
Information and Software Technology 51 (2009) 894–915
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/ locate / infsof
Model-Based Development of firewall rule sets: Diagnosing model inconsistencies

S. Pozo *, R. Ceballos, R.M. Gasca
Department of Computer Languages and Systems, ETS Ingeniería Informática, University of Seville Avda. Reina Mercedes S/N, 41012 Sevilla, Spain

a r t i c l e i n f o
Article history:
Available online 13 May 2008

Keywords:
MBE
Firewalls
Consistency
Validation
Model
0950-5849/$ - see front matter � 2008 Elsevier B.V. A
doi:10.1016/j.infsof.2008.05.001

* Corresponding author. Tel.: +34 954559897.
E-mail addresses: sergiopozo@us.es (S. Pozo),

gasca@us.es (R.M. Gasca).
URL: http://www.lsi.us.es/~quivir (S. Pozo).
a b s t r a c t

The design and management of firewall rule sets is a very difficult and error-prone task because of the
difficulty of translating access control requirements into complex low-level firewall languages. Although
high-level languages have been proposed to model firewall access control lists, none has been widely
adopted by the industry. We think that the main reason is that their complexity is close to that of many
existing low-level languages. In addition, none of the high-level languages that automatically generate
firewall rule sets verifies the model prior to the code-generation phase. Error correction in the early
stages of the development process is cheaper compared to the cost associated with correcting errors in
the production phase. In addition, errors generated in the production phase usually have a huge impact
on the reliability and robustness of the generated code and final system.
In this paper, we propose the application of the ideas of Model-Based Development to firewall access con-
trol list modelling and automatic rule set generation. First, an analysis of the most widely used firewall
languages in the industry is conducted. Next, a Platform-Independent Model for firewall ACLs is pro-
posed. This model is the result of exhaustive analysis and of a discussion of different alternatives for mod-
els in a bottom-up methodology. Then, it is proposed that a verification stage be added in the early stages
of the Model-Based Development methodology, and a polynomial time complexity process and algo-
rithms are proposed to detect and diagnose inconsistencies in the Platform-Independent Model. Finally,
a theoretical complexity analysis and empirical tests with real models were conducted, in order to prove
the feasibility of our proposal in real environments.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

A firewall is a network element that controls the traversal of
packets across different network segments [1,2], thus it is a mech-
anism to enforce an Access Control Policy, represented as an Access
Control List (ACL). An ACL is, in general, a finite list of linearly or-
dered (total order) condition/action rules. A rule is defined as fol-
lows (Eq. (1.1)):

8i;1 6 i 6 n;Ri : fconditionig ) factionig ð1:1Þ

where i is the position of the rule in the ACL (or its priority) and n is
the position of the last rule. ACLs can be forward or backward
checked, but in firewalls the most common method is forward
checking. The condition part of the rule is a set {S1,S2, . . . ,Sk} whose
elements are condition attributes or selectors, and where k is the
number of selectors, kz = |condition|. The condition set is typically
composed of five elements, which correspond to five fields in a
packet header [3]: Source IP, Destination IP, Source port, Destina-
tion port, Protocol. In firewalls, the process of matching TCP/IP
ll rights reserved.
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packets against rules is called filtering. A rule matches a packet
when the values of each field in the header of a packet are subsets
or equal to the values of its corresponding rule selector (Eq. (1.2)).

match¼
SoruceIPpacket #SoruceIPselector ^DestIPpacket #DestIPselector ^SourcePortpacket #SorucePortselector^
DestinationPortpacket #DestinationPortselector ^Protocolpacket #Protocolselector

� �

ð1:2Þ

The action part of the rule represents the action that should be
taken for that matching packet. In firewalls, two actions are possi-
ble: accept or deny a packet. If the packet does not match with any
rule, then the firewall executes the default policy. For most fire-
walls, everything is denied if it is not explicitly permitted, so their
default policy is to deny any packet that has not matched with any
of its rules. The default action is usually explicitly expressed as the
last rule in the rule set.

Firewalls implement ACLs using their own low-level language,
forming what is commonly called a rule set (incorrectly, because
rules may be repeated producing a redundancy). Fig. 1 represents
an example of a rule set written in a specific low-level language.

Although deployment of firewalls is an important step in the
course of securing networks, the complexity of designing and man-
aging firewall rule sets might limit the effectiveness of firewall
security. Firewalls have to face many problems in modern net-
works. The main ones are the high complexity of rule set design,
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rule set consistency diagnosis, and rule set redundancy diagnosis.
Any error defining a rule set may compromise the system security
by letting unwanted traffic pass or blocking desired traffic.

Networks have different access control requirements that
which must be translated by a network administrator into firewall
rule sets. Writing and managing rule sets are tedious, time-con-
suming and error-prone tasks for several reasons [3]. Translation
of requirements into rule sets is not a naïve task. One of the main
reasons is that the gap between the high-level access control objec-
tives or requirements and low-level rule sets is too big. Low-level
firewall languages are, in general, difficult to learn, use and under-
stand. Each firewall platform has its own low-level language,
which the network administrator needs to know in order to imple-
ment the access control requirements. Changing from one vendor
to another means a complete rewrite of the rule set. Low-level fire-
wall languages are very different from each other in syntax and
semantics.

When a model and a language to describe it are to be proposed,
there is a compromise between expressivity and complexity. A
very expressive model is generally more complex than a less
expressive one. We think of complexity as being how difficult it
is to represent knowledge of the reality being modelled. There
are existing language proposals to model access control lists, some
of which are specific to the firewall domain and others are generic
to access control. Some research groups have proposed models and
languages for general access control policies [4,5]. Some organisa-
tions have even proposed models and languages to represent ac-
cess control policies such as XACML [6] or Rule-ML [8]. However,
none of these models is specifically for firewall ACLs, which are a
much simpler subset of access control policies. These models and
languages tend to be very general and complex to be used in the
firewall domain, as they cover a wider spectrum of security policies
and applications. They are usually as complex as a low-level fire-
wall language or even more so. We think that complexity is the
main reason they are not widely adopted by the industry: it is very
difficult to translate access control requirements into one of these
non-firewall-specific languages. Another main reason is that there
is no automatic method to translate the model expressed in many
of these languages into any of the low-level rule set languages.

Thus, there is a clear need for a firewall-specific yet simple ab-
stract model and language with the expressive power of existing
firewall-specific languages, but with significantly less complexity
than currently proposed languages. The model represented by this
abstract language should be automatically translated into any of
the existing low-level firewall languages.

Our starting point is the concept of Model-Based Development
(MBD), which has been proposed as a model-centric and genera-
tive approach to software development. Conceptually, the MBD ap-
proach has three parts: (1) developers create system models in
high-level modelling languages; (2) tools are used to perform auto-
matic model transformation; and the result is (3) a system archi-
tecture. The high-level model used in the first phase is called
Platform-Independent Model (PIM). The model which results from
Fig. 1. IPTable
the transformation in the second phase is called Platform Specific
Model (PSM), and there will be several PSMs, one for each target
platform. Finally, the result from the third and final phase is the
specific code for a platform, and can be directly executed by it.

However, the use of any of these languages does not guarantee
that the model is free of inconsistencies or redundancies, thus a
method to isolate and identify inconsistencies and redundancies
in the model must be applied. The problem of firewall ACL consis-
tency has been addressed by many works which propose algo-
rithms that work directly with rule sets. We think that it is
important that consistency faults should be identified and resolved
at specification level in order to generate a consistent rule set from
the high-level model. If not, inconsistencies in the model would be
translated into the final rule set. In addition, if inconsistencies are
resolved directly in the rule set, then the model should also be up-
dated with these changes. It is important to move the verification
phase to earlier stages in the process, prior to code-generation.

In this paper, we propose the application of the ideas of Model-
Based Development (MBD) to firewall rule set modelling and auto-
matic rule set generation. We propose a PIM for firewall ACLs,
which has been designed from an analysis of the most commonly
used firewall languages in the industry, using a bottom-up meth-
odology. The languages analyzed were Linux IPTables 1.3.7, Cisco
PIX 7.0, FreeBSD 6.2 IPFilter, FreeBSD 6.2 IPFirewall, OpenBSD 3.7
Packet Filter, and Checkpoint Firewall-1 4.1. We also present a
polynomial time complexity process and algorithms to diagnose
inconsistencies in the PIM, so that it is then possible to generate
consistent PSMs automatically.

To the best of our knowledge, this is the first published work to
address the issue of rule set design complexity and automatic gen-
eration of consistent rule sets using an MBD approach. We have
developed a tool (available upon request) which validates our
proposal.

The paper is structured as follows. Section 2 revisits the tradi-
tional problems of firewall rule sets: design, consistency and
redundancy. In Section 3, an MBD approach to automatically gen-
erating firewall rule sets is proposed, with the inclusion of a phase
for automatic consistency validation of the PIM prior to PSM gen-
eration. In Section 4, an analysis of low-level firewall languages
is presented, and several alternatives for constructing a PIM in a
bottom-up approach from the results of the analysis are discussed.
Finally, a PIM and a XML Schema Definition for it are presented. In
Section 5, a process and algorithms are proposed to detect and iso-
late consistency errors in the PIM, with an empirical performance
evaluation. In Section 6, we make some concluding remarks and
propose some future works. Annex I presents the full analysis of
the most widely used low-level firewall languages. Finally, Annex
II presents the PIM XML Schema Definition.

2. Firewall open problems: Related works

In this section, we review the various problems that remain par-
tially or wholly unsolved in the field of firewall ACLs. There are
s rule set.
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numerous studies about the different problems rule sets and ACLs
have. We divide these problems into three areas: the high com-
plexity of rule set design, rule set consistency and redundancy
diagnosis, and rule set conformity. Fig. 2 represents a firewall
ACL design process as it is carried out nowadays.

2.1. Rule set design

Firewall languages tend to be very low-level, thus writing a rule
set is a very difficult task [3] and usually requires an in-depth
knowledge of a particular language and the internal workings of
firewall platforms. Furthermore, each vendor has its own low-level
firewall language. Fortunately, some research groups have pro-
posed languages to model access control policies. In [4], the
authors propose a high-level language, Firmato, and model it as
an ERD in order to generate a low-level firewall rule set automat-
ically, and provide a mechanism to separate the security policy
from the network topology completely. This language can then
be compiled into firewall rule sets. However, the complexity of this
language is similar to that of many low-level ones. Finally, a major
limitation of Firmato is that the language can only represent
knowledge in positive logic (allow rules), which complicates the
expression of exceptions. However, due to this limitation, the rules
expressed are always consistent and order-independent.

