
 1

Adaptive development and maintenance of user-centric
software systems

Claus Pahl

School of Computing
Dublin City University

Dublin 9
Ireland

phone: ++353 +1 700 5620
fax: ++353 +1 700 5442

email: Claus.Pahl@dcu.ie

Abstract
A software system cannot be developed without considering the various facets of its environment.
Stakeholders – including the users that play a central role – have their needs, expectations, and
perceptions of a system. Organisational and technical aspects of the environment are constantly
changing. The ability to adapt a software system and its requirements to its environment throughout its
full lifecycle is of paramount importance in a constantly changing environment. The continuous
involvement of users is as important as the constant evaluation of the system and the observation of
evolving environments. We present a methodology for adaptive software systems development and
maintenance. We draw upon a diverse range of accepted methods including participatory design,
software architecture, and evolutionary design. Our focus is on user-centred software systems.

Keywords: Adaptive development and maintenance, Requirements and software change, Participative
design, Software architecture, Evolutionary design.

1. Introduction

A software system is always tightly embedded into its environment. Its organisational and
technological environment determines substantial parts of the system. Stakeholders influence a system
throughout its lifetime. Change is ubiquitous in all types of environments. For a software system this
means to adapt to the needs of different stakeholders and to adapt to constant change in its
environment. We propose here a methodology for adaptive development and maintenance of user-
centric software systems. We focus our investigation on interactive software systems, as these software
systems are particularly dependent on their links with their environments. Interactive systems enable
users to communicate with the system [7].

Our focus is on requirements engineering aspects for software systems that are strongly influenced by
two characteristics: user-centric and change-driven, both representing a software system’s links to its
environment. User-centric systems are usually interactive systems. We aim at a participative form of
software development that also includes the user in all stages of the software lifecycle such as
maintenance and change management in evolving environments. Change can be a consequence of
internal evaluation or of evolution in the environment.

Classical approaches to requirements engineering, such as use cases, have shown deficiencies [13]. Use
cases, for example, are difficult to formalise and to manage on a large scale; change management is
often a problem. Solutions to these specific problems include distinguishing soft and rigid
requirements, to use goals to structure use cases into a hierarchy, or to use an incremental approach.
These approaches lead us already towards an iterative style of development based on possibly change-
and evolution-oriented increments and changes. Adaptiveness is our central notion, the paramount
ability within the development and maintenance process that captures the reaction to the various forms
of changes resulting from evaluations and evolution in relation to a system’s environment. Our
objective is to develop a methodology that focuses on a software system’s links to its environment and
that allows the system to be adapted to changes in its environment.

 2

Our contribution to adaptive development and maintenance is a combination of widely used software
engineering methods that we have adapted to the given requirements engineering context. We have
combined participative, architectural and evolutionary design [4,16,21] with a focus on aspects of
volatile, emerging and changing requirements – supported by formative evaluation and evolution in
incremental and cyclical processes. Scenarios form the starting point, reflecting activity-based
requirements for the system and its development process [3,4,9,25]. Scenario prototyping, i.e.
operationalising scenarios, emphasises the evaluation and evolutionary focus [2]. We will show the
feasibility of such a combination. Adaptive development and maintenance is based on architecture-
based evolutionary scenario prototyping. The central achievement is the combination of usability-
oriented techniques, such as scenarios, prototyping, and evaluation, with architecture and software
change techniques.

We start by giving an overview of adaptive development and maintenance, before introducing the three
central aspects in detail. We illustrate the methodology using a case study – an educational system that
exhibits all the difficulties of the target domain. Finally, we evaluate our methodology and end with
some conclusions.

2. Adaptive development and maintenance – overview and rationale

2.1 A notion of adaptiveness for software systems

To adapt means to change your (or a system’s) behaviour because your (or the system’s) situation or
environment has changed. Software systems are changed or adapted so that they can be used in
changing environments, adapted to the needs of different stakeholders. The environment here
comprises the technical and organisational environment – the computer system – in which the software
is running, but also the stakeholders involved and their needs.

Adaptiveness is different from evolution or development in general. Evolution is about change, but
based on the idea of improvement starting from something elementary. Development, equally, has the
connotation of growth and increase. Adaptiveness is the broader term, which captures all forms of
maintenance and change, and is not restricted to ideas of improvement and growth; it represents
flexibility in accommodating change within a system. Adaptiveness is a property that refers to the
flexible adaptation of software systems in changing environments. It has a static dimension relating to
stakeholders and the system environment and a dynamic dimension relating to evolution and change
processes.

In the context of software systems adaptiveness involves two aspects that bring us back to the central
aspects user (and other stakeholders) and change. We introduce here a methodology – called adaptive
development and maintenance – that encompasses requirements engineering and design aspects, based
on participative and evolutionary design, both connected through software architecture [4,16,21]. We
present this methodology as a framework based on these individual methods, connected through
common rules and principles.

Change and evolution make up the first focus of our methodology. A goal is to incorporate a design
that allows a software system to be managed and maintained in a changing and evolving environment.
Evolution results in changes in two directions: improvements of existing features and extensions of the
existing feature range. Evolution and change raise questions about feasibility, effectiveness, and
potential conflicts. Prototyping and analyses provide the answers [24]. Experimental prototyping is the
proposed method to investigate the feasibility of solutions for emerging or changing requirements.
Questions about efficiency and other quality of service criteria can be answered by analyses and
exploratory prototyping. An analysis of existing and modified requirements and design decisions is
needed to determine possible conflicts. On a smaller scale, change increments and change iterations are
key concepts. These are at the core of the implementation of evolution, but they are also central in
general maintenance and change management. Internally driven maintenance and change is based on
evaluations aiming at improved software productivity. A goal of the methodology is the traceability of
requirements and their change. This should address local and global changes, and internal and external
change factors.

 3

The user – or stakeholders in general – is the second focus besides change. To adapt to the
stakeholders’ changing needs is the goal. In interactive systems, the user plays the key role and
usability requirements are paramount. However, these requirements do often cause difficulties – we
will illustrate this later on in our case study. These requirements are often volatile, i.e. subject to
change or only emerging during the software product lifecycle.

2.2 An overview of adaptive development and maintenance

We propose a three-stage iterative process model as the core of our adaptive development and
maintenance methodology consisting of the three stages participative requirements engineering,
adaptable architecture design, and evaluation- and evolution-driven change and maintenance. The
methodology, see Fig. 1, involves aspects of evolutionary and incremental development. We
distinguish two layers: the artefact layer with scenarios, architecture, and prototypes and an analytic
layer with evaluation and change management techniques. Analysis brings us from the artefact layer to
the analytic layer; change brings us from the analytic to the artefact layer.

