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1 Introduction

The notion of software product line (also known as system family) engineering be-
came well established [29], after Parnas’ proposal [35] in the 70’s of information
hiding and modularization as techniques that would support the handling of pro-
gram families. Product line engineering arises where multiple variants of essentially
the same software system are required, to meet a variety of platform, functional, or
other requirements. This kind of generic systems engineering is well known in the
avionics industry; e.g. [25,19] describe the reuse of generic sets of requirements in
engine control and flight control systems.

Domain analysis and object oriented frameworks are among numerous solutions
proposed to product line technology. In Domain-Specific Software Architecture
[44] for example, the domain engineering of a set of general, domain-specific re-
quirements for the product line is followed by its successive refinement, in a series
of system engineering cycles, into specific product requirements. On the other hand
[20] describes the Object-Oriented Framework as a “a reusable, semi-complete ap-
plication that can be specialized to produce custom applications”. Here the domain
engineering produces an object-oriented model that must be instantiated, in some
systematic way, for each specific product required. In this work we combine object-
oriented and formal techniques and tools in domain and product line engineering.

Developers in the avionics industry are interested in the use of object-oriented and
UML technology (OOT) [11,32] as a way to increase productivity. Concepts such
as inheritance and design patterns facilitate the reuse of requirements and designs.
UML has emerged as the de-facto standard modelling language for object-oriented
design and analysis, supported by a wide variety of tools. Due to concerns over
safety certification issues however, OOT has not seen widespread use in avionics
applications. The controlling standards used in the industry, such as RTCA DO-
178B [21] and its European equivalent, EUROCAE ED-12B [1], do not consider
OOT, although this is under review.

It is widely recognized that formal methods (FM) technology makes a strong con-
tribution to the verification required for safety-critical systems; indeed, DefStan
00-55 [33] as well as the avionics standards above recommend the use of FM for
critical systems. It is further recognized that FM will need to be integrated [5] -
in as “black-box” as possible a manner - with OOT in order to achieve serious in-
dustry penetration. The combination of UML and formal methods therefore offers
the promise of improved safety and flexibility in the design of software for aviation
certification.

One approach to the integration of FM and OOT is to enhance - at the abstract
modelling stage - UML with the minimum amount of textual formal specification
required to completely express functional, safety and other requirements. A tool



will convert the customer-oriented abstract UML model to a fully textual model as
input to FM tools such as model-checkers and theorem provers. With suitable tool
support for configuration and project management, this approach will facilitate the
reuse of verified software specifications and consequently code components.

Adoption of formal methods in the safety-critical industry has been limited partly
due to the need for industrial strength tool support. The B method of J.-R. Abrial
[2,39] is a formal method with good tool support, and a good industrial track
record, e.g. [17]. An approach that integrates formal specification and verification
in the B language, with UML-based design methods, has been under development
at Southampton for some years. The UML-B [42] is a profile of UML that defines a
formal modelling notation combining UML and B. It is supported by the U2B tool
[40], which translates UML-B models into B, for subsequent formal verification.
This verification includes model-checking with the ProB model-checker [27] for B.
These tools have all been developed at Southampton, and continue to be extended in
current work in project RODIN, which aims to produce the next-generation Event-
B method and tools.

1.1 Failure detection and management (FDM) for engine control

A common functionality required of many systems is tolerance to faults in the en-
vironment, i.e. the detection and management of failed of input signals. This is par-
ticularly pertinent in aviation applications where lack of tolerance to failed system
inputs could have severe consequences. The failure manager filters environmental
inputs to the control system, providing the best information possible whilst deter-
mining whether a component has failed or not. The role of failure management in
an embedded control system is shown in Fig. 1.
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Fig. 1. Context diagram for failure management subsystem

Inputs may be tested for signal magnitude and/or rate of change being within de-
fined bounds, and for consistency with other inputs. If no failure is detected, some
input values are passed on to the control subsystem; others are only used for failure
detection and management. When a failure is detected it is managed in order to
maintain a usable set of input values for the control subsystem. This may involve
substituting values, and taking alternative actions. To prevent over-reaction to iso-
lated transient values, a failed condition must persist for a period of time before a
failure is confirmed. If the invalid condition is not confirmed the input recovers and



is used again. Temporary remedial actions, such as relying on the last good value,
or suppressing control behaviour, may be taken while a failure is being confirmed.
Once a failure is confirmed, more permanent actions are taken such as switching
to an alternative source, altering or degrading the method of control, engaging a
backup system or freezing the controlled equipment.

1.2 Contribution

Failure detection and management (FDM) in engine control systems is a demand-
ing application domain, see e.g. [10]. Based on work on a case study provided by
AT Engine Controls, we propose a method for the engineering, validation and ver-
ification of generic requirements for product-line purposes. The approach exploits
genericity both within as well as between target system variants. Although product-
line engineering has been applied in engine and flight control systems [25,19],
we are not aware of any such work in the FDM domain. Using UML-B we de-
fine generic classes of failure-detection test for sensors and variables in the system
environment, such as rate-of-change, limit, and multiple-redundant-sensor, which
are simply instantiated by parameter. Multiple instances of these classes occur in
any given system. Failure confirmation is then a generic abstraction over these test
classes: it constitutes a configurable process of execution of specified tests over a
number of system cycles, that will determine whether a failure of the component
under test has occurred.

A complicating factor is the instability of the FDM requirements domain, which is
often subject to late change. This is because the failure characteristics of dynamic
controlled systems are usually dependent on interaction with the control systems
being developed and can only be fully determined via prototyping. Our generic re-
quirements formulation accommodates this ongoing requirements change process.

Our approach contributes methodologically to product-line requirements engineer-
ing in its integration of informal domain analysis with domain and application en-
gineering that exploits both UML and Formal Methods technology. The application
of product-line engineering to failure detection and management is also novel. We
have exercised the first three stages of our proposed four-stage process model: (i)
domain analysis developed a generic requirement specification document for a class
of systems, (ii) domain engineering then validated the requirements, producing a
formal generic model in UML-B for the product line, and (ii1) application engineer-
ing then verified an example instance system. The fourth stage of the method, the
addition and verification of behaviour to generic and instance models, is ongoing
work.



1.3 Structure of the paper

The paper proceeds as follows. Section 2 introduces formal specification and veri-
fication in B, and our approach in Southampton. Section 3 gives an overview of our
method. Sections 4 - 5 discuss the domain analysis and engineering activities that
result in a validated generic model. Section 6 discusses the application engineering
of an instantiated system variant to verify the instance model. Section 7 gives an
industrial user’s perspective on the usability and applicability of the method and
tools. Finally section 8 concludes with a discussion of related and future work, and
an evaluation of the method.

2 Formal specification and verification with B

The B language [2] of J.-R. Abrial is a wide-spectrum language supporting a full
formal development lifecycle from specification through refinement to program-
ming. It is supported by full-lifecycle verification toolkits such as Atelier B [4],
and has been instrumental in successful safety-critical system developments such
as signalling on the Paris Metro [17].

A B specification gives an abstract description of requirements, modelled in terms
of system state and behaviour. Simply put, state is described in terms of sets and
relations on those sets, and behaviour in terms of changes to that state caused by
invocation of events or operations. An invariant clause captures required properties
of the system that must hold at all times, defining the meaning of the data and the
integrity of its structure. The B verification tools [12] generate proof obligations
(POs) that initialization and all operations maintain the invariant; this is called op-
eration consistency. Automatic and interactive provers are part of the method; we
do not discuss them further here.