FLIP [32] is a recently proposed firewall language which can
also compile into several low-level ones. Their authors claim that
ACLs expressed in FLIP are consistent. However, they are because
of one of its limitations: it does not support overlapping between
rule selectors. Prohibiting the use of overlaps is a major limitation,
since it is impossible to express exceptions, which could result in
the need to write a lot of rules to express them. In addition, its
syntax is even more complex than Firmato’s. However, due to this
lack of expressiveness, FLIP ACLs are order-independent. In [5],
the authors provide a general language, Ponder, to represent net-
work policies, which do not compile to any low-level platform.
However, the complexity of Ponder surpasses the needs of firewall
ACLs.

Some organisations have even proposed languages to represent
access control policies as XML documents, such as XACML [6],
PCIM [7], Rule-ML [8], and SRML [9]. However, none of these lan-
guages is specific enough for firewall access control policies, which
are a much simpler subset of access control policies. These lan-
guages tend to be very general and complex to be used in the field
of firewalls, as they cover a wider spectrum of security policies and
applications. They are usually as complex as a low-level firewall
language. We think that this is the main reason they are not widely
adopted by the industry. Even UML has been proposed to model
access control policies [29–31]. However, we consider that UML
could be an aid for the requirements definition phase, but then
these models need to be translated into a more specific high-level
firewall language. Note that the use of any of these languages
needs a prior requirements definition phase. These requirements
Fig. 2. Firewall rule set creation process.
must be then translated into these high-level languages, or even
directly into low-level ones, as is done nowadays in the industry.
However, using UML in the requirements definition phase could
be helpful, since UML models can be automatically transformed
into some other languages.

These models and languages are very generic and are not in-
tended for the area of any particular access control problem. There
are some good surveys of access control policy languages available
in the bibliography [17–19].

In addition, there are graphical tools that aim to ease the crea-
tion of rule sets. One of the most complete ones is Firewall Builder
[20], which creates an object-oriented firewall model and can com-
pile it into many low-level firewall languages. Other simpler tools
are aimed at only one firewall language. All these tools are also too
complex, since they do not hide the low-level firewall details, but
only masquerade them with a graphical representation. In general,
these tools are not capable of reversing the process. That is, recog-
nizing a manually generated rule set and transforming it into the
abstract model.

We think that there is a clear need for a specific yet simple ab-
stract model and language with the expressive power of existing
firewall-specific languages, but with significantly less complexity
than the currently proposed languages.

In this work, the main and most widely used firewall languages
are analysed in order to create an abstract model of them. Then,
various alternative models created in a bottom-up process are dis-
cussed. Finally, a PIM created on the basis of the analysis is pro-
posed. In a later stage, the PIM should be automatically
translated into any of the existing low-level firewall languages.
However, PIM to PSM transformations are not the subject of this
paper.

2.2. Consistency and redundancy diagnosis

The use of any of these languages does not guarantee that the
resulting low-level rule set is free from inconsistencies or redun-
dancies, thus a method to isolate and identify inconsistencies
and redundancies must be applied prior to rule set generation. Rule
set consistency problems have been addressed by many works. As
can be seen from the example in Table 1 (taken from [10]), rule
selectors can overlap (for example, the protocol selector), and there
can even be rules that are exactly the same as others. There is a
possibility of inconsistency when two or more rules with different
actions overlap, because a packet can be matched with all the over-
lapping rules, and depending on the priority of the rule, the packet
will be matched against one rule or other, and a different action
will be taken. For example, a packet with {SrcIP = 140.192.37.20,
SrcPort = any, DstIP = 161.120.33.40, DstPort = 80, Proto = TCP} can
match R1 and R2. If R1 is first, then the packet will be denied,
but if R2 is first, the packet will be accepted.

The difficulty of writing and modifying a rule set increases with
the number of rules, since it is easier to write a rule which overlaps
with another previously written one. The same problem arises
with rule modification. The problem is aggravated if the rule set
is maintained by different administrators, since rule sets are usu-
ally not commented on anywhere. Rule sets are usually composed
of a number of rules ranging from a few dozens to five thousand
[16].

One of the main works dealing with rule set consistency and
redundancy [10] is a significant advance for the community be-
cause its authors defined a complete inconsistency model for fire-
wall rule sets [11]. In their works, they provide an order-dependent
characterization of different kinds of inconsistencies that may exist
between pairs of rules in a firewall rule set. However, their ap-
proach can only detect and diagnose inconsistencies between pairs
of rules and does not analyze problems with a combination of more



Table 1
Example of the filtering selectors of a firewall rule set

Priority/ID Protocol Source IP Src port Destination IP Dst port Action

R1 tcp 140.192.37.20 Any *.*.*.* 80 Deny
R2 tcp 140.192.37.* Any *.*.*.* 80 Allow
R3 tcp *.*.*.* Any 161.120.33.40 80 Allow
R4 tcp 140.192.37.* Any 161.120.33.40 80 Deny
R5 tcp 140.192.37.30 Any *.*.*.* 21 Deny
R6 tcp 140.192.37.* Any *.*.*.* 21 Allow
R7 tcp 140.192.37.* Any 161.120.33.40 21 Allow
R8 tcp *.*.*.* Any *.*.*.* Any Any
R9 udp 140.192.37.* Any 161.120.33.40 53 Allow
R10 udp *.*.*.* Any 161.120.33.40 53 Allow
R11 udp 140.192.38.* Any 161.120.35.* Any Allow
R12 udp *.*.*.* Any *.*.*.* Any Deny
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than two rules. In addition, they use rule decorrelation techniques
to decompose the rule set into a new one with non overlapping
rules. As the decorrelated rule set is free from overlaps, the new
rule set would have more rules than the initial set. In addition,
the proposed decorrelation process [12] is worst-case exponential
time and space complexity with the number of rules. Although the
proposed diagnosis and characterization algorithms are polyno-
mial, the decorrelation pre-process imposes a worst-case exponen-
tial time and space complexity for the full process. In addition, it is
important to note that results are given for the decorrelated rule
set, which is bigger than and different from the original. The sys-
tem administrator is responsible for understanding the decorrelat-
ed rule set in order to remove the inconsistencies.

Another work try to address this limitation [13] by proposing a
new algorithm, which is a combination of [4,16]. Their authors
have also extended their work to distributed firewalls [14]. How-
ever, due to their use of the same decorrelation techniques, these
proposals have the same algorithmic complexity as previous
works, and the resulting rule set is also bigger than and different
from the original.

Others have tried to address this problem using OBDDs [15]. A
very important advantage over the previous proposals is that they
do not need to decorrelate the rule set, and thus, results are given
for the original. However, the complexity of OBDD algorithms de-
pends on the ordering of its nodes, which is a NP-Complete prob-
lem [27], although non-optimal heuristics can be used. However,
the authors do not provide any ordering criteria for OBDD nodes.
This results in a worst-case exponential time complexity with
the number of rules, as with the other proposals.

Model building is a standard practice in software engineering.
The construction of models during requirements analysis and sys-
tem design can improve the quality of the resulting systems by
providing a foundation for early analysis and fault detection. The
models also serve as specifications for the later development
phases and, when the models are sufficiently formal, they can pro-
vide a basis for refinement down to code. We believe that it is
important that consistency faults should be identified and resolved
at specification level in order to generate a consistent rule set from
the high-level model. If not, inconsistencies in the model would be
translated into the final rule set. In this paper, we propose moving
the verification phase to earlier stages in the process, prior to code-
generation.

In this paper, we provide a definition of inconsistency that is
just the opposite direction of that other authors have taken, recog-
nizing all the possible kinds of inconsistencies with a unique defi-
nition, instead of a different definition on a per-inconsistency-type
basis. We then propose a consistency-based diagnosis process for
inconsistencies in the PIM. Our algorithms have a polynomial
worst-case time complexity in O(n2) with the number of rules in
the PIM, n. The result of the process is a set of rules that can be re-
moved in order to obtain a consistent PIM. The proposed algo-
rithms do not need to decorrelate the PIM rules as a pre-process.
We think that for a result to be useful for a final human user, it
should be given for the original filter or rule set.

2.3. Rule set conformity

Another reason why the task of writing or modifying a rule set
is very difficult and prone to errors is that most organisations do
not have clear security objectives. Much less, they have a security
policy or a more specific access control policy, which needs to be
implemented and enforced with firewalls. When an inconsistency
is detected in a firewall rule set: how does one know which one
of the conflicting rules is problematic? Even in a conflict-free rule
set, how does one know if the rule set is implementing the correct
policy? These are two typical examples of conformity problems. To
solve this kind of problem, it is necessary to specify an access con-
trol policy to be compared with the firewall rule set. This process is
called conformity checking, and can be used before or after consis-
tency checking, since it is a complementary process. This problem
has been addressed by some authors, using automated and manual
approaches. In [21,22], the authors use an undirected bipartite
graph representation for the network topology, and algorithms to
represent firewall rule sets and the reason about packet trajecto-
ries. The authors of [23] provide an abstract language to represent
policies. It is possible to query this abstract representation about
concrete paths, or even to generate all possible queries and present
them to the user, who is responsible for deciding if the firewall
works as expected. In [24] a method is presented based on graph
algorithms to reason about IDS configurations in combination with
a firewall configuration of the network. In [26], the authors pro-
pose a CSP-based approach to detect and diagnose conformity
faults in a non-distributed firewall environment. In [25], authors’
propose algorithms that represent a firewall rule set using ordered
binary decision diagrams. These algorithms can be used to improve
firewall performance and also to validate the rule sets. Finally, in
[28] a test-case approach to testing the conformity of a firewall
ACL to a policy is depicted.

3. Model-Based Development for firewalls

Our starting point is the concept of Model-Based Development
(MBD), which has been proposed as a model-centric and genera-
tive approach to software development. Conceptually, the MBD ap-
proach has three parts: (1) developers create system models in
high-level modelling languages; (2) tools are used to perform auto-
matic model transformation; and the result is (3) a system archi-
tecture. The high-level model used in the first phase is called the
Platform-Independent Model (PIM). The model which results from
the transformation in the second phase is called the Platform-Spe-
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cific Model (PSM), and there will be several PSMs, one for each tar-
get platform. Finally, the result from the third and final phase is the
specific code for a platform, and can be directly executed by it.

Firewall platforms are very different from one company to
other, and even among the available Open Source platforms. These
differences range from differences in the number, type and syntax
of selectors that each platform’s filtering algorithm can handle, to
huge differences in rule-processing algorithms that can affect the
design of the rule set. For example, with regard to filtering selec-
tors, IPTables can filter a packet taking into account nearly all the
possible fields in its TCP/IP header. However, Cisco PIX only can fil-
ter using a very small subset of the fields in the TCP/IP header of a
packet. In addition, for each selector, each firewall platform may
support different kinds of data type to represent its content. In this
way, IPTables permits for example, the use of IP-ranges in the IP
address selectors, but Cisco PIX only permits the use of a unique
IP or a block in CIDR format. Surely an IP-range can be translated
into several blocks of IPs, so both data types (or syntaxes) are
equivalent.