Figure 1. Adaptive development and maintenance.

A methodology is determined by the stages, the artefacts that are involved, and the techniques that are
based on activities on these artefacts. We distinguish a requirements stage, a design stage, and a change
and maintenance stage. Central artefacts for our three-stage adaptive development and maintenance are
scenarios for the requirements stage, architectures and prototypes for the design stage, and prototypes
also as evaluation artefacts for the change and maintenance stage. Prototypes are reflections of
scenarios within the architectural structure of the software system. The techniques are based on
activities: firstly, encodings – essentially mappings from one artefact representation notation into
another – and, secondly, analyses and evaluations that support these mappings.

Encodings are mappings from representations in one notation or language into another target notation
creating different types of artefacts (Fig. 1):
• The description of scenarios is the first step. Based on general goals and objectives of the

stakeholders, scenarios can be formulated that reflect the activities of stakeholders as users of the
system or within the development and maintenance process. A scenario language is the target
notation.

• The definition of an architecture is the second step. Scenarios are the starting point for the
mapping – although other factors can determine general platform and specific architectural style
choices. We use an architectural description language with notational elements such as
components, connectors, and interaction processes as the target language. A basic scenario is a
triple (actor, action, object); action and object determine (together with an architecture style) the
components. Scenario activities determine component interaction processes. There will usually be

Adaptable
Architecture Design

and Prototyping

Evaluation- and Evolution-driven
Change and Maintenance

scenario-architecture mapping
prototype implementation

prototype evaluationscenario evaluation

scenario interaction
analysis

component mismatch
analysis

architectural options analysis

modification analysis

artefact
 layer

analytic
 layer

Participative
Requirements
Engineering

scenarios
architecture
prototypes

 stages techniques artefacts

 4

more components and connections than determined by the scenarios alone; the latter only reflect
stakeholder activities. The mapping process is guided by specific analyses, for example to assess
different architectural options.

• The implementation of prototypes is the next step. A scenario and an architecture together
determine a prototype. The prototyping language is often a programming language. Based on the
architecture, the components and connectors that are affected by a scenario mapping are
determined. A prototype is based on a subset of services offered by the components in question.

Artefacts and mappings are subject to change in an incremental and evolutionary process. Adapting a
system to continuously occurring changes in the environment and in its requirements is supported
through analyses and evaluations (Fig. 1):
• Scenarios:

• Scenario evaluation with stakeholder participation reflects requirements elicitation; it is about
the validation and correctness of activity requirements.

• Scenario analyses address interaction and consistency – applied to any new or changing
scenario. Interaction is a measure of coupling and cohesion; similarity analyses aim at the
detection of overlaps through the identification of equal substructures.

• Scenario-architecture mappings:
• An architectural options analysis is used in both an initial architecture design and in

architectural transformations. Guidance rules and heuristics are used to select architectural
options.

• A modification analysis addresses changing architectures. Determining the change impact
comprises the options, which components are affected by change, and how much work is
needed per component. We use, among others, coupling and cohesion analyses as
maintainability measures.

• Architectures and prototypes:
• Prototype and architecture evaluation with stakeholder participation focuses on the

completeness, correctness, and consistency of functional requirements and non-functional
requirements (such as usability, efficiency, and stability).

• Architecture assembly – initially or during change management – can be supported by a
component mismatch analysis looking at syntactical and semantical aspects. Change
consistency can be controlled through the use of component subtypes and flexible connector
types.

2.3 Central principles: interaction processes and adaptivity

The three stages of our methodology are part of almost any development methodology. Central for the
success is the internal coherence of these stages. The rationale behind the methodology should be
reflected by the coherence of the stages in terms of their basic principles. Two common principles are
central for the coherence the methodology. Both act as integrating elements.
• From a technical, product-oriented perspective, interaction processes embody the central focus of

software systems within their environment. Interaction processes are the integrating principle for
the different encoding notations and analysis techniques.

• From a development and management process-oriented view, adaptivity is the integrating principle
for the three different stages that captures stakeholders and changing requirements as part of the
organisational environment.

Managing the relationship of a software system with its environment – in the two dimensions
interaction and adaptivity – is at the core of our methodology. The rationale is to address problems
arising in the development and maintenance of user-centric software systems that can often be
attributed to the system-environment relationship. Interaction is the central notion since it emphasises
the relation of a system to its environment. This includes the technical context, but also stakeholders
and their requirements on a more abstract level. Adaptivity refers to the flexible management of
interaction.

User behaviour and interaction processes between user and system are central in interactive, user-
centred systems. Interaction processes capture user-system interactions as well as system-internal
interactions. This aspect plays a central role and integrates the three stages of the methodology. The
scenario language focuses on complex behaviour processes based on simple interaction activities. Our
architecture description language includes interaction process descriptions. Prototypes are often

 5

horizontal prototypes focusing on the interaction between components. The evaluation focuses on
usage mining and analysis of behaviour patterns.

We have outlined the methodology in this section. Evaluation and evolution create an iterative
development process. The overall approach can be characterised as cooperative architecture-based
evolutionary scenario prototyping. We will describe the methodology in more detail by looking at,
firstly, the use of basic descriptional elements: units of description (e.g. scenarios) and combinators of
descriptions (sequence, iteration, etc.), and, secondly, the use of basic process activities including the
use of techniques such as mappings, evaluations, and analyses.

3. Participative requirements elicitation and representation

3.1 Requirements engineering

Requirements engineering is a communicative process involving stakeholders with different
backgrounds, expectations, and roles in a software development project [13,24]. Requirements
engineering involves the elicitation and the representation of requirements. The fundamental difference
between these two activities is their focus on two different stakeholders. Requirements elicitation is
generally user-centred. Informality and concreteness of requirements are important. Requirements
representation is on the other hand developer-oriented. Here, consistency and completeness of
requirements are central. Still, the organisation and representation of requirements is a reflection of the
approach to requirements engineering, e.g. a reflection of the extent to which users are included in the
development process. The user and her/his environment are therefore the central focus in requirements
engineering. The context of a future domain-specific software system involves the stakeholders, the
relevant properties of the domain such as terminology, standards, and domain models.

Different types of requirements can be distinguished in our context. Participation of the user and other
stakeholder is important in order to make vague requirements more precise in an iterative
communication process. Emerging and volatile requirements can be dealt with in an incremental and
evolutionary approach, i.e. in a software lifecycle process that reacts to changes in the environment at
later design and deployment stages. Conflicting requirements can emerge during development, or as a
consequence of change and evolution. Requirements can be stable or volatile; they can be subject to
change (they are change objects) or they can address the process of change (they are change subjects)
and maintenance activities. Determining change factors is often a difficult task: what is likely to change
and how can change be made explicit are the critical questions.