A refinement step involves the transformation of an early, abstract nondetermin-
istic specification into a more concrete one 2, by elaboration with more data and
algorithmic structure, thus reducing nondeterminism. Using the refinement relation
between abstract and concrete models, proof obligations guarantee that the refine-
ment correctly represents the behaviour of the abstract specification it refines.

2.1 The Southampton approach

At Southampton two tools have been developed to support formal system devel-
opment in B: ProB and U2B. ProB [27] is a model checker that searches the full

2 The concrete specification in this context is often called the refinement.



abstract state machine model of a B specification for invariant violations, returning
any counterexample found. The state model can be presented graphically. Model
checking avoids the effort of proof debugging in early development activities, serv-
ing as a preliminary validation of the specification before commencing proof. ProB
furthermore provides a limited form of temporal model-checking, and user-driven
animation of behaviour. Its use is discussed further in sections 5 and 6.

The UML-B [42] is a profile of UML that defines a formal modelling notation.
It has a mapping to, and is therefore suitable for translation into, the B language.
UML-B consists of class diagrams with attached statecharts, and an integrated con-
straint and action language called uB, based on B. UML-B is thus comparable to
the UML/OCL specification approach of USE [22,23]. The profile uses stereotypes
to specialise the meaning of UML entities to enhance correspondence with B con-
cepts. UML-B provides a diagrammatic, formal modelling notation based on UML.
The popularity of the UML enables UML-B to overcome some of the barriers to
the acceptance of formal methods in industry. Its familiar diagrammatic notations
make specifications accessible to domain experts who may not be familiar with
formal notations. UML-B hides B’s infrastructure by packaging mathematical con-
straints and action specifications in pB into small sections within the context of
an owning UML entity. The U2B [40] translator converts UML-B models into B
components (abstract machines and their refinements), thus enabling B verification
and validation technology to be exploited.

3 Overview of method

We first give an overview of the method which is then discussed in more detail in the
following sections - see Fig. 2. The first stage is domain analysis (section 4) which
is based on prior experience of developing products for the application domain
of failure detection and management in engine control. This domain analysis is
guided by the experience of [25], who also worked in the engine control domain.
Its purpose is twofold: (i) to “identify reusable artifacts in the domain”, and (i1)
to define a taxonomy of generic requirements and produce a generic requirements
specification document (RSD) [6] subject to that taxonomy ®. A first-cut generic
model in object-association terms, naming and relating these generic requirements,
is constructed as part of the RSD.

The identification of a useful generic model is a difficult process and therefore fur-
ther validation and development of the model is required. This is done in the domain
engineering stage (section 5) where a more rigorous examination of the first-cut
model is undertaken, using the B-method and the Southampton tools. This stage
also serves to structure “the reusable artifacts in such a way (sic) that facilitated

3 Experience [3] shows the value of this taxonomic approach to requirements specification.



reuse during the development of new applications” [25]. The model is animated by
creating typical instances of its generic requirement entities, to test when it is and
is not consistent. This stage is model validation by animation, using the ProB and
U2B tools, to show that it is capable of holding the kind of information that is found
in the application domain. During this stage the relationships between the entities
are likely to be adjusted as a better understanding of the domain is developed. This
stage results in a validated generic model of requirements that can be instantiated
for each new application.
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Fig. 2. Process for obtaining the generic model

For each new application instance, the requirements are expressed as instances
of the relevant generic requirement objects and their associations, in an instance
model - see Fig. 3. The ProB model checker is then used to verify that the applica-
tion is consistent with the relationship constraints embodied in the generic model.
This instance, or application engineering stage, producing a verified consistent in-
stance model, shows that the requirements are a consistent set of requirements for
the domain. It does not, however, show that they are the right (desired) set of re-
quirements, in terms of system behaviour that will result.

The final stage, therefore, is to add dynamic features to the instantiated model in
the form of variables and operations that model the behaviour of the entities in the
domain and to animate this behaviour so that the instantiated requirements can be
validated. This final stage of the process - “validate instantiation” in Fig. 3 - is work
in progress.
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application instance instance
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Fig. 3. Process for using the generic model in a specific application
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Each method stage will be followed by an instance of a stage template. This will
summarize and structure the stage by briefly identifying its approach, parameters
and V & V activities, as well as stage inputs and outputs:

Inputs: Documents, information, people consulted as input to this stage
Approach: Techniques or procedures applied
Parameters: Any data specific to this stage



Outputs: Documents and results produced by this stage
V & V: Validation/ verification activities applied during this stage

4 Domain analysis

The strategy adopted to reach the first-cut generic requirement model (Fig. 2) was
to apply domain analysis in a style similar to that used by Lam [25]. Prieto-Diaz
[37] defines domain analysis as “a process by which information used in developing
software systems is identified, captured and organised with the purpose of making
it reusable when creating new systems”. He identifies three activities which are
central to our domain analysis:

(1) identification of reusable entities
(2) abstraction or generalization
(3) classification and cataloging for further reuse

The first step was to define the scope of the domain in discussion with the engine
controller experts. This was done by considering legacy specification documents
of a small number of representative failure management engine systems, resulting
in a brief scoping definition of the FMS. This definition forms an early part of the
requirements specification document (RSD) produced by this project and is given
in table 1.

Table 1

FMS scoping requirements

PROC1 | The subsystem executes on a given process cycle.

DET1 The subsystem detects abnormal conditions of inputs caused by failures of the external equipment.

OUTI1 Inputs that are found to be in a normal condition may be passed on as outputs (if they are required
by other subsystems).

CONF1 | When an abnormal condition is detected, the subsystem confirms the suspected failure over a
period of time. During this time the condition may recover.

ACT1 The subsystem takes some temporary action to simulate acceptable input while a suspected fault
is being confirmed.

ACT2 The subsystem simulates acceptable input conditions or performs other permanent failure actions
if it confirms an abnormal condition of the inputs.

PROC2 | All tests will be implemented by configuring the generic requirements specified in this document
to meet the specific requirements of the application (as shown in ...).

Identification of commonalities (reusable entities) by abstraction: Legacy doc-
uments were used, with expert consultation, to identify specific requirements that
might reveal more abstractly defined requirements generic across airframes. That
is, specific examples were sought of logical groups of airframe instance require-
ments, where a group aggregated similar requirements from various system in-
stances. Each group was then used to identify a higher-level commonality, by a
process of abstraction. Table 2 shows three of these specific requirement/ com-
monality pairs, giving just one of the instance requirements that resulted in the



associated commonality.

Table 2
Sample instance requirements revealing commonalities

(1) Engine speed ES Each ES sensor ESa, ESb has one upper bound and two lower bounds for range check-
ing. The upper bound test is valid at all times. Lower bound test 1 (starting) is valid
if input condition START_MODE and LIGHT_OFF and not START_ABORT. Lower
bound test 2 (running) is valid if input condition RUN_MODE and not START_-MODE.

An INPut is subject to a number of tests; each such test is subject to a CONDition (over
INPuts, in this case).

(2) Engine torque EQ | EQ has a lower bound test valid if output condition ES > 80%. This test is subject to a
long fault count 2 - 1 - 32. That is, each fault adds +2, each non-fault adds -1 to a fault
count subject to 0 = pass, 32 = fail.

A test is subject to a CONDition over an OUTput; each such test is subject to a DETec-
tion and a CONFirmation fault count.

(3) Engine speed ES Output engine speed cES is set to ESa only when all 3 magnitude DETections, 1 differ-
ence DETection, and one rate DETection are passed.

An OUTput is set by an ACTion, where that ACTion results from a successful test.

