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Abstract

Many spatio-temporal access methods, such as the HR-tree, the 3DR-tree, and the
MV3R-tree, have been proposed for timestamp and interval queries. However, these
access methods have the following problems: the poor performance of the 3DR-tree
for timestamp queries, the huge size and the poor performance of the HR-tree for
interval queries, and the large size and the high update cost of the MV3R-tree.
We address these problems by proposing an adaptive partitioning technique called
the Adaptive Partitioned R-tree (APR-tree) using workloads with timestamp and
interval queries. The APR-tree adaptively partitions the time domain using query
workloads. Since the time domain of the APR-tree is automatically fitted to query
workloads, the APR-tree outperforms the other access methods for various query
workloads. The size of the APR-tree is on the average 1.3 times larger than that of
the 3DR-tree which has the smallest size. The update cost of the APR-tree is on
the average similar to that of the 3DR-tree which has the smallest update cost.

Key words: Spatio-Temporal Databases, Indexing Technique, R-trees, Timestamp
and Interval Queries

1 Introdcution

Spatio-temporal databases manipulate moving objects whose positions and
shapes may change along with time. In other words, they are said to be the
combination of spatial databases and temporal databases. To support trajec-
tory (or navigational) queries, timestamp (or timeslice) queries, and interval
queries, many spatio-temporal access methods have been proposed. They can
be classified into two groups. One consists of access methods for future queries,
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Fig. 1. Moving objects and timestamp/interval queries

and the other for historical queries. Although timestamp and interval queries
are available to retrieve the future information of moving objects, in this pa-
per, we focus on timestamp and interval queries for the past information. Note
that time is represented as discrete timestamps [3,8,9,11]. Timestamp queries
retrieve all the objects intersecting a spatial window at a specific timestamp,
and interval queries include multiple consecutive timestamps. Therefore, the
timestamp query can be considered as a special case of the interval query,
where the interval contains only one timestamp. Access methods for future
queries focus on predicting the future locations of objects by storing their cur-
rent positions, velocities, and directions [5–7]. Trajectory queries mainly deal
with the navigational trajectories of particular objects. The STR-tree [8] and
the TB-tree [8] belong to the access methods for trajectory queries.

Moving objects can be classified according to the spatial shapes and the tem-
poral movements of objects [1,9,11,12]. Their spatial shapes are approximated
by minimum bounding rectangles (MBRs). Their temporal movements are ei-
ther discrete or continuous. However, the problem of indexing moving objects
can be reduced to indexing discrete rectangles that contain both their spatial
shapes and time intervals. Figure 1 illustrates this. The R-tree can be a good
candidate for indexing these rectangles. Timestamp and interval queries can
also be represented as rectangles. Therefore, timestamp and interval queries
can be considered as range queries of the R-tree. However, the time region
monotonically increases along with time while the spatial region does not.
Therefore, if a single R-tree covers the entire time region, the performance of
the R-tree would degrade for timestamp and interval queries since the time
region enlarges as time passes.

In this paper, we concentrate on timestamp and interval queries for moving
objects with historical information such as vehicles with GPSs, people with
mobile devices, planes and ships on a voyage. Many spatio-temporal index
structures have been developed for timestamp and interval queries during the
past few years [3,10,11]. If a single index structure covers the entire time
region, its performance would degrade since the indexed time region enlarges
as time passes. Therefore, some spatio-temporal access methods partitions the
whole time region into multiple time regions indexed by the corresponding R-
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trees. However, since no existing spatio-temporal access methods utilize query
workoads, they can neither support a variety of query workloads efficiently nor
reflect the change of the query workload along with time. We address these
problems by proposing the Adaptive Partitioned R-tree (APR-tree) which
automatically adapts to workloads with timestamp and interval queries. Based
on query workloads, the APR-tree adaptively partitions the time region. Our
contributions are summarized as follows:

• The APR-tree achieves the best performance for various workloads with
timestamp and interval queries except for workloads with 100% timestamp
queries. Its performance is on the average 40% better than that of the
MV3R-tree.

• Although the size of the APR-tree is affected by query workloads, the size
of the APR-tree is on the average 1.3 times larger than that of the 3DR-
tree which has the smallest size and does not exceed 2 times that of the
3DR-tree.

• Although the update cost of the APR-tree are also affected by query work-
loads, the update cost of the APR-tree is on the average similar to that of
the 3DR-tree which has the smallest update cost.

• Through mathematical analyses and extensive experimental study, we show
that the APR-tree deals with various query workloads more efficiently than
the other access methods.

The rest of the paper is organized as follows: Section 2 surveys the existing
access methods for timestamp and interval queries. Section 3 describes the
APR-tree, and the corresponding insertion and query processing algorithms.
Section 4 provides the optimal jurisdiction interval length of the APR-tree
based on mathematical analyses of the performance and the size of the APR-
tree. Section 5 presents experimental results over various query workloads.
Finally, Section 6 provides conclusions.

2 Related Work

In this section, we describe structures, and strong and weak points of existing
access methods, the 3DR-tree, the HR-tree, and the MV3R-tree.

