
Higher Order Mutation Testing

by

Yue Jia

Submitted in fulfilment of the requirements for the

degree of Doctor of Philosophy in Computing of UCL

Department of Compuer Science

University College London

University of London

July 2013

c© 2013 Yue Jia

1

Declaration

I, Yue Jia, confirm that the work presented in this thesis is my own. Where infor-

mation has been derived from other sources, I confirm that this has been indicated

in the thesis.

The work presented in this thesis is original work undertaken between Septem-

ber 2007 and August 2010 at King’s College, University of London and between

September 2010 and January 2013 at University College London, University of Lon-

don. Some of the work presented in this thesis has previously been published in the

following publications:

1. Yue Jia and Mark Harman, “An Analysis and Survey of the Development of

Mutation Testing”, IEEE Transactions on Software Engineering, vol. 37 no.

5, September 2011, pp. 649 – 678. [Google Scholar Citations: 165]

2. Mark Harman, Yue Jia and William Langdon, “Strong higher order mutation-

based test data generation”, in Proceedings of the 19th ACM SIGSOFT sym-

posium and the 13th European conference on Foundations of software engineer-

ing (ESEC/FSE ’11), Szeged, Hungary, 05-09 September 2011, pp. 212–222.

[Google Scholar Citations: 15]

3. Yue Jia and Mark Harman, “Higher Order Mutation Testing,” Journal of

Information and Software Technology, vol. 51, no. 10, October 2009, pp.

1379–1393. [Google Scholar Citations: 45]

4. Yue Jia and Mark Harman, “Constructing Subtle faults Using Higher Order

Mutation Testing”, in Proceedings of the 8th International Working Confer-

ence on Source Code Analysis and Manipulation (SCAM’08), Beijing, China,

28–29 September 2008, pp.249–258. (Best Paper Award Winner) [Google

Scholar Citations: 41]

2

5. Yue Jia and Mark Harman, “Milu: A Customizable, Runtime-Optimized

Higher Order Mutation Testing Tool for the Full C Language”, in Proceedings

of the 3rd Testing Academia and Industry Conference - Practice and Research

Techniques (TAIC PART’08), Windsor, UK, 29–31 August 2008, pp.94–98.

[Google Scholar Citations: 30]

Additionally, the following work has also been published during the programme of

study, however they do not feature in this thesis:

6. Mark Harman and Bill Langdon and Yue Jia and David White and Andrea Ar-

curi, and John Clark, “The GISMOE challenge: Constructing the Pareto Pro-

gram Surface Using Genetic Programming to Find Better Programs” (keynote

paper), in Proceedings of the 27th IEEE/ACM International Conference on

Automated Software Engineering (ASE’12), Essen, Germany, September 3rd-

7th, 2012, pp. 1–14.

7. Paolo Tonella, Alessandro Marchetto, Cu Duy Nguyen, Yue Jia, Kiran Lakho-

tia, Mark Harman, “Finding the Optimal Balance between Over and Under

Approximation of Models Inferred from Execution Logs”, in Proceedings of

the 5th IEEE International Conference on Software Testing, Verification and

Validation (ICST’12), Montreal, Canada, April 17-21 2012, pp. 21-30.

8. Mark Harman and Yue Jia and Yuanyuan Zhang, “App Store Mining and

Analysis: MSR for App Stores” (short paper), in Proceedings of the 9th Work-

ing Conference on Mining Software Repositories (MSR ’12), Zurich, Switzer-

land, 2-3 June 2012, pp. 108–111

9. Bill Langdon, Mark Harman and Yue Jia, “Efficient Multi Objective Higher

Order Mutation Testing with Genetic Programming”, Journal of Systems and

Software, vol. 83, no. 12, July 2010, pp.2416–2430.

3

10. Mark Harman, Yue Jia and William B. Langdon, “A Manifesto for Higher

Order Mutation Testing”, in Proceedings of the 5th International Workshop

on Mutation Analysis (MUTATION’10), Paris, France, 6th April 2010, pp.80–

89.

11. Jens Krinke, Nicolas Gold, Yue Jia and Dave Binkley, “Cloning and Copying

between GNOME Projects”, in Proceedings of the 7th IEEE Working Confer-

ence on Mining Software Repositories (MSR’10), Cape Town, South Africa,

2-3 May 2010, pp.98–101.

12. Jens Krinke, Nicolas Gold, Yue Jia and Dave Binkley, “Distinguishing Copies

from Originals in Software Clones”, in Proceedings of the 4th International

Workshop on Software Clones (IWSC’10), Cape Town, South Africa, 8 May

2010, pp.41–48.

13. Bill W. Langdon, Mark Harman and Yue Jia, “Multi Objective Mutation

Testing with Genetic Programming”, in Proceedings of the Testing: Academic

and Industrial Conference - Practice and Research Techniques 2009 (TAIC

PART’09), Winsor, UK, 4–6 September 2009, pp.4–6.

14. Yue Jia, Dave Binkley, Mark Harman, Jens Krinke and Makoto Matsushita, “

KClone: A Proposed Approach to Fast Precise Code Clone Detection”, in

Proceedings of the 3rd International Workshop on Software Clones (IWSC’09),

Kaiserslautern, Germany, 24 March 2009, pp.12–16.

4

Abstract

Mutation testing is a fault-based software testing technique that has been studied

widely for over three decades. To date, work in this field has focused largely on

first order mutants because it is believed that higher order mutation testing is too

computationally expensive to be practical. This thesis argues that some higher

order mutants are potentially better able to simulate real world faults and to reveal

insights into programming bugs than the restricted class of first order mutants.

This thesis proposes a higher order mutation testing paradigm which combines valu-

able higher order mutants and non-trivial first order mutants together for mutation

testing. To overcome the exponential increase in the number of higher order mutants

a search process that seeks fit mutants (both first and higher order) from the space

of all possible mutants is proposed.

A fault-based higher order mutant classification scheme is introduced. Based on

different types of fault interactions, this approach classifies higher order mutants

into four categories: expected, worsening, fault masking and fault shifting. A search-

based approach is then proposed for locating subsuming and strongly subsuming

higher order mutants. These mutants are a subset of fault mask and fault shift

classes of higher order mutants that are more difficult to kill than their constituent

first order mutants. Finally, a hybrid test data generation approach is introduced,

which combines the dynamic symbolic execution and search based software testing

approaches to generate strongly adequate test data to kill first and higher order

mutants.

5

Acknowledgements

I would like to thank my supervisor Professor Mark Harman for his understand-

ing, guidance, endless support and advice and for providing me the opportunity

to undertake my PhD. I would like to thank my second supervisors, Nicolas Gold

and Jens Krinke, for their support and comments. I would also like to thank Bill

Langdon and Kiran Lakhotia for their helpful discussions.

I am very grateful to Dave Binkley for his friendly, insightful and interesting discus-

sions. Thanks also go to Pedro Reales Mateo for thoughtful discussions on mutation

testing. I am thankful to Matthew Patrick for his careful proofreading of this thesis

and valuable comments.

I would like to thank all my colleagues at the Centre for Research in Evolution,

Search and Testing for their general support and discussions. I would also like to

thank the various anonymous referees for their comments on papers submitted for

publication; their comments and feedback have been extremely beneficial.

I gratefully acknowledge the Overseas Research Students Awards Scheme program,

EPSRC SEBASE project studentship and UCL CS department scholarship for the

financial support I have received.

I express my particular appreciation to my parents, who have always stood by me

in my best and worst times. Finally, to my fiancée Yuanyuan, thank you, I could

not have achieved this without your continual support through these difficult and

stressful times.

6

Contents

Declaration . 2

Abstract . 4

Acknowledgements . 6

1 Introduction 14

1.1 Mutation Testing with Examples . 15

1.1.1 Problems with Mutation Testing 18

1.2 Higher Order Mutation as Solution 20

1.3 Problems of the Thesis . 23

1.4 Aims and Objectives . 24

1.5 Contributions of the Thesis . 25

1.6 Organisation of the Thesis . 26

2 Literature Survey 29

2.1 The Theory of Mutation Analysis . 29

2.1.1 Fundamental Hypotheses . 29

2.1.2 The Process of Mutation Analysis 32

2.2 Cost Reduction Techniques . 35

2.2.1 Mutant Reduction Techniques 36

2.2.2 Execution Cost Reduction Techniques 40

2.3 Equivalent Mutant Detection Techniques 46

7

2.4 Applications . 49

2.4.1 Program Mutation . 49

2.4.2 Specification Mutation . 55

2.4.3 Other Testing Applications . 59

2.5 Empirical Evaluation . 63

3 Analysis of the Development of Mutation Testing 68

3.1 Publication Trends . 69

3.2 Development Trends . 71

3.3 Tools for Mutation Testing . 79

3.3.1 Academic Tools . 82

3.3.2 Industry and Open Source Tools 85

3.4 Discussion . 87

4 Higher Order Mutants Classification 89

4.1 Higher Order Mutant Classification 90

4.1.1 Second Order Mutant Case 91

4.1.2 Higher Order Mutant Classification 94

4.2 Milu: Higher Order Mutation Tool 99

4.3 Empirical Study . 102

4.3.1 Research Questions . 102

4.3.2 Subject Programs . 103

4.3.3 Mutation Operators . 105

4.4 Results and Analysis . 106

4.4.1 Answer to RQ1 . 106

4.4.2 Answer to RQ2 . 107

4.4.3 Answer to RQ3 . 111

8

5 Searching for Higher Order Mutants 113

5.1 Subsuming Higher Order Mutants . 115

5.2 Advantages of Higher Order Mutant Testing 119

5.3 Algorithm . 122

5.4 Empirical Study . 128

5.5 Results and Analysis . 135

5.6 Discussion . 143

5.6.1 Threats to Validity . 143

5.6.2 Related Work . 144

6 SHOM: Strong Mutation Based Test Data Generation 148

6.1 Strongly Killing Higher Order Mutants Using DSE and SBST 152

6.1.1 Weakly Killing Mutants . 154

6.1.2 Handling Higher Order Mutants 155

6.1.3 Strongly Killing Mutants . 158

6.1.4 Preserving Weak Adequacy Using Constrained Search 160

6.2 SHOM Implementation . 161

6.3 Empirical Study . 164

6.4 Results and Analysis . 171

7 Conclusions and Future Work 180

7.1 Summary of Achievements . 181

7.2 Summary of Future Work . 183

A Subject Programs used in the Literature of Mutation Testing 187

Bibliography 195

9

List of Figures

2.1 Generic Process of Mutation Analysis [213] 32

3.1 Mutation Testing Publications from 1978-2009 (* indicates years in

which a mutation workshop was held.) 70

3.2 Theoretical Publications vs. Practical Publications (Cumulative view) 71

3.3 Theoretical Publications vs. Practical Publications 72

3.4 Overview of the Chronological Development of Mutant Reduction

Techniques . 73

3.5 Percentage of publications using each Mutant Reduction Technique . 73

3.6 Publications of the Applications of Mutation Testing 74

3.7 Percentage of publications addressing each language to which Muta-

tion Testing has been applied . 75

3.8 The largest program applied for each year 76

3.9 New programs applied for each year. 76

3.10 Laboratory programs vs. Real Programs 77

3.11 The number of tools introduced for each year 81

10

4.1 Second order mutant case Venn diagram 91

4.2 Example of the bar notation ABCDEFGH. The shaded area depicts

empty test sets. The diagram shows that the higher order mutant h

is killed by the union of test sets that kill first order mutants f1 and

f2. (See Table 4.1 for the explanations of test sets A - H) 93

4.3 Tree of Classes . 94

4.4 Second order classification tree . 95

4.5 MiLu mutation processes . 101

4.6 A Comparison of categories of 2nd order mutants and 3rd to 5th order

mutants. 109

5.1 Subsuming higher order mutant classification. 117

5.2 Test Effort Reduction Example . 121

5.3 Data representation for a second order mutant. 122

5.4 Two types of neighbour moves for hill climbing algorithm. 126

5.5 Single point crossover for the genetic algorithm 128

5.6 Three types of mutation operators for the genetic algorithm 130

5.7 Overall Type Distribution . 137

5.8 Algorithm comparison . 142

6.1 Illustrative example: two dumb first order mutants combine to make

a more subtle second order mutant 154

6.2 The SHOM Architecture . 165

11

List of Tables

1.1 Examples of interesting higher order mutants 21

2.1 A Example of Mutation Operation 33

2.2 The first set of mutation operators: The 22 “Mothra” Fortran Muta-

tion Operators (adapted from [148]) 34

2.3 A Example of Equivalent Mutation 46

2.4 Empirical Evaluation of Mutation Testing 64

3.1 Subject Programs by Application . 78

3.2 Summary of Published Mutation Testing Tools 80

3.3 Classification of Mutation Testing Tools 82

4.1 Description of the unique test sets . 92

4.2 Description of the HOM classes . 96

4.3 Description of special second order classes 99

4.4 Selected Subject Programs . 105

4.5 Selected C mutation operators . 106

12

4.6 Distribution of different classes for second order mutants 108

4.7 Distribution of different classes for the ten samples of third to fifth

order mutants . 110

4.8 Efficiency of running MiLu . 111

5.1 Selected Subject Programs . 134

5.2 The proportion of higher order mutants 136

5.3 Killing Test Cases for the Triangle HOM and its FOMs 141

6.1 Mutation-based Test Data Generation 150

6.2 The seven larger programs used in the experiments 166

6.3 Ten smaller programs included for backward compatibility with pre-

vious studies. 167

6.4 The results for SHOM’s first order and second order adequacy. . . . 171

6.5 The results for SHOM efficiency experiments. 177

A.1 Programs used in Empirical Studies 187

13

Chapter 1

Introduction

Software testing is an important yet expensive part of the software development life

cycle. Early studies suggest that testing can comprise up to 50% of the software

development budget [22], and a recent survey revealed that billions of dollars are

routinely wasted on large software projects due to inadequate testing [47]. A fun-

damental limitation of software testing is that it is impossible to enumerate all the

test inputs explicitly; this is because for many software systems there are effectively

an infinite number of test inputs [11]. A means of overcoming this limitation is

to propose testing criteria in order to assist the software tester in choosing which

test inputs to use. Testing criteria are rules that specify properties that test data

must satisfy. For example, statement coverage requires that test inputs cover every

statement of the software system under testing, and branch coverage requires that

test inputs cover each branch of the predicate points of the software system under

testing. In addition to generating test data, test criteria have been used to assess

software system quality as well as to determine when testing should cease [11]. As a

result, testing criteria have become an effective means of increasing the confidence

in the correctness of a software system [22].

14

Mutation testing is a fault-based testing technique which provides a testing criterion;

it can be used to measure the effectiveness of a test set in terms of the ability of the

test set to detect faults. A recent work by Li et al. [161] compared a mutation testing

criterion with three other commonly used criteria: prime path coverage, edge-pair

coverage and all-uses. The results suggest that the mutation testing criterion not

only finds more faults than other criteria, but is also the most efficient criterion.