This analysis quickly revealed a high degree of genericity in the static configuration
of the system: a small number of key system entities were quickly revealed in a
fixed relation to each other. In table 2 (1), the engine speed sensor is an INPut
entity subject to a number of tests or DETections. A DETection is a predicate that
compares the value of an expression involving the input to a limit value, e.g. a
range check. Each test is invoked subject to a defined CONDition - a predicate
based on the values and/or failure states of other INPut sensors. In (2) we see that
a test consitutes both a DETection and a CONFirmation, that is the application
of an iterative algorithm to confirm, over a number of sampling cycles, whether
an input’s failed status is transient or permanent. The configuration of a specific
system instance will be defined by an instantiation of these entities with instance
sensor fits, detection parameters etc.

Generic requirements specification: In the emerging RODIN method for Event-
B [31] Abrial recommends labelling requirements in the RSD taxonomically; in
our case the taxonomy emerged naturally from the generic entities revealed by the
abstraction process above:

INP Input to be tested.

COND Condition under which a test is performed. A predicate over INP and OUT
values.

DET Detection of a failure state. A predicate that compares the value of an expres-
sion involving the input to a limit value.

CONF Confirmation of a (persistent) failure state.

ACT Action taken either normally or in response to a failures, possibly subject to
a condition. Assigns the value of an expression, which may involve inputs and/or
other output values, to an output.

OUT Output signal to be used in an action



Elaboration of relationships: The analysis then elaborated the entity relationships.
This was used to form the first-cut generic model of Fig. 2, which is elaborated in
UML in Fig. 4. An input (INP) instance represents a sensor value input from the
environment. It may have many associated tests, and a test may utilise many other
inputs. A TEST is composed of a detection method (DET) and confirmation mech-
anism (CONF) pair*. For example an engine speed input, which is tested for out
of range magnitude as well as excessive rate of change, has a detection and asso-
ciated confirmation for the magnitude test and a different detection and different
confirmation for the rate of change test. Each test also has a collection of condi-
tions (COND) that must be satisfied for the test to be applied. For example, the
engine speed magnitude test that is applied when the engine is running is different
from the engine speed magnitude test applied while starting the engine. A con-
firmation mechanism is associated with three different sets of actions (ACT), the
healthy actions (hAct), the temporary actions (tAct), taken while a test is con-
firming failure, and the permanent actions (pAct), taken when a test has confirmed
failure. Each action is associated with at least one output (OUT) that it modifies.
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COND test | 0 0.. INP —

F—— +cond —— +input [———

| . +h./.*ft +act| 1.

| ¥

DET CONF 1 +tAct ACT
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Fig. 4. Overview of common types of elements of functionality and their interrelationships

The detection mechanism DET of a test can be further decomposed as (i) a check
(DET_MAG) that signal magnitude is within defined bounds, (ii) a check (DET_RATE)
that signal rate of change is within defined bounds or (iii) a comparison (DET _PRED)
with a predicted value.

Requirements specification document (RSD): The generic requirements were
recorded into a traceable requirements specification document [6] for the case study.
The document had several features which assisted in presenting the requirements
in a way suitable for further analysis, in particular a generic section and an exam-
ple instantiation of it in tabular form. Note that every system instance will require
specification in such a tabular form.

The generic section of the RSD includes

(1) The taxonomy of requirements.
(2) The model (Fig.4) of the generic requirement domain.

4 Consequently TEST is not a category in the requirements taxonomy above.
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(3) For each labelled generic requirement, a concise statement of the requirement
and an explanation of the rationale behind it.

Table 3 gives some examples of the resulting generic requirements from the RSD.

Table 3
Sample generic requirements

INP2 The subsystem uses input variables which contain either digitized values or Boolean states.

DET_-MAG1 Compares input value against a magnitude (range) limit. The input is in error if the limit is ex-
ceeded.

DET_PREDI Compare input value against a computed value. The input is in error if the discrepancy lies outside

a tolerance of this value.

DET_CONF1 | Every detection is subject to precisely one confirmation; every confirmation acts on precisely one
detection.

DET_CONDI1 | Every detection may act subject to a number of conditions

CONF4 (persistence counter failure mechanism) If a test has detected an error (failure) on an input then
...(algorithm)

The example instantiation section is in tabular form and consists of uniquely iden-
tified instances of the elements in the generic model, and references from each
instance to other instances as described by the relationships in the generic model.
Table 4 gives two instances from each of DET_MAG and CONF data tables:

Table 4
Sample instance requirements

Ref. value name | dir | limit | freq | condition | confirm
tested ms

MAG1.21 | INP2.10 | ESa lo 45 24 CONDS5.3 | CONF4.1

MAG1.22 | INP2.11 | Esb up 130 24 COND1 CONF4.1

Ref. name xinc | ydec | zlimit | description

CONF4.1 fault count 2-1-8 2 1 8 fault counter with
bias to confirm

CONF4.5 fault count 2-1-32 | 2 1 32 biased fault counter,

16 to confirm

Key issues and rationale for requirements: Concurrently with the above activity,
we established key issues, or high-level requirements goals. Key issues were iden-
tified which served as “higher-level” properties required of the system. An example
of such a key property would be that the failure management system must not be
held in a transient action state indefinitely. Considering the requirements’ rationale
is useful in reasoning about requirements in the domain [25]. The rationale from
which the above property has been derived, is that a transient state is temporary and
actions associated with this state may only be valid for a limited time. Table 5 gives
some further examples.

Reflection: This analysis showed that failure management systems are charac-
terised by a high degree of fairly simple similar units made complex by a large
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Table 5
Key issues and rationale

(1) Detect failures Outsource environment failure detection/ sanitization from
control system to FMS. Detect possible failures in input sig-
nals from airframe with maximum sensitivity, ie maximum
true positives.

(2) Confirm failure before perma- | Tolerate noise in the input signals: transient signal deviations

nent action is taken will be tolerated with maximum specificity, i.e. maximum true
negatives.
(3) Take action appropriately Once a failure has been detected some action to cater for the

failure must be taken. The most appropriate action may depend
on the conditions of other inputs and outputs.

(4) Apply tests under appropriate | Some tests are only valid under certain conditions of other in-
conditions puts and outputs and could otherwise result in false positives.

number of minor variations and interdependencies. The domain presents opportu-
nities for a high degree of reuse within a single product as well as between products.
For example, a magnitude test type is usually required in a number of instances in
a particular system. This is in contrast to the engine start domain addressed by
Lam [25], where a single instance of each reusable function exists in a particular
product. The method described in this paper is targeted at domains such as failure
management where a few simple units are reused many times and a particular con-
figuration depends on the relationships between the instances of these simple units.
We will return to the applicability of the method in conclusion in section 8.

Domain analysis - stage template:

Inputs: Engine controller experts. Legacy specification documents of representa-
tive failure management engine systems

Approach: Identification of commonalities by abstraction. Elaboration of relation-
ships. Generic requirements specification. Identification of requirements’ key is-
sues and rationales

Parameters: UML class modelling. Abrial’s taxonomic approach to requirements
specification

Outputs: Generic requirements specification document (RSD) including first-cut
UML model

V & V: Informal peer review

5 Domain Engineering

The aim of the domain engineering stage is to validate the first-cut generic model of
the requirements, thus deriving a validated generic requirements model as per Fig.
2. At input to the domain engineering stage this is essentially a pure UML class
model (Fig. 4) without any dynamic features. The first task is conversion of this
model to UML-B (Fig. 5), to enable automatic generation of the B model. The main
work of this stage is the considered validation and derivation of the output model
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using ProB, resulting in our case in the model shown in Fig.6. Of course, since these
models are diagrammatic representations of the narrative generic requirements, this
stage also updates and corrects those requirements.

We will illustrate this derivation process by trying it with specific example scenarios
taken from existing applications. In this way, we develop our understanding of the
common, reusable elements within the domain by testing the relationships between
them. Again, we rely on our knowledge of existing systems.