2.1 3DR-trees

The 3DR-tree [10] simply considers time as another dimension of the R-
tree [15,16]. Whenever an object moves to another position or changes its
shape, a new MBR is created to represent the change of the object and the
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Fig. 2. An example of the 3DR-tree

MBR containing both its spatial extent and lifespan is inserted into the 3DR-
tree. This MBR is effective up to the next change of the object. Figure 2 shows
an example of the 3DR-tree. In this figure, R1, R2, and R3 represent MBRs for
the movements of objects, and R0 contains R1, R2 and R3. As time passes, the
time region enlarges accordingly. This makes the performance of the 3DR-tree
degrade because in the 3DR-tree, an R-tree keeps the whole time region.

Also, long-lived records cause a huge dead space which is a part of the MBR,
but does not cover any record. Therefore, they degrade the query performance
of the 3DR-tree. However, the 3DR-tree has the smallest size since the 3DR-
tree has no duplicate data unlike the HR-tree and the MV3R-tree.

2.2 HR-trees

The Historical R-tree (HR-tree) [3] creates an R-tree whenever objects in the
previous R-tree change their positions or shapes, but common branches of
consecutive R-trees are stored only once in order to save space.

The timestamp query is directed to the corresponding R-tree and the search
is performed inside this tree only. Thus the timestamp query becomes the
ordinary window query and is handled very efficiently. The interval query
should search the corresponding R-trees of all the timestamps involved. Even
when only one object has changed its position, the HR-tree may update nodes
contained in the path between the leaf node corresponding to the object and
the root node. Therefore, the size of the HR-tree is several times larger than
that of the 3DR-tree. Figure 3 shows an example of the HR-tree. R1[t1, t2)
deals with records whose time intervals are contained in time interval [t1, t2)
and R2[t2, t3) manipulates records whose time intervals are contained in [t2, t3).
Suppose that object f changes its position to f ′ from B0 to C0 at t2. The three
nodes B0, C0, D0 which are associated with f and f ′ are copied and updated
to three new nodes B1, C1, D1 in the gray color. Note that the unchanged
other objects except f and f ′ are shared between R1 and R2.
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Fig. 3. An example of the HR-tree

2.3 MV3R-trees
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Leaf nodes of the MVR-tree

Fig. 4. The structure of the MV3R-tree

The Multi-Version 3DR-tree (MV3R-tree) [11] is the access structure that
combines the Multi-Version R-tree (MVR-tree) and a small auxiliary 3DR-
tree built on the leaf nodes of the MVR-tree. The former is used to answer
timestamp and short interval queries and the latter to answer long interval
queries. Figure 4 illustrates the structure of the MV3R-tree. As shown in this
figure, the MVR-tree consists of multiple R-trees that have their own jurisdic-
tion intervals. For example, R1[t1, t2) deals with records whose time intervals
belong to [t1, t2) while R2[t2, t3) manipulates records whose time intervals be-
long to [t2, t3).

Although the size of the auxiliary 3DR-tree is very small since it shares the
leaf nodes of the MVR-tree, it improves the performance on interval queries
and provides flexibility to algorithms for processing other spatial queries such
as the join and the k-nearest neighbor.

However, the MV3R-tree has a few disadvantages. The size of the MV3R-tree
is typically 1.5 times larger than that of the 3DR-tree due to many duplicate
data from version splits [4]. In addition, the update cost of the MV3R-tree is
much higher than those of the HR-tree and the 3DR-tree. They maintain one
structure, while the MV3R-tree has to modify two structures simultaneously
when records are inserted. The auxiliary 3DR-tree suffers from the large search
space for interval queries since it is also responsible for the whole history like
the 3DR-tree.
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2.4 Comparison between the 3DR-tree and the HR-tree

One of the most significant differences between the HR-tree and the 3DR-tree
is the average jurisdiction interval length of R-trees which form each structure.
In the HR-tree, R-trees are almost created every timestamp and each R-tree
is responsible for the information of the specific timestamp only. In the 3DR-
tree, an R-tree is created only once, and this R-tree keeps all the information
of the whole time range. Figure 5 illustrates this observation.

R1[0,1) R2[1,2) Ri[i−1, i)

(a) an HR-tree

R1[0, i)

(b) a 3DR-tree

Fig. 5. Structures of the HR-tree and the 3DR-tree

In the HR-tree, the timestamp query is evaluated by the R-tree which corre-
sponds to the timestamp of this query. In the 3DR-tree, however, the times-
tamp query is always processed by a single R-tree that covers the whole time
range. Thus, the 3DR-tree has to access much more nodes than the HR-tree
due to a prohibitive search space. However, to answer interval queries, the HR-
tree accesses more nodes than the 3DR-tree since the HR-tree has to search
many R-trees whose jurisdiction intervals overlap these interval queries. The
3DR-tree should still search the largest space irrespective of the query con-
dition. Consequently, to overcome the poor performance of the 3DR-tree on
timestamp and interval queries, it is necessary to reduce the search space,
while to overcome the poor performance of the HR-tree on interval queries, it
is necessary to decrease the number of R-trees which are searched.

3 APR-Trees

Section 3.1 presents an adaptive partitioning method based on query work-
loads. Next, we describe insert and search algorithms of the APR-tree in Sec-
tion 3.2.

