
of citations or year of publication and the effect size has been identified neither there is a difference
between estimates from working papers and published studies. This signs that effect size is not related
to the “popularity” of the estimate.

The hypothesis that the data from US will lead to higher effect size is partially supported in the
results. Positive effect is found only for profitability estimates.

Similarly to Kohli and Devaraj (2003) we can say that larger sample size leads to higher IT payoff,
and we also agree with the conclusion that: “studies with profitability based dependent variable have
different IT payoff than those that measure productivity” (Kohli & Devaraj, 2003, p. 130). With Stiroh
(2005) we disagree that no significant difference is between estimates of productivity and profitability.
He also finds a positive relation between average year in the dataset and effect size of IT investment, but
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our analysis finds negative relationship when data were analyses by a multilevel model. The rest of the
results is mixed – we do not have clearly contradicting or conformable results.

What implications can be drawn from this paper? First, effects of ICT investment on productiv-
ity are lower than commonly expected. Second, productivity paradox literature carries a burden called
publication bias that causes the overestimation of the ICT elasticity. Some of the results also show the
possibility that productivity paradox is “reborn”. It seems that method of estimation do not affect the
results, and therefore either the general Cobb-Douglas production function framework is not proper
for investigating ICT effects, or the model should incorporate possible explanations of the productivity
paradox as a control variable. If ICT does not increase productivity per se, then any company should
make a proper case study before investing into ICT, because otherwise it will probably result in misin-
vesting.

6.2 Limitations and Future Research

Results presented in this paper do have some limitations that stems from used methods. Some of them
can be challenged in future research. First and foremost, as every meta-analysis, the main limitation
is data availability and quality. If the underlying studies are properly done, then also conclusions of
meta-analysis are more reliable. As my sample contains almost 70 studies and more that two thirds of
the used studies were published, a sufficient quality of the estimates should be reached. It is enough for
publication bias testing, but for explanatory MRA characteristic of the studies and estimates are needed
to capture the differences in quality.

The second main source of limitation is the method we have chosen. Given the current state of art
of meta-analysis in economics, we used the most recent methodology, but there are still missing tests
for determination of the most optimal one for each specific case. Models are so far used according
to the setting and again, economic theory. If one thinks that the genuine effect is constant and same
everywhere, fixed-effect is more suitable. Also, the fact that we decided to use all estimates from each
study can change the results in some way. However, this should only increase the reliability of the results
due to the law of large numbers. Nevertheless, there are still probably studies and working papers that
were not found due to search definitions and thus the used dataset could be extended.

Strong publication bias was found, but most of the variables used to explain it were found insignif-
icant. Further research should therefore try to identify key drivers of such bias. MRA overall was able
to explain only a small proportion of all the variability of the results. Thus, finding additional explana-
tory variables that would help to increase proportion of explained variability is needed. This could also
remove mixed results we obtained. We employed several models to check for robustness of estimated
numbers. Wide range of methods used usually help to check for robustness of the results and diminish
doubts about the reliability of estimates, but in the case of this research we got mixed results about the
signs which leads to ambiguous conclusions.

It is also questionable, whether we can draw some really general and broad recommendations for
every company. Most of the studies are based on US data (Ͷͳ% US, Ͳ͹% Europe, ͸% other), therefore
implications in Europe might be different. This study also investigated only firm level and direct effect
of ICT. Aggregated levels should also be investigated to determine significance of public spending and
test for spillover effects.

We also should not forget that ICT capital requires skilled workers. Proposition for future research
is to make a meta-analysis on relation between investments into workers working with ICT and firm
performance. Positive results would not only be intuitive, but also consistent with theory and having
relevance for business decisions.
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7 Conclusion

The central topic of this paper was to access productivity paradox from meta-analytical perspective with
focus on publication bias and with aim to reveal the genuine effect of ICT investments on the produc-
tivity on a firm level, which makes this paper unique. Meta-analysis is a quite powerful and widely
used tool for synthesis of empirical research findings, but specific methods differ, and this paper is set
out accordingly. The first part reviews the IT productivity paradox itself together with main literature
findings, the second part is devoted to meta-analysis and techniques used for publication bias investiga-
tion, followed by the third - empirical - part, where data gathered across available literature are analysed.
Emphasis is put on multilevel analysis as we used all estimates from the studies and estimation of the
genuine effect filtered from publication bias. Last part of the paper concludes.

