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It has been a decade since Michael Jackson introduced problem frames to the software
engineering community. Since then, he has published further work addressing problem
frames as well as presenting several keynote addresses. Other authors have researched
problem frames, have written about their experiences and have expressed their opinions.
It was not until 2004 that an opportunity presented itself for researchers in the field to
gather as a community. The first International Workshop on Advances and Applications
of Problem Frames (IWAAPF’04) was held at the International Conference on Software
Engineering in Edinburgh on 24th May 2004. This event attracted over 30 participants:
Jackson delivered a keynote address, researchers presented their paper presentations and
an expert panel discussed the challenges of problem frames.

Featuring in this special issue are two extended papers from the workshop, an invited
contribution from Jackson in which he positions problem frames in the context of the soft-
ware engineering discipline, and this article where we provide a review of the literature.

1. Introduction

For the past decade, researchers in early lifecycle software engineering have explored
and expanded upon the problem frames approach. Problem frames were introduced in
1995 in the book Software Requirements & Specifications [44]. They provide expression
for the ideas that Jackson has developed (with others, notably Pamela Zave), based on
the experience within the software industry. Problem frames can capture in a simple way
much that is complex.

Problem frames provide an approach to understanding and describing real world software-
intensive problems, for example control, information, business, military or medical sys-
tems.

Problem frames provides software requirements1 engineering with an approach to re-
quirements analysis that has sparked interest in the requirements community. In addition
to Jackson’s own contribution to this special issue, this editorial provides a review of the
research literature that has developed, applied, advanced or discussed the problem frames

1In the following, unless specifically stated, we will mean software requirements when we speak of re-
quirements.
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idea.

1.1. Structure of the paper
In this editorial, we provide a roadmap of problem frames research. We address four

core areas of research in problem frames. These are:

Principles: Section 2 discusses the principles embodied in the problem frames approach,
and the criteria for correctness of the approach in the context of requirements engi-
neering.

Techniques: Section 3 presents the basic techniques of problem frames for the represen-
tation, classification and transformation of software problems.

Processes: Section 4 looks at analysis processes based on problem frames and how prob-
lem frames fit in the wider context of software development methods.

Semantics: Section 5 focuses on problem frames semantics.

In Section 6 we draw some conclusions from our analysis of the literature and suggest
possible future research.

2. An overview of the problem frames approach

In this section we lay out the basic principles of the problem frames approach and
discuss its position within requirements engineering.

2.1. Problem frames in principle
Problem frames appear to have been motivated by Jackson’s many long-standing con-

cerns for software development. These include:

• that software development is not an engineering discipline (nor will it become one
for some time) because of the failure of its practitioners to specialise;

• that software developers have found many reasons or ‘denials’ [45] for paying more
attention to the solution than to the world that forms the problem’s context; these
are: denial by prior knowledge, denial by hacking, denial by abstraction and denial
by vagueness;

• that requirements engineering has an ‘irksomely informal subject matter’ that ‘tempts
us to exclude it from software engineering’ [49].

2.1.1. Specialism
Reflecting the specialism of engineers in traditional engineering disciples, in [52] it is

asserted that some parts of software engineering lack an ‘essential ingredient’: the ‘thick
layer of knowledge specialised to particular product [software] groups’ that, for instance,
would distinguish a bridge engineer from a naval engineer in traditional engineering. As
noted earlier, the way forward for software development is through increasing specialisa-
tion by requirement type and product class.
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The problem frames approach provides what might be called hooks for specialisation
that allow the templated application of software development expertise through the recog-
nition and subsequent (specialist) solution of problems. A problem frame is precisely an
opportunity to apply specialist skills and knowledge of what constitutes a good solution
for a particular type of problem.

Jackson, in his article for this special issue, considers the problem frames approach to
software development and how it contributes to ‘software development[’s long-standing
aspiration] to deserve recognition as an engineering discipline’. He argues that the prob-
lem frames approach contributes by separating normal and radical engineering [85], and
allowing specialism in software development.

2.1.2. Denials
To counteract the temptation to denial, Jackson gives a (seemingly) eclectic collection

of principles [45] that feed directly into the principled basis of problem frames. The first
is:

von Neumann’s principle: there is no point in being precise when you don’t know
what you are talking about.

In the same paper, it is asserted that:

‘Our very first obligation is to clarify the concepts and issues with which a
system is concerned.’