Some questions may arise in this situation. The first is whether
all firewall platforms analyzed share a common set of filtering
selectors. Another is, for the common selectors, if there is at least
one common syntax among all firewall platforms; or if not, if the
available syntaxes for each platform have equivalencies in the
other platforms.

These common sets of selectors and syntaxes, if they exist, plus
the action selector, may be the starting point for a Platform-Inde-
pendent Model for firewalls. There is no need to include more
information in the PIM, since filtering actions are taken in the con-
dition part of a rule, which is based on the possible filtering param-
eters. Thus, the PIM will be an abstraction of an access control list.
The PSM represents platform details related to all other things.
That is, mainly NAT support, connection tracking, chains and other
types of rule-processing, and logging. This separation fits well with
the proposed MDB approach. Fig. 3 presents a proposal for the divi-
sion of characteristics.

Firewall platforms have other specific characteristics. These
range from how each platform threats connection tracking (that
is, stateful or stateless connections), how the rule-processing is
performed (forward, backward, with jumps), etc. In general, these
characteristics are not related to filtering parameters or selectors.
For example, in terms of connection tracking support, all analyzed
firewall platforms support stateful and stateless connections ex-
cept Cisco PIX, which only supports stateful ones. Another example
is that IPTables permits the use of several rule sets (or chains) and
can define jumps between them, in a forward-check process. How-
ever, IPFilter and PF do not support chains, and their default behav-
iour with regard to rule filtering is to backward-check them. For
this reason, the same rule set would not be processed similarly
- Filtering Selectors
- Syntax for each Selector
- Actions

- NAT
- Connection Tracking
- Rule Processing
- Logging

FIREWALL PLATFORM

PIM

PSM

Fig. 3. PIM and PSM abstraction proposal.
in IPFilter and in IPTables. Those characteristics not related to fil-
tering parameters should be considered in another more specific
model, as they are platform-specific ones, and may be the starting
point for the PSM for each firewall.

Finally, an automatic transformation process should be defined
in order to transform the PIM into each PSM, taking into account
the particularities of each firewall platform. We propose using this
architecture and applying these ideas to design firewall rule sets, in
order to solve some of the problems discussed in Section 2.3. Fig. 4
depicts the complete process.

In the first step of the process, an engineer obtains the access
control requirements for the organisation, in a requirements defi-
nition phase. These requirements are the Computation Indepen-
dent Model or CIM. The requirements are then translated into
the PIM. The use of UML in the requirements definition phase could
be very helpful, since UML models can be automatically trans-
formed into any other language.

Then, in order to generate a specific model for a firewall plat-
form automatically, some platform-specific markers should be ap-
plied to the PIM. These markers cover knowledge of a specific
platform, and can transform the PIM into a more specific model,
or PSM. The PSM is specific for each firewall platform. Once a
PSM is obtained, an automatic process should be applied in order
to generate specific rule sets for its corresponding firewall plat-
form. This process can be abbreviated if the PIM contains sufficient
information to generate the specific rule set directly.

The objective of this work is the first part of the process: an
analysis of the most widely used firewall platforms in the industry,
a definition of a PIM for firewalls, which will be validated using a
consistency-based diagnosis technique which we also propose in
this work.

3.1. Verification and Validation of Models in MBD

In any software or hardware modelling methodology, the
need for complete, consistent and precise models is of extreme
importance. Error correction in early stages of the development
process is cheaper compared to the cost associated with the
error correction in the production phase [35]. In addition, errors
generated in the production phase usually have a huge impact
on the reliability and robustness of the generated code and final
system [36].

In an MBD approach, this is even more important, since models
are the core of the methodology, and executable code will be auto-
matically generated from models. MBD facilitates the generation of
application software from high-level models. Currently, Verifica-
tion and Validation (V&V) tools and techniques for the quality
assurance of such software are not integrated into the standards
for mode-driven architecture. This limits the applicability of an
MBD approach and leaves software engineers with the problem
of how to apply these verification and validation tools and tech-
niques most effectively.

V&V may be used to diagnose inconsistencies and faults in early
stages of the process, limiting the propagation of these problems to
later phases. If incomplete, imprecise or inconsistent models were
not detected during the PIM construction phase, there would be a
propagation of these problems to the executable code.

Verification is the task of proving that a model satisfies a spe-
cific property. Verification techniques can be formal and informal.
Checklists and ad hoc algorithms are informal techniques, while
theorem proving and model checking are formal ones. For exam-
ple, a commonly used informal verification technique is eye-re-
view of the source code of a program prior to running it. In
general, verification can be carried out without an execution envi-
ronment and prior to deployment, thus it is a static analysis
technique.
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Validation evaluates if the observable behaviour of the model
complies with the requirements. Validation techniques include
scenario and use case simulation, and testing.

In firewalls, an access control policy is processed by a software
algorithm. This algorithm matches packets against the access con-
trol policy, which is represented as an ACL. As we have explained in
previous sections, firewall rule sets may have inconsistencies and
redundancies. Since the rule set is automatically generated from
a PSM, which has been derived from a PIM that represents the
ACL, then it is important to detect and diagnose inconsistencies
and redundancies in the modelling phase. That is, we propose
introducing V&V into the process depicted in Section 3 (Fig. 4).

Since the focus of this work is on the first model in the MBD
process, which is the PIM, then there are no execution details,
and only a verification step can be added. Thus, prior to obtaining
a final PIM to be used for the generation of the PSM, a mandatory
verification step is necessary in order to guarantee that the mod-
elled access control policy is at least consistent (Fig. 5). We propose
constructing the PIM and then verifying it, although verification
can also be performed interactively while constructing the PIM.
We do not consider redundancy in this work, since redundancy
faults do not change the semantics of the access control policy,
but only degrade its performance once executed in a runtime envi-
ronment. Carrying out verification in early stages guarantees that
the resulting PSMs and rule sets will be consistent. Fig. 5 presents
the parts of the MBD process that are the focus of this paper (those
shadowed: the PIM and its verification).

However, this process can be complemented once the rule set is
generated and deployed in a real scenario. Testing can be used with
real data sets [33] and data mining techniques [34] to optimize the
rule set.

4. A PIM for firewalls

When an abstract model is to be proposed, there is a compro-
mise between expressivity and complexity. A very expressive
Fig. 5. Verification of PIM in Model-B
model is generally more complex than a less expressive one. We
think of complexity as being how difficult it is to represent knowl-
edge of the reality being modelled. As noted before, existing model
proposals to represent access control policies are very complex, be-
cause they cover a wide spectrum of domains and applications. We
think that complexity is the main reason why none of these lan-
guages is widely adopted by the industry: it is very difficult to
translate access control requirements into one of these non fire-
wall-specific languages, and thus there is no benefit obtained from
its use in comparison with the use of any of the low-level ones.

Firewall ACLs are only a small subset of access control. We think
that a simpler yet highly expressive language is required to cover
this need. For this reason, we have analysed the most widely used
firewall languages, discussed different models, and finally pro-
posed a new one. The model can be used to construct a specifica-
tion of the firewall access control list (ACL).

In order to represent ACLs in the PIM, it should be taken into
account that ACLs are composed of rules, thus only filtering selec-
tors and actions should be considered for the PIM. Other parts of
the platform, such as connection tracking or logging are not part
of the PIM and should be analyzed for the PSMs, which is not part
of this work. We have analyzed the syntax and semantics of the
most widely used firewall languages, in order to acquire sufficient
knowledge of their characteristics and possibilities. Some of these
firewalls are commercial products and others Open Source. This
analysis is based on the public documentation available for each
language, on tests we have carried out in real environments,
and in meetings with experts. The platforms analyzed were Linux
IPTables 1.3.7, Cisco PIX 7.0, FreeBSD 6.2 IPFilter, FreeBSD 6.2
IPFirewall, OpenBSD 3.7 Packet Filter, and Checkpoint Firewall-1
4.1.

The complete analysis of filtering selectors and their available
syntax is presented in Annexe I. We recommend its use as a refer-
ence for this paper. Remember that selectors are used for the deci-
sion part of a rule, and that only selectors and actions will be used
for the PIM.
ased Development for firewalls.
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4.1. PIM construction alternatives

When abstracting from different realities in order to generate a
model in a bottom-up process, there are always three main ap-
proaches to take (Fig. 6). These approaches, applied to the firewall
problem domain are:

� Factorization: The first approach is to analyze different firewall
platforms and factorize the common filtering selectors. Each
selector can be expressed using different syntaxes, so factoriza-
tion of these syntaxes is also necessary. The meta-model will be
composed of only the common filtering selectors and their com-
mon syntaxes of all firewall platforms.

� Aggregation: This is just the opposite approach to factorization.
The key idea is to take all filtering selectors with all their possi-
ble syntaxes, and form the meta-model with them. Thus the
meta-model will be composed of common and non-common
parts of each firewall platform.

� Customization: Finally, this approach is the hybridization of the
other two. The starting point is a factorized meta-model. Then,
each non-common selector should be analyzed. If the selector
can be emulated with the factorized ones, then a usability anal-
ysis should be performed. If the selector adds new functionality
and can be emulated with the common selectors, then it may be
added to the meta-model. The same analysis (emulation and
usability) should be carried out with non-common syntaxes
for each selector in the model. Syntaxes that are aimed at easing
the task of PIM instantiation should also be considered, since
instantiation of the PIM is a task that is usually carried out by
a human. However, if the PIM were automatically generated
from a higher-level specification, such as a UML model, then
the model could be simplified even more, reducing the sup-
ported syntax for each selector.

Since models are simplifications of reality, none can represent
the full reality. Meta-models generated taking these different ap-
proaches will be very different, and will have different levels of de-
tail. In this section, these possibilities for firewall language
modelling are discussed, and their main benefits and drawbacks
Factorized AFPL Model Aggregated AFP
- Simple 
- Minimal
- Not complete

- Complex
- Maximal
- Complete 

Fig. 6. Different possibilities

Fig. 7. Construction of PIM b
are analyzed. Finally, a definitive platform-independent meta-
model and a PIM are proposed.

4.1.1. Factorization of selectors
The first approach is to analyze different firewall languages and

factorize the common filtering selectors. Selectors can be ex-
pressed using different syntaxes or domains, and thus factorization
of these syntaxes is also necessary. Only the common selectors and
their common domains should be used for the PIM (Fig. 7).

The main benefit of this approach is that the resulting PIM mod-
el is minimal and very simple, but not necessarily complete, be-
cause there is no guarantee that the PIM can represent the
reality at all. For example, for two firewall languages, if the factor-
ization of their possible syntaxes for a common Source IP selector
is empty, then there is no common domain for this selector. Thus,
the Source IP selector cannot be represented in the PIM. Note that
if the Source IP address cannot be represented in the model, it is
not possible to model rules taking decisions based on the packet’s
source IP.