Productivity paradox was investigated for decades and from the large amount of published literature
one can only hardly expect to make a general conclusion without proper summarizing techniques. We
employed meta-analysis to find the true effect of IT investments on productivity. For that purpose
more than ͸ͳͰ estimates from almost ͷͰ studies were collected together with some other descriptive
indicators. Previous literature firstly focused on finding a positive effect to refute the paradox, later the
diversity of results was approached by Kohli and Devaraj’s 2003 meta-analysis and Stiroh (2005) found IT
payoff to be around Ͱ.ͰͶ when using a mixture of firm and aggregated level literature and one estimate
per study.

This paper found clear and substantial evidence of publication bias present in the IT productivity
paradox literature. Filtered from this bias, the underlying effect was identified to be around Ͱ.ͰͰͳ when
data were analysed using mixed-effects model. If we combine the last finding with evidence from MRA
showing that IT elasticity is decreasing with increasing average year in the dataset, it seems like the
productivity paradox might be reborn after it was refuted. A possible explanation could be the fact
that in today’s PC driven world, technology is a must, and thus IT technology is so incorporated into
any capital and production technology that we cannot clearly separate it and find positive effects of IT
related investments. Another explanation could be the investment into ICT, which lowers the resulting
effect. Main drivers of inadequate investment are mostly wrong management, but it can also be the
impact of fashions in IT⁸ which was investigated by Wang (2010). Managers are better evaluated when
chasing newest IT and thus they have high incentive to invest in such technology even if the payoff is
insignificant.

Publication bias was identified, but explanatory variables related to publication bias were found
mostly insignificant when heterogeneity was explained by MRA. We found small evidence of different
results between working papers and published studies, concluding that higher estimates are present
in the first mentioned group. Also, no support for the economics research cycle hypothesis has been
found. The limitations of this paper are based on the ability to explain the diversity of results from only
a few and quite general descriptive variables about each study whose estimates can be retrieved from
the studies and coded. Since the size of the effect helps meeting the right decision in business related
investments, our result of IT elasticity being very close to zero supports the argument that there are
better forms of investment to be made.

⁸ “An IT fashion is a transitory collective belief that an information technology is new, efficient, and at the forefront of
practice.” (Wang, 2010, p. 63)
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Figure A1: Funnel graph – new studies Figure A2: Funnel graph – working papers

Table A1: List of data sources used in papers

Data source Studies

ACES, Compustat 1
ARD 1
BLS 2
CII, Compustat 16
CITDB 1
CPB 2
EU KLEMS 1
FDIC 1
IAB 1
IDG, Compustat, BEA 17
Informationweek 1
Mediocredito 1
MIP-S 5
MPIT 3
own 7
SBS 2
Washington state department of Health 2
WES 1
ZEW 2
ABI 1
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B STUDIES INCLUDED IN THE META-ANALYSIS

Table A2: Explanatory variables used in regressions

Variable Description

gamma point estimate of effect of IT on productivity
se standard error of the estimate γ
nobs number of observations the estimate is calculated from
tstat t-statistic for γ with HͰ : γ = Ͱ
prec inverse of se

explanatory variables influencing publication bias
year year of publication, reference year 1990
year_sq square of year
isWP dummy=1 if study is a working paper, 0 otherwise
citations number of citations per year since publication found in Google Scholar
ols dummy=1 if model used was OLS, 0 otherwise

explanatory variables directly influencing effect size
countryUS dummy=1 if dataset is from US, 0 otherwise
years number of years in the dataset
avgYear average year of data source (minimum+maximum)/2
depvar dummy=1 if dependent variable was productivity 0 for profitability
labour dummy=1 if dependent variable was normalized by labour, 0 otherwise

dummy variables used for grouping
datasourceid ID of data source
journalid ID of Journal
authorid ID of group of authors
kohli dummy=1 if study was used by Kohli and Devaraj (2003), 0 otherwise
stiroh dummy=1 if study was used by Stiroh (2005), 0 otherwise