Indeed, the need for precision in software development, but only if it is not at the expense
of misunderstanding the problem to be addressed, is a recurrent observation [40, 43, 44,
47, 48, 51, 55]. Understanding the problem is a dominant theme in the problem frames
approach.
The second principle is:

The principle of reductionism: to choose the simplest phenomena and define — where
appropriate — more complex constructs in terms of them.

In software development one has considerable freedom to choose the ground terms and
one must be careful always to choose those phenomena (those things that appear to exist
or to be the case) which are most exactly and reliably recognised, and that this provides
the best starting point for understanding and describing the world [44]. Problem frames
place great emphasis on the choice and use of phenomena, particularly those that are
shared between two real world domains, or a real world domain and the machine.
The third principle is:

The Shanley principle: (paraphrased in [45]) to characterise the complexity and in-
terrelatedness of the world as ‘every part of the world may play many roles, and
perform many functions’.

Accordingly, the result for software development is that, at the level of domain description
and problem analysis, the Shanley principle demands parallel consideration of different
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views of the domains and their related sub-problems. Indeed, the primary mode for
solving a problem in the problem frames approach is to decompose it into its principal
parts, and produce solutions for each part which are then critically recomposed to form
a solution for the problem.
The fourth and final principle is:

Montaigne’s principle: the greater part of this world’s troubles are due to questions
of grammar (Montaigne, 16th century).

The problem frames approach places great store on the importance of the separation
of ‘asserted true’ from ‘desired true’; in grammatical terms, these are, respectively, the
indicative and optative moods (of which more in Section 2.2).

2.1.3. ‘Irksome informality’
It is argued in [49] that requirements engineering is hard because:

‘It demands descriptions of an informal world precise enough to be intel-
ligibly related to the formal behavior of the computer and its software, and
reliable enough to guarantee that the formal behavior will evoke the required
results in the informal world.

As a solution, ‘A Discipline of Description’ [50] is proposed in which proper emphasis
is placed on traditional engineering notions such as description, designations, definitions
and error analyses; indeed, Jackson and Zave’s proposal for ‘multi-paradigm’ domain
descriptions [60] is now widely accepted.

The problem frames approach provides tools and notations for the description of do-
mains (in various languages), and places great emphasis on getting descriptions and def-
initions correct and designations accurate. It also has a focus on error analysis through
the development of correctness arguments.

The problems frames notation also emphasises problems over solutions. With its em-
phasis on providing tools that support the understanding of a problem, the problem frames
approach supports the contribution of a ‘problem owner’ with specific domain knowledge
in the requirements engineering process.

2.2. Problem frames in engineering
In the problem frames approach, a software development problem is ‘a need for a useful

machine, and the solution to the problem is the construction of a suitable machine to
satisfy the need’ [43]. A need consists of the environment of the useful machine described
in terms of what is given and what is desired, in separate descriptions. In the approach, the
useful machine is a specialisation of a general-purpose computer, the specialisation being
achieved by software. The end-product of the requirements analysis task is a specification
for that software. Software problems are modelled in diagrams complemented by textual,
and other, descriptions (see Section 3.1). The context is formed from what exists in the
environment of the useful machine: the givens. The requirement is what is desired. The
two descriptions are:

• The ‘givens’ (indicative descriptions) are real-world (i.e., physical) domains that
stand in a fixed structure with respect to each other, and communicate with each



A roadmap of Problem Frames research 5

other using shared phenomena (which can be control phenomena, event projections
and event classification [46]). The given descriptions are statements that are true
irrespective of the machine’s presence or behaviour.

• The ‘desires’ (optative descriptions) are constraints on the environment’s behaviour
that a correct machine should bring about when deployed.

The givens are described in the indicative mood whereas the desires are expressed in the
optative mood; in line with Montaigne’s grammatical principle, combining indicative and
optative descriptions would be ‘seriously confusing’ [58]. Problem frames take care to
separate, and keep distinct, indicative and optative descriptions.

The correctness of a problem frame development hinges on the five criteria of [89], which
proposed a split of Software Development into Requirements Engineering and Software
Implementation. The split is motivated in general by the need to better define require-
ments ‘engineering’ in terms of the precise nature of requirements, specifications, and
domain knowledge, and their interrelation, and specifically to determine the ‘inputs’ and
‘outputs’ of a requirements engineering process. One of the five criteria deals only with
a pathological case in the logical description of the world and the machine which would
mean that they cannot co-exist (see [28, 32] for more details). A constructive approach,
such as that of problem frames, will not encounter situations in which this criterion does
not hold. The other four criteria of [89] can be restated informally as:

1. There is a validated customer requirement that expresses all of the customer’s de-
sires. ‘Validated’ in this and other uses means ‘informally checked’; informal, in this
sense, is all that can be achieved in the (informally) described world;

2. There is a collection of validated descriptions that represent real world (i.e., problem
domain) knowledge;

3. There is a machine specification that is not stated in terms of any unshared actions
or states, and that does not refer to the future.