This fact is more important for some selectors than for others.
The selectors most used in real rule sets have wide domains (thin
granularity), because they allow rules for a wider range of packets
to be defined. The less used selectors usually have stretch domains,
because they allow rules with thick granularity to be defined.

In addition, a PIM with selectors more typically used in firewall
languages is easier to understand for the end user than a PIM with
rare selectors that are only supported in a minority of firewall lan-
guages. Having few selectors with wider domains is also easier
than multiple selectors with stretch domains. For example, the
TCP Flags selector is not very important, because although it could
have some utility in some specific situations, it is not widely used
in isolation from typical selectors, which according to real rule sets
are: Source and Destination IP address, Protocol, Source and Desti-
nation Ports, and ICMP Type. All the non-common selectors are of
optional use in the platforms analyzed (Annexe I).

The main drawback of this approach is that, in general, the
resulting PIM may not be sufficiently complete to represent the
majority of the reality needed by users. There would be parameters
that could not be represented in the PIM. In the analysis, we have
L Model Customized AFPL Model 
- Balanced
- Customized
- Not complete

for model construction.

y selector factorization.
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carried out for firewalls these are TCP Flags, TCP Options, IP Op-
tions, IP Version, Source and Destination MAC address, Type of Ser-
vice and Time to Live selectors. These selectors are not common to
all firewall languages and thus cannot be used in the PIM with this
approach. In addition, these selectors are marked as optional in the
analysis in Annexe I, because their use is optional in all the firewall
platforms analyzed. If the PIM does not use these selectors, then
the PSM will not use them either, and nor will the generated code.
Fortunately, these selectors are not widely used because they are
only applied in very specific situations. Indeed, some of them are
only used in one of the firewall languages analyzed. In addition,
for example the Cisco PIX platform does not support any of these
selectors, but it is one of the most widely used firewalls in the
world, showing that complexity is not a good approach to language
design.

The same problem arises for common selectors. The syntaxes
supported by the same selector are usually different in different
firewall languages, with some common ones. Differences in syntax
for a given selector could have some benefits: more compact rule
sets that result in less memory consumption and/or fastest pro-
cessing, ease the task of writing a rule set manually, etc. If the
PIM model is written manually, the use of a richer syntax could
ease the task. However, all these different syntaxes need to be
translated into syntaxes supported in each specific PSM, which
complicates the translation process. A translation is possible (nec-
essary condition) if properties exhibited by a specific firewall plat-
form can be reproduced in another with no extensions to its
language or modifications to the matching algorithm. Thus, there
could be cases where a translation may be impossible.

In the same way, a simpler syntax could be optimized (Fig. 8) to
a specific syntax used in a specific PSM of a firewall platform. In the
approach we have taken, as only common parts are permitted, only
common syntax is permitted. The PSM would have the specific
syntax for all the supported selectors. This obliges us to analyze
the possible optimizations that could be applied in the PIM to
PSM transformation process in order to generate efficient PSMs,
and thus efficient code, using the possibilities of the underlying
firewall platforms. The example presented in Fig. 8 depicts the sit-
uation of an IP-range syntax that is only supported by IPTables fire-
walls. This syntax groups a list of IP addresses, easing the task of
writing rules, and resulting in a more compact rule set. It is similar
to other syntaxes used in BSD firewalls, like the use of lists to group
IP addresses. However, the IPTables documentation explains that a
rule with a selector using this syntax is decomposed into several
rules, resulting in no computing benefit in reality. The only real
benefit from this syntax is the ease of use but, as the resulting code
is not going to be directly manipulated by a human, there is no real
benefit from using this kind of optimization in the proposed MBD
approach. Optimizations should be made with care.

With this approach, resulting PSMs may not use all the possibil-
ities of the languages and the platforms, although some optimiza-
tions can be made to the PIM. The resulting code from the PSM is
equal in quality to it. However, a less efficient generated rule set
is in part normal, because with a simple model, all optimizations
should be made automatically. The same is the case with today’s
compilers. A compiled code from a high-level language wastes
more memory and is less efficient than an assembler code, as the
Fig. 8. Internal workings of IPTables IP-range syntax.
high-level language abstracts the user form registers, multimedia
instructions, pointers, and even memory (de)allocation in an Ob-
ject-Oriented paradigm. Lower performance and higher memory
consumption is usually the price to pay for abstraction.

Finally, note that this approach is only valid if the resulting PIM
can represent the selectors which are mandatory, with at least one
possible value for each domain. Fortunately, this is the case for fire-
walls, as we will explain in a later section.

We think that including information that is only relevant to a
minority of firewall languages in the PIM is contaminating it with
platform-specific information, and as the PIM is a high-level model,
we prefer to keep it as abstract as possible, but without losing too
much expressiveness. This approach results in the simplest PIM,
but also in a less specific PSM.

4.1.2. Aggregation of selectors
This case is just the opposite of the previous one. The PIM is

composed of the selectors that all the firewall languages have, with
no exception (Fig. 9). Thus the resulting model will be composed of
all common and non-common parts of the low-level language in
each firewall platform.

The main benefit of this approach is that the resulting PIM mod-
el is complete, but not necessarily minimal or simple, because it is
highly possible that some selectors included in the PIM are only
used in a small number of firewall platforms. The same is true
for syntaxes used in selectors. This gives users a high degree of
flexibility (and also complexity) when instantiating a PIM.

The main drawback of this approach is complexity. The com-
plexity of the PIM is equal to the sum of the complexities of each
firewall language, and the resulting model is not abstract or plat-
form-independent, but highly specific to all the platforms (and
not only to one). This resulting PIM could be similar in complexity
to existing proposals for high-level languages, and to the models
proposed by some graphical interfaces (like Firewall Builder
[20]). For example, with this approach, the non-common selectors
(TCP Flags, TCP Options, IP Options, IP Version, Source and Destina-
tion MAC address, Type of Service and Time to Live) can be used in
the PIM. When creating a PIM for a specific problem, the user has
to cope with all the complexity inherited from each firewall lan-
guage (a large number of selectors, wide domains, etc.), which is
clearly worse than if the user coded the solution directly in a par-
ticular low-level language. We think that this is the main reason
why existing proposals for languages have not been used in
industry.

Having a PIM with selectors and syntaxes that are not sup-
ported by all firewall platforms has several disadvantages over
the previous approach. First of all, selectors not present in a partic-
ular firewall platform must not be present in its PSM, either. This
means that those selectors need to be emulated, but emulation
may be impossible. For example, if a selector is not considered in
a firewall platform, it is because the platform’s filtering algorithms
cannot filter with that selector. This is the case, for example, for the
Cisco PIX platform, which does not support any of the non-com-
mon selectors. Thus, the only way to transform a PIM with non-
common selectors into the PSM of a platform that does not con-
sider those selectors, is to ignore them. Obviously, none of the
semantics of the PIM can be ignored in order to obtain a confor-
mant PSM and code.

Another similar problem arises with selector syntaxes. If non-
common syntaxes are used, then these need to be emulated in
the PSM using the syntaxes permitted by the underlying platform.
This is the case for the IPTables IP-range depicted in Fig. 8. As users
are provided with syntaxes in order to ease design, they can usu-
ally be emulated.

With this approach, the resulting PSM could be very difficult, or
even impossible to generate, since there are selectors that are
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impossible to emulate. Although emulation of different syntaxes is
possible for selectors, the resulting PSM will always be less effi-
cient than the PIM, since the translation is from a complex expres-
sion into a simpler one, and will usually result in more rules.
Optimization, as in the case of the previous approach, is easier to
perform than emulation. The resulting code is equal in quality to
the PSM generated, as in the case of the previous approach.

In conclusion, the resulting PIM is not platform-independent,
and very complex. Also, transformations into PSMs are very com-
plex and even impossible, because they require emulations. These
are two powerful reasons to discard this approach.

4.1.3. Customization of selectors
This is the trade-off approach. In this approach, each selector is

analyzed in detail. If a non-common selector can be emulated and
adds new functionality, then the selector may be incorporated into
the PIM. If a selector cannot be emulated, its emulation is too com-
plicated, or it does not provide clear advantages over not using it,
then it is discarded. The same applies to selector syntaxes. Bear
in mind that only syntaxes that provide clear usability improve-
Table 2
Common selectors and syntaxes of analyzed firewall platforms

Selector Obligation Dependencies

Source IP address Mandatory

Destination IP Address Mandatory

Interface Optional
Interface Direction Optional

Protocol Mandatory

Source Port Optional Only if Protocol is TCP or UDP

Destination Port Optional Only if Protocol is TCP or UDP

ICMP Type Optional Only if Protocol is ICMP

Action Mandatory
ments for humans should also be considered, as the PIM instantia-
tion will be carried out manually. However, if the PIM were
generated automatically from a higher-level specification, such as
an UML model, then the model could be simplified even more,
reducing the supported syntax for each selector. However, this is
not the case presented in this paper.

The main benefit from this approach is that the usability and
performance of the resulting rule set are balanced, and for this rea-
son, this is the approach we have taken to design the PIM. With
this approach, some selectors and syntaxes used in the PIM will
be emulated in the PSM, and others will be optimized from the
PIM to each PSM. We do not detail this approach in this section, be-
cause it is detailed in subsequent sections.

4.2. Platform-Independent Model, PIM

Summarising the results of the comparative analysis in Annexe
I, the resulting set of factorized selectors and their syntaxes from
the firewall platforms analyzed are presented in Table 2. The fac-
torized filtering parameters for all firewall languages are Source
Syntax Comments

–IP
–Block (CIDR)
–Wildcard
–IP
–Block
–Wildcard
–Identifier
–In
–Out

IPTables cannot represent direction,
but can differentiate inbound from
outbound interfaces

–TCP
–UDP
–ICMP
–Number
–Wildcard*

*IPFilter and PF do not have
wildcards, but the omission of this
selector has the same effect

–Number
–Range: – p
–Range: [p1,p2]
–Identifier
–Wildcard
–Number
–Range: – p
–Range: [p1,p2]
–Identifier
–Wildcard
–Number
–Identifier
–Allow
–Deny
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and Destination IP Addresses, Interface and Direction of the packet
flow, Protocol, Source and Destination Ports if the protocol is TCP or
UDP, and ICMP Type if the protocol is ICMP. None of the non-com-
mon selectors has been considered in this first meta-model: TCP
Flags, TCP Options, IP Options, IP Version, Source and Destination
MAC address, Type of Service and Time to Live. This represents
our starting point, as a basic meta-model. In the next sections,
more complexity will be added to this basic meta-model, in order
to customize the yet-to-be considered selectors and their syntaxes.