1.1 Mutation Testing with Examples

The history of mutation testing can be traced back to 1971 in a publication by

the student Richard Lipton [162] as well as in publications from the late 1970s by

DeMillo et al. [68] and Hamlet [114]. The general principle behind mutation testing

is that artificial faults can be used to represent common programming mistakes. By

choosing carefully the location of the program and the types of faults, it is possible

to simulate any test adequacy criteria. Such faults are seeded deliberately into the

original program by simple syntactic changes to create a set of faulty programs called

mutants, each containing a different syntactic change.

In this introduction chapter, the TCAS program will be used as an example to illus-

trate the basic concepts and problems of mutation testing. The TCAS program is a

traffic collision avoidance system which is designed to avoid aircraft collision. The

version that will be used here is from the ‘Siemens Suite’ in the Software-artifact

Infrastructure Repository (SIR) [78]. The ‘universe’ test pool for the TCAS program

will also be taken from the SIR. It includes 1608 tests achieving adequate statement

coverage, branch coverage and du-path coverage.

15

1 int a l t s e p t e s t ()

2 {

3 bool enabled , tcas equ ipped , intent not known ;

4 bool need upward RA , need downward RA ;

5 int a l t s e p ;

6 enabled = High Conf idence && (Own Tracked Alt Rate <= OLEV)

7 && (Cur Ver t i ca l Sep > MAXALTDIFF) ;

8 tcas equ ipped = Other Capab i l i ty == TCAS TA;

9 intent not known = Two of Three Reports Val id

10 && Other RAC == NO INTENT;

11 a l t s e p = UNRESOLVED;

12 i f (enabled && ((tcas equ ipped

13 && intent not known) | | ! t ca s equ ipped))

14 {

15 need upward RA = Non Cross ing Biased Cl imb ()

16 && Own Below Threat () ;

17 need downward RA = Non Cross ing Biased Descend ()

18 && Own Above Threat () ;

19 i f (need upward RA && need downward RA)

20 a l t s e p = UNRESOLVED;

21 else i f (need upward RA)

22 a l t s e p = UPWARDRA;

23 else i f (need downward RA)

24 a l t s e p = DOWNWARDRA;

25 else

26 a l t s e p = UNRESOLVED;

27 }

28 return a l t s e p ;

29 }

Listing 1.1: The main function of the TCAS program [78]

16

Listing 1.1 shows the original source code of the main function of the TCAS program.

Listing 1.2 shows some example first order mutants generated for this function. In

Listing 1.2, the mutants FOM 1, FOM 2 and FOM 4 are generated by negation

of a logical expression, while mutant FOM 3 is generated by replacing the ‘==’

operator with the ‘! =’ operator.

FOM 1 :

17 need downward RA = ! (Non Cross ing Biased Descend ()

18 && Own Above Threat ()) ;

FOM 2 :

19 i f (! (need upward RA && need downward RA))

FOM 3 :

8 tcas equ ipped = Other Capab i l i ty != TCAS TA;

FOM 4 :

13 && intent not known) | | ! (! t ca s equ ipped)))

Listing 1.2: Four examples of first order mutants

Based on the types of faults seeded, mutants can be classified as First Order Mutants

(FOMs) and Higher Order Mutants (HOMs). First order mutants seed only simple

faults, generated by a single syntactic change to the original program. For example,

FOM 1, FOM 2, FOM 3 and FOM 4 in Listing 1.2 are first order mutants. Higher

order mutants combine simple first order faults to simulate more complex faults. For

example, an higher order mutant can be created by combining any two or more first

order mutants in Listing 1.2. Historically, mutation testing was always concerned

with first order mutants [68, 114], because of the exponential number of higher order

mutants that can be generated from first order mutants.

17

To assess the quality of a given test set, the latter should be executed against the

generated mutants. If the result of running a mutant is different from the result

of running the original program for any test in the input test set, then the mutant

is said to be ‘killed’, otherwise it is said to have ‘survived’. One outcome of the

mutation testing process is the mutation score, which is the ratio of the number of

detected faults over the total number of the seeded faults and, therefore, indicates

the quality of the input test set.

Mutation testing has a wide range of applications in software testing. It can be used

for testing software at the unit level, the integration level and the specification level.

Mutation testing has been applied to many programming languages as a white box

unit test technique, for example it has been used in Fortran programs [43, 39, 163, 4,

202, 148], Ada programs [31, 214], C programs [6, 60, 246, 270, 245, 104, 268], Java

programs [144, 143, 145, 146, 48, 49, 167, 168], C# programs [72, 73, 74, 75, 76], SQL

code [46, 264, 265, 244] and AspectJ programs [12, 13, 18, 97]. Mutation testing has

also been used for integration testing [60, 62, 58, 59]. Besides using mutation testing

at the software implementation level, it has also been applied at the design level to

test the specifications or models of a program. For example, at the design level,

mutation testing has been applied to Finite State Machines [95, 125, 21, 29], State

Charts [101, 262, 289], Estelle Specifications [253, 254], Petri Nets [93], Network

Protocols [269, 140, 248, 230], Security Policies [157, 172, 187, 186, 229] and Web

Services [159, 215, 288, 160, 158, 276].

1.1.1 Problems with Mutation Testing

Although mutation testing is able to effectively assess the quality of test sets, it still

suffers from certain problems, such as the following detailed below.

18

1. High computational cost. A major factor inhibiting mutation testing from

becoming a practical testing technique is the high computational cost of exe-

cuting mutants against test sets. This is due to the large number of mutants

generated from even simple programs. For example, it is easy to generate 266

first order mutants for the TCAS program, which is approximately 100 lines of

code, and these mutants need to be executed against 1608 tests.

2. Trivial mutants. Traditional mutation testing has only applied first order

mutants. However, many of the first order mutants generated by these sim-

ple syntactic fault insertions are readily killed by the simplest of test cases

executed, leading to much wasted effort killing rather trivial mutants [11].

As a result, many mutation testers observe that even the most trivial, small

and unimaginative test suite will kill a very large proportion of the first order

mutants.

3. Equivalent mutants (human effort). If a mutant and the original pro-

gram are semantically identical, then the mutant is said to be ‘equivalent’; no

test case can kill it. Equivalent mutants are a problem for mutation testing,

because equivalence is undecidable, making it difficult to ascertain whether a

surviving mutant is killable, as demonstrated by Budd and Angluin [38]. Thus

the detection of equivalent mutants typically involves additional human effort.

4. Oracle (human effort). The human oracle problem [278] refers to the pro-

cess of checking the original program’s output with each test case. Strictly

speaking, this is not a problem unique to mutation testing. In all forms of

testing, once a set of inputs has been arrived at, there remains the problem

of checking the output [278]. However, mutating testing is effective precisely

because it is a demanding test, and this can lead to an increase in the number

of test cases, thereby increasing the oracle cost. The oracle cost is often the

most expensive part of the overall test activity.

19

Although it is impossible to solve these problems completely, with existing advances

in mutation testing, the process of mutation testing can be automated, and the run-

time can allow for reasonable scalability, as the next chapter will show. This thesis

will focus on the investigation of higher order mutants and apply them to ease some

of the problems discussed here.

1.2 Higher Order Mutation as Solution

The view of mutation testing as a process of inserting a single fault into a program

under test is established firmly in the literature [68, 4, 196, 197]. This view also

pervades the collective subconsciousness of the research community. It is widely

believed that higher order mutants are far too numerous to be practical as a source

of simulated faults [68, 4]. Furthermore, many might claim that the coupling effect

means that higher order mutants are most likely to be unimportant because they

are all coupled to first order mutants [196, 197].

However, recent empirical research on fault localisation [231, 88] suggests that many

subtle faults are more like higher order mutants in real world programs. Pu-

rushothaman and Perry [231] found that 90% of post release faults are, in fact,

complex faults in the large AT&T switch system. These complex faults can only

be fixed by several changes to the syntax of the program at several different places,

which can be represented easily by higher order mutants. Similarly, Eldh et al.

[88] found that in the Ericsson middleware more than 50% of the faults are com-

plex. Therefore, it can be hypothesised that some of higher order mutants actually

represent subtle faults, and they may be potentially useful in mutation testing.

Table 1.1 shows two examples of such interesting higher order mutants. The higher

order mutant HOM 1 is created by combining two first order mutants FOM 1 and

20

Table 1.1: Examples of interesting higher order mutants

Mutants Changes No. of

Killing

Tests

Why interesting?

FOM 1 see Listing 1.2 886 N/A

FOM 2 see Listing 1.2 269 N/A

HOM 1 FOM 1 + FOM 2 125 It is much harder to kill HOM 1 than

FOM 1 and FOM 2, and any of the tests

which kills HOM 1 can kill both FOM 1

and FOM 2, but not vice versa.

FOM 3 see Listing 1.2 224 N/A

FOM 4 see Listing 1.2 260 N/A

HOM 2 FOM 3 + FOM 4 40 It is much harder to kill HOM 2 than

FOM 3 or FOM 4, and none of the tests

which kill FOM 3 and FOM 4 can kill

HOM 2.

FOM 2. As shown in Table 1.1, FOM 1 is killed by 886 tests, and FOM 2 is killed

by 269 tests. However, HOM 1 is killed by 125 tests only, and, thus, it is much

more difficult to kill than either FOM 1 or FOM 2. This is caused by the fact

that the two faults represented by FOM 1 and FOM 2 mask each other. As shown

in Listing 1.2, FOM 1 introduces a fault which negates the value of the variable

‘need downward RA’ on line 17. However, the effect of this fault is partially masked

by the fault in FOM 2 which negates the logical expression ‘need upward RA &&

need downward RA’. Clearly HOM 1 requires fewer tests to be killed than FOM 1

and FOM 2 and is, thus, more subtle. Such higher order mutants might have

survived if only first order mutants were considered when generating test cases.

21

HOM 1 is also a strongly subsuming higher order mutant; a strongly subsuming

higher order mutant is killed only by a subset of the intersection of test cases that

kill each first order mutant from which it is constructed. On examination of all 125

tests that kill HOM 1, it was found that any of these tests are guaranteed to kill

both FOM 1 and FOM 2. Therefore, HOM 1 can replace FOM 1 and FOM 2

without loss of test effectiveness. However, this is not true the other way round.

There exist test sets that kill FOM 1 and FOM 2, but which fail to kill HOM 1.

The mutants FOM 1 and FOM 2 cannot, even taken collectively, replace the higher

order mutant without possible loss of test effectiveness.

In Table 1.1, the higher order mutant HOM 2 is created by combining the two first

order mutants FOM 3 and FOM 4 in Listing 1.2. Similar to HOM 1, HOM 2 is

also more difficult to kill than each first order mutant from which it is constructed.

However, none of the tests which kill FOM 3 or FOM 4 can kill HOM 2. This

means that after combining the faults represented by FOM 3 and FOM 4, the orig-

inal faulty behaviour disappears, and new faulty behaviour is unveiled; we call this

“fault-shifting”. As shown in Listing 1.2, FOM 3 negates the value of the variable

‘tcas equipped’, and FOM 4 negates ‘tcas equipped’ again, which completely masks

the fault effect introduced by FOM 3. However, as ‘tcas equipped’ is also used in

the same predicate on line 12. So the higher order mutant is not an equivalent

mutant. Rather, such complex interaction introduces some new fault behaviour.

Apparently, HOM 2 requires additional new test data to kill it. As a result, such

higher order mutants should be also considered in mutation testing.

Combinations of faults such as those described above are relatively rare. As one

might expect, adding more faults to a faulty program tends to make it more likely

that the program will fail and, therefore, more likely that testing will reveal the

presence of a fault. However, the rare exceptions to this rule are very interesting

and, it can be argued, valuable. It is possible that applying these valuable higher

order mutants can ease the four problems of mutation testing:

22

1. High computational cost problem. Higher order mutation addresses this

by reducing the number of mutants by using strongly subsuming higher order

mutants to replace all of the first order mutants from which they are con-

structed.

2. Trivial mutant problem. Higher order mutation addresses this by applying

subtle fault-like higher order mutants in mutation testing, such as the fault-

masking and fault-shifting higher order mutants.

3. Equivalent mutant problem. Higher order mutation cannot address this

problem directly. However, there is some evidence to suggest that higher order

mutants may be less likely to be equivalent than first order mutants [197].

Furthermore, using a co-evolutionary approach can also avoid generation of

equivalent mutants, which is described in the future work section in Chapter 7.

4. Oracle problem. Higher order mutation addresses this by reducing the num-

ber of tests required by reducing the number of mutants with strongly sub-

suming higher order mutants.

1.3 Problems of the Thesis

To date, work in the field of mutation testing has largely focused on first order

mutants 1. There are two primary reasons for not considering higher order mutants.

The first reason is the coupling-effect hypothesis [68, 197], which suggests that it is

unlikely that higher order mutants will be found that are not coupled to first order

mutants. Therefore, any increase in test effectiveness that accrues from higher order

mutant testing will surely be minor. The second reason is that there are already a

1Not considering those paper published on higher order mutation after the work of this thesis

started.

23

large number of first order mutants. This compounds the existing problem of high

computational cost. There are exponentially more higher order mutants, so moving

to higher order mutant testing will surely exacerbate an already difficult problem.

These barriers present new challenges to the research on higher order mutant testing:

1. Are there any interesting higher order mutants that might be potentially useful

to mutation testing?

2. If they exist, how can these interesting higher order mutants be found effec-

tively?

3. How can test data be generated to kill these interesting higher order mutants?

In this thesis, higher order mutants will be classified from a fault interaction stand-

point. This allows the identification of some categories of higher order mutant that

represent real subtle faults, which should be also applied in mutation testing. In

order to overcome the inherent computational cost that comes with the large num-

ber of higher order mutants, this thesis will introduce a search-based optimisation

approach to identify valuable higher order mutants efficiently.

1.4 Aims and Objectives

Some valuable higher order mutants might be potentially better able to simulate

real faults and to reveal insights into bugs than the restricted class of first order

mutants. However, the mutation testing community has previously avoided working

on higher order mutation testing, considering it to be too computationally expensive

and, therefore, impractical. The general aim of the thesis is to make higher order

mutant testing applicable and practical using a search process that seeks fit mutants

(both first and higher order) from the space of all possible mutants.

24

The detailed aims and objectives of this thesis are as follows:

1. To investigate higher order mutants from a fault interaction standpoint.

2. To apply search-based optimisation approaches to locate very fit mutants (both

first and higher order) within the search space of all possible mutants and to

investigate empirically the higher order mutants found by the algorithms.

