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Abstract

While it is clear that there are many sources of variation from one development context to another, it is not clear a priori what specific variables will

influence the effectiveness of a process in a given context. For this reason, we argue that knowledge about software process must be built from

families of studies, in which related studies are run within similar contexts as well as very different ones. Previous papers have discussed how to

design related studies so as to document as precisely as possible the values of likely context variables and be able to compare with those observed in

new studies. While such a planned approach is important, we argue that an opportunistic approach is also practical. The approach would combine

results from multiple individual studies after the fact, enabling recommendations to be made about process effectiveness in context.

In this paper, we describe two processes with which we have been working to build empirical knowledge about software development

processes: one is a manual and informal approach, which relies on identifying common beliefs or ‘folklore’ to identify useful hypotheses and a

manual analysis of the information in papers to investigate whether there is support for those hypotheses; the other is a formal approach based

around encoding the information in papers into a structured hypothesis base that can then be searched to organize hypotheses and their associated

support. We test these processes by applying them to build knowledge in the area of defect folklore (i.e. commonly accepted heuristics about

software defects and their behavior). We show that the formal methodology can produce useful and feasible results, especially when it is compared

to the results output from the more manual, expert-based approach. The formalized approach, by relying on a reusable hypothesis base, is

repeatable and also capable of producing a more thorough basis of support for hypotheses, including results from papers or articles that may have

been overlooked or not considered by the experts.

q 2005 Elsevier B.V. All rights reserved.
1. Introduction

Empirical studies have long been used to provide confidence

in assertions about what is true and not true in the software

engineering domain. By providing rigorous observation of the

effects of a development technique under specific conditions,

empirical study allows an analysis of the conditions under

which practices yield similar effects on a project’s cost, quality,

or schedule. Where different results are obtained under
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1 The set of potential context variables is quite large, but includes for

example such issues as: team size (larger teams require more communication

overhead, making certain practices more or less effective); team experience

(certain practices may require a level of skill development that makes them

better suited for experts); lifecycle model (if a project is contractually required

to follow a waterfall lifecycle then practices that better fit a spiral lifecycle may

not be appropriate); etc.
different contexts, the contexts can be analyzed to hypothesize

about which variations led to the differences in results1.

The ability to build up rigorous abstractions of information

about practices not only provides confidence in individual

assertions about specific techniques, but also is an important

capability in providing an engineering basis for software

development. This capability is an essential part of the

experience factory approach [4], for example, as well as

more recently suggested in the idea of evidence-based software

engineering [14].

Due to the large number of possible variations from one

development environment to another, we have argued [5] that

this process of knowledge building about practices must

therefore, based on families of related studies, designed so that

a range of context variations can be explored. Although this

approach is logically appropriate, it does pose some practical

problems. First, it is not always clear a priori what the

important context variables are, meaning that important

sources of variation may go unmeasured. Second, because

there are so many potential context variables, we cannot design

experiments that cover all of them and may not be able to

identify environments, which offer coverage of all the

variables. In other words, to build an effective family of
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studies, multiple experimenters, without having a clear concept

of all the contributing factors, must agree a priori on a set of

variables to collect and identify environments that cover

the complete set of variables, so that all studies are fully

comparable.

Providing robust decision support for software develop-

ment—i.e. making a statement about what development

practices can help achieve goals related to cost, quality, or

schedule for a given environment—requires the collection of

data across multiple contexts so that we can begin to elicit these

variables.

To make this approach work in practice, and build a suitably

large and varied dataset, we need to leverage existing work

wherever possible. That is, we have to be able to mine

information about the relevant variables and the effect of

practices from previous studies that were not a priori designed

to fit together. In effect, this requires the ability to simulate a

family structure over independent studies that were not

explicitly designed to build directly on one another.

In this paper, we extend the work in our earlier paper [5] by

presenting a process for creating a ‘post hoc’ family of studies.

We present a set of results in the area of software defect

phenomenology to demonstrate the feasibility and practicality

of this approach.
2. Challenges in combining studies post hoc

Designing a replicated study that fits together with previous

work to build a family of studies is difficult (cf. [7,19]). A

mistake in experimental design or application of the practice

under study can easily render the study invalid and waste

potentially hundreds of person—hours of effort from multiple

subjects.

Combining the studies after the fact also suffers from

several difficulties (although at least if mistakes are made, only

the final body of knowledge is affected and only the analysis

needs to be redone).

Borrowing concepts from work on ontology integration [15,

31], we can see that mismatches between empirical studies are

the key type of problems that hinder the combined use of

independently developed studies.

Visser et al. enumerate the types of mismatches that may

occur at the semantic-level, which describe differences in the

way a domain is modeled. Semantic-level mismatches can

arise when two or more papers that describe (partly)

overlapping domains are combined. Based on classifications

by Visser and Klein, the different types of mismatches include:

- Conceptualization mismatches: a conceptualization

mismatch is a difference in the way a domain is

interpreted (conceptualized), which results in

different concepts or different relations between

those concepts. There are two types:

B Scope: in this type of mismatch, two results

seem to represent the same concept, but do

not have exactly the same meaning

(although there may be some overlap). For
example: two studies may refer to the ‘cost’

of a practice, although one may include only

the cost of the effort to apply the practice in

the calculation, while the other may include

the start-up costs as well (e.g. sending

personnel for training).

B Model coverage and granularity: this type of

mismatch describes problems that can arise

in trying to combine results when it is

unclear to what part of the domain those

results are applicable. For example, a study

may make claims about a large class of

software development projects while only

having evidence concerning one or two

specific instances of such projects.

- Explication mismatches: an explication mismatch is

a difference in the way the conceptualization is

specified. This can manifest itself in mismatches in

definitions, mismatches in terms and combinations

of both. There are three types:

B Synonymous terms: synonyms, in this

context, are different terms which refer to

the same concept. A trivial example is the

use of the term ‘strength’ in one study and

the term ‘cohesion’ in another, to refer to the

same concept (that is, the amount of

interaction within components of a system)

. Although the technical solution for this

type of problems seems relatively simple

(the use of thesauri), the integration of

studies with synonyms or different

languages usually requires significant

human effort to resolve the semantic issues.