4.2.1. Addition of non-common selectors
In this section, we analyze the possibility of adding some of the

non-common selectors to the basic meta-model. A non-common
selector can be added if its behaviour can be emulated by the com-
mon selectors of all the firewall platforms considered, and it also
adds new functionality to the model. A selector adds new function-
ality to the model if it cannot be emulated using rules which do not
contain it. For example, the Time to Live selector cannot be emu-
lated by decomposing the rule that uses it into several other rules
which do not use it. A selector is emulable if its behaviour can be
reproduced using a combination of one or more rules but using
only the common firewall language selectors. Non-common selec-
tors have been analyzed in Annexe I. Fig. 10 presents a summary of
the analysis.

The TCP Flags selector can only be used in IPTables, IPFilter,
IPFW and PF, and only when the protocol is TCP. This selector is
used to match packets with 0, one, or more SYN, ACK, FIN, RST,
URG, PSH flags active. Thus, the use of this selector is very limited
to very specific situations. In addition, it cannot be emulated in PIX
and FW-1, because their matching engines do not support these
selectors, which are impossible to emulate with the common selec-
tors considered for all platforms. Thus, they cannot be incorporated
into the PIM.

The TCP Options selector is only available in IPTables and IPFW,
and can only be used when the protocol is TCP. It is used to match
packets depending on their TCP options flag, which is represented
by a number. For the same reasons as TCP Flags, this selector can-
not be incorporated into the PIM.

Other selectors are IP Options, which can only be used by IPFW,
IP Version which is only available for PF, Source and Destination
MAC addresses which are only considered in IPTables and IPFW,
Type of Service (ToS) which is not available in PIX and FW-1, and fi-
nally Time to Live (TTL), which is only available in IPTables, IPFilter
and IPFW. All these selectors cannot be incorporated into the PIM
for the same reasons as above: not all matching engines support
matching against these selectors, and thus they cannot be emu-
lated with those available.

The conclusion is that none of the non-common selectors can be
emulated, and thus cannot be added to the meta-model. Some of
these selectors may be added to the PSM using markers to the PIM.

4.2.2. Adding more syntaxes to selectors
In this section, we analyze the possibility of supporting non-

common syntaxes in all the selectors considered. In general, we
consider a non-common syntax as a candidate for addition to the
group of supported syntaxes for that selector in the PIM if it can
Selector Emulable 
New 

Functionality 
Add to AFPL 

TCP Flags No Yes No 
TCP Options No Yes No 
IP Options No Yes No 
IP Version No Yes No 
Src/Dst MAC No Yes No 
ToS No Yes No 
TTL No Yes No 

Fig. 10. Analysis of non-common selectors.
be emulated with the common syntaxes of the same selector and
it provides clear improvements in usability for human users. A syn-
tax provides clear improvements in usability if its use by a human
cannot introduce inconsistencies into the model and it provides
compactness. This characteristic is subjective, and there are syn-
taxes that have not been included in the PIM, which could be con-
sidered for inclusion. However, since one of our main objectives is
to keep the model as simple as possible, we have preferred to leave
them out. All possible syntaxes for each selector in the firewall
platform analyzed have been reviewed and explained in Annexe
I. Note that nearly all non-common syntaxes are supposed to pro-
vide compaction of the rule set. However, we think that most of
them also generate confusing rule sets.

� Source and Destination IP: For these selectors there are several
non-common syntaxes to be analyzed. IP addresses can also be
expressed as identifiers in FW-1, providing new functionality
and a clear improvement in usability. IPTables and FW-1 sup-
port the specification of groups of continuous IP addresses in
these selectors, but their matching engines decompose a rule
with this syntax into several rules with one IP per rule. A range
of IP addresses can be expressed in several rules, thus we con-
sider that this does not provide a clear improvement in usability.
IPFilter, IPFW, PF and FW-1 support domain names, but as a
domain is the same as an identifier, no new functionality is pro-
vided. PF supports tables, and PF and FW-1 support tables and
lists, which are very similar to ranges, and thus will not be con-
sidered. IPFW permits logic expressions of IP addresses with OR
and NOT logic operators, which again provides a new user-ori-
ented functionality which we consider too complex and error-
prone. PF can use an interface name (referring to the block of
IP addresses statically assigned to that interface), a block of IPs
for that interface and an interface which receives its IP from
DHCP. Although this provides new functionality, in this case
the functionality is already in the actual meta-model, since it
supports the specification of rules per interface. All firewall plat-
forms permit negation of address selectors, except PIX and IPFil-
ter. Although this is new functionality, it provides no clear
advantages over a syntax without negation, because a negated
selector can be emulated using a combination of allow and deny
rules. In conclusion, no new syntax will be added for Source and
Destination IP address.

� Interface: Interfaces can be expressed in all firewall platforms as
identifiers, representing the name of the interface of the under-
lying platform. All platforms except PIX and FW-1 can use
groups or lists to represent a collection of interfaces, providing
no new functionality but a minor improvement in usability (fire-
walls typically have a few interfaces, which can be reproduced
using a number of rules). IP addresses can be used in IPFW
and FW-1, but it is the same as using the IP address of the net-
work assigned to the interface directly, providing a new and eas-
ily emulable functionality and an improvement in usability, and
thus will be considered (one usually knows the IP of an interface,
but not the name of the interface). All platforms except PIX per-
mit the use of a wildcard indicating that a rule applies to all
interfaces, since PIX rules must be assigned to a specific inter-
face. Note that the use of interfaces for matching is optional in
all platforms analyzed except in PIX. This represents a new func-
tionality and a great improvement in usability, since if not con-
sidered in the meta-model, the only way to represent a rule for
all interfaces is to write the same rule but for each different
interface. In addition, the wildcard can be easily emulated in
PIX by generating a rule for each interface. Thus for these rea-
sons, we will consider it in the meta-model. Negation will not
be considered for the same reasons explained in Source and Des-
tination IP.
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� Interface direction: The only thing that is different when specify-
ing the direction of the interface in the firewall platforms ana-
lyzed is that in PIX and IPFilter the use of direction is
mandatory, and that they do not support wildcards. The same
is the case for interfaces, as explained before. For the same rea-
sons, wildcards will be incorporated into the meta-model. Again,
for the same reasons explained above, negation is not
considered.

� Protocol: Only IPFilter, IPFW and PF support the use of identifi-
ers, but as explained above they are easily emulable user-cen-
tric improvements and thus will be considered. IPFilter
supports the specification of TCP plus UDP protocols at the
same time, but again it can be decomposed into two rules, thus
it is a user facility with no great improvement in ease of use.
ICMPv6-based filtering is supported in PF, but its support
depends on the matching algorithm implemented in the plat-
form. Protocol lists are also supported in some firewalls, but
like other lists, they can be decomposed into several rules.
Logic OR/NOT expressions can also be used in IPFW, and nega-
tion is also possible as with other selectors in some firewall
platforms, but for the same reasons explained above, they will
not be considered in the model.

� Source and Destination Ports: Many range syntaxes are possible
in many firewall platforms, as in the case of ranges ‘ < p’,
‘ < =p’, ‘ > p’, ‘ > =p’, ‘(p1, p2)’ and ‘)p1, p2(‘. These syntaxes pro-
vide no new functionality or clear improvement in usability,
and can be easily emulated with the common ‘‘[p1, p2]” syntax
without loss of functionality or performance. For this reason we
will not include them in the meta-model. Lists of ports, logic OR/
NOT expressions and negation are also possible in some plat-
forms, but again we will not consider them for the same reasons
previously explained.

� ICMP type: IPFW supports lists as a way of representing various
types of ICMP traffic, and many languages support negation, but
will not be considered in the meta-model for the same reasons.
The same reasons explained before are applicable here.
Table 3
Final PIM meta-model for firewalls

Selector Obligation Dependencies Common syntax
(can be optimized)

N
(

Source IP
address

Mandatory –IP
–Block (CIDR)
–Wildcard

-

Destination IP
Address

Mandatory –IP
–Block
–Wildcard

-

Interface Optional –Identifier –
–

Interface
Direction

Optional –In
–Out

-

Protocol Mandatory –TCP
–UDP
–ICMP
–Number
–Wildcard*

-

Source Port Optional Only if Protocol is TCP
or UDP

–Number
–Range: [p1,p2]
–Identifier
–Wildcard

Destination
Port

Optional Only if Protocol is TCP
or UDP

–Number
–Range: [p1,p2]
–Identifier
–Wildcard

ICMP Type Optional Only if Protocol is ICMP –Number
–Identifier

Action Mandatory –Allow
–Deny

-

� Action: There are two common actions: allow and deny a packet.
However, all firewall platforms analyzed except Cisco PIX sup-
port a third one, reject, that denies a packet, but acknowledges
it with the sender. This is a new functionality that cannot be
emulated in PIX, but can be transformed into a deny action with-
out any great loss in functionality (the packet will be denied, the
only difference is the acknowledgement). For this reason, packet
rejection will be permitted in the meta-model.

Note that some selectors have common syntaxes that do not
provide extra functionality. This is the case for the Protocol selec-
tor. TCP, UDP, and ICMP identifiers can be removed from the
meta-model without loss of functionality, because they are all
numbers and thus can be represented using that syntax. This is also
the case for the identifier of Source Port, Destination Port, and
ICMP Type selectors, as all services can be specified with a number.
The removal or not of these selectors is a decision that should be
taken only considering the usability of the PIM because, as they
are supported by all firewall platforms, their transformation to a
low-level language is direct. We have preferred to leave them in
the meta-model in order to improve usability.

Bear in mind that, although interfaces are a common selector
and a mandatory one in PIX, they represent platform-specific infor-
mation, and conceptually should not be added to the meta-model.
However, interface information can be emulated with ease in the
PIM to PSM transformation process: for each rule, check which
interface the source IP belongs to. The rule should be added to that
interface, in the incoming direction. For that reason, interfaces and
directions are optional in the meta-model, and so will be in the
proposed PIM.

4.3. PIM specification for firewall ACLs

Table 3 presents the meta-model of the final PIM. No more
selectors can be added to this PIM because, as we have explained
in Section 4.2, the rest of the non-common selectors cannot be
on-common syntax
must be emulated)

Comments

Identifier

Identifier

Wildcard
IP Address
Wildcard IPTables cannot represent direction, but can

differentiate inbound from outbound interfaces
Identifier *IPFilter and PF do not have wildcards, but the

omission of this selector has the same effect

Reject Reject cannot be emulated in PIX, but deny can be used
instead triggering the acknowledgement
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emulated since they depend on the underlying matching algorithm
in each firewall platform. However, more syntaxes could be added
in order to ease the task of creating the access control policy by a
user. The common syntaxes presented in Table 3 have direct sup-
port in all firewall platforms analyzed and no optimization or emu-
lation is needed. The other syntaxes have been removed because
they do not provide new functionality or a clear improvement in
usability. In any case, they can always be optimized in the PIM to
PSM transformation using the specific syntax of the underlying
firewall platform that each PSM represents.