4. The contribution of the specification to its environment is one that satisfies the
requirement.

Because problem frames embody such broad principles and ideas they have stimulated
developments in many and different directions; in this paper we discuss many of them.

2.3. Problem frames and other approaches to Requirements Engineering
In object-oriented software development, domain modelling [20] produces a description

of an application domain. An analysis model can then be derived from the domain model
by making assumptions on the boundary between system and environment, and replicat-
ing domain model structure within the analysis model [64]. Analysis patterns [25] provide
a particular technique for building domain and analysis models for business applications.
It is not an approach to problem analysis per se, but provides a catalogue of recurrent
analysis problems within the business domain. The main difference between these ap-
proaches and problem frames is the emphasis that problem frames place on separating



6 Karl Cox, Jon G. Hall, Lucia Rapanotti

problem and solution, and indicative and optative descriptions. In addition, problem
frames take a multi-paradigm approach to problem and solution descriptions, and do not
assume, for instance, an object-oriented approach.

Domain theory [80, 81] places a principled foundation beneath domain modelling, so
that the description and analysis of a problem can be developed via analogical reasoning,
knowledge reuse, and developer expertise. In intention, problem frames and domain
theory share much of their motivation. The major difference between the two approaches
is the emphasis that problem frames place on the correctness of a specification with respect
to a detailed problem description, rather than building the problem description. Indeed,
domain theory could be seen as a useful precursor to a problem frame development.

Goal-oriented approaches [84] focus on the use of goals and their refinement for the
elicitation, analysis and specification of a software system’s requirements. A goal-oriented
approach could be integrated within a problem frames development, allowing a detailed
derivation of a system’s requirements from a collection of high-level goals. We review
some work which achieves this later on in this paper.

Use cases [18] focus on interactions at the boundary of the software system, allowing
system operations to be specified from identified goals of actors external to the system.
As such, and in contrast to the problem frames approach, use cases focus on that part of
the problem context that is at the boundary of the system.

The relationships we have identified between problem frames and these approaches sug-
gest that their techniques may be of use to a specialist developer who wants to develop
(or maintain) a particular problem description that might begin a problem frames devel-
opment. In addition, object-oriented domain modelling and analysis patterns could help
in the subsequent development of a solution.

Problem frames may thus provide a framework in which many other techniques may
work together, with the problem frame notion of correctness being an additional bonus.

3. Problem frames techniques

In this section we review some of the main concepts of problem frames, and survey
related contributions from the literature.

3.1. Problem representation
In this article, we use the graphical notation for problem frames that appears in [56].
A context diagram defines the context of a problem by capturing the characteristics and

interconnections of the parts of the world the problem is concerned with. Context dia-
grams typically include domain descriptions that describe the environment of the system
to be built, and descriptions of their shared phenomena. In a context diagram, domains
are not necessarily in direct contact with the machine to be built, and shared phenomena
may exist between domains as well as between domains and the machine.

A problem is captured in the notation of problem diagrams that, in turn, are formed
from context diagrams by the addition of a requirement. Figure 1 gives a simple example
of a problem diagram. In the figure, the software problem is to specify a machine (the
solution) to control a device (the problem context, consisting of a single domain in this
case) so that a certain work regime (the requirement) is satisfied. The link between
device and machine in the example indicates the phenomena that are shared between
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them. Phenomena can be, for instance, events or states or commands. In this example,
the shared phenomena are commands that the controller machine can issue to switch
the device on and off. (That such phenomena are controlled by the controller machine is
indicated by a ! after the abbreviation CM ). Provided separately from the diagram are the
designations of phenomena, that is descriptions which ground the problem’s vocabulary
in the physical world.

Controller 
machine

CM!{on,off}
Device

{is_on,is_off} Work
regime

(the solution) (the context) (the requirement)

Figure 1. A simple problem diagram

Not included in the problem diagram, but an essential part of the problem definition,
are also descriptions of all given domains and the details of the requirement. An important
point is that the problem frames approach does not prescribe the notation to be used for
these descriptions. Formal and informal descriptions are equally acceptable, provided
they are precise enough to capture the characteristics of interest of the various respective
domains. For instance, in our example, descriptions can be as simple as:

Device: a device that can assume one of the following states: is on and is off . Com-
mands on and off can be issued to effect state changes in the device.