B Homonym terms: this type of mismatch

occurs when the meaning of a term is

different in different contexts. For example,

the term ‘interface defects’ can have

different interpretations, depending on the

context: it can refer to a defect in the

human–computer interface or a defect in the

interfaces between two software com-

ponents. This inconsistency is much harder

to handle; human knowledge is required to

solve this ambiguity. One must also be

careful that a mismatch in the explication is

not masking a deeper mismatch at the

conceptual (scope) level.

B Encoding: values in the studies may be

encoded in different formats. For example, a

numbers of lines of code may be represented

as ‘KLOC’ or as ‘LOC’ or ‘SLOC,’ etc. The

first step is to check that the basic definition

of a line of code is the same across each

source, i.e. that the underlying entity being

counted is really the same in each case. If so,

and the differences are in fact that the results

have just been reported using different
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levels of granularity, a transformation step

or wrapper can simply be applied to

eliminate all those differences.

To avoid mismatch problems within this paper, we will use

the following IEEE definitions [12] for defects and related

phenomena. Where necessary, we annotate direct quotes from

the papers cited for data to enforce a consistent terminology

that was not always used by the individual authors.

† Error: a defect in the human thought process made while

trying to understand given information, to solve problems,

or to use methods and tools;

† Fault: a concrete manifestation of errors within the software

(note that one error may cause several faults and various

errors may cause identical faults);

† Failure: a departure of the operational software system

behavior from users’ expected requirements (a particular

failure may be caused by several faults and some faults may

never cause a failure).

Where necessary we will also use the term defect as a

generic term, to refer to an error, fault, or failure.
3. Building hypotheses using empirical evidence.

The current state of the practice for abstracting information

from across several studies is to perform a literature search,

reviewing the relevant literature in a rigorous way and

constructing a textual summary of the evidence related to a

given issue. If the sources do not agree then it is the reviewer’s

responsibility to construct a fair summary of the evidence on

both sides of the issue. We have been using the concept of

‘folklore’ as a way to focus such a literature search in a way

that is useful for combining data and producing well-formed

and empirically-supported hypotheses [1]. We define folklore

as informal, subjective lessons learned based on the experi-

ences of people in the field.

This approach involves considering the folklore as a kind of

hypothesis and identifying papers that either support or

countermand the folklore. In studying a set of related papers,

the researcher is able to build evidence for or against the

folklore, to refine the folklore into testable hypotheses, or to

recognize the context variables that differentiated when and

where the hypotheses were true or false (thus, creating more

specific sub-hypotheses).

In this section, we present an example of folklore testing as

an example of how testable hypotheses can be generated by

such a literature search. We choose the area of software defects

as a topic, which is especially rich in folklore; this is not

surprising, as debugging software defects is an activity that

consumes a significant amount of time for most software

developers. Two pieces of folklore that we identified are:

1. There are patterns in the defect classes found in classes of

projects.

2. The vast majority of defects are interface defects.
Both items of folklore are important as together they state

the basis for much of what is done in defect analysis. If there

are patterns in the defects we find in projects, then analyzing

the defects in a project in a particular environment will allow us

to better understand what techniques, methods and processes to

apply in that environment in the future. If the majority of

defects are interface defects, then the kinds of quality assurance

techniques applied need to have the goal of preventing or

identifying interface defects. To keep the example short we

make use of only three papers, with which we happen to have

significant experience:

† Endres75: one of the earliest papers on software defects, it

describes the release of a version of an operating system in

which approximately 500 modules (140 K source lines of

assembly code) were affected by the modification. (The

140 K total program size had to be calculated based on

average values given for the individual modules, providing

an example of resolving an encoding mismatch as defined in

Section 2). Defects were classified as being problem-

specific, implementation-specific, or textual-specific. In this

analysis, problem-specific defects are considered as due to a

misunderstanding of the requirements [9].

† Weiss/Basili85: this paper deals with a study of three

projects in the software engineering laboratory (SEL) at

NASA/GSFC. They all dealt with development of

requirements, design and code for ground support software

for unmanned spacecraft control, and were 50–120 K

source lines of Fortran code. One of the issues specifically

explored in the study was the distribution of defects by error

origin (i.e. according to the phase in which the misunder-

standing took place). In this case the phases recorded were

requirements, functional specification, design or coding of

multiple components, design or coding of a single

component, language, environment, and other [32].

† Basili/Pericone84: this paper deals with the development

and evolution over three years of a general purpose program

for satellite planning studies in the SEL. The system was

90 K source lines of Fortran code and the requirements kept

changing and evolving over time. The same question was

asked in this study as Weiss/Basili85 but the phases were

defined slightly differently. Phases here were requirements,

functional specification, design, coding, and evolution over

3 years [3].

The Endres75 study only had one project, but the largest

source of defects (46%) in that project was associated with a

misunderstanding of the problem domain. In the Weiss/Ba-

sili85 study, all three projects had very similar profiles but the

majority of defects (between 56 and 72%) occurred during the

design or coding of a single component. In the Basili/Per-

icone84 study, even though data was gathered in the same SEL

environment, the majority of defects were caused by

misunderstanding of the requirements (55%).

The difference in results among these studies allows us to

examine the impact of the context variables. In Weiss/Basili85,

the organization had earlier developed many similar projects,
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so that although the requirements varied, the organization had

experience in developing that type of system. Thus, the fact

that the majority of the defects were occurring in the coding

phases was due to the fact that the requirements and high-level

design were relatively well understood by the developers but

new hires were used to develop the code. On the other hand, the

Endres75 and Basili/Pericone84 studies involved projects with

relatively new requirements and less understanding of those

requirements by the organization. This allows us to postulate

two new hypotheses:

1a. In novel projects, the largest source of defects will be

due to misunderstanding of the requirements [Sup-

ported by: Endres75, Basili/Pericone84 data sets;

Contradicted by: None].

1b. In projects where the organization has built up

experience in the application, the largest source of

defects will be coding [Supported by: Weiss/Basili85

data set; Contradicted by: None].

This analysis also allows us to recognize that the hypothesis

as originally stated is also supported.