3.1 Query Adaptive Partitioning Method

To overcome the problem with the 3DR-tree, we apply the query-adaptive par-
titioning method to the 3DR-tree. We call the resultant structure the Adaptive
Partitioned R-tree (APR-tree). The APR-tree consists of multiple 3DR-trees,
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each of which is responsible for the fixed time interval derived from query
workloads. Since several new terms and symbols are used in this work, they
are summarized in Table 1.

Table 1
Summary of symbols and terms

Symbol or Term Description

* the special reserved word “now”.

AV Grecords the average lifespan length of records.

AV Gqueries the average time interval length of queries.

Ri[ti, ti+1) the R-tree that is created the i-th and covers the time interval of [ti, ti+1).

Li the jurisdiction interval length of Ri[ti, ti+1). Namely, Li = ti+1 − ti.

K the number of Ri’s.

Ci the cardinality of objects with distinct identifiers which belong to Ri.

F the average fanout of a node.

Hi the height of Ri.

Ni the number of records in Ri.

N the total number of records.

Mh the number of nodes at height h.

ah the average area covered by a node at height h.

D the number of dimensions.

Size(R − tree) the size of the R-tree.

AJIL(R − tree) the average length of the time ranges covered by R-trees in the structure.

The average jurisdiction interval length (AJIL) is introduced to explain the
property of the APR-tree. AJIL(R − tree) can be defined as follows:

AJIL(R − tree) =
1

K
·

K∑
i=1

Li

where K is the number of Ri’s and Li is the jurisdiction interval length of Ri. In
the case of the MVR-tree in Figure 6, AJIL(MV R− tree) = 10+11+10+9

4
= 10

since K is 4, and L1, L2, L3, and L4 are 10 (=10−0), 11 (=21−10), 10
(=31−21), and 9 (=40−31), respectively. Since K = 1 in the 3DR-tree,
AJIL(3DR − tree) = 40 (=40−0). In the HR-tree, AJIL(HR − tree) ∼= 1
since R-trees may be created every timestamp.

Table 2 summarizes AJIL(R − tree) of each structure. The search space of
queries is affected by AJIL(R − tree) of each structure. In the case of times-
tamp queries, AJIL(R − tree) = 1 is optimal since the timestamp query is
associated with the specific timestamp. In this reason, the HR-tree achieves
the best performance for timestamp queries. Similarly, in the case of interval
queries, AJIL(R−tree) is closely associated with the interval query cost. The
relationship between the interval query cost and AJIL(R− tree) is explained
in Section 4.3.
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R2[10,21) R3[21,31) R4[31,40)

R′1[0,40)

Figure 6: AJIL(MVR-tree) = 10 and AJIL(3DR-tree) = 40
Fig. 6. AJIL(MV R − tree) = 10 and AJIL(3DR − tree) = 40

Table 2
AJIL(R − tree) of each access method

Access Method AJIL(R − tree)

HR-tree 1

3DR-tree L1

MV3R-tree MVR-tree: 1
K

·
∑K

i=1
Li

Aux. 3DR-tree: L1

APR-tree 1
K

·
∑K

i=1
Li

Although AJIL(APR− tree) is similar to AJIL(MV R− tree), the APR-tree
and the MVR-tree employ the very different policies of determining Li. While
Li of the MVR-tree is determined by version splits of root nodes, Li of the
APR-tree is determined by query workloads. In other words, AJIL(MV R −
tree) depends on datasets, but AJIL(APR − tree) depends on query work-
loads. Figure 7 depicts the structure of the APR-tree. Unlike the HR-tree and
the MVR-tree, adjacent R-trees of the APR-tree do not share nodes. In this fig-
ure, let A =< id, s, [tstart, tend) > be a record for an object’s movement, where
id is an object identifier, s is the spatial MBR, and tstart and tend are the time
when the record was inserted and logically deleted, respectively. The logical
deletion is to change the end time * (i.e. “now”) of the lifespan of a live record
to a specific time, where a live record denotes the record whose lifespan’s end
time is *. Since A =< id, s, [tstart, tend) > intersects the boundary between R1

and R2, it is divided into A1 =< id, s, [tstart, t2) > and A2 =< id, s, [t2, tend) >,
and A1 and A2 are inserted into R1 and R2, respectively. Therefore, a duplicate
record occurs when the lifespan of a record intersects the boundary.

In Figure 7, L1, L2, and Li denote the jurisdiction interval lengths of R1, R2,
and Ri, respectively, and the jurisdiction interval length of an R-tree may not
be the same as those of other R-trees. This is due to the fact that the query
workload may change along with time.
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Fig. 7. The structure of the APR-tree

proc insert (record r2 =< id, s2, [t2, ∗) >)
begin
1. /* find Ri which contains r2 and insert r2 into Ri */
2. for Ri[ti, ti+1) where i is from 1 to K do
3. if ([ti, ti+1) contains [t2, ∗)) then
4. insert r2 to Ri

5. break /* exit for loop */
6. endif
7.
8. /* conduct the logical deletion of r1 that is the previous record of r2 */
9. let r1 =< id, s1, [t1, ∗) > be the previous record of r2

10. * of r1 is changed into t2. i.e., r1 =< id, s1, [t1, t2) >.
11.
12. /* find Ri’s which intersect r1 and insert r1 into Ri’s */
13. for Ri[ti, ti+1) where i is from 1 to K do
14. if ([ti, ti+1) intersects [t1, t2)) then
15. insert r1 to Ri

16. endif
end

Fig. 8. Insertion algorithm of the APR-tree

3.2 Insertion and Search Algorithms

If the lifespan of a record does not intersect the boundary, the record is in-
serted into the R-tree covering the lifespan of the record. Otherwise, after
the record is divided by the boundary (this is called the data fragmentation),
each of records spawned by the data fragmentation is inserted into the R-
tree whose jurisdiction interval contains the lifespan of the record. Figure 8
presents the insertion algorithm of the APR-tree. Note that the insertion of a
record accompanies the logical deletion of the previous record.