3.2 Scenarios in user-centred requirements engineering

3.2.1 Scenario-based design

Participative design is a user-centred development approach, in particular suitable for software systems
with a high degree of user interaction and complex processes involving the user [4,9]. The focus is on
usability requirements [7]. Central concepts of the approach are scenarios. Scenario-based design is a
representational form for user-centric development [3]. Users and designers participate actively in the
development process. Scenarios are brief descriptions of a single interaction of a stakeholder with a
system – this includes classical use cases, but also maintenance and change activities [11]. Interactive
software systems are characterised by dialogues between the user and the system that represent
complex processes. An adequate representation of these processes through composite scenarios is,
however, necessary. Executable prototypes play an important role; they operationalise scenario
definitions. Prototypes aim to support the evaluation of usability and utility of the software system and
its components. Systems with requirements in terms of usability are often subject to incremental
development. Scenarios can address this problem.

Scenarios are rooted in specific situations from the domain under scrutiny [3]. Scenarios are
hypothetical (make assumptions about the future) and selective (not complete); they should be
connected (related to architecture and other scenarios) and assessable (allow analysis and evaluation).
Scenarios are a medium of the requirements engineering stage. However, their use extends into the
design and further stages. Scenarios are part of the incremental development and maintenance lifecycle
of a software system [25].

 6

3.2.2 Scenario language

Kazman et.al. [11] define a scenario as a brief description of a single interaction of a stakeholder with a
system. A more precise definition is given by Alspaugh et.al. [1]: a scenario is a linear sequence of
events, with associated attributes. An event is an association of an actor and an action. A subsequence
is a sequence of one or more events part of a scenario. An episode is a named subsequence, usually
shared among several scenarios. Attributes of a scenario can include system goals, contractual
obligations, the concreteness level, or the author. These attributes would bring the scenario description
closer to a detailed design specification.

We refine the definition by Alspaugh et.al. [1]. We do not require a linear sequence. Instead, we allow
a richer set of combinators to built composite activities, reflecting the interaction processes of typical
user-centred software systems where a user can choose between options, can repeat elements, or work
on several elements at the same time. We also expand the notion of events, calling it an activity. An
activity shall here be comprised of an actor, an action, and the object on which the action is carried out.
Information access is represented through the combination of action (access operations) and object
(information objects). Thus, we define the following scenario language:
• A basic activity is a triple (actor, action, object) consisting of an actor (a stakeholder) who carries

out an action on an object. An activity describes an interaction of an actor with an object.
• Activity combinators compose more basic interaction activities to more complex ones. Option and

repetition can be applied to a single activity. Choice, concurrency, and sequence combine two or
more activities.

This semi-formal language is useful in the context of interactive systems where user processes and
interactions of actors with a software system have to be expressed. There has been a trend recently to
add such behavioural specifications to requirements notations [12]. Composable activities allow a
refinement process, starting with abstract activities refined by more detailed composite activities.

Change is a central activity in software development and maintenance. Scenarios can reflect activities
of all stakeholders, including change-related and other maintenance activities in relation to the software
system and its specifications. We can distinguish usage scenarios (or simply scenarios) and meta
scenarios – called direct and indirect scenarios elsewhere [11]. Meta scenarios provide guidance for the
maintenance process; they usually include actions such as evaluation, evolution observation, and
analysis activities.

4. Adaptable architecture design and prototyping

4.1 Software architecture and architectural design

Software architecture is a software engineering discipline that addresses the organisation of software
systems into composable software entities forming a software architecture of components and
connectors between components [6,21]. These software components are loosely coupled, internally
coherent software artefacts that are assembled to software systems. Connectors are entities that provide
the infrastructure for interactions between components. Architectural design is usually the first design
step before the focus narrows down onto detailed design [14]. The main focus of software architecture
design is the separation of computation and communication, which enhances the maintainability of
evolving systems.

4.2 Scenario-driven architectural design

Two aspects in the context of architectural design are of particular importance here. Firstly, the
transition from requirements engineering into the architectural design stage: requirements
representations can be used to determine architectures. Secondly, the effect of software ageing and
evolution on software architectures: for instance, layered architectures promote independence and help
to control the impact of change. However, in relation to traceability of change more support is needed.
Scenarios turn out to provide a solution for both aspects. Scenarios can form the starting point for an
architecture definition. The central principle – interaction processes – will enable the seamless
transition from scenarios to architectures. Scenarios can be subject to maintenance and change; they

 7

can consequently be a tool to trace changes, but scenarios can also address change and adaptivity
explicitly.

Scenarios can be the main drivers to capture architectural views [15]. The structural view addresses
architectural styles and patterns. The functional view addresses how the system realises critical
functionalities (which are expressed through scenarios). The static view addresses the mapping
between scenario activities and components – an important view supporting traceability, cohesion and
coupling.

4.2.1 Architectural description language

Our target language for the architecture definition is an architectural description language [6,21]:
• Components encapsulate the computational side. Components provide a service based on a range

of coherent operations.
• Connectors represent the communications infrastructure. Glue code enables the communication

between component services.
• Interaction processes describe protocols that coordinate the interactions between the components.
Architectural description languages comprise interface definition language aspects that describe the
functionality of a service in abstract syntactic and semantic form. The topology of components and
connectors defines the architectural configuration – often based on an architectural style or pattern. We
have added interaction processes to the language, which implements the important interaction principle.

4.2.2 Scenario-architecture mapping

Scenarios are our central requirements representation notation. They are therefore the main input for an
architecture definition. We need to distinguish two aspects when mapping scenarios onto an
architecture. Firstly, an initial architecture design is required when a software development project is
started. Secondly, changes to an existing architecture, i.e. an architectural transformation, is required if
requirements change, either due to external factors (evolution) or internal improvements (evaluation).
Both activities can be guided by suitable analyses that we will address later on in Section 4.2.3.

The architecture definition is, however, also determined by other aspects. Platform decisions and
standards, such as the Web, with their infrastructure impose architectural constraints. Some of the
components, connections, and interactions are not determined by scenarios – such as backend aspects
in information systems. Infrastructure services that are required predetermine some aspects of the
architecture: scheduling and coordination of system activities, how data moves through the system,
security, fault propagation, integration of new components, how the system scales, etc. [11].