3. To extend the current state-of-the-art mutant-based test data generation tech-

niques to handle higher order mutants and to evaluate this extended test data

generation approach on both first order mutants and higher order mutants.

1.5 Contributions of the Thesis

The contributions of this thesis are:

1. A proposal of a practical higher order mutation testing paradigm, which ap-

plies valuable higher order mutants and non-trivial first order mutants together

in mutation testing.

2. An investigation and classification of various kinds of higher order mutants.

3. A proposal of a search-based optimisation approach for finding optimal higher

order mutants, which overcomes the exponential increase in the number of

higher order mutants.

4. A proposal of a mutation-based test data generation approach, which combines

dynamic symbolic execution and search-based software testing for strongly

killing both first order mutants and higher order mutants.

25

5. An empirical study exploring higher order mutants based on the new categori-

sation. The results show that interesting higher order mutant categories, such

as fault masking and fault shifting, are very common. They exist in all the

subjects under study.

6. An empirical study applying the proposed search-based algorithm exploring

the proportion of all higher order mutants that are subsuming and strongly

subsuming. The results show that a small proportion of higher order mutants

are subsuming, and only a small but useful proportion of them are strongly

subsuming.

7. An empirical study which demonstrates that the hybrid approach achieved

higher mutation adequacy than two recent mutation-based test data generation

approaches.

8. Milu, an open-source fully-featured mutation testing tool, which handles both

first and higher order mutation for C programs.

9. Several comprehensive trend analyses of the approaches, tools and develop-

ments, applications and empirical studies of mutation testing. These analyses

provide evidence that mutation testing techniques and tools are reaching a

state of maturity and applicability.

1.6 Organisation of the Thesis

Chapter 2 surveys the literature on mutation testing. It begins by introducing

the two fundamental hypotheses of mutation testing followed by a discussion of the

general process of mutation testing. The chapter then moves on to examine three

main research topics in the field: cost reduction for mutation analysis, mutation-

based test data generation and equivalent mutation detection.

26

Chapter 3 provides a comprehensive analysis of the approaches, tools and develop-

ments and empirical results of mutation testing. The chapter presents the results of

several development trend analyses. These analyses provide evidence that mutation

testing techniques and tools are reaching a state of maturity and applicability, while

the area of mutation testing is the subject of increasing interest in its own right.

Chapter 4 introduces a new classification of higher order mutants from a fault

interaction standpoint. The chapter also describes an open-source C mutation test-

ing tool which can generate both first and higher order mutants. The chapter then

investigates the proportion of different categories of all second order mutants and

samples of third to fifth order mutants in six subject programs. In total, more than

two million higher order mutants were generated with 9.2 billion test executions.

The results demonstrate that a large proportion of the behaviour of higher order

mutants is changed due to fault interaction.

Chapter 5 introduces the higher order mutation testing paradigm with the con-

cept of subsuming higher order mutants. The chapter describes three search-based

algorithms for searching subsuming higher order mutants. The chapter, then, ex-

plores the proportion of all higher order mutants that are subsuming and strongly

subsuming. The results show that a small but useful proportion of higher order

mutants are subsuming, and that a small proportion of these are strongly subsum-

ing. Although the proportion of strongly subsuming mutants is small, the number

of strongly subsuming mutants is large, because the number of higher order mu-

tants increases exponentially. The search-based algorithms were able to find small

but useful numbers of strongly subsuming higher order mutants in all of the ten

programs studied.

Chapter 6 introduces SHOM, a mutation-based test data generation approach that

combines dynamic symbolic execution and search-based software testing. SHOM

targets strong mutation adequacy and is capable of killing both first and higher order

27

mutants. The chapter reports the results of an empirical study using 17 programs.

SHOM achieved higher strong mutation adequacy than two recent mutation-based

test data generation approaches.

Chapter 7 concludes the thesis and provides possible directions for future research.

28

Chapter 2

Literature Survey

This chapter reviews work in the field of mutation testing. It begins with an intro-

duction of the two fundamental hypotheses of mutation testing followed by a dis-

cussion of the general process of mutation testing. The chapter then describes two

types of cost reduction techniques, mutants reduction and execution cost reduction.

It then moves on to the description of equivalent mutation detection techniques.

At the end, it introduces different applications of mutation testing and empirical

experiments of the research work on mutation testing.

2.1 The Theory of Mutation Analysis

2.1.1 Fundamental Hypotheses

Mutation testing promises to be effective in identifying adequate test data which can

be used to find real faults [103]. However, the number of such potential faults for a

given program is enormous; it is impossible to generate mutants representing all of

them. Therefore, traditional Mutation Testing targets only a subset of these faults,

29

those which are close to the correct version of the program, with the hope that these

will be sufficient to simulate all faults. This theory is based on two hypotheses: the

Competent Programmer Hypothesis (CPH) [68, 4] and Coupling Effect [68].

The CPH was first introduced by DeMillo et al. in 1978 [68]. It states that pro-

grammers are competent, which implies that they tend to develop programs close

to the correct version. As a result, although there may be faults in the program

delivered by a competent programmer, we assume that these faults are merely a few

simple faults which can be corrected by a few small syntactical changes. Therefore,

in Mutation Testing, only faults constructed from several simple syntactical changes

are applied, which represent the faults that are made by “competent programmers”.

An example of the CPH can be found in Acree et al.’s work [4]. A theoretical dis-

cussion using the concept of program neighbourhoods can also be found in Budd et

al.’s work [40].

The Coupling Effect was also proposed by DeMillo et al. in 1978 [68]. Unlike the

CPH concerning a programmer’s behaviour, the Coupling Effect concerns the type

of faults used in mutation analysis. It states that “Test data that distinguishes all

programs differing from a correct one by only simple errors is so sensitive that it

also implicitly distinguishes more complex errors”. Offutt [196, 197] extended this

into the Coupling Effect Hypothesis and the Mutation Coupling Effect Hypothesis

with a precise definition of simple and complex faults (errors). In his definition, a

simple fault is represented by a simple mutant which is created by making a single

syntactical change, while a complex fault is represented as a complex mutant which

is created by making more than one change.

According to Offutt, the Coupling Effect Hypothesis is that “complex faults are

coupled to simple faults in such a way that a test data set that detects all simple

faults in a program will detect a high percentage of the complex faults ”[197]. The

Mutation Coupling Effect Hypothesis now becomes “Complex mutants are coupled

30

to simple mutants in such a way that a test data set that detects all simple mutants

in a program will also detect a large percentage of the complex mutants [197]”. As

a result, the mutants used in traditional Mutation Testing are limited to simple

mutants only.

There has been much research work on the validation of the coupling effect hypoth-

esis [163, 196, 197, 183]. Lipton and Sayward [163] conducted an empirical study

using a small program, FIND. In their experiment, a small sample of 2nd-order,

3rd-order and 4th-order mutants is investigated. The results suggested that an ade-

quate test set generated from 1st-order mutants was also adequate for the samples

of kth-order mutants (k = 2, ..., 4). Offutt [196, 197] extended this experiment using

all possible 2nd-order mutants with two more programs, MID and TRITYP. The

results suggested that test data developed to kill 1st-order mutants killed over 99%

2nd-order and 3rd-order mutants. This study implied that the mutation coupling

effect hypothesis does, indeed manifest itself in practice. Similar results were found

in the empirical study by Morell [183].

The validity of the mutation coupling effect has also been considered in the theo-

retical studies of Wah [273, 274, 275] and Kappoor [142]. In Wah’s work [274, 275],

a simple theoretical model, the q function model was proposed which considers a

program to be a set of finite functions. Wah applied test sets to the 1st-order and

the 2nd-order model. Empirical results indicated that the average survival ratio of

1st-order mutants and 2nd-order mutants is 1/n and 1/n2 respectively where n is

the order of the domain [274]. This result is also similar to the estimated results of

the empirical studies mentioned above. A formal proof of the coupling effect on the

boolean logic faults can be also found in Kappoor’s work [142].

31

2.1.2 The Process of Mutation Analysis

The traditional process of mutation analysis is illustrated in Figure 2.1. In mutation

analysis, from a program p, a set of faulty programs p′ called mutants, is generated

by a few single syntactic changes to the original program p. As an illustration,

Table 2.1 shows the mutant p′, generated by changing the and operator (&&) of the

original program p, into the or operator (||), thereby producing the mutant p′.

Input Original
Program P

Create
Mutants P'

Input Test
Set T

Run T on P

Fix P Run T on
Each Live P'

Analyse and
Mark

Equivalent
Mutants

P Correct ?

All P'
Killed?Quit

False

FalseTrue

True

Figure 2.1: Generic Process of Mutation Analysis [213]

A transformation rule that generates a mutant from the original program is known as

a mutation operator1. Table 2.1 contains only one example of a mutation operator;

there are many others. Typical mutation operators are designed to modify variables

and expressions by replacement, insertion or deletion operators. Table 2.2 lists the

first set of formalised mutation operators for the Fortran programming language.

1In the literature of mutation testing, mutation operators are also known as mutant operators,

mutagenic operators, mutagens and mutation rules [213].

32

Table 2.1: A Example of Mutation Operation

Program p Mutant p′

... ...

if (a > 0 && b > 0) if (a > 0 || b > 0)

return 1; return 1;

... ...

These typical mutation operators were implemented in the Mothra mutation system

[148].

To increase the flexibility of mutation testing in practical applications, Simao et

al. [249] also proposed a transformation language, MuDel, used to specify the

description of mutation operators. Besides modifying program source, mutation

operators can also be defined as rules to modify the grammar used to capture the

syntax of a software artefact. A much more detailed account of these grammar-based

mutation operators can be found in the work of Offutt et al. [199].

In the next step, a test set T is supplied to the system. Before starting the mutation

analysis, this test set needs to be successfully executed against the original program

p to check its correctness for the test case. If p is incorrect, it has to be fixed before

running other mutants, otherwise each mutant p′ will then be run against this test

set T . If the result of running p′ is different from the result of running p for any

test case in T , then the mutant p′ is said to be ‘killed’, otherwise it is said to have

‘survived’.

After all test cases have been executed, there may still be a few ‘surviving’ mutants.

To improve the test set T , the program tester can provide additional test inputs

to kill these surviving mutants. However, there are some mutants that can never

be killed, because they always produce the same output as the original program.

33

Table 2.2: The first set of mutation operators: The 22 “Mothra” Fortran Mutation

Operators (adapted from [148])

Mutation Operators Description

AAR array reference for array reference replacement

ABS absolute value insertion

ACR array reference for constant replacement

AOR arithmetic operator replacement

ASR array reference for scalar variable replacement

CAR constant for array reference replacement

CNR comparable array name replacement

CRP constant replacement

CSR constant for scalar variable replacement

DER DO statement alterations

DSA DATA statement alterations

GLR GOTO label replacement

LCR logical connector replacement

ROR relational operator replacement

RSR RETURN statement replacement

SAN statement analysis

SAR scalar variable for array reference replacement

SCR scalar for constant replacement

SDL statement deletion

SRC source constant replacement

SVR scalar variable replacement

UOI unary operator insertion

34

These mutants are called Equivalent Mutants. They are syntactically different but

functionally equivalent to the original program. Automatically detecting all equiv-

alent mutants is impossible [38, 208], because program equivalence is undecidable.

The equivalent mutant problem has been a barrier that prevents mutation testing

from being more widely used. Several proposed solutions to the equivalent mutant

problem are discussed in Section 2.3.

Mutation Testing concludes with an adequacy score, known as the Mutation Score,

which indicates the quality of the input test set. The mutation score (MS) is the ratio

of the number of killed mutants over the total number of non-equivalent mutants.

The goal of mutation analysis is to raise the mutation score to 1, indicating the test

set T is sufficient to detect all the faults denoted by the mutants.

2.2 Cost Reduction Techniques

Mutation testing is widely believed to be a computationally expensive testing tech-

nique. However, this belief is partly based on the outdated assumption that all

mutants in the traditional Mothra set need to be considered. In order to turn muta-

tion testing into a practical testing technique, many cost reduction techniques have

been proposed. In the survey work of Offutt and Untch [213], cost reduction tech-

niques are divided into three types: ‘do fewer’, ‘do faster’ and ‘do smarter’. In this

paper, these techniques are classified into two types, reduction of the generated mu-

tants (which corresponds to ‘do fewer’) and reduction of the execution cost (which

combines do faster and do smarter). The rest of the section will introduce each cost

reduction technique in detail. Section 2.2.1 will present work on mutant reduction

techniques, while Section 2.2.2 will cover execution reduction techniques.

35

2.2.1 Mutant Reduction Techniques

One of the major sources of computational cost in mutation testing is the inherent

running cost in executing the large number of mutants against the test set. As a

result, reducing the number of generated mutants without significant loss of test

effectiveness has become a popular research problem. For a given set of mutants,

M , and a set of test data T , MST (M) denotes the mutation score of the test set

T applied to mutants M . The mutant reduction problem can be defined as the

problem of finding a subset of mutants M ′ from M , where MST (M ′) ≈ MST (M).

This section will introduce four techniques used to reduce the number of mutants,

Mutant Sampling, Selective Mutation and Mutant Clustering.

Mutant Sampling

Mutant Sampling is a simple approach that randomly chooses a small subset of

mutants from the entire set. This idea was first proposed by Acree [3] and Budd [37].

In this approach, all possible mutants are generated first as in traditional mutation

testing. x% of these mutants are then selected randomly for mutation analysis and

the remaining mutants are discarded. There were many empirical studies of this

approach. The primary focus was on the choice of the random selection rate (x). In

Wong and Mathur’s studies [279, 177], the authors conducted an experiment using

a random selection rate x% from 10% to 40% in steps of 5%. The results suggested

that random selection of 10% of mutants is only 16% less effective than a full set of

mutants in terms of mutation score. This study implied that Mutant Sampling is

valid with a x% value higher than 10%. This finding also agreed with the empirical

studies by DeMillo et al. [66] and King and Offutt[148]. Instead of fixing the sample

rate, Sahinoglu and Spafford [237] proposed an alternative sampling approach based

on the Bayesian sequential probability ratio test (SPRT). In their approach, the

36

mutants are randomly selected until a statistically appropriate sample size has been

reached. The result suggested that their model is more sensitive than the random

selection because it is self-adjusting based on the available test set. A more recent

empirical study by Zhang et al. [292] suggested that randomly sampling mutants can

still achieve competitive results compared to other selective mutation techniques.

Selective Mutation

A reduction in the number of mutants can also be achieved by reducing the number of

mutation operators applied. This is the basic idea, underpinning Selective Mutation,

which seeks to find a small set of mutation operators that generate a subset of

all possible mutants without significant loss of test effectiveness. This idea was

first suggested as “constrained mutation” by Mathur [174]. Offutt et al. [212]

subsequently extended this idea calling it Selective Mutation.