Figure 9 illustrates an example of logical deletion. Record A1 is logically
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deleted at timestamp t2, where s1 and s2 indicate the spatial MBRs of A1

and A2, respectively, and [t1, t2) and [t2, ∗) indicate the lifespans of A1 and
A2, respectively.

s1 s1

s2
t2

x

y

time time

y

xt1

A1=< idA, s1, [t1,*)> A1=< idA, s1, [t1,t2)> A2=<idA, s2, [t2,*)>

idA

idA

idA

t1

Fig. 9. Logical deletion at timestamp t2

The timestamp and interval query processing with the APR-tree is similar to
that with the 3DR-tree. However, since the 3DR-tree consists of a single tree
structure, it should search the largest space. Particularly, this prohibitively
degrades the performance of the 3DR-tree for timestamp queries. The APR-
tree outperforms the 3DR-tree for timestamp and interval queries due to the
search space restriction and the reduced dead space by the data fragmentation.
Like the HR-tree and the MVR-tree, the APR-tree may search several R-trees
whose jurisdiction intervals overlap the time interval of the query. The search
algorithm of R-trees which constitute the APR-tree is the same as that of the
original R-tree [15,16]. As shown in Figure 10, query Q1 is processed by Ri

and query Q2 is processed by Ri and Ri+1.

ti

time

Ri[ti,ti+1) Ri+1[ti+1,ti+2)

Li= ti+1−ti Li+1= ti+2−ti+1

ti+1 ti+2

Q1 Q2

Fig. 10. Interval query processing in the APR-tree

4 Analysis

In this section, we assume that all the data are uniformly distributed on the
d-dimensional work space WS = [0, 1)d which contains spatial and temporal
dimensions (“uniformity assumption” [2,14,17]).
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4.1 Estimation of the size of the APR-tree

When the whole time domain is partitioned into the K time domains, the size
of the APR-tree becomes the sum of the sizes of R-trees that constitute the
APR-tree. Let Size(R − tree) denote the size of the R-tree. The size of the
APR-tree is:

Size(APR − tree) =
K∑

i=1

Size(Ri) (1)

To compute Size(Ri), we devise the formula Size(Ri) as follows:

Size(Ri) =
Hi∑

h=1

Ti · Ci

fh
(2)

where Ti is the average number of records which keep the history of a moving
object in Ri, Ci is the cardinality of moving objects in Ri, f denotes the average
fanout of a node, and Hi denotes the height of Ri. Thus, Ti · Ci becomes the
total number of records in Ri.

Ti can be computed by Li and AV Grecords, where Li is the jurisdiction interval
length of Ri and AV Grecords is the average lifespan length of records.

Ti =
Li

AV Grecords
+

(
1 − 1

AV Grecords

)
(3)

In Formula (3), Li

AV Grecords
is the average number of non-duplicate records of a

moving object in Ri and
(
1 − 1

AV Grecords

)
is the average number of duplicate

records of the moving object in Ri. Whenever an object changes its position
or shape, a new record is inserted into the R-tree. Therefore, the average
number of records spawned by the object is Li

AV Grecords
. In Figure 11(a), let a1,

a2, a3 and a4 be the four records spawned by an object. a1 and a4 should be
divided due to the boundary, so two duplicate records occur. However, since
the boundary is shared between adjacent R-trees, one of two duplicate records
belongs to Ri and the other belongs to Ri−1 or Ri+1. Additionally, as shown
in Figure 11(b), since the timestamp is discrete, there are finite cases that a
record crosses the boundary. When the start time of a record’s lifespan meets
the boundary such as record d1, the record is not fragmented. Therefore, an
object produces

(
1 − 1

AV Grecords

)
duplicate records.

Height Hi of Ri can be computed using a node’s average fanout f and the
total number of records Ti · Ci as follows [2]:

Hi =
⌈
logf(Ti · Ci)

⌉
(4)
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a2

a4
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time

b1

c1

d1

(b) d is not fragmented
(b) d1 is not fragmented

Fig. 11. Fragmentation of records by boundaries

From Formulas (1), (2), (3), and (4), the size of the APR-tree is:

Size(APR − tree) =
K∑

i=1

Hi∑
h=1

(
Li

AV Grecords
+

(
1 − 1

AV Grecords

))
· Ci

fh
(5)

Let λi be the ratio of duplicate records in Ri. Then, λi can be defined as
follows:

λi =
Ndup

Ntotal
=

(
1 − 1

AV Grecords

)
· Ci(

Li

AV Grecords
+

(
1 − 1

AV Grecords

))
· Ci

≤ 1
Li

AV Grecords
+ 1

(6)

where Ndup is the number of duplicate records in Ri and Ntotal is the total
number of records in Ri.