Our scenario-architecture mapping is centred around the mapping of activity triples and complex
scenario activities to components and interaction processes:
• Scenarios can be mapped onto an initial architecture as follows. Actors and objects of the triples

support the identification of components. Scenarios can be categorised according to their
interactions with others. This might indicate implementation through the same component based
on similar features addressed in the scenario. Based on a scenario categorisation, the next task is to
find an architectural style that supports the desired component connections and interactions.
Standard architecture types are available that support particular types of software systems.
Composite scenarios involving complex activities determine component interaction processes. The
literature, e.g. [12], suggests mapping scenario activities onto interactivity design notations. We
map the activities onto component interactions, which provides a seamless and traceable transition
from requirements to design notations.

• In an evolving system, newly added or changing scenarios need to be mapped onto an existing
architecture [15]. Components, connectors, and interactions that are affected by a scenario
implementation need to be identified as part of the mapping. This mapping can be analysed to
determine the change impact – this includes conflicts in requirements in relation to other scenarios
or components, an estimate of the expected work needed, the components affected, and the
replacement strategy.

4.2.3 Analysis

 8

The software architecture field comprises various architecture analysis methods. Some of these can
support the scenario-architecture mapping. Analyses are needed to address architectural options and to
detect interferences between scenarios, prototypes, and components (Fig. 1). The early identification of
conflicts and their resolution is a central objective in software development. Mismatch analysis,
suggested by [8], and conformance analyses are possible techniques. A mismatch is an incompatibility
between components, e.g. related to interaction patterns. The solution to the mismatch problem is the
generation of wrapper or glue code. An objective is to exclude nonviable component configuration
options at an early stage. This is a two-level approach:
• Scenario-oriented: At the architectural options level, scenarios are described and component

descriptions include characteristics such as the degree of concurrency, distribution, encapsulation,
reconfigurability, type of control unit, etc. Most of these are semi-formal descriptions. The
mismatch analysis is guided by mismatch rules for scenario activities (e.g. ‘sharing data might
cause conflict’). Possibly conflicting components and their underlying scenarios are identified.
Unsuitable options are discarded or glue code is used as a remedy.

• Architecture-oriented: At the architecture level, a conformance analysis can be carried out. The
analysis of detailed, more formal specifications of the architecture is here the objective.
Conformance is essentially a matching analysis between component (and prototype) interfaces.
Message communication theories and process algebras can be used to describe and analyse
conformance of our component interaction processes [21], which are based on standard process
notations.

4.3 Architecture-based scenario prototyping

As the design process progresses, the purpose of scenario usage can change. The initial scenarios have
a major impact on the architectural design. However, as the architecture stabilises, the scenario focus
moves from ‘typical’ (i.e. architectural support patterns and reuse on the architecture level) to ‘critical’
as prototypes develop horizontally (to support interactions and activities across components) and
vertically (to support the development of a single feature). A prototype is an executable scenario,
determined by the mapping of the scenario onto the architecture. In addition to a scenario-based
architecture definition, we propose the execution and evaluation of scenarios through experimental and
explorative prototypes to address their validation. Prototypes serve as the communication medium
between users and developers and scenarios act as test cases for prototypes and the architecture.

4.3.1 Prototyping language

The prototypes need to be embedded into the scenario-based architecture. A prototyping language is an
implementation language that allows the rapid development of applications through specific language
constructs – such as a rich and flexible type system or domain-specific, high-level libraries and APIs.
The language needs to consider the structural constraints imposed by the architecture definition. The
language needs to support, or interface, services of the architecture platform.

4.3.2 Scenario-prototype mapping

A prototype is identified by mapping a scenario onto the architecture. The scenario-architecture
mapping identifies the components that implement a scenario. A prototype is therefore based on a
subset of the services provided by these components.

Implementing usage scenarios through prototypes supports traceability of requirements and their
changes. Prototypes aim to operationalise scenarios, in particular the activities described in scenarios,
but they also incorporate design and implementation decisions. Standard mechanisms, based on
engineering design principles addressing performance, fault-tolerance, etc., are used to implement the
scenario. These mechanisms determine the internal structure and behaviour of the prototype within the
constraints set by the scenario definition. The mechanisms need to be inherently linked to architectural
mechanisms and properties, such as architectural styles [11].

5. Evaluation- and evolution-driven change and maintenance

 9

5.1 Factors of software change

High frequency and variety of change characterise a wide range of software systems. These change
factors might be
• internal as a result of evaluations that help to eliminate faults and to improve – these evaluations

can address scenarios, prototypes, and architectures,
• external as a result of changes and evolution in volatile environments, which can affect scenarios,

prototypes, and architectures.
Causes and forms of change are manifold; their implementation through software change techniques
requires the ability to adapt to changes supported by suitable methods and supporting analyses.

5.1.1 Scenario and prototype evaluation

Scenarios are constructions meant to stage activities in the future and to reflect on and illustrate
problems with these activities. They serve to predict and evaluate the user’s actions in the system. The
evaluation of scenarios in collaboration between developers and users is one of our key objectives. The
purpose of communication and collaboration is to elicit and validate requirements and to establish their
correctness.

Recently, in the literature, a shift could have been observed from abstract scenario evaluation to
executable scenarios (prototypes). Prototypes create a trial-use situation to allow users hands-on
experience with the future system. Consequently, the prototypes create user reflections for feedback to
the developer. Scenario-based prototypes become a means for a structured formative evaluation of
system properties – the abstract scenario descriptions are test cases for the prototypes.

Prototypes bring requirements to the architectural design and implementation level reflecting scenarios
in the architecture. The interaction aspect provides the central integration between the different
encodings. Prototypes help us to evaluate aspects beyond the textual or graphical descriptions of
scenarios and architectures by directly analysing specific aspects of a running system. They allow us to
address qualitative and quantitative system properties such as usability, reliability or the degree of
feedback – usage and usability are central here. Prototypes allow the identification of deficiencies, for
example through breakdown analysis [2]. Prototypes in a changing environment help us to capture
requirements emerging during the development and deployment; they allow an incremental approach to
software development that can deal with changes; and they support the assessment of necessary
changes to the architecture and implementation. Classical techniques, such as surveys, observation, and
quality of service measures, combined with advanced usage analysis techniques can be used to evaluate
a prototype.

5.1.2 Scenario and architecture evolution

Software evolution occurs as a consequence of changes in the environment, i.e. changes to functional
or organisational requirements and/or infrastructure technology. Dealing with evolving scenarios and
architectures requires suitable management and maintenance techniques.