Comments in the last column present specific considerations for
some firewall platforms that will be important in the PIM to PSM
transformation process. A PIM using XML Schema is presented in
Annexe I.

Although the PIM meta-model presented is very simple, it has
been created from an analysis of real firewall languages. The
starting point for this meta-model was what these languages
have in common, which has then been extended with some
non-common parts. Note that simplicity is not a synonym for
lack of usability, as is demonstrated by Cisco PIX language,
which is the simplest of those analyzed, and also one of the
most widely used in the world. As has been explained, most of
the syntaxes present in the firewall languages analyzed are only
there to provide compactness and to ease the task of writing the
rule set by a human. However, we believe that many of these
syntaxes are confusing and could easily introduce inconsistencies
and redundancies in a rule set. For this reason, they have not
been included in the PIM meta-model.

Remember that this PIM meta-model does not contain de-
tails for other characteristics of firewall platforms, such as log-
ging and connection tracking, since this is going to be
represented in the PSM, as they are execution environment spe-
cific details.

PIM transformation into any of the firewall languages analyzed
should be very easy and direct, since all the selectors considered
are supported in all the firewall platforms analyzed, and all the
syntaxes considered for them are also directly supported or are
easily emulable. The simpler the low-level target language is, the
easier the transformation is. For example, PIM to Cisco PIX lan-
guage is direct.

4.4. Example

As has been noted before, the PIM has been represented as
an XML Schema Definition (XSD). However, it can be repre-
sented in other languages as well. In this paper, XML has been
used, since it is more widely known than other OMG MDA-spe-
cific technologies. Representing the model in XML is an easy
task, since the proposed PIM is very simple. However, writing
XML manually without the aid of a GUI tool could be a time-
consuming task. For illustrative purposes, Fig. 11 presents the
example presented in Table 1, using the PIM schema in Annexe
II. Note that rule order is implicit in the XML, since rule match-
ing algorithms follow a linear order in firewalls. Thus it is not
necessary to represent rule priorities in the model explicitly.
Comparing Table 1 with this XML representation, it can be seen
how easy it is to represent real-life knowledge in the proposed
model.

As explained before, this PIM cannot represent characteristics
other than those needed to take filtering decisions (selectors with
their syntax and actions). Other characteristics related to how the
rule set will be executed once the PIM has been transformed into a
PSM (and the PSM into code) must be present in the PSM, since it
represents the platform-specific characteristics.

But using XML instead of other languages has several advan-
tages. First, as can be seen from this example, the model is very
well structured and is easily understandable, even by a person
without any particular knowledge of a specific firewall lan-
guage, XML, or even the PIM schema. This also improves model
modifications. Second, this XML can easily be parsed using
available libraries, since most Object-Oriented programming lan-
guages have an XML parsing library in their API by default. In
addition, it is undefined in the schema which value an optional
selector takes if it does not appear in a rule. The parser is
responsible for valuating these selectors. In this paper, it is as-
sumed that these selectors receive a wildcard value, as this is
the usual solution that most firewall languages adopt if a selec-
tor is omitted.

In Section 5, a verification stage will be run against this model
in order to diagnose inconsistencies. If inconsistencies are found,
PIM modification is necessary, and if the PIM has been correctly de-
rived from the access control requirements, then these require-
ments require modification.
5. PIM verification: consistency-based diagnosis process

Prior to PSM generation, we propose a mandatory verifica-
tion stage in order to guarantee that the modelled access con-
trol policy is consistent. Error correction in the early stages of
the development process is cheaper compared to the cost asso-
ciated with error correction in the production phase. In addi-
tion, errors generated in the production phase usually have a
huge impact on the reliability and robustness of the generated
code and final system. We do not consider redundancy in this
work, since redundancy faults do not change the semantics of
the access control policy, but only affect its performance. Carry-
ing out verification at early stages guarantees that resulting
PSMs and rule sets will be consistent. More details on the
inconsistency diagnosis problem are presented in other works,
and in this paper we only present consistency-based diagnosis
algorithms. To understand the problem, it is important first of
all to review the inconsistencies characterized in the bibliogra-
phy. A complete characterization has been given by Al-Shaer
et al. [11] which includes shadowing, generalization, correlation,
and redundancy (all of them except correlation are order-
dependent). Although Al-Shaer characterized all inconsistencies,
not all of them are considered to be errors, as they can be used
to cause desirable effects (i.e. redundancies can be used to im-
prove matching algorithms efficiency). All of these inconsisten-
cies except redundancy are graphically represented in Fig. 12.
For the sake of simplicity, only two rule inconsistencies with
one selector are represented. Prior to explaining the algorithms,
a definition of inconsistency is needed. We shall now formalize
a firewall ACL.

� Let RS be a PIM ACL consisting of n rules, RS = {R1, . . .Rn}
� Let R = <H, Action > , H 2 N5 be a rule, where Action = {allow,deny}

is its action
� Let Rj[k],1 6 k 6 n,k 2 {protocol,src_ip,src_prt,dst_ip,dst_prt} be a

selector of a rule Rj.
� Let ‘<’ and ‘>’ be operators which define the priority of the rules,

where Ri < Rj means that then Ri has greater priority than Rj and
its action will be taken first, and vice versa
Definition 1. Two rules Ri,Rj 2 RS are inconsistent if and only if
the intersection of each of all of its selectors R[k] is not empty,
and they have different actions, independently of their priorities.
The inconsistency between two rules expresses the possibility of
an undesirable effect in the semantics of the rule set. The
semantics of the rule set changes if an inconsistent rule is
removed.



InconsistentðRi;RSÞ;1 6 i 6 n() 9Rj 2 RS;1 6 j 6 n; j–i�
Ri½k� \ Rj½k�–; ^ Ri½Action�–Rj½Action�

8k 2 fprotocol; src ip; src prt; dst ip;dst prtg
Inconsistency of one rule in a RS

InconsistentðRi;Rj;RSÞ;1 6 i; j 6 n; i–j()
Ri½k� \ Rj½k�–; ^ Ri½Action�–Rj½Action�

8k 2 fprotocol; src ip; src prt; dst ip;dst prtg
Inconcistency between two rules in a RS
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This definition can be extended to more than two rules. Accord-
ing to 1, all inconsistencies represented in Fig. 12 are of the same
kind, and we call them inconsistencies. Thus, there are three incon-
sistencies, represented by the three possible relations between
rules: subset, superset, correlation. In the example presented in Ta-
ble 1, with the traditional definitions given in [11], R4 is shadowed
by R3. However, with the proposed inconsistency definition, R3
and R4 are inconsistent (they have a non-empty intersection of
all of their selectors, independently of their priority). Again with
the traditional definitions, R2 is a generalization of R1 (or R1 is
an exception to R2), but with our definition R1 and R2 are inconsis-
Fig. 11. Table 1 example represented in X
tent. Finally, R1 and R3 are correlated according to traditional def-
initions, but also according to the new one. Therefore, with 1, it is
possible to detect all inconsistencies characterized by the tradi-
tional definitions. We consider that redundancy is not an inconsis-
tency, because it does not change the semantics of an ACL, and
thus, it has been left out of this work as a topic for future research.

The process shown in this section is broken down into two steps.
In the first step, all inconsistencies in the PIM are detected and iso-
lated for every pair of rules. In the second step of the process, the
rules that cause the inconsistencies are identified, completing the
PIM consistency-based diagnosis process. The full process, as will
ML following PIM XSD specifications.



where

Fig. 13. Algorithm 1. Inconsistency detection algorithm.

Fig. 12. Graphical representation of three types of inconsistencies in rule sets.
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be shown, requires no modification to the PIM, nor any pre-process.
It runs in polynomial time and has lineal space complexity with the
number of inconsistencies in the rule set. Note that for the examples
presented in this section, Interface and Direction selectors have been
left out for simplicity. Anyway, the use of these selectors is optional
in the PIM, as has been explained in the previous section.

5.1. Step 1. Detection of inconsistent pairs of rules

The first step in the process detects the inconsistent rules in the
rule set and returns an Inconsistency Graph (IG, 2) representing
their relations. Note that the detection process, like 1, is order-
independent.

Definition 2. Inconsistency Graph, IG. An IG is an undirected, cyclic
and disconnected graph whose vertices are the inconsistent rules
of the PIM, and whose edges are the inconsistency relations
between these rules. Note that |IG| is the number of inconsistent
rules in RS, and ||IG|| corresponds to the number of inconsistencies
between pairs of rules in RS, or simply the number of inconsisten-
cies in RS.

Let IG ¼< V ; E > be an undirected; cyclic and disconnected graph
VðIGÞ ¼ Ri 2 RS;1 6 i 6 n � InconsistentðRi;RSÞ

EðIGÞ ¼ Ri;Rj 2 V ;1 6 i; j 6 n; i–j � InconsistentðRi;Rj;RSÞ

Algorithm 1 presented in Fig. 13 (implemented in an Object-
Oriented paradigm and using abstract data types) exploits the or-
der-independence of the inconsistency definition and only checks
inconsistencies between rules with different actions, dividing the
PIM ACL into two lists, one with allow rules and the other with deny
rules. The algorithm receives two rule sets. One of them is com-
posed of allow rules and the other of deny rules from the original
rule set. This decomposition is a linear complexity operation. The
algorithm takes one of these two PIM ACLs and, for each rule,
checks if there is an inconsistency with other rules in the other
ACL. As all inconsistencies can be decomposed into two-by-two
relations, there is no need to check combinations of more than
two rules. Each time the algorithm finds an inconsistency between
a pair of rules, the two rules are added as vertices to the IG, with an
undirected edge between them. The algorithm returns an IG. As all
inconsistencies can be decomposed into two by-two relations,
there is no need to check combinations of more than two rules.
Since all possibilities have been checked, Algorithm 1 detects all
possible inconsistent rules. A trace of the different iterations of
Algorithm 1 applied to the model in Fig. 11 is presented in
Fig. 14 to illustrate the process. Fig. 15 presents the resulting IG.

The time complexity of Algorithm 1 is bounded by the two
nested loops (lines 7 and 9). Each rule in ruleSetAllow is tested
for inconsistency against rules in ruleSetDeny. The worst-case for
the loop is reached when ruleSetAllow.size() = ruleSetDeny.size()
(i.e. half of the rules allow and the other half deny), and the best
case when ruleSetAllow.size() = n and ruleSetDeny.size() = 0 or rule-
SetAllow.size() = 0 and ruleSetDeny.size() = n. Thus, the complexity
of the improved detection algorithm depends on the percentage
of allow and deny rules out of the total number of rules. However,
there are other internal operations that should be analyzed in lines
11–14. The first one, in line 11, is inconsistency() which is com-
posed of an iteration. This operation implements the inconsistency
definition. In typical firewall ACLs, k = 5, and thus the iteration runs
5 times. In any case, the iteration is bounded by the number of
selectors, which is a constant, k. In addition, inside the iteration
there is an intersection between each selector (lines 27–29). The
typical 5 selectors in firewall ACLs (Table 1) are integers or ranges
of integers, except IP address. Whether two ranges of integers
intersect can be determined in constant time using a naïve algo-
rithm which compares the limits of the intervals. Whether two IP
addresses intersect can also be determined easily in constant time



Fig. 14. Trace of Algorithm 1 applied to the model in Fig. 10.