With regard to the second hypothesis, the issue is the

distribution of interface defects. Endres75 reported that only

15% of the defects found were interface defects. However, he

defined interface defects based on the number of components

changed, i.e. a defect is an interface defect if more than one

component (module) must be changed to fix the problem. We

can think of this as an ‘implementation interface defect’. Using

the same definition, Basili/Pericone84 found that only 11% of

the defects were ‘implementation interface defects’. However,

Basili/Pericone84 used a second definition of interface defect,

associated with the number of components examined; i.e. it is an

interface defect if more than one component (module) had to be

examined in order to design the change. We can call this, a

‘design interface defect’ (The multiple definitions for ‘interface

defects’ are an example of the homonyms, as well as a scope

mismatch, as discussed in Section 2). This is a much more

inclusive definition and most definitions would lie somewhere

between these two definitions. Using this latter definition,

Basili/Pericone84 found that 39% of the defects were ‘design

interface defects.’ Thus, in either case the folklore is not true,

meaning that a useful hypothesis describing defect behavior

should be formulated regarding the exactly opposite condition:

2 0 Interface defects will not comprise the vast majority of

defects in a system [Supported by: Endres75, Basili/Per-

icone84; Contradicted by: none].

These examples demonstrate the benefit of accumulating

results from multiple studies in multiple papers, recognizing

how context variables can provide insights into hypothesis

refinement as well as open new hypotheses. However, this

approach also demonstrates the difficulties alluded to in

Section 2:

- The lack of formality makes it easy to miss

mismatches among studies. In the analysis above,

the integration of studies was done by someone with
a large degree of context knowledge concerning all

of the studies described, but this cannot always be

expected to be the case.

- The analysis is not reusable; literature reviews are

typically done to address a particular issue and if a

related but different issue is of interest to another

researcher, then typically the analysis must be

redone from scratch.

- Due to the textual nature of the review, it is hard to

create a summary that is both rigorously backed up

by evidence and that summarizes the current state

of knowledge.
4. A more formal methodology

Based upon the results from the folklore-based method of

abstracting empirical results, we recognized the need for a

more effective and rigorous process for identifying possible

hypotheses based not just on folklore but on various forms of

information from the unrelated studies themselves. In this

section, we describe the process we created, which combines a

structured approach to knowledge gathering plus data mining

techniques. The outputs of this method are compared to those

in Section 3 as a way to check the efficacy of this new method.

As in the folklore-based approach, this methodology has the

goal of building a set of hypotheses that represent the

knowledge about software development practices contained

in multiple studies, which need not have been designed

specifically to produce related data. This knowledge is

represented as hypotheses to reflect its provisional nature,

that is, each study in a family can only contribute evidence for

or against some statement about software development

phenomena. No amount of studies ever proves such a

relationship outright.

As input, the methodology requires a focus of study, i.e. a

(set of) software engineering phenomenon(a) about which

information is needed.

The process consists of five steps (Fig. 1), starting with a

definition of the problem area, then the selection of papers of

interest, the extraction of information from these papers,

integration of the information and finally the analysis and

interpretation of the results. This process is iterative, in that the

results of a given step may convince the researcher to go back

to a previous step and redo the associated activities. For

example, if the researcher is not satisfied with the information

extracted from a set of papers, he or she may use these results to
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suggest new areas to search in order to select more papers for

analysis.

The output of the process is a set of conclusions and new

knowledge that arises from the process. As a secondary output,

the process creates a structured hypothesis base, a structured and

searchable repository of issues about which information has

been found. The advantage of the creation of the structured

hypothesis base is that it can be reused. Other researchers can

evolve and reuse it according to new research goals as they arise.

The first two steps of the methodology, defining the problem

and selecting relevant papers, are performed much the same as

they would be in any method, no matter how formal, and are

thus not discussed here at length. Defining the problem of

course depends largely on the interests of the researcher. The

problem definition is also related to the amount of knowledge

already accumulated in an area. For example, as more evidence

is accumulated we can move from studying how failure-prone

software products are to which types of failures are most

common; to which types of products display common failure

profiles; to which context variables make those failure types

more likely to occur. This allows us to evolve our knowledge

into more useful models over time.

The second step, selecting papers that can be searched for

evidence in the focus area, is also conducted largely in the same

way regardless of the individual process being followed. To be

suitable, a paper must provide some empirical information or

experience-based hypotheses relating to the focus of study.

The remaining steps will be performed in a quite specific

way in this methodology, and so are described in more detail in

the following subsections.

4.1. Extracting information from papers

In this step, the researcher must review each paper, looking

for potential hypotheses described in the text. According to

Gay, a hypothesis is a tentative explanation for certain

behaviors, phenomena, or events that have occurred or will

occur. ‘A good hypothesis states as clearly and concisely as

possible the expected relationship (or difference) between two

variables and defines those variables in operational, measur-

able terms’ [10].

Any hypothesis should be stated in such a way that data can

be collected that either supports or refutes the hypothesis. For

the purpose of our analysis, we classify the hypotheses as tested

and untested. A tested hypothesis is a tentative explanation for

certain behaviors, phenomena, or events that have occurred in

an empirical study. An untested hypothesis (otherwise called a

belief or assumption) is a tentative explanation for certain

behaviors, phenomena, or events without explicit reference to

empirical data.

While reviewing the papers selected in the previous step, the

researcher should highlight the important information (so that

there can be some traceability to the original source if questions

arise later). After highlighting the information, it is important

that key details are transferred to data entry forms to create the

structured base for analysis. For now, we are using forms

implemented in Excel, although in future work we intend to
create a tool to support the activities of the process. The

researcher should focus his or her search specifically on

the following categories and types of information: hypotheses,

context descriptions, and definitions.

Hypotheses. It is important to note that in this step, all

relevant information should be highlighted, without requir-

ing critical appraisal from the researcher regarding the

quality of support. For our structured hypothesis base, we

want to collect beliefs and assumptions as well as

hypotheses with empirical results that support or reject

their contention. These various levels will be distinguished

from one another by using the ‘support’ field described

below. The reason for this practice is that we want to be

able to describe the possible relationships among variables

as broadly as possible, drawing from the common knowl-

edge of experienced professionals as well as the subset of

relationships that have been empirically verified. However,

at the same time, we want to carefully record the quality of

that support so that the end results can be understood in

relation to the associated level of confidence that is

warranted.