Evolutionary design is an answer to these management and maintenance problems. The driver of
evolutionary design is change. Central problems are vague, volatile and emerging requirements. The
problems arising from this context are addressed through adaptive software development concepts such
as architectures, analytic models, and scenarios [5,16,17]. In an environment dominated by change,
analysis becomes an important adaptivity technique for the management of software evolution and
evaluation. Requirements traceability and consistency need to be analysed and evaluated. Prototyping
is an approach that helps in this process of validating requirements, e.g. to establish the completeness,
correctness, and consistency of requirements.

5.2 Analysis for software change

Whether changes are caused internally (evaluation) or externally (evolution), the development and
maintenance method has to accommodate handling of these changes [20]. Traceability and consistency
are two key requirements for change support. Changes need to be traced from requirements through
design to implementation descriptions – we made this feasible for our methodology based on the
coherency achieved through the central interaction principle. Consistency is maintained through

 10

conflict identification and resolution. In general, the central issues that determine a suitable software
change technique are
• the sources that initiate change (e.g. programmed or ad-hoc),
• the operations that implement change (e.g. add or remove a component or connector),
• the constraints that control change (e.g. to preserve structural or behavioural properties), and
• a language to express modifications (procedural) and constraints (declarative).
The evolution of software architectures (design stage) needs to be integrated with scenario evolution
(requirements stage). At the core, the change impact needs to be determined. Scenarios and prototype
evaluation provide a suitable starting point. Both evaluation and evolution might entail software
changes. A change impact analysis needs to determine what the options for change are, how each
change option can be realised, and what the costs associated with each change option are.

5.2.1 Analytic models

Scenarios and architecture definitions are concrete artefacts produced in the development process.
Scenarios are abstractions of stakeholder’s tasks and activities, involving the information objects that
are accessed. Often, these artefacts are based on underlying, explicit or implicit models that support
design and evaluation.
• A domain model captures concepts from the application domain and their properties.
• A conceptual model is system oriented, consisting of an information model (data structures) and a

behaviour model (interaction behaviour).
• An analytic model, which combines domain and conceptual models, serves to interpret evaluation

results. Scenario activities as the basic descriptional units are based on these models.
Using scenarios and prototypes, we build analytic models of a use of, or of a change to, the
architecture. This allows us to understand the impact of the activity described in the scenario on the
architectures. This analytic model allows us to evaluate the required quality attributes (performance,
security, modifiability, etc). It also allows us to address the impact of change in an existing system.

5.2.2 Scenarios

We can use scenarios – both new or updated usage scenarios and meta scenarios – to guide the analysis
of the impact of change on the architecture. This helps us to identify components that might need to be
modified in case of changes in requirements. In combination with software architecture, scenarios and
prototypes support traceability at the architectural level. In more detail, scenario analysis can comprise:
• Scenario interaction analysis. This technique, based on the detection of overlapping sets of objects

or actions defined in the scenario activity triples, gives ideas about coupling and cohesion, which
in turn helps to assess the impact of change (similar to mismatch analysis at the architectural
level).

• Scenario relationships and similarity. Episodes (interaction processes) are building blocks of
scenarios. Sharing the same episodes can quantify the similarity of scenarios. The detection and
analysis of change in similarities for a software system yields an evolution impact measure [1].

Scenario analysis is a central technique to assess the modifiability of system designs [5].

5.2.3 Scenario-architecture mapping

The scenario-architecture mapping is an important specification documenting design decisions.
Analyses based on the scenario-architecture mapping can comprise:
• Modification analysis. Usually, several options for change exist. It has to be analysed and

determined what to pursue and what to discard – the impact of change on the architecture is the
main criterion.

• Coupling and cohesion measures. The measures can provide input for modification analyses –
these were already discussed earlier on.

Similar to scenarios and the architecture, the mapping is not static, but subject to (controlled) change.

5.2.4 Architecture

Software architecture is also a maintenance tool. Component-based architectures provide a separation
of computation and communication, i.e. a software system is described in terms of its components
(encapsulating computation behind interfaces) and its connectors (the connections between components
that allow them to communicate). This technique helps us to support reconfigurability and reuse of

 11

software. Composition is interaction; architectures composed of independent, interacting components
create independence, which supports maintainability and modifiability in changing environments.

The implementation of change affects the software architecture. A subtype notion can guide controlled
evolution and architectural transformation [16]. Types comprise interface syntax and semantics such as
interaction behaviour. Evolution is the preservation of architectural type correctness. For example, the
preservation of behaviour such as interaction processes can be guaranteed. Interaction processes are
patterns (including for instance optional interaction activities) that allow changes up to a certain degree.

6. Case study

Our focus on user-centric systems reflects a type of software systems that we have been involved in for
a long period of time. Our case study software system is an interactive educational multimedia system.
We have also been involved in the development and management of other user-centric systems such as
e-commerce systems. We have chosen the education domain over other application areas, since it is
characterised by complex and highly interactive usage processes. The case study is additionally
characterised by a long evolution and maintenance history.

From a design perspective, the case study system is characterised by the following aspects: an
information model that comprises data representation and storage, in particular knowledge (declarative
and procedural) for the educational application domain is important, an interface to support user
activities that are part of learning dialogues and processes, and a component-based architecture
implemented on a Web platform and consistent with a domain-specific standard. The main stakeholder
in the system are teachers and students as the end-users of the system, the instructional designers (for
the educational elements), and the software developers and administrators (essentially comprising
development, deployment and maintenance support) as the developers and managers of the system.

The system – a virtual database course – exists since 1996 based on the current Web platform [23]; an
older version on a pre-Web hypertext platform had been in use since 1991 [22]. The system has been
developed in a sequence of major phases in which substantial targeted features were realised [19].
Substantial investments for major improvements (evolution steps) were necessary for these phases;
maintenance and incremental changes were financed within the given budget. These major evolutions
were accompanied by various changes resulting from the day-to-day business of running the system
and from system evaluations that were carried out internally or in collaboration with the stakeholders.
Adapting the system to new circumstances has often been a major challenge.

6.1 Participatory requirements elicitation and scenario representation

Table 1 lists a few scenarios to demonstrate their variety in describing stakeholder activities. Scenarios
are described by activitity triples – comprising actor, action (possibly composite), and object – and the
scenario type.

Actor Action Composite Object Type
Student Login No ID + password Usage
Student Download No Learning resources Usage
Student Streamed lecture Yes Audio + HTML Usage
Student Animated tutorial Yes Flash animations Usage
Student SQL query exercise Yes Interactive database access Usage
Student Self-assessment Yes Multiple choice questions Usage
Teacher Evaluate Yes User activity log Usage
Instructional
designer

Upload content unit No Learning resources Meta

Software
developer

Link maintenance No HTML Meta

Software
developer

Update delivery system Yes Delivery system Meta

Software
developer

Add new feature Yes Delivery system + learning
resources

Meta

 12

Table 1. Scenarios for the teaching and learning environment.