B Studies Included in the Meta-Analysis

Table A3: Studies used for meta-analysis

Cite Year Estimates Kohli Stiroh

Ahn (1999) 1999 2 No No

Arvanitis and Loukis (2009) 2009 21 No No

Barua, Kriebel, and Mukhopadhyay (1995) 1995 5 Yes No

Barua and B. Lee (1997) 1997 2 No No

Becchetti, Bedoya, and Paganetto (2003) 2003 11 No No

Berndt and Morrison (1995) 1995 20 No No

Bertschek and Kaiser (2004) 2004 4 No No

Bertschek, Kaiser, and Fryges (2006) 2006 3 No No

Bloom, Sadun, and Van Reenen (2007) 2007 31 No No

Bresnahan, Brynjolfsson, and Hitt (2002) 2002 5 No Yes

Brynjolfsson and Hitt (1994) 1994 17 No No

Brynjolfsson and Hitt (1995) 1995 10 Yes Yes

Brynjolfsson and Hitt (1996) 1996 17 Yes Yes

Brynjolfsson and Hitt (2003) 2003 113 No Yes

Continued on Next Page…
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B STUDIES INCLUDED IN THE META-ANALYSIS

Table A3 – Continued

Cite Year Estimates Kohli Stiroh

Byrd and Marshall (1997) 1997 4 Yes No

Campbell (2012) 2012 10 No No

Caselli and Paterno (2001) 2001 15 No Yes

Commander, Harrison, and Menezes-Filho

(2011)

2011 40 No No

Devaraj and Kohli (2000) 2000 2 Yes No

Dewan and Min (1997) 1997 8 Yes Yes

Dewan, Shi, and Gurbaxani (2007) 2007 12 No No

Doms, Jarmin, and Klimek (2004) 2004 6 No No

Falk and Seim (1999) 1999 6 No No

Gargallo-Castel and Galve-Górriz (2007) 2007 3 No No

Gargallo-Castel and Galve-Górriz (2012) 2012 1 No No

Gilchrist, Gurbaxani, and Town (2001) 2001 18 No No

Hall, Lotti, and Mairesse (2012) 2012 7 No No

T. Hempell (2002) 2002 21 No No

Thomas Hempell (2003) 2003 8 No No

Thomas Hempell (2005a) 2005 14 No Yes

Thomas Hempell (2005b) 2005 32 No No

Hitt and Brynjolfsson (1996) 1996 10 Yes No

Hitt, Wu, and Zhou (2002) 2002 6 No No

Chowdhury (2006) 2006 4 No No

Chwelos, Ramirez, Kraemer, and Melville

(2010)

2010 10 No No

Kiley (2001) 2001 3 No Yes

Koski (1999) 1999 9 No No

Kudyba and Diwan (2002) 2002 15 No No

B. Lee and Barua (1999) 1999 5 Yes Yes

G. Lee and Perry (2002) 2002 6 Yes No

W. Lehr and Lichtenberg (1998) 1998 3 Yes No

B. Lehr and Lichtenberg (1999) 1999 27 No Yes

Li and Richard Ye (1999) 1999 2 Yes No

Licht and Moch (1999) 1999 4 No No

Lichtenberg (1996) 1996 6 Yes Yes

Mahr and Kretschmer (2010) 2010 17 No No

Menon and B. Lee (2000) 2000 1 Yes No

Menon, Lee, and Eldenburg (2000) 2000 1 Yes No

Mitra (2005) 2005 10 No No

Moshiri and Simpson (2011) 2011 6 No No

Continued on Next Page…
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B STUDIES INCLUDED IN THE META-ANALYSIS