Work regime: the device can be turned on at any time, but should not operate for longer
than 2 hours uninterrupted. After 2 hours of operation, the device should be turned
off.

3.2. Problem classification
Problem frames are used to classify problems. Problem frame diagrams (or frame

diagrams for short) are diagrams used to classify problems and to relate to them known
solutions. Together with a generic problem description, a problem frame diagram acts
as a template for recognising problems in its class. In form, a problem frame diagram
is simply a problem diagram, annotated with domain and phenomena markings. The
markings state characteristics of the domains and phenomena. The characteristics of
causal, lexical and biddable domains—and event, causal and symbolic (and other types
of) phenomena—are succinctly described in [54]. The frame diagram is also associated
with a correctness argument template (referred to as the frame concern) that is used to
determine whether a proposed solution specification stands in the correct relationship to
the world description and requirements, as required by criterion 4 of [89] (see Section 2.2).
The combination of generic problem description, problem frame diagram and associated
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correctness argument template, constitute a problem frame, that is the characterisation
in the abstract of a software problem class.

An example of problem frame is the Required Behaviour frame [56]. A required be-
haviour problem is one in which a machine has to be specified to impose some control
on some part of the world, so that it behaves in a way which satisfies certain conditions.
(Indeed, the problem discussed in Section 3.1 is an instance of such a type.) Figure 2
gives the Required Behaviour frame diagram.

Controlled
domain

C

CM!C1
CD!C2

Required 
behaviour

C3Control
machine

Figure 2. Required Behaviour frame diagram

The annotation C on the Controlled domain expresses the fact that such a domain
is causal, that is, a domain whose properties include predictable relationships between
its phenomena. The annotation on the links between domain, machine and requirement
is a reminder that causal phenomena must be identified for the specific problem to be
analysed and for a correctness argument to be made (again, ! indicates control). The
correctness argument for this class of problems follows the template indicated in Figure 3.
The template tells us how the various descriptions (specification, domain properties and
requirement) and shared phenomena can be linked together to demonstrate that the
specification indeed meets the requirement within the given context.

To match a problem to a problem class as represented by a problem frame, the problem
must match the generic problem description of the problem frame. The problem diagram
and its parts must:

• match the problem topology — as captured in the problem frame diagram;

• match the domain characteristics — as captured by the domain markings in the
problem frame diagram;

• match the characteristics of the shared phenomena — as captured by the markings
on the connections in the problem frame diagram.

When matched, problem frames are used to identify sub-problems, as will be discussed in
Section 3.3.

The primary source of problem classes characterised as problem frames is [56], which
presents five basic problem frames: the Workpieces frame (also introduced in [41, 42]),
the Required Behaviour frame (explained above), the Commanded Behaviour frame, the
Information Display frame and the Transformation frame. Jackson has defined other
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Controlled
domain

C

CM!C1
CD!C2

Required 
behaviour

C3Control
machine

2. ...knowing that the 
controlled domain behaves like 

this...
(domain properties)

1. We build the machine to 
behave like this...

(specification)

3. ... hence we'll be sure that 
the required behaviour is this.

(requirement)

Figure 3. Required Behaviour frame concern

problem frames elsewhere, including the JSD and Environment-Effect frame [41, 42], the
Simple Control frame and Simple Enquiry frame [53], the Simple Information Answers
frame [54], and the Four Variable Model problem frame [59].

In addition, other proposed problem frames have appeared in the literature. Wieringa
[87] introduces a Declarative problem frame which captures problems in reactive systems;
inputs into the system force certain outputs based on rules and laws of the physical do-
main and so shape that domain. This problem frame is introduced with no graphical
representation. Nelson et al. [72] introduce a suite of twelve problem frames that ad-
dress problems in the area of geographic applications. Konrad and Cheng [62] describe
a problem frame for the Actuator-Sensor pattern used in specification for an automotive
embedded system. Bray and Cox [14] propose the Simulator frame to address recognised
simulation problems. Hall and Rapanotti [33] define the User Interaction frame in order
to capture the basic problem of defining a user-machine dialogue.

Nelson et al. [73] show how formal analysis techniques can be used to encode and reason
about frame concerns. In particular, they use the Alloy language [36] for domain, require-
ment and machine descriptions, which allows them to discharge correctness arguments in
a (semi-)automatic fashion. They provide a more detailed example of this in their paper
in this special issue.