Our experience is that the section of the paper describing the

analysis of the empirical data is where most tested hypotheses

can be found. The conclusions are a good place to find

hypotheses, although these are many times repetitions from

earlier in the text. Some hypotheses will also be found in tables

and figures; although not explicitly stated in the text of the

paper, relationships that are expressed visually for readers will

need to be translated into textual form to be inserted into the

hypothesis base in a usable way.

The following information should be recorded on the

appropriate form for each hypothesis:

† Plain text: the hypothesis should be stated in such a way that

data can be collected that either supports or refutes the

hypothesis. A good hypothesis states as clearly and

concisely as possible the expected relationship (or

difference) between dependent and independent variables

and defines those variables in operational, measurable

terms. The hypothesis should be written using exactly the

wording from the paper so that traceability is assured.

† Original source of hypothesis: a reference to the paper in

which the information was found.

† Level of support: the support should be described as one of

the following levels:

B Significantly positive: the results support the

hypothesis and the results of a test are included to

show that the results are statistically significant, that

is, with a high degree of certainty are not the result

of pure chance.

B Positive: the results in the paper support the

hypothesis, but no significant statistical results can

back this up.

B Null: the hypothesis has been tested but the results

in the paper neither support nor contradict the

hypothesis.
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B Negative: the results in the paper contradict the

hypothesis, but no significant statistical results can

back this up.

B Significantly negative: the results contradict the

hypothesis and the results of a test are included to

show that the results are statistically significant, that

is, with a high degree of certainty are not the result

of pure chance.

B Belief: the hypothesis is formulated based on

assumption or belief but has not been tested.

† Confidence in support: reflects the level of confidence that

can be placed in the results and author’s analysis. It is a

4-level scale:

B High: results were rigorously measured and in a

representative industrial environment.

B Med: measurement was not completely rigorous or

the context was not realistic.

B Low: measurement was not completely rigorous and

the context was not realistic.

B None: no evidence was presented (The hypothesis

describes a belief and has not been tested).

† Observations: this is a free-text field where the researcher

can keep track of additional information that is important

for correctly understanding or interpreting the hypothesis.

Context descriptions: this form holds details concerning the

environment from which the measures were drawn. There will

be at least one record on this form associated with each source

(possibly more, if the paper describes data that was collected

from several projects). Our experience is that the context

descriptions usually come shortly after the introduction. As

different studies report different metrics of interest to them, not

every paper will have all of the following information. However,

the template should be filled out as completely as possible given

the information that has been published. Missing values will

need to be accounted for during the analysis, as they limit the

strength of the conclusions that can be drawn.

The attributes of the context description form are:

† Source: a reference to the paper in which the information

was found.

† Criteria related to the development team:

B Number of Subjects: number of subjects from which

the author collected the information to do the

analysis.

B Experience of subjects: level of skill or expertise,

captured using whichever measures the authors

described in the paper.

† Criteria related to the software product:

B Project size: size of the project, described using

whichever measures the authors described in the

paper.

B Degree of complexity of the application: complex-

ity, described using whichever measures the authors

described in the paper.

B Notation: if applicable, the language used to encode

the model of the system that was the object of study.
For example, in a study of code the notation would

be the programming language used; in a study of

requirements, the notation could be natural language

or a formal modeling notation like SCR.

B Application description: a brief description of the

application. For example: ‘The development of an

on-board flight control program for a new aircraft.’

B Development phase: the development phase in

which the information was gathered: requirements,

architecture, design, code, test, maintenance.

† Criteria related to the data collection process:

B Data source: the source of the data, like forms,

compilers, tools, etc. The main intent is to provide

information during the analysis phase concerning

how objectively or subjectively the data was

reported. Each source may have multiple sources,

for different types of information; the granularity

required in the form depends on the source.

B Collection period: number of months for which the

collection was done and the year that the infor-

mation was collected.

† Observations: this is a free-text field where the researcher

can keep track of additional information that is important

for correctly understanding or interpreting the hypothesis.

The context description can be extended with other fields,

specific to the given focus, that help the analysis of hypotheses.

For example, using the focus of ‘Defects’ we gathered

information including:

† Number of defects: number of analyzed defects;

† Number of modules: number of analyzed modules.

Definitions. The extraction of all the terms used in the paper is

important for the interpretation and analysis of the structured

hypothesis base. To address the challenges regarding mis-

matches among different sources, described in Section 2, the

definitions from each paper must be recorded in a systematic

way and then reconciled, to remove the chance that

misinterpretations occur during the analysis of results.

There should be one record on this form for each measure

collected in each source. Our experience is that the definitions

are found in papers usually following the introduction.

The attributes of the definition form are:

† The term itself, for example: module.

† The description, as given in or implied from the text. For

example: module is a named subfunction, subroutine, or the

main program of the software system.

† The original source: a reference to the paper.

The hypotheses, context descriptions and definitions are

important for comprehending the possible measures and

influencing factors for the focus of study. We are also working

on ways of recording less directly connected contextual

information, like software development challenges and lessons

learned about empirical studies, that are also important to
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gather from the papers because they help the researcher to

understand the context of the paper and of the conclusions.

However, this work is ongoing and outside the scope of the

current paper.

4.2. Integrating information from papers

Information integration consists of two steps: (1) Integration

of definitions; and (2) Formalization of the hypotheses based

on the unified definition set. These steps may be iterated as

needed.

The integration of definitions includes the creation of one

unified definition schema, by finding the places in the

definitions where they overlap, relating concepts that are

semantically close via equivalence and subsumption relations

(aligning) and checking the consistency, coherency and non-

redundancy of the result [15,31]. The alignment of concepts is

especially difficult, because this requires understanding of the

meaning of concepts, but this step has been explored in

ontological research, and many techniques and tools exists to

facilitate its automation [20].

The unified definition schema has the main goal of solving

problems of conceptualization and explication mismatches

pointed in Section 2. Some of them will remain unsolved, and

the researcher has to be aware of them before drawing

conclusions from the analysis.