INP

<<create>> addInp(detset : POW1(DET))

0..%
0.. +dets
DET COND
+dcond|
<<create>> addDet(cd : COND, cf : CONF) 1 0.* <<create>> addCond()
1
+hAct
1 0.*
+conf
CONF ACT

<<create>> addConf(haSet : POW1(ACT), taSet : POW1(ACT), paSet : POW1(ACT)) <<create>> addAct(out : OUT, cd : COND)

<<create>> addOut()

Fig. 5. Initial UML-B version of generic requirements model

\
<<machine>>
validated_model
INVARIANT
union(ran(hAct)) V union(ran(tAct)) \/ union(ran(pAct)) = ACT
DET +deond | conp
0.* 1
+dets| 1..* +aCond | L
+hAct
1 0.* 0.* 0.*
CONF +pAct ACT
0.* 0.%
1 0.* +tAc] 1.% 1.%
+aOut
1 +input 1
INP ouT

Fig. 6. Final UML-B version of generic requirements model

Conversion to UML-B: The first-cut model from the domain analysis was con-
verted to the UML-B notation (Fig. 5) by making associations directional and
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adding stereotypes and UML-B clauses (tagged values) as defined in the UML-
B profile [42]. U2B does not support association classes in a suitable form for the
following validation. Therefore, before starting we removed the association class
TEST. Instead we (1) mapped association dcond from class DET to class COND,
(i1) removed association input, and (iii) mapped association det s from INP to
DET.

Conversion to B: This model conversion allows the U2B translator tool to convert
the model into the B notation where validation and verification tools are available.
The translation automatically expresses the constraints of the UML-B model as
an invariant property. This defines the multiplicity constraints of each association,
and the class membership of instances. The final B machine corresponding to the
output model of this stage (Fig.6) is shown in Fig. 7. Note that this domain engi-
neered model really represents a metamodel for any well-defined instance system.
The B version allows us to “populate” the metamodel with sample instance data,
and check its validity. In Fig. 7 the VARIABLES represent the UML-B classes as
container sets for the sample instance data being validated, whilst the INVARIANT
carries the metamodel constraint information that the VARIABLES must adhere to.

The first eight invariant conjuncts define the associations as functions between the
classes. In some cases the functions are further constrained due to the multiplic-
ities on the associations. Two examples are (i) a total bijection invariant (>>->)
generated by U2B to reflect the 1 to 1 multiplicity constraints of the association
input from CONF to INP, and (ii) the surjectivity (——>>) of association aOut.
In some cases extra conjuncts are needed as in the case of det s, which must map
to disjoint sets of instances that completely cover the instances of the class DET
due to the multiplicity, 1, at the source end of the association. The last conjunct
in Fig. 7 reflects an additional, textual constraint that we added during the domain
engineering stage to ensure that all instances of the class ACT are used by one of
the association roles that emanate from the class CONF'.

Validation by instantiation: To validate the first-cut model we needed to be able
to build up the instances it holds in steps ®. For this task, all classes were given
variable cardinality (there is a UML-B clause to define the cardinality and variabil-
ity of classes) and a constructor was added to each class so that the model could be
populated with instances. The constructor was endowed with behaviour (written in
1B) to set any associations belonging to that class to values (i.e. instances of other
classes) supplied as parameters.

The developing model was then tested by adding “dummy” instances using the an-
imation facility of ProB and examining the values of the B variables representing
the classes and associations in the model to see that they developed as expected. Ini-

® Note that model Fig. 6 is the result of this domain engineering process, and reflects a
fixed configuration of DET, CONF etc. elements. Thus the constructors used here are part
of this validation process only, and not part of the final system.
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MACHINE validated_model

DEFINITIONS
disjoint (ff)==!(al,a2).( al:dom(ff) & a2:dom(ff) & al/=a2 =>
ff(al)/\ff(a2)={} ) ;
SETS
INP; DET; CONF; COND; ACT; oUT
VARIABLES
dcond, input, dets, tAct, pAct, hAct, aOut, aCond
INVARIANT

dcond : DET —--> COND &
input : CONF >->> INP ¢&
dets : CONF —--> POW1 (DET) &
tAct : CONF --> POW1l (ACT) &
pAct : CONF --> POW(ACT) &
hAct : CONF --> POW(ACT) &
aOut : ACT -->> OUT &
aCond : ACT —--> COND &
disjoint (dets) &
union (ran(dets)) = DET &
union (ran (hAct)) \/ union(ran(tAct)) \/ union(ran(pAct)) = ACT
END

Fig. 7. B Machine

tially, an instance of CONF cannot be added because there are no instances of INP
with which to parameterize it. This forces a partial ordering on the population of
the model. The INP constructor is available initially because the INP class has no
outgoing associations. As soon as an instance of INP is added the multiplicity con-
straint of the association, input, is violated. ProB provides an indicator to show
when the invariant is violated. Observing the invariant violations is an essential
part of the validation of the model. Knowing that the model will detect inconsistent
instantiations is at least as important as knowing that it accepts consistent ones.

ProB and an example animation: Figure 8 shows ProB being used to validate
the final version of the generic model. The top pane shows the B version of the
model generated automatically from the UML-B version (Fig. 6). The centre bot-
tom pane shows the currently available operations (i.e. the constructors we added
to the generic model for testing purposes). An operation is only enabled when its
preconditions and guards are true. In our model this is when there are unused ‘pos-
sible’ instances left to create and values available to supply as parameters. (Note
that, for practical reasons, we limit a class’s set of possible instances to a small
enumerated set during this stage). An available operation is invoked by selecting
it from this pane. Each available operation is repeated in the list for each possible
external (parameter) or internal (non-determinism) choice. The left pane shows the
current value of each variable as well as an indication of whether the invariant has
been violated. The right pane shows the history, i.e. sequence of operations that
have already been taken.

We run through the animation shown in Fig. 8:
(1) Initially only the constructors for INP, OUT and COND are available because

these classes have no outgoing associations.
(2) An instance ol of OUT was constructed first as shown at the bottom of the
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history pane. This would have immediately violated the invariant because all
such instances must be linked to by the aOut association.

(3) Aninstance cf1 of COND was then constructed. This would have enabled the
constructors for ACT because an instance of OUT is now available for the new
instance to link to via aOut and an instance of COND is available to link to
via aCond.

(4) A second instance o2 of OUT was constructed.

(5) Finally, an instance al of ACT was constructed, passing the new instances of
OUT and COND for linking via the associations.