Mutation operators generate different numbers of mutants and some mutation op-

erators generate far more mutants than others, many of which may turn out to be

redundant. For example, two mutation operators of the 22 Mothra operators, ASR

and SVR, were reported to generate approximately 30% to 40% of all mutants [148].

To effectively reduce the generated mutants, Mathur [174] suggested omitting two

mutation operators ASR and SVR which generated most of the mutants. This idea

was implemented as “2-selective mutation” by Offutt et al. [212].

Offutt et al. [212] have also extended Mathur and Wong’s work by omitting four

mutation operators (4-selective mutation) and omitting six mutation operators (6-

selective mutation). In their studies, they reported that 2-selective mutation achieved

a mean mutation score of 99.99% with a 24% reduction in the number of mutants

reduced. 4-selective mutation achieved a mean mutation score of 99.84% with a 41%

reduction in the number of mutants. 6-selective mutation achieved a mean mutation

37

score of 88.71% with a 60% reduction in the number of mutants.

Wong and Mathur adopted another type of selection strategy, selection based on test

effectiveness [279, 283], known as constraint mutation. Wong and Mathur suggested

using only two mutation operators: ABS and RAR. The motivation for the ABS

operator is that killing the mutants generated from ABS requires test cases from

different parts of the input domain. The motivation for the ROR operator is that

killing the mutants generated from ROR requires test cases which ‘examine’ the

mutated predicate [279, 283]. Empirical results suggest that these two mutation

operators achieve an 80% reduction in the number of mutants and only 5% reduction

in the mutation score in practice.

Offutt et al. [203] extended their 6-selective mutation further using a similar selec-

tion strategy. Based on the type of the Mothra mutation operators, they divided

them into three categories: statements, operands and expressions. They tried to

omit operators from each class in turn. They discovered that 5 operators from the

operands and expressions class became the key operators. These 5 operators are

ABS, UOI, LCR, AOR and ROR. These key operators achieved 99.5% mutation

score.

Mresa and Bottaci [188] proposed a different type of selective mutation. Instead of

trying to achieve a small loss of test effectiveness, they also took the cost of detecting

equivalent mutants into consideration. In their work, each mutation operator is

assigned a score which is computed by its value and cost. Their results indicated

that it was possible to reduce the number of equivalent mutants while maintaining

effectiveness.

Based on previous experience, Barbosa et al. [20] defined a guideline for selecting

a sufficient set of mutation operators from all possible mutation operators. They

applied this guideline to Proteum’s 77 C mutation operators [6] and obtained a set of

38

10 selected mutation operators, which achieved a mean mutation score of 99.6% with

a 65.02% reduction in the number of mutants. They also compared their operators

with Wong’s and Offutt et al.’s set. The results showed their operator set achieved

the highest mutation score.

The most recent research work on selective mutation was conducted by Namin et

al. [189, 190, 191]. They formulated the selective mutation problem as a statistical

problem: the variable selection or reduction problem. They applied linear statistical

approaches to identify a subset of 28 mutation operators from 108 C mutation

operators. The results suggested that these 28 operators are sufficient to predict the

effectiveness of a test suite and it reduced 92% of all generated mutants. According

to their results, this approach achieved the highest rate of reduction compared with

other approaches.

Mutant Clustering

The idea of Mutant Clustering was first proposed in Hussain’s masters thesis [130].

Instead of selecting mutants randomly, Mutant Clustering chooses a subset of mu-

tants using clustering algorithms. The process of Mutation Clustering starts from

generating all first order mutants. A clustering algorithm is then applied to classify

the first order mutants into different clusters based on the killable test cases. Each

mutant in the same cluster is guaranteed to be killed by a similar set of test cases.

Only a small number of mutants are selected from each cluster to be used in mu-

tation testing, the remaining mutants are discarded. In Hussain’s experiment, two

clustering algorithms, K-means and Agglomerative clustering were applied and the

result was compared with random and greedy selection strategies. Empirical results

suggest that Mutant Clustering is able to select fewer mutants but still maintain the

mutation score. A development of the Mutant Clustering approach can be found in

the work of Ji et al. [134]. Ji et al. use a domain reduction technique to avoid the

39

need to execute all mutants.

2.2.2 Execution Cost Reduction Techniques

In addition to reducing the number of generated mutants, the computational cost

can also be reduced by optimising the mutant execution process. This section will

introduce the three types of techniques used to optimise the execution process that

have been considered in the literature.

Strong, Weak and Firm Mutation

Based on the way in which we decide whether to analyse if a mutant is killed during

the execution process, mutation testing techniques can be classified into three types,

Strong Mutation, Weak Mutation and Firm Mutation.

Strong Mutation is often referred to as traditional Mutation Testing. That is, it is

the formulation originally proposed by DeMillo et al. [68]. In Strong Mutation, for

a given program p, a mutant m of program p is said to be killed only if mutant m

gives a different output from the original program p.

To optimise the execution of the Strong Mutation, Howden [129] proposed Weak

Mutation. In Weak Mutation, a program p is assumed to be constructed from a set

of components C = {c1, ..., cn}. Suppose mutant m is made by changing component

cm, mutant m is said to be killed if any execution of component cm is different from

mutant m. As a result, in Weak Mutation, instead of checking mutants after the

execution of the entire program, the mutants need only to be checked immediately

after the execution point of the mutant or mutated component.

In Howden’s work [129], the component C referred to one of the following five types:

variable reference, variable assignment, arithmetic expression, relational expression

40

and boolean expression. This definition of components was later refined by Offutt

and Lee [205, 204]. Offutt and Lee defined four types of execution: evaluation after

the first execution of an expression (Ex-Weak/1), the first execution of a statement

(St-Weak/1), the first execution of a basic block (BB-Weak/1) and after N iterations

of a basic block in a loop ((BB-Weak/N).

The advantage of weak mutation is that each mutant does not require a complete ex-

ecution process; once the mutated component is executed we can check for survival.

Moreover, it might not even be necessary to generate each mutant, as the constraints

for the test data can sometimes be determined in advance [284]. However, as differ-

ent components of the original program may give different outputs from the original

execution, weak mutation test sets can be less effective than strong mutation test

sets. In this way, weak mutation sacrifices test effectiveness for improvements in

test effort. This raises the question as to what kind of trade-off can be achieved.

There were many empirical studies on the Weak Mutation trade off. Girgis and

Woodward [110] implemented a weak mutation system for Fortran 77 programs.

Their system is an analytical type of weak mutation system in which the mutants

are killed by examining the program’s internal state. In their experiment, four of

Howden’s five program components were considered. The results suggested that

weak mutation is less computationally expensive than strong mutation. Marick

[171] drew similar conclusions from his experiments.

A theoretical proof of Weak Mutation by Horgan and Mathur [127] showed that

under certain conditions, test sets generated by weak mutation can also be ex-

pected to be as effective as strong mutation. Offutt and Lee [205, 204] presented

a comprehensive empirical study using a weak mutation system named Leonardo.

In their experiment, they used the 22 Mothra mutation operators as fault models

instead of Howden’s five component set. The results from their experiments indi-

cated that Weak Mutation is an alternative to Strong Mutation in most common

41

cases, agreeing with the probabilistic results of Horgan and Mathur [127] and ex-

perimental results of Girgis and Woodward [110] and Marick[171]. The most recent

work on the weak mutation was conducted by Durelli et al. [86]. They extended a

Java virtual machine to support weak mutation analysis. Experimental results show

that the virtual machine-based implementation achieves speedups of more than 80%

compared to traditional strong mutation.

Firm Mutation was first proposed by Woodward and Halewood [287]. The idea of

Firm Mutation is to overcome the disadvantages of both weak and strong mutations

by providing a continuum of intermediate possibilities. That is, the ‘compare state’

of Firm Mutation lies between the intermediate states after execution (Weak Muta-

tion) and the final output (Strong Mutation). In 2001, Jackson and Woodward [133]

an approach to Firm Mutation that executes Java mutants in parallel. Recently,

Mateo et al. [173] proposed a improved Firm Mutation-based approach called Flexi-

ble Weak Mutation. Instead of using a fixed pre-defined intermediate state, Flexible

Weak Mutation chooses the comparing state dynamically after the execution point.

Moreover, to kill a mutant, Flexible Weak Mutation requires multiple differences

in the intermediate states found. This approach has been implemented into a Java

mutation testing tool, Bacterio [173].

Run-time Optimisation Techniques

The Interpreter-Based Technique is one of the optimisation techniques used in the

first generation of Mutation Testing tools [202, 148]. In traditional Interpreter-Based

Techniques, the result of a mutant is interpreted from its source code directly. The

main cost of this technique is determined by the cost of interpretation. To optimise

the traditional Interpreter-Based approach, Offutt and King [202, 148] translated

the original program into an intermediate form. Mutation and interpretation are

performed at this intermediate code level. Interpreter-Based tools provide additional

42

flexibility and are sufficiently efficient for mutating small programs. However, due

to the nature of interpretation, it becomes slower as the scale of programs under

test increases.

The Compiler-Based Technique is the most common approach to achieve program

mutation [56, 57]. In a Compiler-Based Technique, each mutant is first compiled into

an executable program; the compiled mutant is then executed by a number of test

cases. Compared to source code interpretation techniques, this approach is much

faster because execution of compiled binary code takes less time than interpretation.

However, there is also a speed limitation, known as compilation bottleneck, due to

the high compilation cost for programs whose run-time is much longer than the

compilation/link time. [50].

DeMillo et al. proposed the Compiler-Integrated Technique [67] to optimise the

performance of the traditional Compiler-Based Techniques. Because there is only a

minor syntactic difference between each mutant and the original program, compiling

each mutant separately in the Compiler-Based technique will result in redundant

compilation cost. In the Compiler-Integrated technique, an instrumented compiler

is designed to generate and compile mutants.

The instrumented compiler generates two outputs from the original program: an

executable object code for the original program and a set of patches for mutants.

Each patch contains instructions which can be applied to convert the original exe-

cutable object code image directly to executable code for a mutant. As a result, this

technique can effectively reduce the redundant cost from individual compilation. A

much more detailed account can be found in the Krauser’s PhD thesis [150]. Re-

cently, Just et al. [141] extended this technique and implemented it into the Java

Standard Edition compiler.

The Mutant Schema Generation approach is also designed to reduce the overhead

43

cost of the traditional interpreter-based techniques [266, 268, 267]. Instead of compil-

ing each mutant separately, the mutant schema technique generates a metaprogram.

Just like a ‘super mutant’ this metaprogram can be used to represent all possible

mutants. Therefore, to run each mutant against the test set, only this metaprogram

need be compiled. The cost of this technique is composed of a one-time compilation

cost and the overall run-time cost. As this metaprogram is a compiled program,

its running speed is faster than the interpreter-based technique. The results from

Untch et al.’s work [268] suggest that the mutant schema prototype tool, TUMS, is

significantly faster than Mothra using interpreter techniques. Much more extensive

results are reported in detail in the Untch’s PhD dissertation [267]. A similar idea

of the Mutant Schemata technique, named the Mutant Container, was proposed by

Mathur independently. The details can be found in a software engineering course

‘handout’ by Mathur [175].

The most recent work on reduction of the compilation cost is the Bytecode Trans-

lation Technique. This technique was first proposed by Ma et al. [206, 168]. In

Bytecode Translation, mutants are generated from the compiled object code of the

original program, instead of the source code. As a result, the generated ‘bytecode

mutants’ can be executed directly without compilation. As well as saving compi-

lation cost, Bytecode Translation can also handle off-the-shelf programs which do

not have available source code. This technique has been adopted in the Java pro-

gramming language [206, 168, 169, 238]. However, not all programming languages

provide an easy way to manipulate intermediate object code. There are also some

limitations for the application of Bytecode Translation in Java, such as not all the

mutation operators can be represented at the Bytecode level [238].

Bogacki and Walter introduced an alternative approach to reduce compilation cost,

called Aspect-Oriented Mutation [28, 27]. In their approach, an aspect patch is

generated to capture the output of a method on the fly. Each aspect patch will run

44

programs twice. The first execution obtains the results and context of the original

program and mutants are generated and executed in the second execution. As a

result, there is no need to compile each mutant. Empirical evaluation between a

prototype tool and Jester can be found in the work of Bogacki and Walter [27].

Advanced Platforms Support for Mutation Testing

Mutation Testing has also been applied to many advanced computer architectures to

distribute the overall computational cost among many processors. In 1988, Mathur

and Krauser [176] were the first to perform Mutation Testing on a vector processor

system. Krauser et al. [151, 152] proposed an approach for concurrent execution

mutants under SIMD machines. Fleyshgakker and Weiss [98, 277] proposed an al-

gorithm that significantly improved techniques for parallel mutation testing . Choi

and Mathur [50] and Offutt et al. [211] have distributed the execution cost of mu-

tation testing through MIMD machines. Zapf [290] extended this idea in a network

environment, where each mutant is executed independently.

Higher order mutant testing is a “do fewer” but “smarter” approach. It can be

considered as a form of selective mutation. However rather than selecting from first

order mutants, higher order mutation testing specifically search and targets those

HOMs, the strongly subsuming higher order mutants, each of which can be used to

replace more than one first order mutant. Therefore fewer (but better) mutants are

used in higher order mutation testing, which also leads to fewer (but better) test

cases.

45

Table 2.3: A Example of Equivalent Mutation

Program p Equivalent Mutant m

for (int i = 0; i < 10; i + +) for (int i = 0; i ! = 10; i + +)

{ {

...(the value of i ...(the value of i

is not changed) is not changed)

} }

2.3 Equivalent Mutant Detection Techniques

To detect if a program and one of its mutants programs are equivalent is undecidable,

as proved in the work of Budd and Angluin [38]. As a result, the detection of

equivalent mutants alternatively may have to be carried out by humans. This has

been a source of much theoretical interest. For a given program p, m denotes a

mutant of program p. Recall that m is an equivalent mutant if m is syntactically

different from p, but has the same behaviour with p. Table 2.3 shows an example

of equivalent mutant generated by changing the operator < of the original program

into the operator ! =. If the statements within the loop do not change the value of

i, program p and mutant m will produce identical output.

An equivalent mutant is created when a mutation leads to no possible observable

change in behaviour; the mutant is syntactically different but semantically identical

to the original program from which it is created. Grün et al. [113] manually inves-

tigated eight equivalent mutants generated from the JAXEN XPATH query engine

program. They pointed out four common equivalent mutant situations: the mutant

is generated from dead code, the mutant improves speed, the mutant only alters

the internal states and the mutant cannot be triggered (i.e. no input test data can

change the program’s behaviour at the mutation point). It is worth noticing that

46

these four are not the only situations that lead to equivalent mutants. For example,

none of it applies to the example in Table IV.