In the hypothesis formalization step, the hypotheses

recorded from papers are formalized in such a way that

structured analysis can be done. For the purposes of such

analysis, we define hypotheses as being relationships between

exactly two variables (one dependent and one independent). In

cases, where the hypotheses as stated in the source paper

describes multiple relationships, the formalized hypotheses

have to be divided into several smaller ones of two variables

each.

The formalization of hypotheses is an important step for a

better analysis of the results. It is important that the researcher,

when executing this step, keeps in mind the focus of the study,

because this will direct the choice of the dependent and

independent variables. We have found, in our experience, two

main types of hypotheses: A statement about a logical

relationship between two variables (e.g. ‘As module size

increases, the number of defects injected increases’) and a

statement of a mathematical function that relates two variables

(e.g. ‘Interface defects are expected to account for approxi-

mately 25% of all defects in a system’). This abstraction of

hypothesis types is based on the hypotheses uncovered in our

work to date; we do not claim that there may not be others, less

often used, which we simply have not encountered yet.

However, these types seem to fit equally well with information

coming from case studies (which look at detailed relationships

over the life of a single project) as well as controlled

experiments (which investigate whether a treatment, such as

using a new process, has any impact on some success criteria).

A formalized version of either type has three major

components: A dependent variable, an independent variable,

and a relation between them. The variables themselves can be
any entity discussed in the hypothesis (e.g. ‘module size,’

‘number of injected defects,’ ‘number of interface defects’).

Each of the dependent and independent variables also has

three additional fields which may be left blank: the direction of

effect, the magnitude of effect, and constraints on the effect.

These fields will only have values if the hypothesis contains

appropriate information. In the case where the hypothesis

describes a logical relationship, the direction and magnitude

fields for each variable capture information about effects related

to changes in value. For example, if the hypothesis is ‘as module

size increases by 10%, the number of defects injected increases

by 25%’ then the independent variable of ‘module size’ has the

direction of ‘increases’ and the magnitude of ‘10%.’ In cases

where the hypothesis describes a mathematical function, the

direction and magnitude capture the functional calculation. For

example, if the hypothesis is ‘25% of all system defects will be

interface defects,’ then the dependent variable of ‘interface

defects’ has the magnitude of ‘25%’ but no direction.

A constraint on either variable simply captures information

about the range of applicability of the variable. For the

hypothesis ‘as the size of C modules increases by 10%.’, for

example, the constraint field for the independent variable

would contain the information that this is for the C

programming language.

The relation field always describes the hypothesized

relationship between the independent and dependent variables.

Values can be: wZ(approximately equal), !, O, %, R,Z,

s, 0 (implies), l0 (does not imply).

As illustration, consider the following examples:

1. Plain text: larger modules are more complex than smaller

modules

a. Formalization:

i. Increased size in modules implies increased

complexity

1. Independent direction: increased

2. Independent magnitude of difference: N/A

3. Independent variable: size

4. Independent context: modules

5. Effect: imply

6. Dependent direction: increased

7. Dependent magnitude of difference: N/A

8. Dependent variable: complexity

9. Dependent context: N/A

b. Source: [3]

c. Level of support: significantly positive

d. Confidence: high

2. Plain text: 89% of defects can be corrected by changing

only one module

a. Formalization:

i. 89% of defect corrections equal changes in one

module

1. Independent direction: N/A

2. Independent magnitude of difference: 89%

3. Independent variable: defect

4. Independent context: module corrections

5. Effect: equal
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6. Dependent direction: N/A

7. Dependent magnitude of difference: N/A

8. Dependent variable: changes

9. Dependent context: within one module

b. Source: [3]

c. Level of support: significantly positive

d. Confidence: high

3. Plain text: there is a higher defect rate in smaller sized

modules

a. Formalization:

i. Decreased size implies increased defect rate

1. Independent direction: decreased

2. Independent magnitude of difference: N/A

3. Independent variable: size

4. Independent context: N/A

5. Effect: imply

6. Dependent direction: increased

7. Dependent magnitude of difference: N/A

8. Dependent variable: defects

9. Dependent context: rate

b. Source: [3]

c. Level of support: significantly positive

d. Confidence: low

e. OBS: the low confidence comes from the way that the

authors explain the results: ‘The most plausible

explanation seems to be that the large number of

interface [defects] spread equally across all modules is

causing a larger number of [defects] per 1000 executable

statements for smaller modules. Some tentative expla-

nations for this behavior are that: the majority of

modules examined were small, causing a biased result;

larger modules were coded with more care than smaller

modules because of their size; and [defects] in smaller

modules were more apparent. There may still be

numerous undetected [defects] present within the larger

modules since all the ‘paths’ within the larger modules

may not have been fully exercised’ [3].

4. Plain text: errors in understanding interfaces and require-

ments are more difficult to correct than others

a. Formalization:

i. Requirements errors imply increased difficulty of

defect correction

1. Independent direction: N/A

2. Independent magnitude of difference: N/A

3. Independent variable: requirements

4. Independent context: errors

5. Effect: imply

6. Dependent direction: increased

7. Dependent magnitude of difference: difficulty

8. Dependent variable: defects

9. Dependent context: correction

ii. Interface errors imply increased difficulty of defect

correction

1. Independent direction: N/A

2. Independent magnitude of difference: N/A

3. Independent variable: interface

4. Independent context: errors
5. Effect: imply

6. Dependent direction: increased

7. Dependent magnitude of difference: difficulty

8. Dependent variable: defect

9. Dependent context: correction

b. Source: [32]

c. Level of support: significantly positive

d. Confidence: low

After the formalization of the hypotheses we have a

structured hypothesis base that can now be used in a process

of analysis.
4.3. Analysis and interpretation

We argue that different types of analysis (top–down or

bottom–up) can be done depending on the researcher’s

interests and how well-specified the problem can be. If, during

the problem definition phase, the researcher can only state a

general topic of interest rather than a specific hypothesis,

he/she can do a bottom–up analysis, using the data from the

papers analyzed to specify the set of important context

variables. On the other hand, if the researcher already has

detailed hypotheses in mind, with influencing factors already

identified, he/she can do a top–down analysis by searching the

structured hypothesis base for any evidence describing those

influence factors and their effects.