Lin et al. [69, 70] introduce ‘abuse frames’ as an extension to problem frames, in order to
deal with security risks. An abuse frame captures classes of security problems expressed as
problem diagrams. Abuse frames introduce a new form of correctness argument. Because
it is from the attacker’s perspective, in form the argument is existential (i.e., the attacker
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is looking for the existence of at least one possible abuse) rather than universal (i.e., for
all possible behaviours of the machine, an attack is possible).

3.3. Problem transformation
Most problems are too complex to fit basic problem frames. Indeed most problems have

complex contexts, with requirements which are initially abstract and far removed from any
machine phenomena. During any process of requirements analysis, requirements become
refined and new requirements, hence new problems, discovered. In order to support
this form of analysis, problem frames includes two forms of problem transformation [56]:
problem decomposition and problem progression. We now focus on the characteristics
of the two techniques. In Section 4 we will discuss how they have been applied in the
literature within a variety of analysis processes and frameworks.

3.3.1. Problem decomposition
Problem decomposition (which is not the same as hierarchical decomposition [37]) allows

for a divide-and-conquer approach to a problem solution: from an initial complex problem,
simpler and smaller sub-problems are derived each of whose solution will contribute to
the solution of the original problem. This decomposition can be accomplished either by
matching problem frames or by applying generic decomposition heuristics (a number are
given in [54, 56]), or based on specific knowledge of the problem (this requires particular
skills of the analyst).

By the matching of problem frames within a problem diagram, sub-problems are identi-
fied corresponding to known classes of problems. The conditions under which this match-
ing can be achieved were described in Section 3.2. From the initial complex problem
diagram, via a frame diagram, a ‘projection’ of the problem into a simpler sub-problem
diagram can be achieved. As the sub-problem is identified, so too is a simpler requirement
that is relevant to the projected sub-problem context. In practice this means that within
the original problem requirement, we can identify a sub-requirement for the sub-problem.
Through the repeated identification of sub-problems in this way, a large problem finds
expression as a collection of sub-problems, with requirements that are decomposed over
the projections.

Once sub-problems are identified and solved, their solutions need be recomposed to
contribute to the solution to the initial complex problem. This gives rise to a number of
concerns; in [48] it is stated that:

‘Problem complexity arises from the interactions of [a problem’s] subprob-
lems and of their solutions, both as a problem structure and as a solution
structure.’

This issue is also addressed in [57]. Such interaction can only occur in sub-problems when
they share either a problem domain or a machine domain, in which case care must be
taken in their composition as a solution to the complex problem. The correctness of the
composition is the subject of composition concerns, such as: Consistency, Precedence,
Interference and Scheduling [56], Synchronisation and Contradiction [54]. Composition
concerns are motivated by the fact that, in problem projection, the division of require-
ments loses information concerning the sub-problem interactions. The interference and



A roadmap of Problem Frames research 11

scheduling concerns are notable in that they involve sub-problems that share machine
domains, and so are to do with solution composition; all other concerns (considered here)
address the composition of domains shared among the sub-problems.

Problem decomposition and solution recomposition has been addressed in a number of
recent works. Laney et al. [65] propose Composition Frames to address some composition
concerns. In particular, Composition Frames include the specification of a Composition
Controller to resolve conflicting requirements, akin to the notion of an architectural con-
nector [2].

Rapanotti et al. [77] and [33] propose Architectural Frames (AFrames) as the combina-
tion of a problem class and a class of software architectures. AFrames regularise problem
decomposition and subsequent solution recomposition through a characterisation of the
solution architecture. This has the dual benefit that problem decomposition is guided by
the architecture (hence made easier from an analyst’s viewpoint) and many composition
concerns become trivial. Incidentally, AFrames decomposition is achieved through an ex-
pansion of the solution machine architecture, which can be regarded as a further type of
problem transformation. One of the benefits claimed of AFrames is that they allow for
quality trade-off analysis (in the style of Bass et al. [4]) in a problem frames development.

The decomposition of complex problems into sub-problems is also addressed by Bleistein
et al. [7–11], where goal decomposition complements problem decomposition and is used
to drive the decomposition process.

Sub-problem decomposition in the context of case studies is addressed in Haley [29]
and Haley et al. [30, 31].