(6) The final state of links can be seen in the variables aout and acond repre-
senting the associations from ACT. The invariant is (correctly) violated in this
state because output 02 is not used by an action, disobeying the surjection
property of the association.

f ProB 1.1.0: [reqmts_builder.mch] : {c) Michael Leuschel = |El x|

File Animate Verify Analyse Preferences Debug  About

MACHINE regmts_builder /*" UZB3.7.17 generated this component 24/02/2005 11:07:21 "*/ =
SETS INP SET={il,i2,i3); DET_SET={dl,d2,d3]; CONF_SET={cfl,cf2,cf3); COND SET=(cfl,cf2,cf3);
ACT_BET={al,a2,a3}; OUT_SET={ol, 02,03}

DEFINITIONS
disjoint (ff)==!(al,a2). ( al:don(ff) & al:dom(ff) & al/=a2 => f£f{al)/‘ff(a2)={1 ) ;
type invariant == ( INP:POW(INP_SET)  DET:POW(DET SET) < CONE:DPOW(CONF_SET) ¢ COND:DOW (COND SET) <

ACT: POW (ACT SET) & OUT:POW(OUT SET) & decond : DET --> COND & input : CONF »>-3>> INP « —
dets : CONF --> POWL(DET) & tAct : CONF --> POWL{ACT) & pAct : CONF --> BOW(ACT) &
hact : CONF --»> POW(ACT) & aOut : ACT -->> OUT & aCeond : ACT --> COND )

CONF_invariant == ( disjeint (dets) & union{ran(dets)) = DET ] ;
package_invariant == ( union{ranthAct)) '/ union(ran(tAct)) '/ union{ran(pAct)) = ACT ) ;
invariant == (type_invariant & CONF_invariant ¢ package invariant)

VARTABLES INP, DET, CONF, COND, ACT, OUT, dcond, input, dets, thAct, pAct, hAct, aodut, aCond
INVARIANT invariant

INITIALISATION INP:={} || DET:={} || CONF:={} || COND:={} || ACT:={} || 0UT:={} || deend := [} |
input := {} || dets := {} || tAct := [} || pAct := [} || hAct := [} || aOut := {} || aCond := [}
OPERATIONS

addInp = BEGIN
ANY thisINP WHERE thisTNP : INE_SET-INP

THEN INP := INP%/{thisINP} || skip END
END ;
addDet (cd) = PRE cd:COND THEH|
ANY +hienNPT WURRE
4/ ||~
StateProperties ‘\w Histary
imvariant_violated Ll A |ladddctol.cf) =
INP={} add np add0ut
DET={} addlnp addCond
CONF={} addDet[cf1) addOut
COMD=cf1} addDeticf1) initialize_machine({}, {4000 AL DL LD
4CT=lal} addDet(ci]
0UT={a1,02} addCond
deond={} addCond
input={} addbet(ol.cfl)
dets={} addbet(ol.cf1]
tct={} adddct(oZ.of1)
phct={} adddcto2.of1]
héct={} add0ut
a0utfal.al] BACKTRACK
aCond(al ef1)
4 [+[=]4] [ r[=]4] [+

Fig. 8. ProB being used to validate the generic model

The model was rearranged substantially during this phase as the animation revealed
problems. Firstly, we discovered some compatibility problems between our exam-
ple data and the model. The initial model associated each detection with a con-
firmation (requirement DET_CONFI in table 3). During animation we discovered
that this was a mistake since many related detections may be used on a single input

16



all of which should have the same confirmation mechanism. We changed the det s
association to 1 CONF to 1-to-many DETs, with the disjointness condition men-
tioned before. This change had to be reflected in a change to the underlying generic
requirement DET_CONFI.

The model was rearranged to associate inputs with confirmations. We also discov-
ered that actions were often conditional, so we added an association from ACT to
COND. Apart from these compatibility issues we discovered several changes to the
multiplicities of associations. For example, since we had associated sets of actions
with confirmations, we did not need a further multiplicity from actions to outputs,
thus simplifying the model a little. The most significant change concerned the three
associations from CONF to ACT where we required each instance of ACT to be used
in at least one of the three associations. Since this is not expressible as a simple mul-
tiplicity, a B invariant was added to the class diagram as an annotation (see Figs.
6, 7). As for DET_CONF]1 above, this validation resulted in further amendments to
the narrative generic requirements.

The final model: Thus ProB animation provides a useful feedback tool for valida-
tion while domain engineering a reusable model in UML-B. The final version of
the generic model is shown in Fig. 6. A confirmation (CONF) is the key item in
the model. Every confirmation has an associated input (input:INP) to be tested
and a number of detections (dets:DET) are performed on that input. Each de-
tection has exactly one enabling condition (dcond:COND). A confirmation may
also have a number of actions (hAct:ACT) to be taken while healthy, a number to
be taken while confirming (t Act:ACT) and a number to be taken once confirmed
(pAct:ACT). Each action acts upon exactly one output (aOut:0OUT).

Once we were satisfied that the model was suitable, we converted the classes to
fixed instances and removed the constructor operations. This simplifies the corre-
sponding B model and the next stage. The associations (representing the relation-
ships between class instances) are the part of the model that will constrain a specific
configuration. These are still modelled as variables so that they can be described by
an invariant and particular values of them verified by ProB.

Domain engineering - stage template:

Inputs: Generic requirements specification document (RSD) including first-cut
UML model

Approach: Conversion of first-cut UML model to UML-B and then to B. Valida-
tion of model by instantiation, using a stepwise constructor approach in ProB
animation

Parameters: Dummy instance data in instantiation and animation

Outputs: A validated generic RSD including a validated UML-B generic model

V & V : Using dummy instance data, use ProB to check stage input RSD and un-
validated UML-B model for consistency and required structure
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6 Application engineering

Having arrived at a useful generic model for a product range, the model can be
put to use by verifying that a particular configuration, or instantiation of the model
satisfies its constraints. To illustrate and test this stage we constructed an exam-
ple instance of a failure management specification for an engine controller, based
on existing AT Engine Controls products. This stage represents the verification
as per Fig. 3 of a system instance against the classes, associations and invariants
of the generic model. The resulting output is a consistent instance model. Note
that this method is not limited only to failure management systems; such a generic
model and corresponding instances can be developed for any domain where a class-
association style of modelling is applicable and the instantiation is of static con-
figuration data. We return to the question of the generality of the method in the
conclusion, section &.

Instance specification and incorporation in model: This verification is a similar
process to the domain engineering validation, but the focus is on finding and cor-
recting errors in the instance data rather than in the model. The example instance
specification was first described in tabular form (see Fig. 10), mimicing the form of
table 4 in the RSD. Each class is represented by a separate table with properties for
each entry in the table representing the associations owned by that class. To verify
its consistency, the tabular form was translated into class instance enumerations and
association initialization clauses attached to the UML-B class model. This one-shot
initialization process in UML-B is in contrast to the stepwise instance-constructor
process of the previous stage. Initially, table translation to UML-B was done man-
ually, which was tedious and error prone.

Verification with ProB: ProB was then used to check which conjuncts of the in-
variant were violated by the example instantiation. The invariant is a predicate that
expresses all the constraints of the generic model: instances belong to classes, asso-
ciation links satisfy the multiplicity constraints of their associations and any further
annotated invariant predicates that may involve several associations. To check the
invariant is satisfied by the instance mode, all that is needed is to invoke the initial-
ization in ProB. Fig. 9 shows the “analyse invariant” facility of ProB being used to
identify an error (each line represents a conjunct in the invariant from Fig. 7). Sev-
eral conjuncts are violated (=false); all are constraints on associations involving
the class, ACT. For example, the second of these (aOut) states that every ACT must
be associated with exactly one OUT, and that every OUT must be associated with
one or more ACTs . Examining the initializations of these associations reveals that
links had not been added for action act1310. Several iterations were necessary
to eliminate errors in the tables before the invariant was satisfied (all conjuncts =

6 This is what is meant by “—— >>" in B in Fig. 7, and by “TotalSurjection” in ProB in
Fig. 9.
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true).

f Analysing Invariant oy =] 4|
Conjuncts of the INVARIAMT clause:
=i

[input: T otalB jection[COMNF 1MP])

==TRUE
[dets:__[ED H_F--> MaonE mptyS ubsetz[DETY))
[zt ECD N_F--> MonEmptySubszetz[ACT I
[pact [COMNF--» POWI[ACT )]

== falze
[hs NF--> POWACT]))
[a0ut: T otalS urjection(@CT .OUT])

== false
[aCond:[ACT-->COMND])

== false

y @‘I :dom{dets))i (a2 domldets )i al /=a2]l=> ([dets(al)/ dets(a2])={1]

[union[[:a_r?[t_:lets]]=DE T)
[[unicniran(hact]] union(rantaet ] unionlran(pact])=4CT 1

== false

1] BlE
Dane |

Fig. 9. ProB being used to verify the example application

We found that the analyse invariant facility provided some indication of where the
invariant was violated (i.e. which conjunct) but, in a data intensive model such as
ours, it is still not easy to see which part of the data is at fault. In the example
above, any ACT without initialized associations would cause the aOut conjunct
to go false. In general there are many data instances of a given class. What is
required from such tool-supported verification is the automated production of a
data counterexample to the conjunct.