The input for the analysis is the structured hypothesis base,

also containing the specified definitions and context descrip-

tions. The output of the process depends on the researcher’s

goals for the analysis, which may include: new hypotheses with

supporting evidence, new beliefs that reflect expert opinion and

may not have been previously recognized as such, or the

refutation or confirmation of a set of initial hypotheses or

folklore.

We assume that in some way the researcher can follow a

core of structured steps to do the analysis. We propose here

only one possibility of these steps, but recognize that the exact

process followed is dependent upon the specific researcher

doing the analysis:

1. Filter papers, if desired, selecting a subset that is most

interesting for the current analysis. (For example, the

researcher may select a subset of papers in which he/she has

the most confidence in the results.) As filtering may

introduce bias, we recommend this be done only according

to objective criteria, such as including only papers in peer-

reviewed journals. Any filtering should be reported clearly

in the report of the study results, to allow the rationale to be

subjected to peer review.

2. Filtering based on level of support and confidence. The

researcher can filter the base, for example to remove

hypotheses with the support level of ‘belief’ (i.e. removing

items with no empirical backing), giving more confidence in

the results.

3. Organize the hypotheses that are still included in the analysis

according to the dependent variables that they describe.
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4. Choose a dependent variable to explore. This choice is based

on the focus of analysis described in the definition of the

problem.

5. Visualize influencing factors on the dependent variable. In

this step the researcher can see which independent variables

are related to the chosen dependent variable, and he/she can

choose to explore some of these relations in more detail, for

example, getting a sense if there is consensus about the

direction of the relation, the magnitude of the effect, or the

constraints under which those results are observed.

6. Based on context descriptions and definitions, certify that all

mismatch problems are solved and that different hypotheses

are not being combined. Filter problems not solved or

hypotheses that cannot be combined to draw conclusions.

7. Draw conclusions based on the patterns observed, create

new hypotheses, or refute or confirm initial hypothesis or

folklore.

The overall process is iterative, and the researcher can

choose to traverse the steps in an order influenced by her/his

specific goals, e.g. by doing first, a bottom–up analysis to

construct a detailed hypothesis, and then a top–down analysis

to evaluate the body of evidence available in support of it.

While applying the process, the researcher may need to

transform the values of information stored in the structured

hypothesis base, as described in Section 2 (e.g. expressing

measures in KLOC in LOC instead, or estimating the total size

of a program from the sizes of its component modules). This is

done in an ad hoc manner, depending on the hypotheses that the

researcher is trying to abstract, and so may be largely

dependent upon the particular context. Some of the translations

may be stored in the structured hypothesis base if they appear

likely to be reusable, but many will be too context-specific for

this to be useful.

The bottom–up analysis considers only information found in

papers published about the focus of study. That is, categories of

phenomena and resulting hypotheses are built up based only on

the information found in the literature search. The analysis of

the structured hypothesis base is used to identify knowledge

that cuts across multiple studies, for example in identifying

variables that have an effect on the outcome.

The top–down approach considers that users may have

intuition, folklore, or hypotheses; in short, some pre-existing

opinions about which types of information and phenomena are

interesting enough to collect information on. In this case, the

analysis of the structured hypothesis base yields a refutation or

confirmation of these preconceptions.

Many visualization techniques can be applied to facilitate

the exploration of the structured hypothesis base [13,21]. In the

next section we present a detailed example of applying the

process in the area of software defects, in which we used

Treemaps [29,30] to do the data exploration. Treemaps are a

space-constrained visualization of hierarchical structures. They

assign the available hypotheses into regions on the display,

which allows researchers to see the hierarchies in datasets, in

this context for example, to see the entire set of hypotheses

organized first according to common dependent variables (i.e.
specific aspects of the general topic of interest), and secondly,

in additional subsets around common independent variables

(i.e. the factors that influence those dependent variables).
5. A bottom–up analysis case study

5.1. The problem definition

To allow a comparison between our more formal method-

ology and the example given of the folklore-based analysis in

Section 3, as a topic of study we select software defects.

We follow a two-pronged approach to compare the results

of the methodology to those of other approaches. First, we use a

relatively small set of papers in which one of the authors had

some experience in the application context, to investigate

whether or not the results that could be obtained from applying

the methodology are useful compared to an expert’s opinion of

the contribution of the source articles. These results are

described in Sections 5.2 and 5.3. Secondly, we reran the

analysis on a larger set of papers done by other authors. In

Section 5.4, we compare the results from our formal approach

on this set against an external expert’s manual analysis of the

knowledge that could be built across studies, to assess the

completeness and repeatability of our approach when done

without relying on a deep knowledge of the application context

of the source articles.
5.2. Results from a bottom-up analysis

To allow comparison with the folklore-based approach

described in Section 3, we first apply the formal methodology

using only the same three papers that were used in Section 3:

Endres75, Basili/Pericone84, and Weiss/Basili85. The meth-

odology was applied by one of the authors who did not have

any direct experience with the papers. As was emphasized in

our discussion of building up bodies of knowledge from

families of studies, each study in the family need not be a

‘strict’ replication of one another, i.e. may have a different

overall design and data collection strategy [5].

Sixty-seven plain text hypotheses were extracted from these

papers. These were translated into 76 formalized hypotheses in

the hypothesis base. During the analysis, we used only the

hypotheses that were supported by empirical data, and we

filtered the analysis to include only the relations that were

supported by more than one paper. We used the Treemap tool2

to do the data mining exploration on data.

We first created a hierarchy based on dependent variable,

and found three large groups of hypotheses related to defects,

changes, and effort. Looking in detail at the variable of ‘defects’

we created a new level of the hierarchy based on independent

variable. Analyzing Fig. 2, we can see the main independent

variables related to defects: interface, size, effort, misunder-

standings of specification, changes, and others (In Fig. 2, each of

the small rectangles represents an individual hypothesis, with

http://www.cs.umd.edu/hcil/treemap/
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the text shown inside the block. Different shading represents the

different source papers from which the hypotheses are drawn.

The larger groupings of hypotheses collect together all

hypotheses about a common independent variable).