Table A3 – Continued

Cite Year Estimates Kohli Stiroh

O’Mahony and Peng (2011) 2011 24 No No

Paton, Siegel, and Williams (2004) 2004 10 No No

Prasad and Harker (1997) 1997 8 Yes No

Rai, Patnayakuni, and Patnayakuni (1996) 1996 10 Yes No

Rai, Patnayakuni, and Patnayakuni (1997) 1997 4 Yes No

Siegel (1997) 1997 18 Yes No

Sircar, Turnbow, and Bordoloi (2000) 2000 13 Yes No

Steindel (1992) 1992 8 No Yes

Stiroh (2002a) 2002 12 No Yes

Stiroh (2002b) 2002 9 No Yes

Stiroh (2005) 2005 30 No No

Tambe and Hitt (2012) 2012 38 No No

van der Wiel (2001) 2001 4 No No

van der Wiel and van Leeuwen (2003) 2003 10 No No

Wilson (2009) 2009 14 No No

Wolff (2002) 2002 1 No Yes

Yorukoglu (1998) 1998 1 No No

Zwick (2003) 2003 8 No No

Table A4: List of journals present in papers

Journal Studies

Annales d’Economie et de Statistique 1

Bank of Italy, Economic Research and International Relations Area 1

Canadian Journal of Economics 1

Carnegie-Rochester Conference Series on Public Policy 1

Communications of the ACM 1

CPB⁹ Netherlands Bureau for Economic Policy Analysis 2

Decision Support Systems 1

Discussion Papers in Business Administration 1

Economics of Innovation and New Technology 3

Empirical Economics 1

FRBNY¹⁰ Quarterly Review 1

Industrial and Corporate Change 1

Information & Management 1

Information Economics and Policy 1

Information Systems Research 4

Continued on Next Page…
⁹Centraal Planbureau
¹⁰Federal Reserve Bank of New York
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Table A4 – Continued

Journal Studies

Innovation and Information Technology in Services 1

International Journal of Flexible Manufacturing Systems 1

International Journal of the Economics of Business 1

Journal of International Development 1

Japan and the World Economy 1

Journal of Business & Economic Statistics 1

Journal of Econometrics 1

Journal of Information Technology Impact 1

Journal of Management Information Systems 4

Journal of Productivity Analysis 2

Journal of Public Administration Research and Theory 1

Management Science 4

MIS¹¹ Quarterly 1

MPRA¹² Paper 1

National Institute Economic Review 1

NBER¹³ Working Papers 4

Omega 2

Procedia - Social and Behavioral Sciences 1

Rensselaer Working Papers in Economics 1

Research Policy 1

Review of Economic Dynamics 1

Review of Economics and Statistics 1

Review of Income and Wealth 1

The American Economic Review 1

The Journal of Industrial Economics 1

The Quarterly Journal of Economics 1

The Review of Economics and Statistics 2

The Wharton Financial Institutions Center Working Papers 1

University of California 1

WP MIT¹⁴ 1

WP OECD¹⁵ 1

ZEWZentrum für Europäische Wirtschaftsforschung Discussion Papers 3

Journal of Organizational Computing and Electronic Commerce 1

¹¹Management Information Systems
¹²Munich Personal RePEc Archive
¹³National Bureau of Economic Research
¹⁴Massachusetts Institute of Technology
¹⁵Organisation for Economic Co-operation and Development
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B STUDIES INCLUDED IN THE META-ANALYSIS

Table A5: List of group of authors of papers

Authors Studies

Ahn 1

Arvanitis, Loukis 1

Barua, Lee, Perry, Menon 6

Becchetti, Bedoya, Paganetto 1

Berndt 1

Bertschek, Kaiser, Fryges 2

Bharadwaj, Konsynski 1

Brynjolfsson, Hitt, Bresnahan 8

Byrd, Marshall 1

Caselli, Paterno 1

Commander, harrison, Menezes-Filho 1

Devaraj, Kohli 1

Dewan, Min, Shi, Gurbaxani 2

Doms, Jarmin, Klimek 1

Falk, Seim 1

Gargallo-Castel 2

Hall, Lotti, Mairesse 1

Hempell 4

Chowdhury 1

Chwelos, Kraemer, Melville, Ramirez 1

Kiley 1

Koski 1

Kudyba, Diwan 1

Lehr, Lichtenberg 3

Li, Richard Ye 1

Licht, Moch 1

Mahr, Kretschmer 1

Mitra 1

Moshiri, Simpson 1

Omahony, Peng 1

Paton, Siegel, Williams 1

Prasad, Harker 1

Rai, Patnayakuni, Patnayakuni 2

Siegel 1

Sircar, Turnbow, Bordoloi 1

Steindel 1

Stiroh 3

van der Wiel 2

Continued on Next Page…
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Table A5 – Continued

Authors Studies

Wilson 1

Wolff 1

Yorukoglu 1

Zwick 1

Gilchrist, Gurbaxani, Town 1

Bloom, Sadun, Reenen 1

Campbell 1
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