As the mutation score is counted based on non-equivalent mutants, without a com-

plete detection of all equivalent mutants, the mutant score can never be 100%, which

means the programmer will not have complete confidence in the adequacy of a po-

tentially perfectly adequate test set. Empirical results indicate that there are 10%

to 40% of mutants which are equivalent [208, 200]. Fortunately, there has been much

research work on the detection of the equivalent mutants.

Baldwin and Sayward [19] proposed an approach that used compiler optimisation

techniques to detect equivalent mutants. This approach is based on the idea that

the optimisation procedure of source code will produce an equivalent program, so

a mutant might be detected as equivalent mutants by either ‘optimisation’ or a

‘de-optimisation process’. Baldwin and Sayward [19] proposed six types of compiler

optimisation rules that can be used for the detection of equivalent mutants. These six

were implemented and empirically studied by Offutt and Craft [200]. The empirical

results showed that, generally, 10% of all mutants were equivalent mutants for 15

subject programs.

Based on the work of constraint test data generation, Offutt and Pan [208, 207, 221]

introduced a new equivalent mutant detection approach using constraint solving.

In their approach, the equivalent mutant problem is formulated as a constraint

satisfaction problem by analysing the path condition of a mutant. A mutant is

equivalent if and only if the input constraint is unsatisfiable. Empirical evaluation

of a prototype has shown that this technique is able to detect a significant percentage

of equivalent mutants (47.63% among 11 subject programs) for most of the programs.

Their results suggest that the constraint satisfaction formulation is more powerful

than the compiler optimisation technique [200].

47

The program slicing technique has also been proposed to assist in the detection

of equivalent mutants [272, 124, 118]. Voas and McGraw [272] were the first to

suggest the application of program slicing to Mutation Testing. Hierons et al. [124]

demonstrated an approach using slicing to assist the human analysis of equivalent

mutants. This is achieved by the generation of a sliced program that denotes the

answer to an equivalent mutant. This work was later extended by Harman et al.

[118] using dependence analysis.

Adamopoulos et al. [5] proposed a co-evolutionary approach to detect possible

equivalent mutants. In their work, a fitness function was designed to set a poor

fitness value to an equivalent mutant. Using this fitness function, equivalent mutants

are wiped out during the co-evolution process and only mutants that are hard to

kill and test cases that are good at detecting mutants are selected.

Ellims et al. [90] reported that mutants with syntactic difference and the same

output can be also semantically different in terms of running profile. These mutants

often have the same output as the original programs but have different execution

time or memory usage. Ellims et al. suggested that ‘resource-aware’ might be used

to kill the potential mutants.

A more recent work by Grün et al. [113, 239] investigated the impact of mutants.

The impact of a mutant was defined as the different program behaviour between the

original program and the mutant and it was measured through the code coverage in

their experiment. The empirical results suggested that there was a strong correlation

between mutant ‘killability’ and its impact on execution, which indicates that if a

mutant has higher impact, it is less likely to be equivalent.

The most recent work on the equivalent mutants was conducted by Schuler and

Zeller [240]. In [240], the authors studied the correlation between the impact of

various mutations including impact on coverage, impact on return values and impact

48

on invariants and their likelihood of producing equivalent mutants. The empirical

results suggested that mutants with impact on coverage or return values are more

likely to be non-equivalent, and more than 90% of highest coverage impact are non-

equivalent mutants.

The thesis does not address the the equivalent mutants directly. However, higher

order mutation testing can reduce the number of equivalent. Because there was

comparatively low density of equivalent mutants found in the higher order paradigm,

compared to that found in the first order paradigm [197].

2.4 Applications

Since mutation testing was proposed in the 1970s, it has been applied to test both

program source code (Program Mutation) [64] and program specification (Specifica-

tion Mutation) [112]. Program Mutation belongs to the category of white box based

testing, in which faults are seeded into source code, while Specification Mutation be-

longs to black box based testing where faults are seeded into program specifications,

but in which the source code may be unavailable during testing.

2.4.1 Program Mutation

Program Mutation has been applied to both the unit level [68] and the integration

level [59] of testing. For unit level Program Mutation, mutants are generated to

represent the faults that programmers might have made within a software unit,

while for the integration level Program Mutation, mutants are designed to represent

the integration faults caused by the connection or interaction between software units

[271]. Applying Program Mutation at the integration level is also known as Interface

Mutation which was first introduced by Delamaro et al. [59] in 1996. Interface

49

Mutation has been applied to C Programs by Delamaro et al. [59, 58, 60] and also

to the CORBA Programs by Ghosh and Mathur [105, 108, 107, 109]. Empirical

evaluations of Interface Mutation can be found in Vincenzei et al.’s work [271] and

Delamaro et al.’s work [62, 61].

Mutation Testing for Fortran

In the earliest days of mutation testing, most of the experiments on mutation testing

targeted Fortran. Budd et al. [43, 39] was the first to design mutation operators

for Fortran IV in 1977. Based on these studies, a Mutation Testing tool named

PIMS was developed for testing Fortran IV programs [39, 163, 4]. However, there

were no formal definitions of mutation operators for Fortran until 1987. In 1987,

Offutt and King [202, 148] summarized the results from previous work and proposed

22 mutation operators for Fortran 77. This set of mutation operators became the

first set of formalized mutation operators and consequently had greater influence on

later definitions of mutation operators for applying mutation testing to the other

programming languages. These mutation operators are divided into three groups;

the Statement analysis group, the Predicate analysis group and the Coincidental

correctness group.

Mutation Testing for Ada

Ada mutation operators were first proposed by Bowser [31] in 1988. In 1997, based

on previous work of Bowser’s Ada mutation operators [31], Agrawal et al.’s C mu-

tation operators [6] and the design of Fortran 77 mutation operators for Mothra

[148], Offutt et al. [214] redesigned mutation operators for Ada programs to produce

a proposed set of 65 Ada mutation operators. According to the semantics of Ada,

this set of Ada mutation operators is divided into five groups: Operand Replace-

50

ment Operators group, Statement Operators group, Expression Operators group,

Coverage Operators group and Tasking Operators group.

Mutation Testing for C

In 1989, Agrawal et al. [6] proposed a comprehensive set of mutation operators for

the ANSI C programming language. There were 77 mutation operators defined in

this set, which was designed to follow the C language specification. These operators

are classified into variable mutation, operator mutation, constant mutation and

statement mutation. Delamaro et al. [60, 62, 58, 59] investigated the application

of Mutation Testing at the integration level. They selected 10 mutation operators

from Agrawal et al.’s 77 mutation operators to test interfaces of C programs. These

mutation operators focus on injecting faults into the signature of public functions.

More recently, higher order mutant testing has also been applied to C Programs by

Jia and Harman [136].

There are also mutation operators that target specific C program defects or vulner-

abilities. Shahriar and Zulkernine [246] proposed 8 mutation operators to generate

mutants that represent Format String Bugs (FSBs). Vilela et al. [270] proposed

2 mutation operators representing faults associated with static and dynamic mem-

ory allocations, which were used to detect Buffer Overflows (BOFs). This work

was subsequently extended by Shahriar and Zulkernine [245] who proposed 12 com-

prehensive mutation operators to support the testing of all BOF vulnerabilities,

targeting vulnerable library functions, program statements and buffer size. Ghosh

et al. [104] have applied Mutation Testing to an Adaptive Vulnerability Analysis

(AVA) to detect BOFs.

51

Mutation Testing for Java

Traditional mutation operators are not sufficient for testing Object Oriented (OO)

programming languages like Java [146, 168]. This is mainly because the faults

represented by the traditional mutation operators are different to those in the OO

environment, due to OO’s different programming structure. Moreover, there are new

faults, introduced by OO-specific features, such as inheritance and polymorphism.

As a result, the design of Java mutation operators was not strongly influenced by

previous work. Kim et al. [144] were the first to design mutation operators for

the Java programming language. They proposed 20 mutation operators for Java

using HAZOP (Hazard and Operability Studies). HAZOP is a safety technique

which investigates and records the result of system deviations. In Kim et al.’s

work, HAZOP was applied to the Java syntax definition to identify the plausible

faults of the Java programming language. Based on these plausible faults, 20 Java

mutation operators were designed, falling into six groups: Types/Variables, Names,

Classes/interface declarations, Blocks, Expressions and others.

Based on their previous work on Java mutation operators, Kim et al. [143] intro-

duced Class Mutation, which applies mutation to OO (Java) programs targeting

faults related to OO-specific features. In Class Mutation, three mutation operators

representing Java OO-features were selected from the 20 Java mutation operators.

In 2000, Kim et al. [145] added another 10 mutation operators for Class Mutation.

Finally, in 2001, the number of the Class mutation operators was extended to 15 and

these mutation operators were classified into four types: polymorphic types, method

overloading types, information hiding and exception handling types [146]. A similar

approach was also adopted by Chevalley and Thevenod-Fosse in their work [48, 49].

Ma et al. [167, 168] pointed out that the design of mutation operators should not

start with the selected approach (Kim et al.’s approach [143]). They suggested that

52

the selected mutation operators should be obtained from empirical results of the

effectiveness of all mutation operators. Therefore, instead of continuing Kim et al.’s

work [145], Ma et al. [167] proposed 24 comprehensive Java mutation operators

based on previous studies of OO fault models. These are classified into six groups:

Information Hiding group, Inheritance group, Polymorphism group, Overloading

group, Java Specific Features group and Common Programming Mistakes group.

Ma et al. conducted an experiment to evaluate the usefulness of the proposed class

mutation operators [166]. The results suggested that some class mutation model

faults can be detected by traditional Mutation Testing. However, the mutants gen-

erated by the EOA class mutation (Reference assignment and content assignment

replacement) and the EOC class mutation (Reference comparison and content com-

parison replacement) can not be killed by a traditional mutation adequate test set.

There are also alternative approaches to the definition of the mutation operators for

Java. For example, instead of applying mutation operators to the program source,

Alexander et al. [25, 9] designed a set of mutation operators to inject faults into

Java utility libraries, such as, the Java container library and the iterator library.

Based on work on traditional mutation operators, Bradury et al. [33] introduced an

extension to the concurrent Java environment.

Mutation Testing for C#

Based on previous proposed Java mutation operators, Dereziǹska introduced an

extension to a set of C# specialised mutation operators [73, 74] and implemented

them in a C# mutation tool named CREAM [75]. Empirical results for this set of

C# mutation operators using the CREAM were reported by Dereziǹska and Szustek

[74, 76].

53

Mutation Testing for SQL

Mutation testing has also been applied to SQL code to detect faults in database

applications. The first attempt to the design of mutation operators for SQL was

done by Chan et al.[46] in 2005. They proposed 7 SQL mutation operators based

on the enhanced entity-relationship model. Tuya et al. [265] proposed another set

of mutant operators for SQL query statements. This set of mutation operators is

organized into four categories, including mutation of SQL clauses, mutation of oper-

ators in conditions and expressions, mutation handling NULL values and mutation

of identifiers. They also developed a tool named SQLMutation that implements this

set of SQL mutation operators and an empirical evaluation concerning results using

SQLMutation [264]. A development of this work targeting Java database applica-

tions can be found in the work of Zhou and Frankl [295]. Shahriar and Zulkernine

[244] have also proposed a set of mutation operators to handle the full set of SQL

statements from connection to manipulation of the database. They introduced 9

mutation operators and implemented them in an SQL mutation tool called MUSIC.

Mutation Testing for Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) is a programming paradigm that aids pro-

grammers in separation of crosscutting concerns. Ferrari et al. [97] proposed 26

mutation operators based on a generalisation of faults for general Aspect-Oriented

programs. These mutation operators are divided into three groups: pointcut ex-

pressions, aspect declarations and advice definitions and implementation. Empirical

results from evaluation of this work using real world applications can also be found

in their work [97]. A recent work from Delamare et al. introduced an approach

to detect equivalent mutants in AOP programs using static analysis of aspects and

base code [55].

54

AspectJ is a widely studied aspect-oriented extension of the Java language, which

provides many special constructs such as aspects, advice, join points and pointcuts

[13]. Baekken and Alexander [18] summarised previous research work on the fault

model associated with AspectJ pointcuts. They proposed a complete AspectJ fault

model based on the incorrect pointcut pattern, which was used as a set of mutation

operators for AspectJ programs. Based on this work, Anbalagan and Xie [12, 13]

proposed a framework to generate mutants for pointcuts and to detect equivalent mu-

tants. To reduce the total number of mutants, a classification and ranking approach

based on the strength of the pointcuts was also introduced in their framework.

Other Program Mutation Applications

Besides these programming languages, mutation testing has also been applied to Lus-

tre programs [85, 84], PHP programs [247], Cobol programs [115], Matlab/Simulink

[291] and spreadsheets [2]. There is also research work investigating the design of

mutation operators for real-time systems [103, 258, 193, 194] and concurrent pro-

grams [44, 106, 165, 33, 8].

2.4.2 Specification Mutation

Although mutation testing was originally proposed as a white box testing technique

at the implementation level, it has also been applied at the software design level.

Mutation Testing at design level is often referred to as ‘Specification Mutation’,

which was first introduced by Gopal and Budd in 1983 [112, 41]. In Specification

Mutation, faults are typically seeded into a state machine or logic expressions to

generate ‘specification mutants’. A specification mutant is said to be killed if its

output condition is falsified. Specification Mutation can be used to find faults related

to missing functions in the implementation or specification misinterpretation [219].

55

Mutation Testing for Formal Specifications

The formal specifications can be presented in many forms, for example calculus

expressions, Finite State Machines (FSM), Petri Nets and Statecharts. The earlier

research work on Specification Mutation considered specifications of simple logical

expressions. Gopal and Budd [112, 41] considered specifications in predicate calculus

targeting the predicate structure of the program under test. A similar work applied

to the refinement calculus specification can be found in the work of Aichernig [7].

Woodward [287, 285] investigated mutation operators for algebraic specifications. In

their experiment, they applied an optimization approach to compile a specification

mutant into executable code and evaluated the approach to provide empirical results

[286].

More recently, many formal techniques have been proposed to specify the dynamic

aspects of a software system, for example, Finite State Machines (FSM), Petri Nets

and State charts. Fabbri et al. [95] applied Specification Mutation to validate

specifications presented as FSMs. They proposed 9 mutation operators, representing

faults related to the states, events and outputs of an FSM. This set of mutation

operators was later implemented as an extension of the C mutation tool Proteum

[92]. An empirical evaluation of these mutation operators was reported by them [92].

Hierons and Merayo [125, 126] investigated the application of mutation testing to

Probabilistic Finite State Machines (PFSMs). They defined 7 mutation operators

and provided an approach to avoid equivalent mutants. Other work on EFSM

mutation can also be found in the work of Batth et al. [21], Bombieri et al. [29] and

Belli et al. [23].

Statecharts are widely used for the formal specification of complex reactive systems.