It should be stressed that, despite these efforts to ease the task of problem decomposition
and matching basic problem frames, little is known of how the problem frames approach
performs in the analysis of complex software problems. In an empirical study, Phalp
and Cox [76] compare students’ and practitioners’ ability to match problem frames to a
variety of realistic software problems. The five basic problem frames, and some derived
from their composition (so-called multi-frames), were used in the experiment. It was found
that single frame problems were readily identifiable, but multi-frame problems were not,
and the authors raise the question of whether problem frames are scalable to industrial
software problems.

3.3.2. Problem progression
Problem progression allows the simplification of a problem context (by removing one

or more domains from it) whilst simultaneously re-expressing the requirements to apply
in the new context. With the removal of context, a requirement is re-expressed in terms
of the remaining phenomena, hence moves closer to the machine. The removal of a
domain from a problem’s context and the re-expression of the requirement are, of course,
related by the need to preserve the solution, which remains invariant throughout the
transformation. Note that problem progression is mentioned in [56], but is not described
in any great detail. It remains an under-explored area of problem frames at present.

4. Problem analysis and solution synthesis with problem frames

Problem frame analysis begins by understanding a problem context through the devel-
opment of a context diagram [56]. Amongst other things, a context diagram for a problem
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bounds a problem’s scope by identifying what is and what is not relevant in a problem
statement; as part of this, the context diagram identifies the in-scope domains. A problem
diagram is developed from a context diagram by associating requirements with subsets
of the domains. The process of deriving problem diagrams is thus — in skilled hands
— relatively straightforward. Jackson [56] provides numerous illustrative examples of the
step-by-step transition from context diagrams to problem diagrams, and from problem di-
agrams to sub-problem diagrams, that involve the application of problem transformation
tools. Problem frames, however, are best regarded not as an analysis process per se, but
primarily as a collection of techniques that can be used flexibly within a chosen analysis
and development process. In this section we review approaches which have developed
analysis processes based on problem frames (in Section 4.1), or located problem frames
within wider software development processes (in Section 4.2).

4.1. Analysis processes based on problem frames
Bray [12] proposes a loose process framework based on problem frames, which he labels

Problem Domain Oriented Analysis (PDOA). In the PDOA framework, Bray suggests
these analysis steps:

1. Abstract the problem domain:

(a) identify the sub-domains;

(b) identify sub-domain interactions (in terms of shared phenomena);

(c) characterise each sub-domain;

(d) generate a(n extended) context diagram.

2. Recognise relevant, standard frame(s).

3. Fit frames to the problem (as best we can).

4. Use Kovitz’s tables [63] (see also Section 4.2) for the relevant frames to guide further
analysis and documentation.

Although the steps are presented here as a sequence, the process is iterative; hence the
steps should be revisited a number of time during analysis. PDOA does not to make use of
problem diagrams as an intermediary step from context diagrams to sub-problem diagrams
through problem frames decomposition. There are many examples of application of PDOA
in [12], where problem analysis is followed through to requirements and specification
documentation. The work also gives a number of heuristics for defining problem diagrams
and related descriptions, which complement those of [44].

Other process frameworks have been proposed. Bleistein et al. [7–11] show how the
context of a problem and its requirements (expressed as goals) can be developed in parallel.
They apply the problem frames approach in the context of explicitly modelling and tracing
from business strategy objectives, described through goal modelling [27, 88], and business
model context, described through Jackson’s context diagrams. Combined, they represent
problem diagrams that capture the requirements problem from business strategy thorough
to concrete system requirements. To add detail to the connections between goals and
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context, in [9, 10] they introduce process models in the form of Role Activity Diagrams,
extending the work described in [21–23].

Weiringa et al. [86] consider e-commerce software problems beginning with the value a
software product might generate for an organisation, and showing how software require-
ments can be defined to be consistent with higher level requirements. In problem frame
terms, their domains and shared phenomena are described in terms of manipulations of
business value and the way value is transferred between domains. A key observation
in the Weiringa approach is that the manipulation of value by the organisation should
be aligned with business goals; similarly, business processes must be aligned with value
manipulation, and software aligned with business processes.

Also in the context of business, Cox and Phalp [21] outline an approach that takes
business process modelling as a starting point for problem frame analysis, showing its
application in an industrial study of an on-line financial system in [23]. They suggest the
mapping from process model to problem frames as six steps:

1. Explore the problem context.

2. Produce or revisit process models.

3. Identify outcomes of interactions between roles in the process model.

4. Identify domains from outcomes using Bray’s domain taxonomy [12].

5. Identify potential rules that govern interactions (the requirements).

6. Match problem frames.

Their analysis process does not always lead to a decomposition into sub-problems that
match Jackson’s basic problem frames [56], suggesting that another set of problem frames
may be needed for this domain. Cox et al. [22] describe an alternative analysis approach
for the same case study, which also comes to the same conclusion.