The scenarios cover user (student, teacher) and developer (instructional designer, software developer)
activities. Scenarios reflect the requirements elicitation process. Students were asked about the
activities they would like to be supported and about the quality of service they would expect. Teachers
were concerned with the evaluation system providing feedback about student activities in the system,
assuming that content and runtime support was provided by other stakeholders (instructional designer
and developer). Facilities to upload and integrate material were required by instructional designers.
Software developers required a clear specification of the activities to be implemented and their tasks in
relation to the maintenance of the existing system.

An abstract usage scenario – called SQL query exercise – is presented in Fig. 2. It describes a
composite activity consisting of four basic activities combined to a composite activity using sequence
and repetition. This composite activity can be seen as a refinement of the abstract activity from Table 1.
Each of the basic activities represents an information access activity – an actor interacts with some
other part of the system by sending or receiving information objects.

Figure 2. A usage scenario.

A meta scenario – to upload a content unit, here applied to a query exercise – is presented in Fig. 3.
This activity contributes to the adaptiveness required to address change and maintenance. Again, this is
a composite scenario that refines the corresponding abstract scenario from Table 1.

Figure 3. A meta scenario.

An important feature of our scenario language is the possibility to describe interactions between users
and the system and between stakeholders and the software artefacts. Capturing this behaviour is
essential for interactive software systems and enables a seamless transition between stages.

6.2 Adaptable architecture design

6.2.1 Architecture and components

Two aspects can predetermine parts of the architecture. Firstly, stakeholder goals and objectives might
predetermine architectural decisions; in our case the Web as the most popular teaching and learning
platform. Secondly, domain-specific standards often determine the architectural style; for example in

SCENARIO SQL query exercise

type: usage
repeatedly
 sequence of

(student, selects, query exercise)
 (student, reads, query specification)
 (student, submits, query solution)
 (system, replies, query result)

SCENARIO SQL query exercise

type: usage
repeatedly
 sequence of

(student, selects, query exercise)
 (student, reads, query specification)
 (student, submits, query solution)
 (system, replies, query result)

SCENARIO upload content unit (query exercise)

type: meta
repeatedly
 chooses between

(instructional designer, adds, query exercise)
(instructional designer, modifies, query exercise)

SCENARIO upload content unit (query exercise)

type: meta
repeatedly
 chooses between

(instructional designer, adds, query exercise)
(instructional designer, modifies, query exercise)

 13

the educational domain the Learning Technology Standard Architecture LTSA [10] determines an
abstract component topology. Fig. 4 presents components and connectors for the LTSA. Some
interaction processes that would complete an architecture definition with components and connectors
will be illustrated in the mappings section.

Figure 4. The Learning Technology Standard Architecture LTSA.

We identified the following subsystems and component clusters, which are in line with the system
topology proposed by the LTSA and which also implement a classical three-tiered architecture for
Web-based systems (some sample individual components of the clusters are listed in brackets):
• the backend storage subsystem with learning resources (database material, HTML materials,

animation material) and learner records (database student) clusters,
• the server subsystem with delivery (access HTML, access database static, access database

dynamic, access animation), evaluation (usage mining), and administration (registration, login)
clusters,

• the user interface subsystem with learner entity (registration, login) and instructor entity clusters.
Essentially, subsystems and clusters are components themselves, composed of more basic components.
If the goals and objectives do not indicate an architectural style, the scenarios can determine the full
architecture.

6.2.2 Mappings

Architectural aspects such as components and component clusters need to be determined first, then
scenarios are mapped onto it; the reflection of the scenarios on the architecture determines prototypes.
The scenario-architecture mapping is the central mapping for adaptive development and maintenance
here.

Figure 5. A scenario-architecture mapping.

Learning
Resources

Learner
Records

Coach

Learner
Entity

Delivery Evaluation

Multimedia Behaviour

Interaction Context
Learning
Preferences

Learner Info

Learner
Info

Catalog
Info

Query

Learning
Content

Locator
Locator

Asse
ssm

ent

SQL query exercise

 Scenario

 SQL query exercise

 Prototype

LEARNER ENTITY
(Web Interface)

 Process Component

DELIVERY
(Java Servlet)

Process Component

LEARNING RESOURCES
(Database)

 Store Component

 14

A sample mapping for the SQL query exercise scenario with the associated prototype is presented in
Fig. 5. An architecture definition, onto which the scenario and the prototype can be mapped, can be
found in Fig. 6. The components are part of the interface, server, and backend component clusters: the
learner entity LE is derived from the actor student, the delivery component D is derived from the
actor system, and the learner resources component LR is derived from the query objects. The
components offer specific services, such as LE.select, LE.submit, and D.reply – these
services are fully specified through interface definitions for the components. The connectors – both
derived from scenario activities and the LTSA – are LE <-> D and D <-> LR. The only interaction
process we have specified here is the query exercise involving the submission of a solution and the
system’s reply

! (LE.select(LR.exercise); LE.submit(solution); D.reply(LR.result))

which implements the composite scenario definition (Fig. 2).

Figure 6. An architecture definition (simplified).

The important aspect of architectural design is the seamless and traceable transition from the
requirements stage that allows us to deal with the initial architecture definition, but also with
subsequent changes to the definition.

6.3 Evaluation and evolution of requirements and prototypes

6.3.1 Evaluation of scenarios, prototypes and architectures

Evaluation of scenarios – essentially validating the completeness and correctness, and analysing the
consistency – was done in collaboration with users and other stakeholders involved. However, in
addition to evaluating text-based representations, we mainly evaluated scenarios through their
executable counterparts – prototypes, which illustrates their important role in this approach. Scenarios
were usually prototyped, i.e. developed in an incremental and user-centred process, if they addressed
innovative features with a degree of risk involved. This style of validation through prototypes is
suitable for end-user involvement and incremental processes. Prototypes as executable software
artefacts allowed us a much richer evaluation addressing a wider variety of quality criteria:

 Usage evaluation through data mining and user surveys was used to determine user behaviour
and actual interaction processes. Data mining can be used to discover and extract usage processes
from Web access logs. General patterns of users’ interactions with the system – in the Web
environment the users’ navigation and response to interactive pages – can be discovered. Usage
evaluation based on data mining is critical since it allows us to compare designed (and expected)
usage scenarios and their implementation support through interaction processes with actual usage.
Web mining based on user activity logs allows constant monitoring and evaluation.