Statecharts can be considered as an extension of FSMs, so the first set of mutation

operators for Statecharts was also proposed by Fabbri et al. [94], based on their pre-

56

vious work on FSM mutation operators. Using Fabbri et al.’s Statecharts mutation

operators, Yoon et al. [289] introduced a new test criterion, the State-based Muta-

tion Test Criterion (SMTC). In the work of Trakhtenbrot [262], the author proposed

new mutations to assess the quality of tests for statecharts at the implementation

level as well as the model level. Other work on Statechart mutation can be found

in the work of Fraser et al. [101].

Besides FSMs and Statecharts, Specification Mutation has been also applied to a

variety of specification languages. For example, Souza et al. [253, 254] investigated

the application of mutation testing to the Estelle Specification language. Fabbri

et al. [93] proposed mutation operators for Petri Nets. Srivatanakul et al. [256]

performed an empirical study using Specification Mutation to CSP Specifications.

Olsson and Runeson [220] and Sugeta et al. [257] proposed mutation operators

for SDL. Definitions of mutation operators for formal specification language can be

found in the work of Black et al. [26] and the work of Okun [219].

Mutation Testing for Web Services

Lee and Offutt [159] were the first to apply Mutation Testing to Web Services. In

2001, they introduced an Interaction Specification Model to formalize the inter-

actions between web components [159]. Based on this specification model, a set of

generic mutation operators was proposed to mutate the XML data model. This work

was later extended by Xu et al. [215, 288] targeting the mutation of XML data and

they renamed it XML perturbation. Instead of mutating XML data directly, they

perturbed XML schemas to create invalid XML data using 7 XML schema mutation

operators. A constraint-based test case generation approach was also proposed and

the results of empirical studies were reported [288]. Another set of XML schema

mutation operators was proposed by Li and Miller [160].

57

There is also Web Service mutation work targeting specific XML-based language fea-

tures, for example, the OWL-S specification language [158, 276] and WS-BPEL spec-

ification language [91]. Unlike the traditional XML specification language, OWL-S

introduces semantics to workflow specification using an ontology specification lan-

guage. In the work of Lee et al. [158], the authors propose mutation operators for

detection of semantic errors caused by the misuse of the ontology classes.

Mutation Testing for Networks

Protocol robustness is an important aspect of any network system. Sidhu and Leung

[248] investigated fault coverage of network protocols. Based on this work, Probert

and Guo proposed a set of mutation operators to test network protocols [230]. Vigna

et al. [269] applied Mutation Testing to network-based intrusion detection signa-

tures, which are used to identify malicious traffic. Jing et al. [140] built a NFSM

model for protocol messages and applied mutation testing to this model using the

TTCN-3 specification language. Other work on the application of mutation testing

to State based protocols can be found in the work of Zhang et al. [294].

Mutation Testing for Security Policy

Mutation Testing has also been applied to security policies [157, 172, 187, 186, 229].

Much of this research work sought to designed mutation operators that inject com-

mon flaws into different types of security policies. For example, Xie et al. [172] ap-

plied mutation analysis to test XACML, an Oasis standard XML syntax for defining

security policies. A similar approach has also been applied by Mouelhi et al. [187].

Le Traon et al. [157] introduced 8 mutation operators for the Organization Based

Access Control OrBAC policy. Mouelhi et al. [186] proposed a generic meta-model

for security policy formalisms. Based on this formalism, a set of mutation operators

58

was introduced to apply to all rule-based formalisms. Hwang et al. proposed an

approach that applies mutation testing to test firewall policies [131].

2.4.3 Other Testing Applications

In addition to assessing the quality of test sets, Mutation Testing has also been used

to support other testing activities, for example test data generation and regression

testing, including test data prioritization and test data minimization. In this section,

we summarise the main work on mutation as a support to these testing activities.

Mutation-based Test Data Generation

The main idea of mutation based test data generation is to automatically generate

test data that can effectively kill mutants. There has been much work on different

techniques and tools for generating mutants, with over 250 publications on mutation

testing. However, the literature contains only 10 publications (about 4% of the total)

that address the problem of automatically generating test data to kill mutants [139].

While mutation generation remains important, it is also clearly desirable to be able

to use mutation testing to generate test cases as well as to asses them.

Previous work on the generation of test data to kill mutants has used traditional

structural-oriented test data generation techniques, for example, traditional sym-

bolic execution [70, 164, 195, 201, 216], Dynamic Symbolic Execution (DSE) [222,

225, 293] and Search Based Software Testing (SBST) [17, 102]. However, all of

the existing techniques are designed to achieve only weak mutation adequacy and

only for first order mutants. There is neither existing work on killing higher order

mutants, nor any work on generating strong mutation adequate test data.

In order to (strongly) kill a first order mutant the killing conditions are well studied

59

in the literature: A test input needs to satisfy following three conditions: Reach-

ability, Infection and Propagation (RIP), each of which subsumes the preceding

condition(s):

1. Reachability: The location of the mutant in the program must be executed

by the test case. We say the mutant is ‘reached’. Reaching all mutants of a

program can be achieved by any branch adequate test set, so reachability is

an instance of branch coverage, which is widely studied in literature [10, 111,

123, 241].

2. Infection: Immediately after mutant execution, the original program state

and that of the mutant must differ. We say, the mutant ‘infects’ the state. A

test case that achieves infection for a mutant m is also said to ‘weakly kill’ the

m [70, 139, 185].

3. Propagation: The infected state must propagate to some point in the pro-

gram at which it can be observed, such as an output statement. A test case

that achieves propagation for a mutant m is also said to ‘strongly kill’ the m

[70, 139, 185].

Constraint Based Testing (CBT) was the first test data generation technique used

for mutation testing. It was proposed by DeMillo and Offutt, based on the idea

of control flow analysis and symbolic execution [70, 195]. Constraint based testing

seeks to generate test data to kill mutants weakly by reaching and infecting mutants,

thereby achieving the ‘R’ and ‘I’ of the ‘RIP’ framework. Offutt and DeMillo repre-

sent reachability as a set of path conditions, constructed using control flow analysis

and symbolic execution and augment these path constraints with constraints that

denote infection.

The initial approach to CBT suffered from several problems inherited from the

60

state-of-the-art in symbolic evaluation available at the time and also from the static

domain reduction technique used. It was unable to handle arrays, loops and nested

expressions well. To overcome these restrictions, Offutt et al. proposed a dynamic

domain reduction technique [201, 216]. The dynamic domain reduction technique

uses a more sophisticated back-tracker to dynamically split domains.

Dynamic Symbolic Execution (DSE) [111, 241] is a more recent innovation that

overcomes many of the limitations of traditional symbolic execution. Using DSE,

non-linear path constraints are simplified by the instantiation of concrete runtime

values, harvested from program execution. DSE has been used in several coverage

based testing tools, such as DART [111], CUTE [241] and Pex [261].

DSE also provides a natural way to generate weakly adequate mutation-based test

inputs. A simple testability transformation [119] can be used to augment the pro-

gram with conditional statements, the predicates of which capture the infection

constraints. By construction, covering the branches of the transformed program

entails satisfying these infection constraints, thereby tranforming branch coverage

into weak mutation coverage. This approach was first suggested by Liu et al. [164],

and was implemented by Zhang et al. [293] and Papadakis et al. [224].

Search Based Software Testing (SBST) [10, 121] has also been applied to the gener-

ation of weakly adequate mutation-based test data. Bottaci was the first to suggest

using SBSE to kill mutants [30]. However, Search Based Mutation Test Generation

remained unimplemented and unevaluated until the subsequent for work of Ayari et

al. [17] and Fraser and Zeller [102], both of whom target Java.

The SHOM approach introduced in Chapter 6 combines DSE and SBST. It uses

DSE to achieve weak mutation adequacy and extends this with a constraint-aware

search based approach that maintains weak adequacy, while seeking to propagate

tests to achieve strong mutation adequacy. SHOM thus extends previous work by

61

generating test data for strong mutation adequacy and by generating test data for

higher order mutants.

Regression testing

Test case prioritisation techniques are one way to assist regression testing. Mutation

Testing has been applied as a test case prioritisation technique by Do and Gregg

[79, 80]. Do and Gregg measured how quickly a test suite detects the mutant in

the testing process. Testing sequences are rescheduled based on the rate of mutant

killing. Empirical studies suggested that this automated test case prioritisation can

effectively improve the rate of fault detection of test suites [80].

Mutation testing has also been used to assist the test case minimisation process.

Test case minimisation techniques aim to reduce the size of a test set without losing

much test effectiveness. Offutt et al. [210] proposed an approach named Ping-Pong.

The main idea is to generate mutants targeting a test criterion. A subset of test

data with the highest mutation score is then selected. Empirical studies show that

Ping-Pong can reduce a mutation adequacy test set by a mean of 33% without loss

of test effectiveness.

In addition to the previous mentioned applications, mutation analysis has also been

applied to other application domains. For example, Serrestou et al. proposed an

approach to evaluate and improve the functional validation quality of RTL in a

hardware environment [243, 242]. Mutation analysis has also been used to assist the

evaluation of software clone detection tools [234, 235].

62

Mutation Testing for Running Environment

During the process of implementing specifications, bugs might be introduced by

programmers due to insufficient knowledge of the final target environment. These

bugs are called “environment bugs” and they can be hard to detect. Examples are

the bugs caused by memory limitations, numeric limitations, value initialisation,

constant value interpretation, exception handling and system errors [255]. Muta-

tion testing was first applied to the detection of such bugs by Spafford [255] in

1990. In his work, environment mutants were generated to detect integer arithmetic

environmental bugs.

The idea of environment bugs was extended in 1990s by Du and Mathur, as many

empirical studies suggested that “the environment plays a significant role in trigger-

ing security flaws that lead to security violations”[82]. As a result, mutation testing

was also applied to the validation of security vulnerabilities. Du and Mathur [82]

defined an EAI fault mode for software vulnerability, and this model was applied

to generate environmental mutants. Empirical results from the evaluation of their

experiments are reported in [83].

2.5 Empirical Evaluation

Many researchers have conducted experiments to evaluate the effectiveness of Mu-

tation Testing [99, 100, 178, 279, 209, 14, 69, 54]. These experiments can be divided

into two types: comparing mutation criteria with data flow criteria such as “all-use”

and comparing mutants with real faults. Table 2.4 summarises the evaluation type

and the subject programs used in each of these experiments.

Mathur and Wong have conducted experiments to compare the “all-use” criterion

with mutation criteria [178, 279, 282]. In their experiment, Mathur and Wong

63

manually generated 30 sets of test cases satisfying each criterion for each subject

program. Empirical results suggested that mutation adequate test sets more easily

satisfy the “all-use” criteria than all use test sets satisfy mutation criteria. This

result indicates mutation criteria “probsubsumes” 2 the “all-use” criteria in general.

Table 2.4: Empirical Evaluation of Mutation Testing

Research Evaluation Type Subject Programs

DeMillo and Mathur [69] real faults vs mutants Tex

Mathur and Wong [178,

279]

all-use vs mutation crite-

ria

Find, Strmat1, Strmat2 and Textfmt

Offutt et al. [209] all-use vs mutation crite-

ria

Bub, Cal, Euclid, Find, Insert, Mid,

Pat, Quad, Trityp and Warshall

Daran and Thévenod-

Fosse [54]

real faults vs mutants Nuclear Reactor Safety Shutdown Sys-

tem

Frankl et al. [99, 100] all-use vs mutation crite-

ria

Determinant, Find1, Find2, Mat-

inv1, Matinv2, Strmatch1, Strmatch2,

Textformat.r and Transpose

Andrews et al. [14] hand seeded faults vs

mutants

Space, Printtokens, Printtokens2, Re-

place, Schedule, Schedule2, Tcas and

Totinfo

Do and Rothermel [79,

80]

hand seeded faults vs

mutants

Ant, Xml-security, Jmeter, Jtopas,

galileo and nanoxml

Li et ail. [161] all-users, edge-pair and

prime path coverage vs

mutation criteria

Twenty nine anonymous Java classes

Offutt et al. conduced a similar experiment using ten different programs [209]. The

‘cross scoring’ result also provides evidence for Mathur and Wong’s probsubsumes

relationship [178, 279]. In addition to comparing the two criteria with each other,

2If a test criterion C1 probsumes a test criterion C2, a test set which is adequate to C1 is likely

to be adequate to C2 [209]

64

Offutt et al. also compared the two criteria in terms of the fault detection rate.

This result showed that 16% more faults can be detected using mutation adequate

test sets than “all-use” test sets, indicating that mutation criteria is “probbetter”

3 than the “all-use” data flow. This conclusion also agreed with the results of the

experiment of Frankl et al. [99, 100]. The most recent work on the comparison

between mutation criteria with other criteria was conducted by Li et al. [161]. They

compared the mutation testing criterion with three other commonly used criteria:

prime path coverage, edge-pair coverage and all-uses. The results suggest that the

mutation testing criterion not only finds more faults than other criteria, but is also

the most efficient criterion.

In addition to comparing mutation analysis with other testing criteria, there have

also been empirical studies comparing real faults and mutants. In the work of

Daran and Thévenod-Fosse [54], the authors conducted an experiment comparing

real software errors with 1st order mutants. The experiment used a safety-critical

program from the civil nuclear field as the subject program with 12 real faults and

24 generated mutants. Empirical results suggested that 85% of the errors caused

by mutants were also produced by real faults, thereby providing evidence for the

Mutation Coupling Effect Hypothesis. This result also agreed with DeMillo and

Mathur’s experiment [69]. DeMillo and Mathur carried out an extensive study of

the errors in TeX reported by Knuth[69] and they demonstrated how simple mutants

could detect real complex errors from TeX.

Andrews et al. [14] conducted an experiment comparing manually instrumented

faults generated by experienced developers with mutants automatically generated

by 4 carefully selected mutation operators. In the experiment, the Siemens suite

3If a test criterion C1 probbetter than a test criterion C2, then a randomly selected test set

which satisfies C1 is more likely to detect a fault than a randomly selected test set which satisfies

C2 [209]

65

(Printtokens, Printtokens2, Replace, Schedule, Schedule2, Tcas and Totinfo) and

the Space program were used as subjects. Empirical results suggested that, after

filtering out equivalent mutants, the remaining non-equivalent mutants generated

from the selected mutation operators were a good indication of the fault detection

ability of a test suite. The results also suggested that the human generated faults

are different from the mutants; both human and auto-generated faults are needed

for the detection of real faults.

Do and Rothermel [79, 80] studied the effect of both hand seeded faults and machine

generated mutants on fault detection ability and the test prioritisation order. In the

test data prioritisation study, Do and Rothermel considered several prioritisation

techniques to improve the fault detection rate. Their analysis showed that for non-

control test case prioritisation, the use of mutation can improve fault detection

rates. However the results are affected by the number of mutation faults applied.