Fig. 15. Inconsistency Graph, IG.

Fig. 16. Algorithm 2. Determination of the Diagnosis Set.
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by comparing their network addresses and netmasks. Other oper-
ations in the inner loop (lines 11–13) are graph-related. If the
graph implementation is based on hash tables, vertex and edge
insertions run in constant time, except in some cases where
rehashing might be necessary.

For all these reasons, in all cases the complexity of the two
nested loops is only affected by a constant factor, which depends
on the constant number of selectors, k. Thus, worst-case time com-
plexity of the detection algorithm is in O(n2), best case is in O(n),
and average case is in O(n�m) with the number of allow rules, n,
and deny rules, m in the ACL.

The space used by Algorithm 1 is the sum of the space needed to
store the ACL, and that needed for the graph. In the best case the
graph would have n vertices and n � 1 edges. In the worst-case, there
could be n � 1 inconsistent rules and also n � 1 edges per vertex.
Note that the space needed to store an edge is less than that needed
to store a vertex, since only a reference between vertices is needed.

5.2. Step 2. Identification of the set of conflicting rules

The second and final stage in the diagnosis process identifies
the PIM rules that cause the inconsistencies from the set of incon-
sistent pairs of rules (the result of the previous step). Algorithm 2
(Fig. 16) receives the IG as input and iteratively takes the vertex
with the greatest number of adjacencies (lines 5 and 6), that is,
the vertex with the greatest number of inconsistencies, v. Then,
an independent cluster of inconsistent rules (ICIR, 3) is created as
a tree with v (the conflicting rule in the cluster) as its root, and
its adjacents (the inconsistent rules) as leaves (lines 7–11). The
root of all ICIRs from the Diagnosis Set (DS, 4), is the set of rules
that should be removed to obtain a consistent PIM. Then, v and
its edges are removed from the IG (line 12). If vertices with no
edges are left in the IG, then these vertices are removed (line 13),
since they are consistent by definition (they are rules with no rela-
tions to others). As inconsistencies have been decomposed in pair
wise relations, ICIRs are always formed on two levels.

Definition 3. Independent Cluster of Inconsistent Rules, ICIR. An
ICIR(root, CV) is a two-level tree, rooted in the rule root and where
CV is a set of rules (its leaves). It represents a cluster of mutually
consistent rules, CV, which are at the same time inconsistent with
their root. ICIR(root) is the rule which has the greatest number of
inconsistencies with other rules of the same cluster. Note that the
action ICIR(root) is the opposite of the actions of all of its leaves in CV.

ICIRðroot;CVÞ ()
8Ri 2 CV � Inconsistentðroot;RiÞ^
8Ri;Rj 2 CV ; i–j � :InconsistentðRi;RjÞ
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Definition 4. Diagnosis Set, DS. This is the set of PIM rules that
cause the inconsistencies, and coincide with the root of all ICIRs.

Let ICIRS¼fICIR1; . . . ; ICIRmg be the set of all ICIR of a given RS; then
DS¼fICIR1ðrootÞ; . . . ; ICIRmðrootÞg

A graphical representation of a partial trace of Algorithm 2 from
the previous IG is presented in Fig. 17. During the first iteration, R8
was selected because it had four inconsistencies (the greatest num-
ber of adjacent vertices). It was removed to form the first ICIR tree,
with R8 as root, thus R8 was an inconsistent rule. In the second
iteration, R12 was selected because it had three inconsistencies
(it is the vertex with the largest number of adjacent vertices). Then
it was removed and the second ICIR was formed. Vertices R9, R10,
and R11 were removed from the IG because they had no adjacent
vertices. In the third iteration, R5, R1, R2, R3, and R4 could be se-
lected as the next vertex. The selection of one or other is arbitrary.
In this example, the algorithm selected R5, removed it from the IG
with all its edges and formed the third ICIR. At the end of this iter-
ation the IG was only composed of a cycle of four vertices: R1, R2,
R3, and R4. The algorithm chose to remove R1 in the fourth itera-
tion and R4 in the fifth and last iteration, removing the vertices and
edges, and forming ICIR 4 and ICIR 5, respectively. Since no more
R1

R2

R3

R4

R5

R6

R7

R1

R2

R3

R4

R9

R10

R11

R8

R3R2 R6 R7

ICIR 1

AFTER ITERATION 1

AFTER ITERATION 3

R9

R12

R10 R11

R8

R3R2 R6 R7

ICIR 1 ICIR 2

AFTER ITERATION 5

Fig. 17. Trace of Algorithm
vertices are left in the IG, the algorithm finished with a Diagnosis
Set of cardinality five (|DS| = 5), containing the rules
DS = {R8,R12,R5,R1,R4}, which are the ICIR roots or the PIM rules
that cause an inconsistency with others. R8 and R12 were the most
conflicting.

Now there are two possibilities to give to the engineer. First,
these five rules can be removed from the PIM in order to obtain
a consistent model (this can be easily automated). Second, the ICIR
rules could be checked manually in the PIM in order to remove the
inconsistency. Requirements (CIM) should also be checked to dis-
cover whether the inconsistency comes from the requirements
engineering or from the PIM modelling steps.

The time complexity of Algorithm 2 is bounded by the loop of line
4, which runs as many times as ICIRs are formed (it corresponds to
the cardinality of the Diagnosis Set, |DS|). The worst-case is reached,
as in Algorithm 1, when ruleSetAllow.size() = ruleSetDeny.size() = n/2,
resulting in a |DS| = n/2. In this case, getMaxAdjacencyVertex() (line
7), a maximum calculation, runs in O(n) with the number of vertices
in the graph (the number of inconsistencies). Operations in lines
7–11 run in constant time. removeVertexWithEdges() (line 12) runs
in linear time with the cardinality of its adjacency list (n/2 � 1 in
the worst-case). Finally, removeDisconnectedVertices() (line 13) is
also linear with the number of vertices in the graph at each iteration,
O(n). Thus, the resulting worst-case time complexity of Algorithm 2
is in O(|DS|�(n + n/2 � 1 + n)) = O(n/2�n) = O(n2).
R8
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2 applied to Fig. 15 IG.
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The best case is reached, as in Algorithm 1, when ruleSetAl-
low.size() = n and ruleSetDeny.size() = 0 or vice versa. The IG has
only one vertex, v, connected to all the other vertices. In this case,
|DS| = 1 and the algorithm is in O(n). In an average case the algo-
rithm is in O(|DS|�h), |DS|� h (h is the number of inconsistencies).

Algorithm 2 needs some space to store the ICIRs. Each ICIR
needs space for its root and for the conflictive rules. But note that,
as the algorithm creates the ICIRs, the corresponding vertices and
edges are removed from the IG, and thus at each iteration the only
space needed is to store the adjacency list for the removed vertex.

Note that the described validation step is static, since it is run
prior to PIM to PSM transformation. Verification was used to detect
and diagnose inconsistencies in the first stage of the process, lim-
iting the propagation of these problems to later phases. If incom-
plete, imprecise or inconsistent models were not detected during
the PIM construction stage, there would be propagation of these
problems to the executable code.

5.3. Experimental results

In order to test the efficiency of the proposed algorithms empir-
ically, and to discover their suitability for real environments, sev-
eral tests were conducted. These tests use real PIMs taken
directly from production rule sets in an inverse engineering ap-
proach. These rule sets were taken from IPTables rule sets using
a Java parser and transformation tool which is available upon re-
quest. The measured time does not take into account XML PIM
parsing time, but only inconsistency diagnosis. Experiments were
performed on a Java implementation with Sun JDK 1.6.0_03 64-
Bit Server VM, on an isolated HP Proliant 145G2 (AMD Opteron
275 2.2 GHz, 2 Gb RAM DDR400). Execution times are in ms.

The performance analysis conducted represents a wide spec-
trum of cases, with ACLs ranging in size from 50 to 5000 rules,
and percentages of allow and deny rules from 2% to 65%. Remem-
ber that the worst-case is obtained when a rule set has 50% allow
and 50% deny rules. In real firewall ACL models, the number of
deny and allow rules will be very different. As real firewall ACLs
are usually designed with a deny-all default policy, most rules will
have allow actions. Note that as the percentage of allow or deny
rules decreases, the number of inconsistencies does not necessar-
ily, because the number of inconsistencies depends on how many
rules with different actions intersect and not on the number of
rules with allow or deny actions. The result is that the worst-case
would not normally happen in real firewall ACLs, and thus experi-
mental results are nearly the best case.

Results show (Fig. 18) that the time is under 70 ms for models
of 5000 rules or less. For models around the sizes used by Al-Shaer
and García-Alfaro in their examples, that is between 0 and 80 rules,
the time is between 0 (0 rules) and 2 ms (80 rules). Even for rule
sets with 800 rules (used in Fireman), the time is under 15 ms.
Fig. 18. Performance evaluation with real models.
As real rule sets have been used, these graphs represent average
cases. We think that the theoretical complexity analysis and the
empirical results presented prove the feasibility of the proposal
in real environments.

6. Conclusions and future works

In this paper, two of the traditional firewall rule set problems
have been revisited: design and consistency. We have analyzed dif-
ferent solutions to each of these problems, and proposed a new ap-
proach based on Model-Based Development ideas (see Fig. 19).

In this new approach, access control requirements are obtained
from a requirements engineering phase, forming a Computation
Independent Model (CIM). This model is then translated in a man-
ual process into a Platform Independent Model for firewall access
control lists. Then, this PIM can be translated into different Plat-
form-Specific Models, each one representing an underlying firewall
platform. Finally, rule sets can be generated directly from these
PSMs. This paper is focuses only on the PIM model. Details relating
to how each particular firewall platform executes the resulting rule
set should be represented in the PSM, which is not the focus of
the paper.

We have shown that one of the disadvantages of the MBD pro-
cess is the automatic generation of code without prior verification
or validation (V&V) of models, because the generated code will car-
ry all errors the models might possibly have. We have proposed the
inclusion of a mandatory automatic static verification phase in the
MBD process for firewalls. In this phase, the PIM is automatically
diagnosed for inconsistencies before transformation to PSM and
then to code. If inconsistencies are detected, then correction of
the model can be performed in the PIM or in the CIM. Error correc-
tion in early stages of the MDB process is cheap compared to the
cost associated with correcting errors in the production phase. In
addition, errors produced in the production phase usually have a
huge impact on the reliability and robustness of the generated
code and final system. In the proposed MBD approach for firewalls,
the resulting rule set will be consistent.