In Formula (6), Li determines λi since AV Grecords is the average lifespan
length of records and is obtained from records. Consequently, the larger Li,
the smaller λi. In terms of the size of the APR-tree, the larger Li results in
the smaller size of the APR-tree. Extremely, when Li = ∞, the APR-tree
has no duplicate records. Nevertheless, we should allow duplicate records for
reducing the search space of timestamp and interval queries.

4.2 Estimation of the query cost of the APR-tree

To estimate the interval query cost of the APR-tree, we extend the range query
cost model of the R-tree [2,15,18] since interval queries can be considered as
range queries in the R-tree. When an interval query overlaps the jurisdiction
interval of Ri, we estimate the number of nodes accessed to answer this interval
query in Ri. Assume that Li = 1

K
since the number of Ri’s is K.

Let Mh denote the number of nodes at height h and Ni denote the total
number of records in Ri. Mh can be computed by Ni and as follows [2]:

Mh =

⌈
Ni

fh

⌉
where Ni =

(
Li

AV Grecords

+
(
1 − 1

AV Grecords

))
· Ci (7)
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For example, for the leaf level, M1 =
⌈

Ni

f

⌉
.

Let ah denote the average area covered by a node at height h. Since Ri covers
1/K of the d-dimensional work space WS = [0, 1)d as shown in Figure 12, we
have:

ah =
1

K
· 1

Mh

(8)

1

Ri[ti,ti+1), Li=ti+1− ti =
K

1

y x

time

Fig. 12. Ri in WS = [0, 1)d

Using the Minkowski sum technique [2,14,17], the probability that a node at
height h may overlap the interval query rectangle s is:

(
d
√

s + d
√

ah

)d
(9)

where d
√

s and d
√

ah denote the average one-side lengths of s and ah, respec-
tively. Therefore, the number of nodes at height h that may overlap the query
rectangle s is:

Mh ·
(

d
√

s + d
√

ah

)d
=


 d

√√√√⌈
Ni

fh

⌉
· s +

d

√
1

K




d

(10)

where Mh and ah are substituted with Ni, fh, and K by Formulas (7) and (8).

Let NAi be the total number of nodes accessed to answer the query rectangle
s in Ri. NAi is computed by summing Formula (10) from the leaf to the root
as follows:

NAi = 1 +

�logf Ni�−1∑
h=1


 d

√√√√⌈
Ni

fh

⌉
· s +

d

√
1

K




d

(11)

When the interval query intersects the boundary, all the Ri’s which overlap the
interval query should be searched. Therefore, the query cost of the APR-tree
is the sum of query costs of these Ri’s which overlap the interval query.
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4.3 Determination of the jurisdiction interval length Li

In this section, we present how to determine the tuning parameter Li which af-
fects the query cost and the size. This procedure is based on the mathematical
rationale using Formulas (6) and (11).

Avg. query cost

AVGqueries Li

time time time

QQ Q

(i) Li<AVGqueries (ii) Li=AVGqueries (iii) Li>AVGqueries

Li Li= AVGqueries Li

Fig. 13. Average query cost for interval query Q as a function of Li

Figure 13 shows the average number of nodes accessed to answer an interval
query Q whose time interval length is AV Gqueries as a function of Li. If the
interval query Q does not intersect the boundary, Li = AV Gqueries makes the
query cost smallest since the search space is smallest. When Li < AV Gqueries,
the query cost increases since many Ri’s should be searched. Conversely, when
Li > AV Gqueries, the query cost also increases due to the increase of the search
space. In other words, if Li < AV Gqueries, the query cost is affected by the
number of Ri’s which are searched. Since Li < AV Gqueries, the number of
Ri’s which are searched is at least 2. The smaller Li decreases the search
space, but increases the number of Ri’s which are searched. In contrast, if
Li > AV Gqueries, the query cost is affected by the search space. Since Li >
AV Gqueries, the number of Ri’s which are searched is at most 2. Consequently,
if Li ≤ AV Gqueries, Li is chosen to minimize the number of Ri’s which are
searched. If Li ≥ AV Gqueries, Li is chosen to minimize the search space.

Let Li = α · AV Gqueries (α > 0). We can consider the following two cases
according to the range of α: (i) α ≤ 1 (ii) α ≥ 1. Namely, α ≤ 1 means that
Li ≤ AV Gqueries, and α ≥ 1 means that Li ≥ AV Gqueries.

If α ≤ 1 (i.e., Li ≤ AV Gqueries), the query cost depends on the number of
Ri’s which are searched. Since the smaller Li increases the number of Ri’s
which are searched, α = 1 (i.e., Li = AV Gqueries) minimizes the number of
Ri’s which are searched. When Li = AV Gqueries, the number of Ri’s which
are searched is at most 2. Consequently, if Li ≤ AV Gqueries, Li = AV Gqueries

minimizes the query cost.

If α ≥ 1 (i.e., Li ≥ AV Gqueries), the query cost depends on the search space.
As shown in Figure 14, there are the following two cases: The first case is
that the interval query Q does not intersect the boundary. The second case is
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Fig. 14. Difference between search spaces of two cases

that the interval query Q intersects the boundary. Therefore, Li is chosen to
minimize the average search space of two cases.