Jeary and Phalp [61] argue that, for web-based development, a business model is a
potential starting point for problem frames analysis. Moreover, they argue that web de-
velopment is not too different from traditional software development; hence that Jackson’s
five basic problem frames should be sufficient in this application domain, drawing different
conclusions to those of [23].

Hall and Rapanotti [33] propose an extension to problem frames that allows for both
machines and humans to be explicitly considered as part of the solution of a socio-technical
problem. The authors introduce a new solution domain, the knowledge domain, to rep-
resent the human for which some instruction has to be designed (this by analogy to the
machine domain in the original problem frames approach for which a specification is
sought). They propose both an extension of the problem frames notation and its founda-
tion in the reference model of Gunter et al. [28], in order to allow for the introduction of
knowledge domains.

Following up from that work, Brier et al. [15] apply this socio-technical approach to
illustrate the covariance of requirements and solution domain in socio-technical problems.
They argue that the State Change Model of Stacey [79] in which change is described
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as open (i.e. totally unpredictable), contained, or closed (i.e. totally predictable), is
usefully correlated to the flexibility needed of any humans in the solution space. The use
of problem diagrams, with the explicit representation of the problem context, allows such
covariance.

4.2. Problem frames in software development
Researchers view problem frames differently in terms of what happens after a complete

problem diagram has been identified. Aligned with the four criteria of [89], Jackson
[56] identifies the outcomes of a problem frame analysis as three documents: the given
domain descriptions, a requirements description and a machine specification. These three
descriptions can then be used to determine whether criterion 4 in [89] is met, i.e., the
specification provides a solution to the problem.

One view of problem frames and where they fit in relation to subsequent development
work is presented by Kovitz [63] and then expanded upon by Bray [12]. In [63], Kovitz
views the derivation of problem frames as a precursor to conducting a full requirements
analysis and subsequent specification. He suggests that the fitting of problems to problem
frames allows the engineer to select the appropriate requirements analysis techniques in
order to explore the requirements in finer detail. He presents tables that list the techniques
and tools that can be used to explore and document requirements and specifications for
each case. Kovitz notes that the problem frames approach, as it stood from Jackson’s
first work introducing problem frames [44], was only about problem description and un-
derstanding where requirements had an effect in the real world, not the behavioural rules
that describe the specification of the machine. Bray [12] expands Kovitz’s tables [63], but
neither author suggests a follow-up design or implementation approach.

A proposal to fit problem frames within a development method is that of Tomayko
[83], who suggests that problem frames would provide the ideal requirements/problem
description metaphor in eXtreme Programming (XP) [5]. Although the two approaches,
XP and problem frames, may appear at first to be somewhat contradictory (XP values
code over any other artefacts, such as models or documentation), Tomayko argues that
there is no reason not to conduct a lightweight problem frames analysis as part of an agile
development process [1].

Ways of connecting problem frames and the UML have been proposed by Choppy and
Reggio [17], where they show how the Commanded Behaviour problem frame can be
integrated with UML through class diagrams, use cases and statecharts, in such a way
to make further UML analysis and design viable. In this special issue, they expand on
this work to bring within the remit of UML each of the remaining basic problem frames
defined in [56]. Note that this is the only work which provides solution methods for all of
Jackson’s five basic problem frames. Before that, only two of the frames had recognised
solution methods. One is the Transformation frame, solved using Jackson Structured
Programming (JSP) [38]; indeed, this frame was originally named the JSP frame [44].
The other is a variant of the Information Display frame, solved using Jackson System
Development method (JSD) [39].

Lavazza and Del Bianco [66] have also combined problem frames with the UML. Their
approach uses object temporal logic (OTL, [67]) and Real-time UML (UML-RT, based
on ROOM [78]) to express problem diagrams.
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Taylor [82] discusses an extension of problem frames into the object-oriented solution
domain. His idea is to associate two artefacts with a problem frame:

• a list of required characteristics of each principal part (or domain in a frame dia-
gram); and

• a class diagram of the necessary parts of an object-oriented solution that reflects in
the machine the problem frame components.