We have analyzed several widely used firewall languages in or-
der to acquire knowledge about the possible filtering selectors that
can be used in the condition part of a rule, and the possible syn-
taxes that can be used by end-users. We have discussed the possi-
bilities of a bottom-up approach to building a PIM: factorization,
aggregation, and customization. We have opted for the customiza-
tion approach, since it is the most flexible. Then we have proposed
a PIM and a XML Schema Definition for it.

Finally, we have proposed a method to diagnose the inconsis-
tent rules in the PIM. We have given two algorithms that have a
combined worst-case quadratic time complexity. However, com-
plexity is never near the worst case in real firewall ACLs. A theoret-
ical complexity analysis has been provided, and empirical results
with models ranging from 0 to 5000 rules have been provided in
order to test the feasibility of our proposal in real environments.

To the best of our knowledge, this is the first time that the prob-
lem of automatic rule set generation for firewall rule sets has been
modelled on a structured Model-Based Development approach.
Our proposal also includes a verification stage in order to diagnose
consistency faults in early stages of the process, which is also to the
best of our knowledge, the first time that error detection has been
moved to early stages in automatic firewall rule set generation.

In future works the MBD process should be completed. An anal-
ysis of firewall platforms is needed in order to construct the PSMs.
Redundancy detection and validation techniques could also be
used in order to improve the quality of the resultant rule set. In
addition, the use of UML as a model to represent access control
requirements and automatic transformation into the PIM should
be considered, since it could improve initial PIM quality.



Fig. 19. PIM XML Schema Definition.
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Annex I. Comparative analysis of firewall filtering selectors

This analysis is related to the condition part of a rule, and refers
to the conditions that may be matched against a packet that arrives
at the firewall, or the selectors used for the condition part of the
rule. Each firewall language has a different syntax for each selector,
and permits a different number and types of them. The analysis is
divided in several sections, which analyze one aspect of firewall fil-
tering. The analysis of actions to be performed on a packet is also
included.

I.1. Source and Destination addresses (Table I.1)

The left column represents the syntax that each firewall lan-
guage can use, as follows:

� IP. IP address in canonical form a1.a2.a3.a4, where each ax is an
integer in [0..255]

� Identifier. A variable name with an assigned value (with permit-
ted syntax)

� Block. Block of IP addresses in CIDR format
� Range. Range of continuous IP addresses, in the form

o1.o2.o3.o4-a1.a2.a3.a4
� Domain. A domain name
� Table. A table name. The contents of the table is a list of IP

addresses
� List. A list name representing a list of IP addresses
� Logic OR/NOT expression. A list of IP addresses composed by

OR–NOT logic operators
� Interface. The name of a network interface of the underlying

platform, referring to the block of IP addresses statically
assigned to that interface

� Block interface. The name of a network interface of the underly-
ing platform, referring to the block of IP addresses statically
assigned to that interface, plus a CIDR netmask

� DHCP interface. The name of a network interface whose IP
address is obtained via DHCP
Table I.1
Source and Destination addresses syntax

iptables PIX

Src/Dst IP Optional Mandatory
IP

p p

Identifier
Block

p p

Range
p

Domain
Table
List
Logic OR/NOT expression
Interface
Block interface
DHCP interface
Negation

p

Wildcard
p p

Default value Any ip

Table I.2
Interface syntax

iptables PIX ipfilter

Interface Optional Mandatory Optional
Identifier

p p p

Group identifier
p p

List
IP address
Negation

p

Wildcard
p p

Default value Any interface Any inter
� Any IP. This is a wildcard ‘*’ representing all IP space
� Negation. A modification to one of the previous values, repre-

senting the opposite of the specified in the value
� Default value. If permitted to be unspecified, the default taken

by this selector is the wildcard ‘*’

I.2. Interface (Table I.2)

This selector represents the interface which the packet is com-
ing from or is going through. The left column represents the syntax
that each firewall language can use as follows:

� Identifier. A variable with the name of an interface used by the
platform

� Group identifier. A variable name with an assigned value, repre-
senting a group of IP interfaces

� IP Address. The IP address of the network assigned to an
interface

I.3. Interface direction (Table I.3)

The left column represents the syntax that each firewall lan-
guage can use, as follows:

� In and Out. Represent incoming traffic or outgoing traffic

I.4. Protocol (Table I.4)

I.5. Source and Destination ports (Table I.5)

These two selectors are only valid when protocol is TCP or UDP.
Destination port represents the port of the service, and source port
represent the opened port at the sender.
ipfilter ipfw pf Fw-1

Optional Mandatory Optional Optionalp p p p
p

p p p p
p

p p p p
p
p p

p
p
p
p

p p p
p p p p

Any ip Any ip Any ip

ipfw pf Fw-1

Optional Optional Optionalp p p
p p

p
p p
p p
p p p

face Any interface Any interface Any interface



Table I.3
Interface direction syntax

iptables PIX ipfilter ipfw pf Fw-1

Direction Implicit Mandatory Mandatory Optional Optional Optional
In

p p p p p p

Out
p p p p p p

Negation
p

Wildcard
p p p p

Default value Any direction Any direction Any direction Any direction

Table I.4
Protocol syntax

iptables PIX ipfilter ipfw pf Fw-1

Protocol Optional Mandatory Optional Mandatory Optional Optional
Number

p p p p p p

Identifier
p p p

TCP
p p p p p p

UDP
p p p p p p

TCP/UDP
p

ICMP
p p p p p p

ICMP6
p

List
p p p

Logic OR/NOT expression
p

Negation
p p p

Wildcard
p p p p p p

Default value Any protocol Any protocol Any protocol Any protocol

Table I.7
TCP options syntax

iptables PIX ipfilter ipfw pf Fw-1

TCP options Optional Optional
Number

p p

List
p

Negation
p p

Default value Do not inspect Do not inspect
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I.6. TCP flags (Table I.6)

This selector is used if the matching engine supports inspection
of TCP flags of packets. Of course, this only works if protocol is TCP.
TCP flags are SYN, ACK, FIN, RST, URG, and PSH. It is possible to
match all flags or none of them.

I.7. TCP options (Table I.7)

This selector is also only used if protocol is TCP, and if the
underlying engine supports matching against TCP Options.
Table I.5
Source and Destination port syntax

iptables PIX ipfilter ipfw pf Fw-1

Src/Dst port Optional Optional Optional Optional Optional Optional
Number

p p p p p p

Identifier
p p p p p

Range – p Using negation
p p

Using negation
p

Using negation
Range < p Using negation

p p p p

Range > p Using negation
p p p p

Range 6 p
p p p

Using negation
Range P p

p p p
Using negation

Range [p1,p2]
p p p p p p

Range (p1,p2)
p p

Range)p1,p2( Using negation
p

Using negation
p

Using negation
Block

p

List
p p p

Logic OR/NOT expression
p

Negation
p p p

Wildcard
p p p p p p

Default value Any port Any port Any port Any port Any port Any port

Table I.6
TCP flags syntax

iptables PIX ipfilter ipfw pf Fw-1

TCP flags Optional Optional Optional Optional
Active or inactive flags

p p p p

Negation
p p

Default value Do not inspect Do not inspect Do not inspect Do not inspect



Table I.8
ICMP type syntax

iptables PIX ipfilter ipfw pf Fw-1

ICMP type Optional Optional Optional Optional Optional Optional
Number

p p p p p

Identifier
p p p p p p

List
p

Negation
p p

Default value Do not inspect Do not inspect Do not inspect Do not inspect Do not inspect Do not inspect

Table I.11a
Source MAC address syntax

iptables PIX ipfilter ipfw pf Fw-1

Source MAC Optional Optional
MAC

p p

Any MAC
p

Negation
p p

Default value Any MAC Any MAC

Table I.11b
Destination MAC address

iptables PIX ipfilter ipfw pf Fw-1

Destination MAC Optional
MAC

p

Any MAC
p

Negation
p

Default value Any MAC

Table I.12
Type of Service syntax

iptables PIX ipfilter ipfw pf Fw-1

ToS Optional Optional Optional Optional
Number

p p p p

HEX number
p p p p

Identifier
p p p p

List
p

Negation
p p

Default value Any ToS Any ToS Any ToS Any ToS
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I.8. ICMP type (Table I.8)

This selector is used if protocol is ICMP. As all analyzed firewall
platforms support ICMP, then this selector can be used by all of
them in order to select the type of the ICMP message.

I.9. IP options (Table I.9)

This selector is also only used if protocol is IP, and if the under-
lying engine supports matching against IP Options.

I.10. IP version (Table I.10)

PF firewall supports filtering of IPv4 and IPv6 protocols.

I.11. Source and Destination MAC addresses (Table I.11a and I.11b)

I.12. Type of Service (ToS) (Table I.12)

Some platforms support the use of ToS for filtering: Minimize-
Delay, Maximize-Throughput, Maximize-Reliability, Minimize-
Cost, and Normal-Service.

I.13. Time to Live (TTL) (Table I.13)

I.14. Actions (Table I.14)

Some firewall platforms permit packet rejection with and with-
out acknowledgement to the sender. Reject does send ACK, but
Table I.9
IP options syntax

iptables PIX ipfilter ipfw pf Fw-1

IP options Optional
ssrr

p

lsrr
p

rr
p

ts
p

List
p

Negation
p

Default value Do not inspect

Table I.10
IP version syntax

iptables PIX ipfilter ipfw pf Fw-1

IP version Optional
IPv4

p

IPv6
p

Negation
Default value Automatic

Table I.13
Time to Live syntax

iptables PIX ipfilter ipfw pf Fw-1

TTL Optional Optional Optional
Number

p p p

Range: < n
p

Range: > n
p

Range: [ttl1, ttl2]
p

List
p

Negation
p p

Default value Any TTL Any TTL Any TTL

Table I.14
Action syntax

Actions iptables PIX ipfilter ipfw pf Fw-1

Allow
p p p p p p

Deny
p p p p p p

Reject
p p p p p
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deny does not. The only platform that does not support rejection
with ACK is Cisco PIX.

Annex II. Firewall PIM represented as XML Schema

The PIM is composed of a list of Condition/Action rules. The PIM
should have at least one rule. This is because there is a required
rule at the end of the PIM that represents the default policy that
should be taken if no match is found in the PIM.

The condition part of the rule uses the selectors presented in Ta-
ble 3, which also have specific syntaxes. These selectors are Source
and Destination IP (mandatory), Source and Destination Ports (only
if protocol is TCP or UDP), Protocol (mandatory), ICMP Type (only if
protocol is ICMP), and finally interface and direction (optional).
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