At this stage in the analysis, then, we have a systematic list

of potential relations on the focus of interest (software defects),

which may or may not represent new information to the

researcher. Each relationship may be explored in more detail to

examine the context in which the relationship held and the

level of accumulated supporting data. Choosing to analyze

‘interface’ as independent variable yields the results shown in

Fig. 3. We can see that two of the three papers fail to support

the hypothesis that most defects are interface defects.

To try to solve this discrepancy, we looked in more detail at

the definitions of ‘interface’ in each paper. In the two papers

that do not support the hypothesis, the definition of interface

defects is based on the number of components changed, i.e. a

defect is an interface defect if more than one component

(module) must be changed to fix the problem. In the third

paper, interface defects are associated with structures existing

outside the module’s local environment. We can say then that,

using the first definition, interface defects are not in fact the

majority of the defects in this study.

Exploring the remaining independent variables, we could

draw some additional conclusions:

A. Interface defects are not the majority of defects, using the

definition of interface defects that is based on the number

of components changed, i.e. a defect is an interface defect

if more than one component (module) must be changed to

fix the problem [Supported by: Supported by: Basili84,

Weiss85 and Endres75; Contradicted by: none].

B. Misunderstandings of specifications make up the majority

of defects when the developers are not experienced with
Fig. 2. Hypotheses about six independent
the application domain [Supported by: Basili84 and

Endres75; Contradicted by: Weiss85].

C. Size, alone, is not a factor to determine defect-proneness

[Supported by: Basili84, Endres75, and Weiss85; Contra-

dicted by: None].

Comparing these hypotheses to the results of the folklore-

based approach, we see that Hypothesis A above matches

exactly to the refined Hypothesis 2 0 in Section 3. Hypothesis B

above also maps directly to Hypothesis 1a in Section 3.

Hypothesis C above is a concrete instance of the general case

described in Hypothesis 1 (namely, that there are consistent

patterns that can be found describing software defect

occurrences).
5.3. An expanded hypothesis base

One of the advantages of the formal approach is that the

structured hypothesis base is reusable and expandable as

needed. To demonstrate, we can easily rerun the above analysis

by adding additional papers into the base.

Specifically, we next added defect data from the following

papers, which brought the total number of hypotheses

(including belief statements) to 223:

1. Rombach/Basili87: this study was conducted in the

maintenance environment of a major computer company

in commercial systems [24].

2. Selby/Basili88: a single release of a code library tool [26].

3. Selby/Basili91: a single release of a code library tool [27].

4. Mashiko/Basili97: a set of four projects dealing with

communication software [18].

Again, this large number of hypotheses was severely filtered

for this example, by removing belief statements which did not
variables affecting software defects.
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have empirical data addressing them and limiting analysis only

to those hypotheses which were addressed by more than one

paper.

The analysis process helps to get an understanding of the

solution space covered by these studies. For example, while

Mashiko/Basili97 has some hypotheses about interfaces and

defects, upon resolving the semantic mismatches it becomes

apparent that all of them are related to external interfaces (i.e.

faults in the interface between the product and its external

system) or human interfaces, thus covering quite separate

phenomena from the other three papers which draw con-

clusions about internal interfaces (faults in the interface

between modules).

The analysis of the remaining papers added no new

hypotheses to the list about misunderstandings of specification,

but increased the level of confidence in the hypothesis related

to size by providing new hypotheses from additional contexts

that matched the initial conclusions.
5.4. Using papers of other authors

To demonstrate that this methodology can use papers from

other authors, we decided to replicate the study done by Brian

Marick [17], in which several different defect databases were

reviewed in order to formulate statements about common

issues in defect behaviors. Specifically, we added to our

hypothesis base defect data from the following papers [2,6,8,

11,16,22,23,25,28,33] (It is important to note that these papers

were selected to match the analysis done by Marick and not to

produce a comprehensive and up-to-date body of defect

knowledge).

- Basili81: the example application is an evaluation

of the first stage of the A-7 flight software
redevelopment: the production of the A-7 require-

ments document.

- Bell76 contains an analysis of two contexts. The

first was a project in a graduate software engineer-

ing class, in which students wrote a set of software

requirements and a preliminary system design for a

student employment information system (SEIS).

The second case was a large (l million machine

instructions) real-time Ballistic Missile Defense

(BMD) system being developed with a top–down

approach.

- Dniestrowski78: the data reported in this paper is

about an avionics digital flight control for a

FALCON 20 variable stability aircraft. The source

code consisted of: 800 variables declarations, 1715

constant declarations, 3615 assembly instructions,

3230 assembly instructions, 1050 assembly direc-

tives, 9100 documentation.

- Glass81: operational software systems for mili-

tary aircraft use was analyzed in this paper.

Project A involved 150 programmers at the peak

person-load, and contains about a half million

instructions in the operational software alone.

Project B involved 30 programmers and about

100,000 instructions.

- Lipow79: data from three large software projects

are examined and an analysis of the effect on

defects of certain preventive and detective tools

and techniques is presented.

- Ostrand84: in this paper, they reported the results

obtained from collecting defect data for nine

months from a special-purpose editor project.

The editor’s source is about 10,000 lines of high-

level language and assembly. The program
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design and coding were done by three program-

mers over ten months, after the initial specifica-

tion had been completed. The implementation

represents approximately 18 persons-months of

effort.

- Potier82: the software used in the experiments

belongs to a family of compilers for the real-time

language LTR II developed for a wide range of

target machines. These compilers written in the

LTR language consist of a common kernel

specific to the LTR language and independent

of the target machine, and a code generation part

dependent on the target machine. The total

number of lines is 64,939, with 1402 defects

found.

- Rubey75: the data presented in this paper were

obtained from validation efforts, generally invol-

ving relatively small real-time control programs

(averaging about 32 K machine-language instruc-

tions).

- Shen85: this study was based on the detailed

analysis of three products developed at IBM’s

Santa Teresa Laboratory. The products studied

were developed and released since 1980. Product

A is a software metrics counting tool written

primarily in Pascal of total size is 7 K TSI (Total

number of source instructions in thousands,

excluding comments). Product B is a compiler

written primarily in PL/S (a derivate of PL/1), of

size 94 K TSI. Product C is a database system

written primarily in Assembly Language, the

total size is 326 K TSI.