6.1 Requirements Manager(RM): A tool for instance data management

To address the problems found with using ProB to verify instantiation data, we
developed a tool that interfaces with the UML drawing tool to automate manage-
ment and verification of instance configuration data. The tool was developed as an
Eclipse plug-in by a student group 7 . The tool provides an extension to the Ratio-
nal Software Architect UML modelling tool (which is also based on Eclipse). Menu
extensions are provided to operate the tool from the class diagram of the generic
model, so that a database repository can be generated based on the classes and their
associations. Instance specification data, in the form of class instances and associa-
tion links, can then be ‘bulk uploaded’ directly from Excel configuration files such
as Fig. 10. This avoids the tedious and error prone process of manually populating

7 Please see acknowledgments.
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the class diagram. The figure shows a sample of the configuration data that was
loaded automatically by the tool.

TABLE:INP TABLE:CONF TABLE:OUT
ref ref ref
ESa conf_ESa freeze
EShb conf_ESb cES
conf_ESdiff fESa
TABLE:DET fESh
ref *deond “conf TABLE:COND fESd
ESa_upper always conf ESa ref
ESa_lo_starting  starting conf_ESa always TABLE:HACT
ESa_lo_runnning | running conf ESa starting ref *conf_h *hact
ESh_upper ahways conf ESb running HACT_R1 |conf ESa use_main
ESb_lo_starting  starting conf_ESh idling HACT_R3 conf ESb use_backup
ESb_lo_runnning | running conf ESh notHardF aulted
ESa_rate always conf_ESa ESafaulted TABLE:PACT
ES_diff idling conf_ESdiff notESafaulted ref “conf_p “pact
notESbfaulted PACT R1 conf ESa use_lgy
TABLE:INP_R ESbfaulted PACT_R3 conf_ESb use_lgv
ref “det *inp
INP_R1 ESa_upper ESa TABLE:ACT TABLE:TACT
INP_R2 ESa_lo_starting ESa ref *acond “out ref “conf t “tact
INP_R3 ESa_lo_runnning ESa use_rmain always cES TACT R1  conf ESa set_fESa
INP_R4 ESh_upper EShb uge_backup notEShfaulted |cES TACT_RZ2 | conf ESh set_fESh
INP_RS ESb_lo_starting ESb use_higher always cES TACT_R3 conf ESh freeze
INP_RE ESb_lo_runnning ESh use_lgv always cES TACT R4 conf ESdiff  use_higher
INP_R7 ESa_rate ESa freeze ESafaulted freeze TACT_RS conf ESdif  set_fESd
INP_RS ES_diff ESa set_{ESa always fESa
INP_R3 ES_diff ESh set_fESh always fESh
set_fESd always fESd

Fig. 10. Sample instance configuration data

Some types of verification errors (such as mismatches between the class diagram
and tables and referential integrity errors) may prevent the data from being up-
loaded. The tool reports these errors giving the exact details of the counter example
to the constraint represented by the model. Fig. 11 shows the error view provided
by the tool. Several such failures are shown in the lower half of the error view. For
example, the first of these errors states that an instance, ESa, from the data cannot
be inserted into class, INP, because an instance of that name already exists.

If the configuration data has none of these errors it is loaded into the database
schema and further verification is performed by checking class diagram constraints,
such as multiplicity constraints on associations. These multiplicity errors are shown
in the upper half of the error view in Fig. 11. The error messages identify the par-
ticular data instances that violate the multiplicity constraint giving sufficient in-
formation to pinpoint the problem. That is, a counter example is given, solving
the problem we experienced with the ProB model checker. The error can then be
corrected either by editing and re-loading the configuration data, or by editing the
database from the class diagram. For the latter, an extension to the class pop-up
menu is provided, giving direct access to the relevant database table as shown in
Fig. 11 where a multiplicity error is being corrected. Although the tool identifies
the nature of the error more precisely than ProB (by giving all counter examples
whereas ProB only identified which constraint was violated), it may still be diffi-
cult to find the correct solution. For example, in Fig. 11, the error message gives the
counter example that there is no association link between the instance ES_diff:DET
and an instance of CONF. This contravenes the multiplicity constraint (1) at the
target end of the association, conf. Knowledge of association links throughout the
class diagram is needed to find a correction. In future work we intend to provide
tools to visualise the transitive association links for a given set of class instances by
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@ 111 Multiplicity Constraint Instance ES diff in table DET does not reference an instance of class CONF 07/02/2007 16:30:44
@ 111 Multiplicity Constraint Instance conf ESdiff in table CONF is not referenced by an instance of class DET 07/02/2007 16:30:44
Cther Errors
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@ 201 Invalid repository s... Operation Bulk upload data failed because the reposi... 07/02/2007 16:27:54

Fig. 11. Tool screenshot with error view and update window

automatically generating object diagrams from the database.

The ability to modify data via the class diagram enables individual class instances
and association links to be added to an existing (or developing) configuration. The
requirements engineer can invoke the Requirements Manager(RM) tool at selected
points (when the data is expected to be in a consistent state) to check the configu-
ration satisfies the generic constraints of such systems. A limitation of the database
approach to managing configuration data is that many to many association relations
can not be represented in database schema. In order to represent many to many as-
sociations we had to add intermediate linking classes (see INP_R inserted between
INP and DET and HACT, PACT and TACT between CONF and ACT). In future
versions of the tool we intend to hide this representation mismatch from the user.

The RM tool has been developed as an Eclipse plug-in to integrate with the RODIN
project toolset including the UML-B drawing tool, U2B translator, ProB, B prover
and B database. In parallel with the development of RM, the U2B tool has been re-
developed in Eclipse to accept input models based on the UML2 metamodel (upon
which RSA models are based). A UML2 profile has been developed to extend the
UML notation and provide relevant property fields to accept information such as
the configuration data. Once the configuration data has been successfully verified
RM can be used to populate the UML-B stereotype properties. This utilises the in-
stances property attached to classes and the value property attached to associations.
These values are utilised by U2B when it produces a B version of the model. Fig.
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12 shows the stereotype property value for an association after population by RM.

Tasks | Console | Bookmarks B3 » 20| =8
8 [ararar Stereotype | Frofile [ Required 1| Mukiplciy £
UBAssociation  UML-G Profie  True
Steretypes [ Tcoae
= Document tation
B | Appearance
aud storaotypes. - | |
Advanced Creotipes
Stereobype Properties: <
aperty [ value A Cther Errars
isatatic False @ 84
isSyntacticallyOlk False @ @
type @ .
value {ES_dlff|->corf_ESdY, ESa_lo_runnringl->conf_ESa, ESa_la_startingl->conf_ESa, ESa_ratel-=conf_ESa, ES5a_upper|->canf_EX o
variance 0- varlable F =
< | 3 | o el

Fig. 12. Tool screenshot with properties view

Fig. 138 illustrates the process of using the RM tool ? . Once a class diagram has
been loaded (10adCD), the database schema can be generated (generateDBS).
If this fails, for example if the class diagram contains elements that are not sup-
ported, a new class diagram must be loaded (or the current one modified). If it
succeeds, the state DBSGenerated has an invariant dbs_is_correct repre-
senting that a valid schema is available for the class diagram. From this state data
can be bulk loaded, 10adDT, which may fail due to referential integrity problems
or succeed and enter the state DTLoaded. The invariant, dt _preverifies, for
this state, represents that data has no such errors. The data can now be checked
(checkDT) for other errors, such as multiplicity constraint violations. If there are
no such errors (dt _-verifies) the data can be used to populate the class diagram
(generateOBS). At any time, if the class diagram is modified (10adCD), the
schema must be regenerated and new data loaded.