Let Pintersect be the probability that the interval query Q intersects the bound-
ary. Since Pintersect is the same as the probability that an interval whose length
is AV Gqueries intersects a point within the range of [0, Li), we have:

Pintersect =
AV Gqueries

Li
(12)

For example, if Li = 2 · AV Gqueries, Pintersect = 0.5.

Let Pnot intersect be the probability that the interval query Q does not intersect
the boundary. Since Pnot intersect = 1 − Pintersect, we have:

Pnot intersect = 1 − AV Gqueries

Li
(13)

Let Snot intersect denote the search space of the APR-tree when the interval
query Q does not intersect the boundary. As shown in Figure 14(a), since the
interval query Q intersects only Ri and Li = α · AV Gqueries, the search space
of the APR-tree is:

Snot intersect = α · AV Gqueries (14)

Let Sintersect denote the search space of the APR-tree when the interval query
Q intersects the boundary. As shown in Figure 14(b), since the interval query
Q intersects both Ri and Ri+1, and Li = Li+1 = α · AV Gqueries, the search
space of the APR-tree is:

Sintersect = 2α · AV Gqueries (15)

Let Savg denote the average search space of the APR-tree for the two cases
as shown in Figure 14. From Formulas (12), (13), (14), and (15), the average
search space of the APR-tree is:

Savg = Pintersect ·Sintersect+Pnot intersect·Snot intersect = (α+1)·AV Gqueries (16)
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In Formula (16), since α ≥ 1, α = 1 minimizes the average search space of
the APR-tree. When Li = AV Gqueries, Savg = 2 · AV Gqueries. Consequently,
if Li ≥ AV Gqueries, Li = AV Gqueries minimizes the query cost. As a re-
sult, Li = AV Gqueries reduces the number of Ri’s which are searched to 2.
and the average search space of the APR-tree is minimized. Therefore, Li =
AV Gqueries minimizes the average cost of the query Q whose time interval
length is AV Gqueries.

As shown in Formula (6), Li determines the ratio of duplicate records. In other
words, the smaller Li, the larger size of the APR-tree. Figure 15 illustrates
the size of the APR-tree as a function of Li. In this figure, the difference
between Size(3DR− tree) and Size(APR− tree) is due to duplicate records
spawned by the boundary. To prevent that the size of the APR-tree becomes
prohibitively large, Li should have the minimum threshold. Therefore, we use
AV Grecords as the minimum value of Li. Li ≥ AV Grecords assures that the
size of the APR-tree does not exceed 2 times that of the 3DR-tree since by
Formula (6), when Li = AV Grecords, λi ≤ 0.5. Namely, λi = 0.5 means that
most of records intersect boundaries, so the number of duplicate records nearly
equals the number of non-duplicate records.

Size(APR-tree)

Li

Size(3DR-tree)

2⋅ Size(3DR-tree)

AVGrecords

Fig. 15. The size of the APR-tree as a function of Li

To determine Li dynamically, we take advantage of query workloads. Figure 16
shows the algorithms to compute AV Gqueries and AV Grecords. They are recom-
puted when queries and records are entered so that they can be dynamically
adjusted. In Figure 16, Nqueries and Nrecords denote the numbers of queries and
records, respectively.

Using AV Gqueries and AV Grecords obtained from the query workload and the
dataset, respectively, the tuning parameter Li is dynamically determined by
the following formula.

Li = max(AV Gqueries, AV Grecords) (17)

where max(AV Gqueries, AV Grecords) chooses the larger value between AV Gqueries

and AV Grecords.

Formula (17) guarantees the following two things: The first is that the size
of the APR-tree does not exceed 2 times that of the 3DR-tree since Li ≥
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proc Compute AV Gqueries (query q =< S, [t0, t1), results >)
begin

1. AV Gqueries := Nqueries×AV Gqueries+(t1−t0)

Nqueries+1

2. Nqueries := Nqueries + 1
end

proc Compute AV Grecords (record r =< id, s, [t0, t1) >)
begin

1. AV Grecords := Nrecords×AV Grecords+(t1−t0)
Nrecords+1

2. Nrecords := Nrecords + 1
end

Fig. 16. Computation of AV Gqueries and AV Grecords

AV Grecords. The second is that when AV Gqueries ≥ AV Grecords, the query cost
is smallest since Li = AV Gqueries. However, when AV Gqueries < AV Grecords,
the query cost is not smallest since Li > AV Gqueries and the APR-tree suffers
from the enlarged search space. However, the performance of the APR-tree
would not degrade unless AV Grecords is much larger than AV Gqueries.

5 Experiments

In this section, we compare the APR-tree with the HR-tree, the 3DR-tree
and the MV3R-tree in terms of query cost, size, and update cost. Section 5.1
describes the experimental environment and Section 5.2 provides the experi-
mental results.