The development of an object-oriented solution is completed by filling in the detail of each
class’s features, and by adding code to implement the behaviour specified in each feature’s
contract. Taylor’s approach might be seen as choosing design patterns appropriate for a
particular problem frame.

Within the context of the twin-peaks process model [74], Hall et al. [34] describe
how problem and solutions can be related using problem frames (see also their work
on AFrames described in Section 3.3.1).

Barroca et al. [3] have also researched architectures in order to support compositional
and incremental problem analysis and design. Their approach is based on the combi-
nation of problem frames and coordination-based techniques, and allows for dynamic
sub-problem composition, in the sense that composition is not constrained to follow pre-
established decomposition structures. Their intention is to provide a basis for run-time
system reconfiguration in the face of changing requirements.

For distributed systems, Haley [29] proposes an extension to problem diagrams so that
cardinaility on arcs can be specified which would otherwise have to be expressed as a
cardinality relationship on shared phenomena between domains. In other work, Haley
et al. [31] introduce connection pseudo-domains to combine problem projection with the
need to work at different levels of abstractions in the architectural design of components.

Lin [71] considers the use of problem frames in conceptual modelling of a problem
domain. It is claimed that their method simplifies the process of modelling ‘abstraction’
concepts that are often composed of complex combinations of physical entities.

5. Semantics of problem frames

Work on problem frames semantics remains sparse. Work by Bjørner et al. [6] charac-
terises the properties of some early frames (Translation frame, Control frame, Information
Systems frame, Workpiece frame and Connection frame [44]) in terms of typical types of
domains and requirements, and for two of them, the design of the solution. This might be
used to determine the solution form. Choppy and Reggio [16] take this approach further,
providing a formalisation of the Translation frame and Information System frame using
CASL (the Common Algebraic Specification Language, [19]).

Delannay [24] proposes a semantic approach which uses UML as a means of describing
a meta-model as a semantics for problem frames. The meta-model describes context dia-
grams, problem diagrams and problem frames, but does not capture the meaning of other
elements, such as correctness of a machine specification with respect to its environment
and requirements.

Although problem frames are closely related to the reference model for requirements
engineering of Gunter et al. [28], a formal relation that underpins correctness has been
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established only very recently. Working from that reference model, Hall et al. [35] propose
a ‘framework for understanding problem frames’, which describe how a problem diagram
can be considered as a ‘challenge’ to find an element of a set of solution specifications that
satisfy the requirement in the given problem context and phenomena. The semantics is not
constructive in the definition of such a set, and works at a level about that of description
languages for domain, requirement and phenomena. The goal of the semantics, explicitly
stated by Li et al. [68], is to allow:

• the representation of problem diagrams;

• the definition of equivalent problems;

• the underpinning of problem transformations; and

• the underpinning of correctness arguments.

6. Conclusions and future directions

This article has provided an analysis of problem frames research. It has described
four core areas of problem frames (principles, techniques, processes and semantics) by
discussing Jackson’s original contributions and related work from other authors. We have
found that techniques and processes are the areas on which researchers have focused most.
Our reading of the literature has highlighted that, although much research is in progress,
much work remains to be done in many areas. In particular, the following areas represent
possible foci for future research.

New problem frames: the five basic problem frames [56] are only a starting point.
Many more software problems could be captured as problem frames, paralleling the
development of design patterns [26]. More research is required for the characterisa-
tion and validation of such new frames.

Realistic case studies: problem frames techniques are exemplified in the literature mainly
through exemplars and small case studies, while their applications to realistic com-
plex software problems is still lacking. Therefore there is little indication of how
scalable problem frames are. Empirical evidence is needed in order to ascertain the
true potential of problem frames for application in industry settings.

Teaching and dissemination: although the intellectual contribution of problem frames
to requirements engineering has received some recognition in the research commu-
nity, problem frames have yet to achieve the popularity of other analysis techniques,
such as goal-based approaches [84], or use cases [18]. They are not usually taught in
software engineering curricula (one exception is reported by Bray [13]) or in tutorials
at conferences or workshops. The dissemination of the approach is then primarily
through research papers, which are limited in scope and not widely accessed by
students and practitioners.

Tool support: the complexity of current software problems demands support in terms
of automatic tools which may ease the burden of development. Although many
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tools exist to support other approaches (UML tools are notable examples), no such
tools exist for problem frames. Ourusoff [75] argues that a tool for problem frames
is ‘urged and justified’, and an essential ingredient in the uptake of the approach by
practitioners. The maturity of problem frames and the development of supporting
tools is something problem frames researchers need to come to terms with.
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