Application engineering - stage template:

Inputs: Validated generic requirements specification document (RSD) including
validated UML-B model

Approach: Verification of instance data by one-shot initialization in ProB. Re-
quirements Manager tool for system instance specification repository and verifi-
cation, with data counterexamples

Parameters: Sample instance data from sample instance system tables in RSD

Outputs: A verified system instance model

V & V : Verification on instance data against validated generic model using ProB

8 The symbol — means logical negation.
9 This statechart corresponds to a partial B model of the RM tool, which has been fully
model-checked in ProB.
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Fig. 13. Statechart for RM tool

7 Industrial User View

The techniques described in this paper include several areas which will be of inter-
est to industry.

e The identification and formal validation of a generic requirement model for a
given problem domain.

e A technique to formalize UML and benefit from formal validation and verifica-
tion tools and methodologies

e A technique to automatically verify the instantiation of a generic model with
realistic large scale data appropriate for product line engineering.

The class of problems targeted by our method have a relatively simple architec-
tural structure of common functions but a complex pre-determined instantiation
of these functions. With such problems, the identification of the underlying com-
mon functional architecture is crucial to identify generic requirements and make
the problem manageable. Our industrial partner, ATEC, had no prior experience
with formal specification techniques but with support and guidance was able to
perform the modelling and use the associated tools. The next stage, adding be-
havioural details, would entail textual specification of operation guards and actions
requiring more extensive understanding of uB. Work is underway in the RODIN
project to improve the accessibility of UML-B by increasing integration with the
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underlying B toolset. The animation facility of the ProB tool is particularly use-
ful to demonstrate behaviour to the domain user and, as used here, did not require
knowledge of B to understand it. However it is envisaged that to demonstrate the
behavoural development of the model the animation may need to be supported by
model documentation and an industrial strength GUI to provide a domain expert a
clearer understanding of the model when executing scenarios. With support from
the instantiation database tools the technique contributes towards product line de-
velopment through its ease of instantiating realistic scale of requirements data.

8 Conclusion and related work

8.1 Related work in context

Parnas’ prescient early work [35] characterized three types of approach to the de-
velopment of software product lines, or “program families” - (i) syntactic modifica-
tion, (ii) modular specification, and (iii) refinement. At that time, type (i) involved
the development of a complete program, followed by the production of variants by
modifying the original program. Since then this type of approach has been elabo-
rated through process phases e.g. requirements, architecture, and through the struc-
turing of artefacts of those phases. Type (ii) has grown into today’s component-
based software engineering (CBSE) approaches such as [16,18,43]. All types of
approach involve a domain engineering activity that captures the requirements that
all family instances must share - the commonalities - and the requirements that
vary between instances - the variabilities [14] - into a generic, reusable software
resource. This is followed by an application engineering activity that uses this re-
source to generate the specific instance systems as necessary. Most product line
work assumes an early domain analysis activity, e.g. [37], for gathering and struc-
turing all relevant information from the application domain to support the develop-
ment of such a generic, reusable software resource.

It is noteworthy that the Parnas’ approach type (i) remains dominant today, e.g.
[36,19,26,25]. In this type of approach, application engineering deploys an in-
stance derivation process against generic models/architectures and specific compo-
nents/interfaces and variation points, to generate an instance system: an elaborate
process of syntactic modification. In [36] an “Orthogonal Variability Model” mod-
els variabilities, their constraints and variation points as first-class citizens, sepa-
rately from the generic architecture of commonalities. The maturity of the compo-
nent model in the picture may merge Parnas’ approach type (i) into type (ii).

Some logic-based and formal methods techniques have been proposed for soft-
ware product lines. Validation of logically-defined requirements and constraints on
the variabilities (e.g. vary(i) = wvars(i) A —wars(i) for instance ¢) can be per-
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formed [30]. Feature models defined with differing degrees of genericity, binding
into the software construction process at different points, can be validated similarly
[46]. Formal models also allow formal verification to happen, e.g. feature model-
checking [46] and product line architectural model-checking for commonalities of
robustness and fault-tolerance [28].

In particular, formal refinement-based approaches (Parnas’ third type of approach
above) largely remain to be applied to software product lines. The notion of refine-
ment by trace restriction [45] is defined by the structured deletion of steps from
traces of the “maximal” instance, which exhibits all possible behaviours of all in-
stances. This proposal is applicable to a product line where all components are
defined at the same level of abstraction, and there are no variability constraints.
The generative feature-oriented programming approach of [9] is built on a notion
of refinement whose meaning is closer to object-oriented extension, or inheritance,
rather than the classical refinement of Hoare, He, Back et al [24,7,8].

Our approach is of Parnas’ type (i) - the class diagram of Fig. 6 is the generic prod-
uct line model. On input of data for a system instance, the RM database checks that
the data satisfies the dependencies of the class diagram, and facilitates user “de-
bugging” of erroneous data. The SQL database DECIMAL tool of [34] performs a
similar task, although not in a formal verification context. The system instance is
specified by “populating” the UML-B stereotype with this verified instance data,
and U2B then combines the generic and instance information into an instance B
specification, for further formal verification with ProB and theorem provers. What
distinguishes our methodological and tooling work for product lines is its integra-
tion with a leading language and method for formal specification, refinement and
verification, Event-B.

Future work using UML-B inheritance and refinement to elaborate system be-
haviour will relate the approach to Parnas’ type (iii) - refinement. For example,
the abstract model now specifies generic detection behaviour in terms of checking
an input-derived value against a limit. A refinement specializes this behaviour for
magnitude, rate, multiple etc. detection types. Thus we anticipate that the instance
data population (application engineering) stage will become more elaborate, popu-
lating a graph of refinements, rather than a single model as at present. The Event-B
method under development by project RODIN will provide mechanisms for com-
position and decomposition with refinement, to support scalable development. The
generic instantiation mechanism of Event-B, whereby a model can be made generic
with respect to one or more configurable contexts, will afford a component-like
form of reuse.

The case for formal and refinement approaches to SPLE is reinforced by an indus-
trial experience analysis [15] of EU-IST project ConlPF [38], where product-line
infrastructure failed to deliver the time and effort savings originally hoped for. In
this iterative component-based approach including significant human interaction, it
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was found that false positives in component selection, human errors in resolving
variabilities, unforseen later consequences of early variant selection, problems in
resolving provided/required component interfaces were all excessive. This boiled
down to the issues of inadequate understanding, modelling and analysis of prod-
uct line complexity and implicit properties, i.e. under- or undocumented variabil-
ity constraints. Component interfaces were only specified syntactically (parameter
types), and not semantically (e.g. pre- and postconditions). Semantic specification
of interfaces and the performance of formal anaysis that would be thus enabled,
would reduce these problems. This experience suggests that more thorough for-
mal modelling and analysis, with the layered elaboration of complexities and con-
straints through a methodical refinement process, would be beneficial.