5.1 Experimental Environment

Due to the lack of real data, synthetic datasets with real world semantics
are generated by the GSTD method [13] which has been widely employed
(e.g., [8,9,11,12]) as a benchmarking environment for access methods handling
moving points and regions. Objects change their shapes or positions randomly.
We investigate their movements for 500 timestamps. The cardinality of objects
is 10,000. Objects are uniformly distributed in the spatial area. Agilities of
datasets are 10%, 20%, and 30%, where the agility denotes the ratio of objects
which change their positions or shapes at each timestamp. For example, agility
= 10% means that 10% of the objects change their positions or shapes at
each timestamp. To estimate AV Gqueries, 10% of queries in the workload are
randomly selected. AV Grecords is computed using records at the index building
time.
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Note that in this work, the R-tree implementations of all the spatio-temporal
access methods are based on algorithms of the R*-tree [16]. The values of
parameters of the MV3R-tree are the same as those in [11]: Pwv = 0.35 and
Psvo = 0.85, where Pwv indicates the value for the weak version condition
and Psvo indicates the value for the strong version overflow condition. A node
corresponds to a page, whose size is 1 KBytes. Using this size, the maximum
fanouts of the HR-tree, the 3DR-tree, the MV3R-tree, and the APR-tree are
50, 36, 36, and 36, respectively. In the HR-tree, the other nodes except root
nodes do not keep temporal information, so the maximum fanout of the HR-
tree is larger than those of the other access methods.

To simulate real life situations, the five query workloads in Table 3 are em-
ployed. Each workload has 1,000 queries. Spatial areas of queries are 1%, 3%,
5%, 7%, and 9% of the whole spatial area. The maximum time interval length
of queries are between 1% (5 = 500 × 1%) and 20% (100 = 500 × 20%) of
whole time interval.

Table 3
Five workloads which consist of timestamp and interval queries

Timestamp queries Interval queries

The 1st workload 100% 0%

The 2nd workload 75% 25%

The 3rd workload 50% 50%

The 4th workload 25% 75%

The 5th workload 0% 100%

To show the efficiency of the APR-tree, we measure the average number of
nodes accessed to answer timestamp and interval queries in the workload.
The justification for performance metric is that the smaller number of node ac-
cesses, the fewer disk I/O’s needed to evaluate timestamp and interval queries.

5.2 Experimental Results

Figure 17 shows the performance of each access method for various query
workloads when the dataset agility is 20%. Since the experimental results for
dataset agilities = 10% and 30% are similar to those for the dataset agility =
20%, the experimental results for dataset agilities = 10% and 30% are omitted.
For the workload with 0% interval queries (i.e., 100% timestamp queries),
the 3DR-tree shows the worst performance, and the HR-tree shows the best
performance since the search space of the HR-tree is optimal for timestamp
queries and the average fanout of the HR-tree is much larger than those of the
other access methods. Conversely, for the workload with 100% interval queries,
the HR-tree shows the worst performance since the HR-tree should search
many R-trees. The MV3R-tree outperforms the HR-tree and the 3DR-tree for

18



0

100

200

300

400

1% 3% 5% 7% 9%

Query spatial area

A
vg

.n
od

e
ac

ce
ss

es

HR-tree
3DR-tree
MV3R-tree
APR-tree

(a) 0% interval queries
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(b) 25% interval queries
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(c) 50% interval queries
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(d) 75% interval queries

0

250

500

750

1000

1% 3% 5% 7% 9%

Query spatial area

A
vg

.n
od

e
ac

ce
ss

es

HR-tree
3DR-tree
MV3R-tree
APR-tree

(e) 100% interval queries

Fig. 17. Query costs for various query workloads (agility = 20%)

the workloads with 25%, 50%, and 75% interval queries since the MV3R-tree
combines the MVR-tree for timestamp queries and the auxiliary 3DR-tree
for interval queries. Thus, for the workload with 100% interval queries, the
performance of the MV3R-tree is similar to that of the 3DR-tree since the
auxiliary 3DR-tree also searches the whole history like the 3DR-tree. For the
workloads with above 25% interval queries, the APR-tree achieves the best
performance since AV Gqueries > AV Grecords and Li = AV Gqueries. However,
for the workload with 0% interval queries, the performance of the APR-tree
is worse than that of the HR-tree since the search space of the APR-tree is
larger than that of the HR-tree and the average fanout of the APR-tree is
smaller than that of the HR-tree. However, as shown in Figures 17(b), 17(c),
17(d), and 17(e), the APR-tree outperforms the other access methods for a
variety of query workloads.

Figure 18 shows the performance of each access method for the workload with
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(a) Agility = 1%
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(b) Agility = 5%
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(c) Agility = 10%
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(d) Agility = 30%

Fig. 18. Query costs for various agilities (50% interval queries)

50% interval queries when the dataset agility varies from 1% to 30%. Note that
Figure 17(c) shows the result for the workload with 50% interval queries when
dataset agility is 10%. Regardless of the dataset agility, the APR-tree accom-
plishes the best performance for this workload since AV Gqueries > AV Grecords

and Li = AV Gqueries. When the dataset agility is 30%, the APR-tree out-
performs the other access methods. This is due to the fact that AV Grecords

decreases as the agility increases. By Formula (6), the smaller AV Grecords re-
sults in the smaller number of duplicate records. By Formula (11), the smaller
number of duplicate records improves the performance of the APR-tree since
the total number of records decreases. Regardless of the dataset agility, the
MV3R-tree also outperforms the HR-tree and the 3DR-tree since the MV3R-
tree combines the MVR-tree responsible for timestamp queries and the auxil-
iary 3DR-tree responsible for interval queries. Since the number of duplicate
data decreases as the agility increases, this improves the performance of the
HR-tree. When the dataset agility is 10%, the 3DR-tree outperforms the HR-
tree. In contrast, when the dataset agility is 30%, the HR-tree shows as similar
performance as the 3DR-tree.