 Usability evaluation was based on user surveys and the application of human-computer
interaction criteria to the designs. Additionally, other aspects of architectures and prototypes such

Architecture

 Components
learnerEntity LE (select, submit, ...)
delivery D (reply, ...)
learnerResources LR (exercise, result, ...)

 Connectors
LE <-> D
D <-> LR

 Interaction processes
! (LE.select(LR.exercise);
 LE.submit(solution);
 D.reply(LR.result)
)

Architecture

 Components
learnerEntity LE (select, submit, ...)
delivery D (reply, ...)
learnerResources LR (exercise, result, ...)

 Connectors
LE <-> D
D <-> LR

 Interaction processes
! (LE.select(LR.exercise);
 LE.submit(solution);
 D.reply(LR.result)
)

 15

as performance had been addressed empirically. Detailed feedback from the users was used to
identify functional weaknesses of the prototypes and necessary adaptations.

6.3.2 Evolution

Prototyping started evolutionary cycles of perfective maintenance, i.e. prototyping was the first activity
in these phases of adaptive development and maintenance. Prototypes were refined incrementally and
have evolved over time. In addition to prototyping, which was mainly a tool for internal and planned
evaluations, external and unexpected changes had to be dealt with. Changes that have happened as a
result of evolution (volatile and emerging requirements) relate to the system content (information
model), the interactions and dialogues (behaviour), the software and hardware technology
(infrastructure), and overall system organisation (system features). Both extensions and modifications
have taken place.

6.3.3 Analysis and change

Analysis of scenarios usually focuses on interference and similarity analyses. Interference – referring
to sharing of objects (depending on the activity, e.g. write access to information objects) – has caused
us no problems. Similarity analyses, however, trying to identify the same episodes have resulted in
improvements. Similar learning processes for different topics were used to develop generic artefacts.
Concrete prototypes (e.g. a relational algebra animator) were generalised into generic scenarios and
prototypes and re-instantiated in different forms in an iterative process. The animator prototype was
generalised by extracting the dialogue pattern and the interaction channel. A normalisation tool is
another example of an application of the generic scenario. Scenarios and prototypes can exhibit
reusable structures.

The maintainability and reusability of the architecture can be enhanced through the application of
component technology for the architectural aspects. A cohesion/coupling analysis of the architecture
was carried out; together with the Web and LTSA constraints it has determined the cluster/subsystem
organisation of components.

The focus in our case study using the adaptive maintenance approach was on maintenance prediction,
supported by heuristics and analyses – involving indicators based on evaluation and evolution
frequency and severity measures that we have obtained over time for the application domain. We used
a change impact analysis for the scenario-architecture mapping to determine the components affected
and investment required resulting from changes in requirements. With little interference, consistency
was easy to maintain for changes. The meta scenarios have guided the adaptation, i.e. the change
implementation process, based on tracing changes from requirements to the implementation artefacts.

7. Methodology evaluation

Addressing stakeholder needs and change, caused by evaluation and evolution, through adaptive
development and maintenance has been our key objective. We have defined several aspects that a
methodological framework to improve software productivity in our context has to address:
• Participation. The system attributes usability and utility are of paramount importance in interactive

systems. Only the constant involvement of the user in the development and maintenance process
through formative evaluations of prototypes and adaptation to evolving requirements can achieve
the expected quality in terms of these system attributes.

• Seamless and traceable transition. The transition between different stages and artefacts needs to
support the incremental and iterative approach. Smooth transitions need to address the
representation of interaction and information access in all representational forms.

• Adaptive maintenance. To adapt software and its specifications to evaluation results and evolution
is central in environments where change is ubiquitous. Flexible architectures that allow us to
control the change impact and analysis technique supporting the change implementation are
crucial.

We have introduced an integrated and coherent methodology – combining and adapting existing
approaches – that supports the problems arising from change in particular for interactive systems.
Being based on a combination of existing, well-known methods and integrated through common
principles, has helped us to create a feasible methodology that is easy to understand and use.

 16

We expect a methodology to be effective and to result in improvements in relation to the software
product and also in relation to the development and maintenance process.
• Quality improvement. Usability and utility were the two central quality criteria of interactive

systems reflecting the stakeholder interests. In particular complex interaction processes often
require an incremental implementation process. We have constantly measured usability and usage
through a range of techniques (usage mining, surveys, etc.) resulting in constant improvements – a
result that shows the effectiveness of the methodology in this aspect.

• Risk minimisation. Cost-effectiveness and in particular the predictability of costs are crucial in
software development projects. In addition to a seamless development process involving
stakeholders to ensure the quality of the product, embracing change from the outset is the key to
control unexpected maintenance work resulting from evolution and change in the environment.
Maintenance prediction and change determination and implementation techniques have helped us
to control and manage change, and, therefore, take out some of the risk involved.

The methodology is therefore effective and successful in achieving improvements for the product
quality and the process implementation – it focuses on problems typical for the targeted domain of
software systems. We have presented a methodological framework here that targets requirements
engineering and architectural design aspects; consequently, it needs to be complemented by detailed
design and implementation methods.

The methodology itself has evolved over a period of time. In incremental steps we have tested existing
and added new techniques and methods, resulting in a demonstration of feasibility and effectiveness. In
particular, change-related problems arising from the maintenance of a long-running software system
have strongly influenced the methodology. We found hypotheses about software evolution dynamics,
as formulated in Lehman’s laws [24], confirmed by our experience.

For a long time, the integration of industrial-strength methodology (which has been rather developer-
centric) and user-centric approaches (which have often neglected the day-to-day business of
development and maintenance) has not been attempted. It is only recently that the need has been
recognised and combinations have emerged [2]. Ideally, the solution to such an integration of methods
and approaches would be based on a common core aspect that allows both to be combined – change
and adaptiveness form this aspect here. A coherent approach is a central requirement. Participative,
scenario-based techniques can be integrated with industry-standard methods through behaviour
specification and other contractual obligations.

The central lessons that we have learned by being involved in software development and maintenance
projects are the following. Firstly, change is ubiquitous and comes in a variety of forms. Secondly,
dealing with users (and other stakeholders) is an incremental process. Adapting a system to its
environment is the key issue in addressing these two issues. To adapt is the activity that most
accurately describes what had to be done from a software engineering perspective – both for the
incremental user-centric development and also the iterative, evolutionary process. We have used the
presented integrated methodology successfully in several projects covering educational and commerce
applications. Evaluations have shown that the systems usability had been increased and the systems
maintenance had been made more cost-effective and more amenable to change.