- Withrow90: the object of this study was the Ada

software for the command and control of a

military communications system. The project is

composed of 362 Ada Packages, containing 114,

000 lines of code. The average package was 316

lines.
Table 1

No. Conclusion Support listed in Ma

1 Defects in programming logic (path selection)

are common

[8,11,16,23,28]

2 Defects of omission are important [3,11,22]

3 Data handling is more defect-prone than

computation

[3,11,16,22,23,28]

4 Modified modules are no more defect-prone

than new modules

[3] and additional so

clearly referenced

5 There is evidence that both small and

large modules are more defect-prone

than medium-sized modules

[3,28,33]

6 In abstract descriptions (requirements/

functional specifications), beware of

incorrectness, omissions and inconsistencies,

in that order.

[2,6]

7 Bug fixes cause a small number of new bugs Unclear
This brought the total number of papers used in the analysis

to 18 (representing the work of 26 authors). From these papers,

332 plain text statements of potential hypotheses were found

during the extraction step (as described in Section 4.1). During

the integration step (Section 4.2), 141 of these statements were

found to be at the level of belief/opinion only, and thus were

excluded from further analysis; the remaining 191 plain text

statements were formalized, resulting in 396 specific hypoth-

eses. These metrics describe the hypothesis base as it was

found at the beginning of the analysis.

During the analysis step (Section 4.3), visualization and data

mining were applied on the formalized hypotheses, which were

then traced back to the plain text hypotheses from the various

sources. Using this analysis, 80 of the 191 plain text hypotheses

were found to be related to the topics highlighted by Marick as

the common points found in his analysis (The remaining plain

text hypotheses dealt with a wide range of other topics, such as

maintainability, effort, reliability, reparability, memory con-

straints, reusability, and cohesion, which are outside the scope

of our current analysis. For the purpose of comparability, we

chose to analyze only the intersection of our hypothesis base

with topics identified by Marick, rather than aim for

completeness).

As a result of this analysis, we found almost the same results

as in the Marick study, which used a manual approach to

abstracting information based on empirical evidence. Table 1

compares the results produced from the two methodologies

As a result of this comparison, we can see that the formal

methodology had the advantage of making the links between

the underlying data and the conclusions more explicit (e.g.

conclusion number 7). In other cases, the conclusions were

made more robust because more sources and more specific

hypotheses resulting from them could be explicitly associated

(e.g. conclusions number 1 and 2).

Through the comparison to the less formal approach, we did

find a flaw in our methodology, namely that we were not

analyzing and extracting information from figures. That is,

information which happened to be encoded as figures or

graphics, and which could be extracted from the paper, had not
rick analysis Support found in hypothesis base

All of the same, plus: [3,22] (11 specific

hypotheses)

All of the same, plus [6].(Also [18,27] which

were not in Marick’s input set.) (29 specific

hypotheses)

All of the same (eight specific hypotheses).

urces that are not Support from: [3,27,28] (3 specific hypotheses)

All of the same plus [9,23]. (Also [26,27] which

were not in Marick’s input set.) (10 specific

hypotheses)

All of the same plus [3,28,32].(13 specific

hypotheses)

[3,22,23,32] (6 specific hypotheses)
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made it into our hypothesis base, resulting in missing support

for some conclusions that Marick had found. As a result, we

decided to insert this step into the extraction of information

from papers. Rerunning the methodology using this step

resulted in the data as show in Table 1.

We could see in this case study that we can replicate results

from other manual reports, but with an advantage of that the

review was conducted according to explicit and reproducible

methodology.
6. Summary

In order to provide useful, not to mention accurate, decision

support about software development practices and their effects

on projects, we need not only empirical studies, but empirical

studies that cover a range of interesting development

environments. Due to the wide range of influencing factors,

and the fact that we cannot yet confidently specify them all

ahead of time, we need a large dataset from which observations

about influencing factors can be built bottom–up. Building

such an adequate dataset would be impossible if we cannot

make use of existing data, even if it was never designed to

contribute to a larger empirical base.

We have demonstrated two processes with which we have

been working to construct such an empirical base: one is a

manual and informal approach, which relies on identifying

common beliefs or ‘folklore’ to identify useful hypotheses and

a manual analysis of the information in papers to investigate

whether there is support for those hypotheses; the other is a

formal approach based around encoding the information in

papers into a structured hypothesis base that can then be

searched to organize hypotheses and their associated support.

There are some advantages of having a structured base, even

when it does not produce many new results in comparison to

the more informal analysis approach. The advantages are:

(a) The structured base is reusable, in the sense that it can be

reused to test additional research questions that may not

have been known at the time of its creation.

(b) If another researcher wants to validate the results, the

process is repeatable.

(c) The analysis process can be undertaken by researchers

who do not have in-depth knowledge about the context

and details of the individual studies. The structured

information helps the researcher to see the important

information to do the analysis.

Having looked at a collection of datasets and abstracted up a

set of conclusions on specific topics, we have shown that the

formal methodology can produce useful and feasible results,

especially when it is compared to the results output from the

more manual, expert-based approach. The formalized

approach, by relying on a reusable hypothesis base, is

repeatable and also capable of producing a more thorough

basis of support for hypotheses, including results from papers

or articles that may have been overlooked or not considered by

the experts.
In terms of its contribution to supporting the building of

knowledge across studies, we feel that the work described in

this paper demonstrates that:

† There is value in multiple studies for both supporting and

not supporting hypotheses. There are several instances

above where the conclusions from multiple datasets all

point in the same direction, thus making the overall

conclusion much stronger than if it came from any single

study in isolation. And, in several important instances, the

results from additional studies identify important caveats by

examining processes in new environments.

† Care must be taken to make sure that the objects of the

comparison are actually like things that can support the

conclusions being drawn.

In short, there are insights to be gained from the collection

and analysis of defects according to different classification

schemes, independent of the scheme. Our results show that

interesting abstractions can be drawn by comparing defect

information opportunistically, based on points of similarity

where they occur.
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