In the fault detection ability studies, Do and Rothermel followed Andrews et al.’s

experimental procedure [14]. Results from 4 out of the 6 subject programs revealed a

similar data spread to the work of Andrews et al. The effect of test set minimisation

using mutation can be found in the work of Wong et al. [280].

Despite evaluating mutation testing against other testing approaches, there are also

experiments that use mutation analysis to evaluate different testing approaches. For

example, Andrews et al. [15] conducted an experiment to compare test data gen-

eration using control flow and data flow. Thevenod et al. [260] applied mutation

analysis to compare random and deterministic input generation techniques. Brad-

bury et al. [34] used mutation analysis to evaluate traditional testing and model

checking approaches on concurrent programs.

66

Summary

This chapter has provided a detailed survey of mutation testing. The paper cov-

ers theories, optimisation techniques, equivalent mutant detection, applications and

empirical studies. The next chapter will present a comprehensive analysis of the

development trends of mutation testing.

67

Chapter 3

Analysis of the Development of

Mutation Testing

The literature on mutation testing has contributed a set of approaches, tools, de-

velopments and empirical results as surveyed in Chapter 2. This chapter presents

the results of several development trend analyses. These analyses provide evidence

that mutation testing techniques and tools are reaching a state of maturity and

applicability, while the topic of mutation testing itself is the subject of increasing

interest.

In order to provide a complete trend analysis covering all the publications related

to mutation testing since the 1970s, we constructed a mutation testing publication

repository, which includes more than 390 papers from 1977 to 2009 [135] (This anal-

ysis was carried out in 2010). We took four steps to build this repository. First

we searched the online repositories of the main technical publishers, including IEEE

explore, ACM Portal, Springer Online Library, Wiley Inter Science and Elsevier

Online Library, collecting papers which have either “mutation testing”, “mutation

analysis”, “mutants + testing”, “mutation operator + testing”, “fault injection” and

68

“fault based testing” keywords in their title or abstract. Then we went through the

references for each paper in our repository, to find missing papers using the same key-

word rules. In this way, we performed a ‘transitive closure’ on the literature. muta-

tion testing work which was not concerned with software, for example, hardware and

also filtered out papers not written in English. We have made the repository publicly

available at http://crestweb.cs.ucl.ac.uk/resources/mutation testing repository/ [135].

The rest of the chapter is organised as follows. Section 3.1 presents the publication

trend for mutation testing. Section 3.2 presents some development trends including

mutation techniques, applications and subject programs used in empirical study.

Section 3.3 describes the development work on mutation tools. Section 3.4 discusses

the unresolved problems, barriers and the areas of success in mutation testing.

3.1 Publication Trends

To understand the general trend for the mutation testing research area, we analysed

the number of publications by year from 1977 to 2009. Consider again the results

in Figure 3.1; there are five apparent outliers in years 1994, 2001, 2006, 2007 and

2009. The reason for the last four years, is that there were four mutation testing

workshops held in 2000 (with proceedings published in 2001), 2006, 2007 and 2009.

However, there is no direct evidence to explain the spike in year 2004; this just

appears to be an anomalous productive year for Mutation Testing. The reader

will also notice that 1986 is unique as no publications were found. An interesting

explanation was provided by Offutt [198]: “1986 was when we were maximally

devoted to programming Mothra. ”

We performed a regression analysis on these data and found there is a strong positive

correlation between year and the number of publications (r = 0.7858). In order to

69

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09

M
u
ta

ti
o
n
 T

e
s
ti
n
g
 P

u
b
lic

a
ti
o
n
s

Year

r=0.7858, R
2
=0.7747

*

*

*

*Number of Publications
y = 1.1185

(0.9961 * x)

Figure 3.1: Mutation Testing Publications from 1978-2009 (* indicates years in

which a mutation workshop was held.)

predict the trend of publications in the future, we have tried to find a trend line for

this data using several common regression models: Linear, Logarithmic, Polynomial,

Power, Exponential and Moving average. The dashed line in Figure 3.1 is the best

fit line we found. It uses a quadratic model, which achieves the highest coefficient

of determination (R2 = 0.7747). To put the Mutation Testing growth trend into a

wider context, we also collected and plotted the publication data from DBLP for

the subject of computer science as a whole [263]. According to DBLP, the general

growth in computer science is also exponential. From this analysis it is clear that

mutation testing remains at least as healthy as computer science itself.

In order to take a closer look at the growing trend of the research work on Mutation

Testing, we have classified this work into theoretical work and practical work. The

theoretical category includes the publications concerning the hypotheses supporting

mutation testing, optimisation techniques, techniques for reducing computational

cost and techniques for the detection of equivalent mutants and surveys. The prac-

tical category includes publications on applications of mutation testing, development

work on mutation testing tools and related empirical studies.

70

The goal of this separation of papers into theoretical and practical work is to allow

us to analyse the temporal relationship between the development of theoretical and

practical research effort by the community. Figure 3.2 shows the overall cumulative

result. It is clear that both theoretical and practical work is increasing. In 2006 for

the first time, the total number of practical publications surpasses the number of

theoretical publications. To take a closer look at this relationship, Figure 3.3 shows

the number of publications per year. From 1977 to 2000, there were fewer practical

publications than theoretical. From 2000 to 2009, most of the research work appears

to shift to the application area. This provides some evidence to suggest that the

field is starting to move from foundational theory to practical application, possibly

a sign of increasing maturity.

 0

 25

 50

 75

 100

 125

 150

 175

 200

 225

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09

N
o
.
o
f
p
u
b
lic

a
ti
o
n
s

Year

Cumulative view for Theoretical Work
Cumulative view for Practical Work

Figure 3.2: Theoretical Publications vs. Practical Publications (Cumulative view)

3.2 Development Trends

Mutation Techniques

Section 2.2 introduced a number of cost reduction techniques for mutation testing.

Figure 3.4 provides an overview of the chronological development of this techniques.

71

 0

 5

 10

 15

 20

 25

 30

 35

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09

N
o
.
o
f
p
u
b
lic

a
ti
o
n
s

Year

Theoretical Work
Practical Work

Figure 3.3: Theoretical Publications vs. Practical Publications

To take a closer look at the cost reduction research work, we counted the number

of publications for each technique (see Figure 3.5). From this figure, it is clear that

Selective Mutation and Weak Mutation are the most widely studied cost reduction

techniques. Each of the other techniques is studied in no more than five papers, to

date.

Applications

Section 2.2 introduced different applications of mutation testing. Figure 3.6 shows

the chronological development of research work on Program Mutation and Specifica-

tion Mutation. Figure 3.7 shows the percentage of the publications addressing each

language to which mutation testing has been applied. As Figure 3.6 shows, there

has been more work on Program Mutation than Specification Mutation. Notably

more than 50% of the work has been applied to Java, Fortran and C. Fortran fea-

tures highly because a lot of the earlier work on mutation testing was carried out on

Fortran programs. In the following section, the applications of Program Mutation

and Specification Mutation are summarised by the programming language targeted.

72

Figure 3.4: Overview of the Chronological Development of Mutant Reduction Tech-

niques

Figure 3.5: Percentage of publications using each Mutant Reduction Technique

73

Figure 3.6: Publications of the Applications of Mutation Testing

Subject Programs

We have collected all the subject programs for each empirical experiment work from

our repository, as shown in Table A.1 (Table A.1 is located in the Appendix A). Table

A.1 shows the name, size, description, the year when the subject program was first

applied and the overall number of research papers that report results for this subject

program. The table entry for some sizes and descriptions of the subject programs

are shown as “not reported”. This occurs where the information is unavailable in the

literature. Table A.1 is sorted by the number of papers that use the subject program,

so the first ten programs are the most studied subject programs in the literature

on mutation testing. These wildly studied programs are all laboratory programs

under 50 LoC but we also noticed that the 11th program is SPACE, a non-trivial

real program.

To provide an overview of the trend of empirical studies on mutation testing to attack

more challenging programs, we calculated the size of the largest subject program for

74

Figure 3.7: Percentage of publications addressing each language to which Mutation

Testing has been applied

each year. For each year on the horizontal axis, the data point in Figure 3.8 shows

the size of the largest program considered in a mutation study up to that point

in time. Clearly the definition of “program size” can be problematic, so the figure

is merely intended to be used as a rough indicator. There is evidence to indicate

that the size of the subject programs that can be handled by mutation testing is

increasing. However, caution is required. We found that although some empirical

experiments were reported to handle large programs, some studies applied only a

few mutation operators. We also counted the number of newly introduced subject

programs for each year. The results are shown in Figure 3.9. The dashed line in

the figure is the cumulative view of the results. The number of newly used subject

programs is gradually increasing, which suggests a growth in practical work.

In the empirical studies, it may be more indicative to use a real world program

rather than laboratory program. To understand the relationship between the use

of laboratory programs and real world programs in mutation experiments, we have

counted each type by year. The results are shown in Figure 3.10. In this study, we

consider a real world program to be either an open source or an industry program.

75

 0

 20000

 40000

 60000

 80000

 100000

 120000

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08

R
e
p
o
rt

e
d
 p

ro
g
ra

m
 s

iz
e
s

Year

 0

 50

 100

 150

 200

 250

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

Figure 3.8: The largest program applied for each year

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08

N
u
m

b
e
r

o
f
n
e
w

 s
u
b
je

c
t
p
ro

g
ra

m
s

Year

Number of new programs
Cumulative view

Figure 3.9: New programs applied for each year.

76

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08

N
u
m

b
e
r

o
f
p
ro

g
ra

m
s

Year

Laboratory Programs
Real World Programs

Cumulative view for Laboratory Programs
Cumulative view for Real World Programs

Figure 3.10: Laboratory programs vs. Real Programs

In Figure 3.10, the cumulative view shows that the number of real world programs

started increasing in 1992, while the number of laboratory programs had already

started increasing by 1988. Figure 3.10 also shows the number of laboratory and

real programs introduced into studies each year as bars. This clearly indicates that,

while there are correctly more laboratory programs overall, since 2002, far more

new real programs than laboratory programs have been introduced. This finding

provides some evidence to support the claim that the development of mutation

testing is maturing.

In our study, we found that for each research area of mutation testing there is

a different set of subject programs used as benchmarks. In Table 3.1 we have

summarised these benchmark programs. We chose five active research areas based on

our studies: Coupling effect, Selective Mutation, Weak, Strong and Firm Mutation,

Equivalent Mutant Detection and experiments supporting testing, including the use

of mutation analysis to select, minimise, prioritise and generate test data.

77

Table 3.1: Subject Programs by Application

Application Subject Programs Reference

Coupling Effect Triangle, Find, MID [196, 197]

Selective Mutation Triangle, Find, Bubble, MID, Calendar, Euclid,

Quad, Insert, Warshall, Pat, Totinfo, Schedule1,

Schedule2, TCAS, Printtok1, Printtok2, Space,

Replace, Banker, Sort, Areasg, Minv, Rpcalc, Se-

qstr, Streql, Tretrvi, Append, Archive, Change,

Ckglob, Cmp, Command, Compare, Compress,

Dodash, Edit, Entab, Expand, Getcmd, Get-

def, Getfn, Getfns, Getlist, Getnum, Getone,

Gtext, Makepat, Omatch, Optpat, Spread, Subst,

Translit, Unrotate

[212, 203, 188, 20,

189, 191]

Weak, Strong, Firm

Mutation

Triangle, Find, Bubble, MID, Calendar, Eu-

clid, Quad, Insert, Warshall, Pat, Gcd, Sort,

Max index

[287, 205, 204]

Equivalent Mutant Triangle, Find, Bubble, MID, Calendar, Eu-

clid, Quad, Insert, Warshall, Pat, Bsearch, Max,

Banker, Deadlock, Count, Dead

[200, 207, 208]

Testing (test case

generation, priori-

tization, selection

and reduction)

Triangle, Find, Bubble, MID, Calendar, Euclid,

Quad, Insert, Warshall, Pat, Space, Bsearch,

Totinfo, Schedule1, Schedule2, TCAS, Print-

tok1, Printtok2, Replace, Gcd, Binom, Ant,

Stats Twenty-four, Conversions, Operators, Xml-

Security, Jmeter, JTopas, ATM, BOOK, Vir-

tualMeeting, MinMax, NextDate, Finance

[70, 71, 201, 210,

281, 217, 79, 80,

164, 17, 128]

78

3.3 Tools for Mutation Testing

The development of Mutation Testing tools is an important enabler for the trans-

formation of Mutation Testing from the laboratory into a practical and widely used

testing technique. Without a fully automated mutation tool, Mutation Testing is

unlikely to be accepted by industry. In this section, we summarise development

work on Mutation Testing tools.

Since the idea of Mutation Testing was first proposed in the 1970s, many mutation

tools have been built to support automated mutation analysis. In our study, we

have collected information concerning 36 implemented mutation tools, including the

academic tools reported in our repository as well as the tools from the open source

and the industrial domains. Table 3.3 summarises the application, publication time

and any notable characteristics for each tool. The detailed description of the tools

can be found in the references cited in the final column of the table.

Figure 3.11 shows the growth in the number of tools introduced. In Figure 3.11, the

development work can be classified into three stages. The first stage was from 1977

to 1981. In this early stage, in which the idea of Mutation Testing was first proposed,

four prototype experimental mutation tools were built and used to support the es-

tablishment of the fundamental theory of mutation analysis, such as the Competent

Programmer Hypothesis [4] and the Coupling Effect Hypothesis [68]. The second

stage was from 1982 to 1999. There were four tools built in this period, three aca-

demic tools, Mothra for Fortran [65, 66], Proteum, TUMS for C [56, 57, 267]

and one industry tool called Insure++. Engineering effort had been put into

Mothra and Proteum so that they were able to handle small real programs not

just laboratory programs. As a result, these two academic tools were widely used.