8.2 Evaluation

We found that the domain analysis stage was useful in approximating abstractions
for generic requirements. Most of the requirements taxonomy from this stage sur-
vived subsequent analysis through to the final generic requirements model showing
that the conceptual abstractions were valid and useful. However, the detail in the
model was altered several times during the subsequent stages. This indicates that
domain analysis alone is insufficient for precise specification and that some form
of validation is essential.

During the domain engineering stage, many changes consisted of adjusting the mul-
tiplicities on association relationships. Although it was the association that was
modified, the conceptual change was to the classes. That is, the semantics of the
classes (representing the abstract taxonomy of requirements) were found to be
less than ideal. When our perception of the semantics changed (which, of course,
doesn’t require a change to the diagram) the associations, or their multiplicities,
were no longer valid. For example we changed the ACT class from representing
a set of assignments on output variables to represent a single assignment to one
output. The lesson learned is that many of the changes during this stage result
from a better understanding of the underlying semantics of the domain require-
ments and the most efficient way to represent them, rather than directly from con-
sistency checking. This understanding was achieved by progressive introduction
of instances in order to exercise consistency checking. We were gradually adding
more data to the model to deliberately break its constraints. An interesting lesson
is that one can sometimes learn more from exploring how data breaks constraints
than from data that satisfies them. Another lesson, obvious but worth stating, is that
the model should be fully covered during validation: every association, and every
kind (one-one, one-many, total ) of link in an association, should be instantiated at
least once.

During the application engineering stage we found that, for the kinds of systems
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that we are interested in, it is not sufficient to know that the model is incorrect. In
large configurations it is equally important to have some indication of where the
data is incorrect. In general, it is not possible for a model checker to determine
this because the inconsistent data cannot be decisively analysed; the inconsistency
could lie in any part of the data. For our scenario, where we populate sets and
relations between sets, we were able to provide a tool that identifies each of the
elements that contravened the constraints. However, although this gives clues, in
some situations, especially when there are many such contraventions, it could still
be difficult to find a solution. In ongoing work we are looking at ways to visualize
the data to assist in discovering solutions. In building this tool we have found that
the “impedance mismatch” between object-oriented and relational database repre-
sentations, is problematic. To cater for many to many relationships we were forced
to introduce intermediate classes. We would therefore recommend instead using an
object-oriented repository to store entity-relationship model data.

8.3 Future work

As indicated before, the method and tools presented are work in progress. The do-
main analysis stage revealed key requirements issues, which were better understood
by then considering their rationale. At the moment, however, these are not enforced
by the generic model. Key issues are higher level requirements that could be ex-
pressed at a more abstract level from which the (already validated) generic model
is a refinement. The generic model could then be verified to satisfy the key issue
properties by proof or model checking. This matter is considered in [41] which
gives an example of refinement of UML-B models in the failure management do-
main. The domain analysis process of Fig. 2 would then be elaborated as shown in
Fig. 14.

key-issues abstract final verified generic
model _____model

/7 ~ 7
— ~ /

®
engineering issues
VAN AN 7
N N

previous product first-cut generic \alidated generic
experience model model

Fig. 14. Elaboration of domain analysis process to show refinement of key issues

Behavioural specification via refinement: The specification and elaboration of
behaviour in UML-B is a stepwise process using the B form of classical refinement
[2]; this is ongoing work for the FMS case study. It transpires that the key issues
of table 5 can be treated as specification-level features, that help structure the be-
havioural specification activity. For example, the detection feature (key issue (1))
has behaviour associated with classes DET and INP in the validated UML-B model

27



of Fig. 6. The first, most abstract behavioural model for these classes involves the
events of reading to read an INP, eval to evaluate the detection predicate for
DET over associated INPs, and pass and fail for DET. This abstract description
is highly nondeterministic and is concerned only with valid event sequencing. For
detection, the main sequencing constraints are that (i) reading is always enabled,
(i1) eval is only enabled when fresh readings are available for all INPs for the cur-
rent DET, and (iii) pass and fail are only enabled once eval has produced an
appropriate value.

Subsequent refinement models then elaborate these behaviours, reducing the non-
determinism into algorithmic structure, and adding supporting data infrastructure.
Following the detection example above, for a range test, the next refinement would
elaborate the pass/fail judgment mechanism by introducing a guard to deter-
mine whether the INP expression is in or out of range.

The confirmation feature (key issue (2) of table 5) has behaviour associated with
classes DET and CONF in Fig. 6. The abstract confirmation event writeHist
for CONF is enabled once all associated DET tests have run; an appropriate action
healthy, confirming, or confirmed is then taken, depending on a judg-
ment made on the confirmation history. That judgment is not specified in the ab-
stract description but is elaborated in refinement in terms of the fault counts of table
4.

Behavioural validation of instance models: Further development is required to
validate instance models, as per section 3, Fig. 3. Whilst an instance model can
be verified against the constraints specified in the generic model (i.e. that it is a
valid instantiation of the generic model), it may be the wrong instance, i.e. it may
specify the wrong run-time behaviour. The development of a further method stage
to validate behaviour for a specific instance configuration is now under way. This
stage will involve ProB animation of behaviour against the emergent refinement
models.

Applicability of method: What we have proposed in this paper is a method target-
ted at product lines, for the production and verification of (i) the generic require-
ments specification and (i1) the system instance specification. The method is fo-
cussed on the construction of specifications expressible as UML-B class diagrams.
The class diagram is a simple but highly expressive modelling tool, with a long
pedigree going back to Chen’s Entity-relationship modelling [13]. We use the class
diagram as a metamodel for valid static instance configurations and believe that the
failure management application is a convincing demonstration of its expressive-
ness. FM is but an example of potential application domains. We assert that the
method will be applicable to any product-line domain with significant static data
configuration requirements. We briefly consider two examples.

An industrial process control system comprises a variety of hardware components,
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interacting in a complex manner with each other and with software. The static
configuration for requirements engineering with the method is precisely many in-
stances of many classes of hardware component, each with operating character-
istics, and each in operating relationships with others. For example, the process
controller needs to know the connectivity of a fluid processing line, say from a
containment vessel, through exit valve and flow pipe to a reaction vessel, in order
to monitor and control fluid flow. It also needs to know the volume and pressure
capacity of pipe and vessels. For control of the containment vessel it needs to know
the relief valve, pressure and low-level sensor fit. The method is applicable.

A point-of-sale terminal network comprises many terminals, network connections
of various types (e.g. ethernet, wireless LAN, WAN), servers and other processing
units. Servers might be connected pairwise on ethernet for redundancy, these pairs
being physically distributed and WAN-connected. There will be terminal - server
pairings for particular functions. Each terminal might be assigned a backup termi-
nal with a requirement that the server connectivity of the terminals is the same: this
is an example of a complex constraint not expressible as a simple association, but
expressible as a /B invariant in the UML-B model. Again, this example represents
a static configuration where the method is applicable.

Improved tool support: Section 6 identified the need for finer-grained diagnosis
of invariant violation in ProB. ProB could be enhanced to provide, for example, a
data counterexample causing an invariant violation; this is precisely what the RM
tool does. However, a related need is for verification and debugging support for
bulk upload (as well as incremental development) of instance data. For example,
when told that a CONF is missing an associated DET, the engineer will need to
drive a selective visualization of the instance data - perhaps in the first instance, all
existing DET - CONF associations - in order to “debug” and correct that data.

The current U2B tool leads to a separation between the modelling language (UML-
B) and the verification and validation language (B). In future work, we will provide
better integration and feedback of verification results to the source models based
on a new, extensible, version of the B tools. However, even without this integration,
UML-B provides benefits in the form of model visualisation, and efficient model
creation and editing compared to textual B.

A partial formal specification in B of the RM tool has been written and model-
checked in ProB. This work is ongoing to add assurance about tool correctness.
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