8. Conclusions

User-centricity, or better stakeholder-centricity, is essential to address the needs and to meet the
expectations of all parties involved in the development and deployment lifecycle of software systems.
Users are often essential drivers of development and maintenance. Change is another essential driver in
the lifecycle of a software system. The causes of change can be planned and internal or unexpected and
external. Central to both aspects – stakeholders and change – are the links of a software system with its
environment. Both aspects are an expression of this relationship. The most important requirement
concerning software in its environment is the ability to adapt a system to the needs of and changes in
the environment. Our main observation is that requirements evolution as a consequence of change in
the environment has become a central aspect of requirements engineering.

Our adaptive development and maintenance is based on participative, architectural, and evolutionary
development approaches involving scenarios, architectures, and prototypes. Similar approaches exist.

 17

• Artefacts. Besides scenarios, use cases [24] and viewpoints [18] are classical requirements
engineering artefacts. In the context of participative design scenarios are the most suitable to focus
on activities of stakeholder and on their (partial) execution through prototypes. In order to integrate
scenarios and architectures we have extended architectural descriptions by interaction processes.
These make the integration with widely used design notations such as UML, e.g. sequence and
interaction diagrams, straightforward.

• Process models. Similar process models exist. A close example is Boehm's spiral model [24] –
equally based on a cyclical model of development including prototypes to minimise risks in the
process. However, distinctions between evaluation and evolution are not made; change
management is not a concern.

The novel concept behind our approach is adaptiveness, focusing on the relationship between a
software system and its environment.

A new technology, like our methodology, has to be seen in the context of likely future developments in
area.
• Usability and interactions between users and the system will remain paramount issues – with

stakeholder expectations rising. Interaction processes will play an important role in software
systems design. Interaction is not only a technical term capturing the communication in a computer
system; it needs to be addressed at a level reflecting the knowledge and the goals and strategies of
the user. Consequently, addressing interaction in a coherent way through the stages and
representations is the challenge.

• Adapting to change is already the central problem. The relationship between a software system and
its environment – managing this relationship is the rationale of our methodology – is an equally
important factor in other, related software engineering techniques that will become more and more
important in the future. Reusability is an approach to managing and controlling the relationship
between a reusable component and its environment. We, therefore, expect reusability and adaptive
development and maintenance to benefit from each other in the future.

References

[1] T.A. Alspaugh, A.I. Anton, T. Barnes, B.W. Mott, An Integrated Scenario Management Strategy,

Proceedings IEEE International Symposium on Requirements Engineering, 2001, pp. 142-149.

[2] P. Beynon-Davies, S. Holmes, Design breakdown, scenarios, and rapid application development,

Information and Software Technology 44 (2002) 579–592.

[3] S. Bødker, Scenarios in user-centred design – setting the stage for reflection and action, Interacting

with Computers 13(1) (2000) 61-75.

[4] T. Borgholm, K.H. Madsen, Cooperative Usability Practices, Communications of the ACM 42(5)

(1999) 91-97.

[5] K. Breitman, J.C. Sampaio do Prado, Scenario Evolution: A Closer View on Relationships,

Proceedings 4th International Conference on Requirements Engineering ICRE’00, IEEE Press,
2000.

[6] I. Crnkovic, M. Larsson, Building Reliable, Component-based Software Systems, Artech House

Publishers, Boston, 2002.

[7] A. Dix, I. Finlay, G. Abowd, R. Beale, Human-Computer Interaction, Prentice Hall, 1993.

[8] A. Egyed, N. Medvidovic, C. Gacek, Component-based perspective on software mismatch

detection and resolution, IEE Proceedings – Software 147(6) (2000) 225-236.

[9] K. Grønbæk, M. Kyng, P. Mogensen, Toward a Cooperative Experimental System Development

Approach, in: M. Kyng, C. Mathiassen (Eds), Computer and Design in Context, 1997, pp. 201-
238.

 18

[10] IEEE Learning Technology Standards Committee LTSC, IEEE P1484.1/D8, Draft Standard for
Learning Technology – Learning Technology Systems Architecture LTSA, IEEE Computer
Society, 2001.

[11] R. Kazman, S.J. Carriere, S.G. Woods, Toward a Discipline of Scenario-based Architectural

Evolution, Annals of Software Engineering 9(1-4) (2000) 5-33.

[12] G. Kösters, H.-W. Six, M. Winter, Coupling Use Cases and Class Models as a Means for

Validation and Verification of Requirements Specifications, Requirements Engineering 6(1)
(2001) 3-17.

[13] G. Kotonya, I. Sommerville, Requirements Engineering: Processes and Techniques. Wiley & Sons,

1998.

[14] J. Lee, K.-H. Hsu, Modeling software architectures with goals in virtual university environment,

Information and Software Technology 44 (2002) 361-380.

[15] C.-H. Lung, S. Bot, K. Kalaichelvan, R. Kazman, An Approach to Software Architecture Analysis

for Evolution and Reusability, Proceeding CASCON Conference, 1997, pp. 144-154.

[16] N. Medvidovic, D.S. Rosenblum, R.N. Taylor, A Language and Environment for Architecture-

Based Software Development and Evolution, Proceedings International Conference on Software
Engineering ICSE’99, 1999, pp. 44-53.

[17] F. Moisiadis, Prioritising Scenario Evolution, Proceedings 4th International Conference on

Requirements Engineering ICRE’00, IEEE Press, 2000.

[18] B. Nuseibeh, J. Kramer, A. Finkelstein, A Framework for Expressing the Relationships between

Multiple Views in Requirements Specification, IEEE Transactions on Software Engineering
20(10) (1994) 760–774.

[19] C. Pahl, Managing evolution and change in web-based teaching and learning environments,

Computers & Education 40(1) (2003) 99-114.

[20] A. Russo, B. Nuseibeh, J. Kramer, Restructuring Requirements Specifications for Managing

Inconsistency and Change: A Case Study, Proceedings International Conference on Requirements
Engineering ICRE’98, 1998.

[21] M. Shaw, D. Garlan, Software Architecture: Perspectives on an Emerging Discipline, Prentice

Hall, 1996.

[22] A.F. Smeaton, Using Hypertext for Computer-Based Learning, Computers & Education 17(3)

(1991) 173-179.

[23] A.F. Smeaton, G. Keogh, An Analysis of the Use of Virtual Delivery of Undergraduate Lectures,

Computers & Education 32(1) (1999) 83-94.

[24] I. Sommerville, Software Engineering, Addison Wesley, 2001.

[25] A.G. Sutcliffe, N.A.M. Maiden, S. Minocha, D. Manuel, Supporting scenario-based requirements

engineering, IEEE Transactions on Software Engineering 24(12) (1998) 1072-1088.