Figure 19 shows the performance of each access method for the workload with
100% interval queries when the dataset agility is 20% and maximum interval
length of queries varies from 5 (= 500 × 1%) to 100 (= 500 × 20%). Note
that Figure 17(e) shows the result for the workload with 100% interval queries
when the dataset agility is 20% and maximum interval length of queries is 50
(= 500×10%). When maximum interval length is 5 as shown in Figure 19(a),
the 3DR-tree shows the worst performance due to a large search space while
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(a) Maximum length = 5 (1%)
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Fig. 19. Query costs for various maximum interval lengths (agility = 20% and 100%
interval queries)

the HR-tree and the MV3R-tree yield similar performance. In contrast, when
maximum interval length is 100 as shown in Figure 19(b), the HR-tree shows
the worst performance due to an access to a large number of R-trees while
the 3DR-tree and the MV3R-tree yield similar performance. The APR-tree
outperforms the others for various maximum interval length since it employs
the query adaptive index scheme.
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Fig. 20. The size comparison for various query workloads (agility = 20%)

Figure 20 shows the size of each access method for various query workloads
when the dataset agility is 20%. The 3DR-tree has the smallest size since it
has no duplicate data. The size of the HR-tree is about 2.7 times larger than
that of the 3DR-tree since it has a huge number of duplicate data. The size of
the MV3R-tree is about 1.5 times larger than that of 3DR-tree since it has a
large number of duplicate data due to version splits. As shown in Figure 20,
the sizes of the HR-tree, the 3DR-tree and the MV3R-tree are determined by
datasets. In other words, the sizes of these access methods are not affected
by query workloads. In contrast, the size of the APR-tree is associated with
query workloads as well as datasets since Li is determined by AV Gqueries and
AV Grecords. The size of the APR-tree is on the average 1.3 times larger than
that of the 3DR-tree. As the ratio of timestamp queries increases, the size of
the APR-tree increases due to the smaller Li. For the workload with 0% inter-
val queries (i.e., 100% timestamp queries), the size of the APR-tree is about
1.7 times larger than that of the 3DR-tree since AV Gqueries = 1 is smaller
than AV Grecords and by Formula (17), Li = AV Grecords causes a large num-
ber of duplicate records. Although for the workload with 0% interval queries,
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the size of the APR-tree is larger than that of the MV3R-tree, the APR-tree
outperforms the MV3R-tree as shown in Figure 17(a). For the workloads with
above 25% interval queries, the size of the APR-tree is smaller than that of
the MV3R-tree. Especially, for the workload with 100% interval queries, the
size of the APR-tree approaches to that of the 3DR-tree.
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Fig. 21. Update costs for various query workloads (agility = 20%)

Figure 21 shows the update cost of each access method for various query
workloads when the dataset agility is 20%. The update cost denotes the av-
erage number of nodes accessed to update each structure for object changes
(insertion and logical deletion) and is measured by using the following equa-
tion: Update cost = N2

N1
where N1 denotes the total number of records and N2

denotes the total number of nodes accessed to insert N1 records.

Compared with the HR-tree and the MV3R-tree, the update cost of the 3DR-
tree is smallest since it has the smallest size and maintains the single structure.
The update cost of the MV3R-tree is typically 2 times higher than that of the
3DR-tree since the MV3R-tree has to modify the MVR-tree and the auxiliary
3DR-tree concurrently. The update cost of the HR-tree is about 1.4 times
higher than that of the 3DR-tree since the size of the HR-tree is large and
nodes in the path between the leaf and the root node may be modified or
created even when an object changes its shape or position. Since the size and
the height of the APR-tree change according to query workloads, the update
cost of the APR-tree is also affected by query workloads. Since the height of
the APR-tree is lower than that of the 3DR-tree and the size of the APR-tree
is on the average 1.3 times larger than that of the 3DR-tree, the update cost
of the APR-tree is on the average similar to that of the 3DR-tree. As the ratio
of interval queries increases, the size and the update cost of the APR-tree
decrease since Li increases.

6 Conclusions

To overcome the problems with the HR-tree, the 3DR-tree and the MV3R-
tree for timestamp and interval queries, we proposed the APR-tree which takes
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account of query workloads. Since the jurisdiction interval length of the APR-
tree is automatically fitted to the query workload, the APR-tree outperforms
the other access methods for various query workloads. Unlike the other access
methods, the size and the update cost of the APR-tree are affected by query
workloads. As the ratio of interval queries increases, the size and the update
cost of the APR-tree decrease. The size of the APR-tree is on the average 1.3
times larger than that of the 3DR-tree. The update cost of the APR-tree is
on the average similar to that of the 3DR-tree. Additionally, since the HR-
tree and the MV3R-tree have the graph structure, when dealing with interval
queries, they require additional overheads, such as the maintenance of the
access list in order to avoid re-accessing nodes. However, since the 3DR-tree
and the APR-tree have the tree structure, they do not require such overheads.
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