Most of the advanced mutation techniques were experimented on using these two

tools, for example, Weak Mutation [205, 204], Selective Mutation [203, 212], Mutant

79

Table 3.2: Summary of Published Mutation Testing Tools

Name Application Year Character Available Reference

PIMS Fortran 1977 General No [43, 39, 163]

EXPER Fortran 1979 General No [4, 37, 42]

CMS.1 Cobol 1980 General No [3, 115]

FMS.3 Fortran 1981 General No [259]

Mothra Fortran 1987 General Yes [65, 66]

Proteum

1.4

C 1993 Interface Mutation, Finite State Machines No [56, 57]

TUMS C 1995 Mutant Schemata Generation No [266, 268, 267]

Insure++ C/C++ 1998 Source Code Instrumentation (Commer-

cial)

Commercially [226]

Proteum/IM

2.0

C 2001 Interface Mutation, Finite State Machines Yes [63]

Jester Java 2001 General (Open Source) Yes [182]

Pester Python 2001 General (Open Source) Yes [182]

TDS CORBA IDL 2001 Interface Mutation No [107]

Nester C# 2002 General (Open Source) Yes [251]

JavaMut Java 2002 General Yes [49]

MuJava Java 2004 Mutant Schemata, Reflection Technique Yes [206, 168, 169]

Plextest C/C++ 2005 General (Commercial) Commercially [132]

SQLMutation SQL 2006 General Yes [264]

Certitude C/C++ 2006 General (Commercial) Commercially [45]

SESAME C, Lustre, Pascal 2006 Assembler Injection No [53]

ExMAn C, Java 2006 TXL Yes [32]

MUGAMMA Java 2006 Remote Monitoring Yes [147]

MuClipse Java 2007 Weak Mutation, Mutant Schemata, Eclipse

plug-in

Yes [250]

CSAW C 2007 Variable type optimization Yes [90, 89]

Heckle Ruby 2007 General (Open Source) Yes [236]

Jumble Java 2007 General (Open Source) Yes [252]

Testooj Java 2007 General Yes [228]

ESPT C/C++ 2008 Tabular Yes [96]

MUFORMAT C 2008 Format String Bugs No [246]

CREAM C# 2008 General No [76]

MUSIC SQL(JSP) 2008 Weak Mutation, SQL Vulnerabilities No [244]

MILU C 2008 Higher Order Mutation, Search-based tech-

nique, Test harness embedding

Yes [137]

Javalanche Java 2009 Invariant and Impact analysis Yes [238, 113]

GAmera WS-BPEL 2009 Genetic algorithm Yes [81]

MutateMe PHP 2009 General (Open Source) Yes [35]

AjMutator AspectJ 2009 General Yes [55]

JDAMA SQL(JDBC) 2009 Byte code translation Yes [295]

80

 0

 5

 10

 15

 20

 25

 30

 35

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09

T
h
e
 n

u
m

b
e
r

o
f
d
e
v
e
lo

p
e
d
 t
o
o
ls

Year

Number of new tools
Cumulative view

Figure 3.11: The number of tools introduced for each year

Sampling [279, 177] and Interface Mutation [59, 58]. The third stage of mutation

testing development appears to have started from the turn of the new millennium,

when the first mutation workshop was held. There have been 28 tools implemented

since this time. In Figure 3.11, the dashed line shows a cumulative view of this de-

velopment work. We can see that the tool development trend is rapidly increasing

since year 2000, indicating that research work on Mutation Testing remains active

and increasingly practical.

In order to explore the impact of mutation testing within the open source and

industrial domains, we have classified tools into three classes: academic, open sources

and industrial. Table 3.3 shows the number of each class over two periods; one is

before the year 2000, the other is from the year 2000 to the present. As can be seen,

there are more open source and industrial tools implemented recently, indicating

that mutation testing has gradually become a practical testing technique, embraced

by both the open source and industrial communities.

81

Table 3.3: Classification of Mutation Testing Tools

Stage Overall Tools Academic Tools Open

Source

Tools

Commercial

Tools

1975-1999 8 7 0 1

2000-present 28 19 7 2

3.3.1 Academic Tools

The four tools: PIMS, EXPER, CMS.1 and FMS.3 were prototype tools in the

very early stages of the development of mutation testing. Although they could only

handle small toy programs, they all implemented the basic structure of mutation

analysis. Unfortunately non of these tools remain available. Mothra was the most

widely studied mutation testing tool. It was initially designed as an extension of

PIMS with more ‘friendly’ functions. Later on it was redesigned as the integration of

a set of tools. Mothra provides a formal set of Fortran 77 mutation operators and

it also provides several advanced optimisation techniques, such as Mutant Schema

Generation [268], constraint-based test data generation [70], Selective Mutation [203]

and Weak Mutation [204].

Proteum was the first C mutation tool. It applied the compiler based technique,

and implemented Agrawal et al.’s 77 C mutation operators [6]. Beside traditional

mutation analysis functions, it was the first tool provided the Interface Mutation

function [59]. There were many extended versions of the Proteum tool which sup-

ported Specification Mutation technique and application domains, such as Pro-

teum/FSM [92]. CSAW is a lightweight Mutation Testing tool for C programs,

developed by Ellims et al. [90]. CSAW adopts an approach to reduce the number of

non-killed mutants which is generated by mutation of variable types. MUTFOR-

82

MAT is a small application designed to find Format String Bugs in C programs by

injecting faults into the string format functions. It was developed by Shahriar et

al. [246] using TCL script and provided 8 mutation operators representing String

Format faults. However, it only supports the basic mutation processes without the

detection of equivalent mutant.

Kim et al. was the first to implement Java mutation tool [145]. They extended

Mothra tool set with Java mutation operators to generate mutants for Java pro-

grams. Chevalley and Thevenod-Fosse developed another mutation testing for Java

called JavaMut which implements 26 traditional and object-oriented mutation op-

erators. A comprehensive Java mutation testing, MuJava, was developed by the

Korean Advanced Institute of Science and Technology (KAIST) and George Mason

University [168, 206, 169]. MuJava was designed as a general Mutation Testing tool

for Java programs, supporting the entire mutation process. It employed the Weak

Mutation and Mutant Schemata techniques, and provided Behavioural Class muta-

tion operators and Structural Class mutation operators using Selective Mutation.

A novel Bytecode Translation technique was also adopted by MuJava to reduce

the computational cost. Instead of making changes on source code, this technique

generates mutant by changing Java Bytecode directly [168].

MUGAMMA is a Java mutation extension of the GAMMA framework, developed

by Kim et al. [147]. Unlike traditional mutation testing, it is designed to perform

post deployment mutation analysis. It generates mutants in the field dynamically,

and uses user’s real time inputs as test data to determine if the mutants can be

killed. It captures the results of each execution to provide additional confidence in

the deployed system.

TDS is a mutation tool for testing Distributed Component-Based applications, de-

veloped by Ghosh et al. [107]. TDS applies Interface Mutation techniques to test

the interfaces between two components which defined using CORBA IDL. SESAME

83

is multi-language mutation tool developed by LAAS-CNRS group [53]. It supports

to inject faults into assembly languages, procedural languages, such as Pascal, C and

data-flow, such as Lustre. SESAME has now been used by a commercial testing

tool, IBM Rational Test RealTime, to asses the quality of test sets. ExMAn is

another multi-language mutation tool developed by Bradury et al. [32]. ExMan

supports to generate mutants for C and Java programs using source transformation

language TXL. It can also work as a mutation framework to support plugin of other

quality assurance tool, such as model checkers and static analysis tools.

SQLMutation was the first mutation testing tool for SQL statements. It supports

four type of mutation operators and provides a web application interface as well as

a web service interface. MUSIC was developed by Shahriar et al. [244]. It was

designed to detect SQL Vulnerabilities by injecting faults into SQL statements in

JSP applications. It applied 9 SQL mutation operators using Selective Mutation.

Weak Mutation was also adopted to reduce the computational cost by checking the

internal results returned after query executions immediately.

The CREAM system was the first mutation testing tool for C# programs. It

was proposed by Derezinska and Szustek [76]. The CREAM system implemented

five object-oriented mutation operators (EOC, IHD, IPC, IOP, and JID). ESTP

was designed by Feng et al. [96] to measure the effectiveness of existing testing

strategies. In ESTP, a testing strategy is transformed into tabular specifications

which are used to generate test cases automatically. To evaluate this test strategy,

the generated test cases are evaluated by mutation testing using 20 of Agrawal et

al’s 77 C mutation operators [6].

Milu is another mutation testing tool for C programs, developed by Jia and Harman

[137]. Milu was the first mutation tool which supports Higher Order Mutation

Testing [136, 138]. To reduce the inherited computational cost of the traditional

Mutation Testing, Milu provides a set of search based optimisation algorithms to

84

search the subtle higher order mutants effectively. A novel test harness embedding

technique was proposed to reduce the cost of the execution of mutants [137]. Milu

is also the first tool to use Search Based Software Engineering (SBSE) to optimise

mutation testing, although SBSE has been widely used to optimise other aspects of

testing [116, 179]. The implementation of MiLu is presented in Section 4.2.

Javalanch is a mutation testing tool for Java, developed by Schuler et al. [113,

238]. The design of Javalanch focused on the automation and scalability. To

reduce computational cost, the mutants are created in the Java binary code level

using Selective Mutation and Mutant Schemata techniques. Moreover, Javalanch

applies a new form of Weak Mutation approach which analyses the mutants using

local invariants [238]. This approach has also been used to prioritize the execution

of the non-equivalent mutants [113].

3.3.2 Industry and Open Source Tools

Jester is the first open source tool for Java [182]. It only provides two mutation

operators. One changes 0 to 1 and the other is to replace predicates with TRUE and

FALSE [181]. A Python version of Jester, Pester is available from the Jester’s

website [182], and a C# version, Nester is also available [251].

Heckle is an open source unit mutation tool for Ruby at the RubyForge [236]. It

currently supports mutation of booleans, number, strings, symbols, ranges, regexes

and branches for entire classes, or individual methods. After running the mutation

analysis automatically, it provides a simple report summarising statistical results. A

detailed implementation document on the Heckle can be found on its website [236].

Jumble is a class level Java Mutation Testing tool, developed by a commercial

company called ReelTwo [233] from 2003 to 2006, and it has been released as an

open source project under the GPL licence since 2007 [252]. Jumble supports

85

seven types of mutation, including mutation on predicate conditions, arithmetic

operators, increments, inline constants, class poll constants, return values and switch

statements. It also provides a visualized feedback using a web based interface.

Gamera is mutation testing framework for WS-BPEL. It was first designed as

an academic tool by Domingues et al. [81] and released as an open source tool

recently. It uses 26 WS-BPEL mutation operator and adopted genetic algorithm to

reduced the number of mutants. MutateMe is a mutation framework for PHP5 web

applications. It is the most recent open source mutation tool and is still in alpha

version, under testing. The detailed implementation and source code is available

from its website [35].

Insure++ was the earliest commercial automatic testing tool for C and C++ using

mutation analysis technique [226]. Instead of generating all possible mutants, In-

sure++ targets on the ‘potential equivalent mutants’ which have same behaviours

as the original program. The idea is to then tries to generate the test cases to kill

these mutants, and if any test case is able to killed the ‘potential equivalent mutant’,

it might also finds the bug in the original program. Insure++ applies a Source

Code Instrumentation technique to optimise the performance [226].

Plextest is a commercial Mutation Testing tool for C/C++ programs [132]. It

implements the traditional mutation testing engine with a unit testing framework.

It supports the entire mutation process as well as Selective Mutation, Mutant

Schemata, and Weak Mutation to reduce computational cost.

Certitude is the most recent commercial tool, developed by Certess Inc [45]. Cer-

titude is primarily designed for Electronic Design Automation (EDA) and provides

a functional qualification as a verification criteria. It combines mutation testing

along with static analysis to measure and improve the functional qualification for

HDL functional verification.

86

3.4 Discussion

In the Redwine-Riddle maturation model [232], there is a trend that indicates that

a technology takes about 15 to 20 years to reach a level of maturity at which time

industrial uptake takes place. Suppose we cast our attention back by 15 years to the

mid 1990s. We reach a point where only approximately 25% of the current volume of

output had then been published in the literature. (see Figure 3.3). The ideas found

in this early Mutation Testing literature have now been implemented in practical

commercial Mutation Testing tools, as shown in Table 3.3. This observation sug-

gests that the development of mutation testing is in line with Redwine and Riddle’s

findings.

Furthermore, the set of mutation testing systems developed in the laboratory now

provides tooling for a great many different programming language paradigms (as

shown in Table 3.3). This provides further evidence of maturity and offers hope that,

as these tools mature, following the Redwine and Riddle model, we can expect a

future state–of–practice in which a wide coverage of popular programming paradigms

will be covered by real world mutation testing tools.

Finally, an increasing level of maturity can also be seen in the development of the

empirical studies reported on mutation testing. For example, there is a noticeable

trend for empirical studies to involve more programs and to also involve bigger and

more realistic programs, as can be seen in the chronological data on empirical studies

presented in Figure 3.8 and 3.9. However, it should also be noted that more work is

required on real world programs and that many of our empirical evidence still rests

on studies of what would now be regarded as ‘toy programs’. There also appears to

be an increasing degree of corroboration and replication of the results reported (see

Table 2.4).

87

Summary

This chapter has provided a detailed analysis of trends and results on mutation

testing. There has been much optimisation to reduce the cost of the mutation testing

process. From the data we collected from and about the mutation testing literature,

our analysis reveals an increasingly practical trend in the subject. We also found

evidence that there is an increasing number of new applications. There are more,

larger and more realistic programs that can be handled by mutation testing. Recent

trends also include the provision of new open source and industrial tools. These

findings provide evidence to support the claim that the field of mutation testing is

now reaching a mature state.

Recent work has tended to focus on more elaborate forms of mutation than on the

relatively simple faults that have been previously considered. There is an interest

in the semantic effects of mutation, rather than the syntactic achievement of a

mutation. This migration from the syntactic achievement of mutation to the desired

semantic effect has raised interest in higher order mutation to generate subtle faults

and to find those mutations that denote real faults. Next chapter will present a

fault-based higher order mutant classification, which can be used to located higher

order mutants that denote real faults.

88

Chapter 4

Higher Order Mutants

Classification

It is widely believed that higher order mutants are too numerous to be practical as

a source of simulated faults. Furthermore, many authors claim that the coupling

of higher order mutants to first order mutants renders higher order mutants unim-

portant. This chapter will investigate higher order mutants from the perspective of

fault interactions. Each first order mutant is considered to be a single fault, and

higher order mutants are considered to be a combination of single faults. To capture

the behaviour of each fault, both first and higher order mutants are executed with a

test suite. Higher order mutants are then classified according to the changes in the

behaviour of the faults caused by interactions between the faults.

This chapter will introduce an open-source mutation testing tool, MiLu, available

on the MiLu website [1]. MiLu is specifically designed for higher order mutation

testing of C programs, and, although designed to support higher order mutation

testing, it is also an efficient and flexible tool for first order mutation testing. MiLu

adopts the 77 C mutation operators of Agrawal et al. [6], and it provides customised

89

mutation operators. The main contributions of the chapter are as follows:

1. A new classification of higher order mutants is introduced from a fault interac-

tion perspective. A theoretical model for second order mutants is developed,

and second order mutants are then classified systematically in a tree hierarchy

structure.

2. The proportion of different categories of all second order mutants and samples

of third to fifth order mutants are explored in six subject programs. In total,

more than two million higher order mutants were generated with 9.2 billion test

executions. The results demonstrate that a large proportion of the behaviour

of higher order mutants is changed due to fault interaction.

3. MiLu, a higher order mutation testing tool, is presented. The efficacy of

MiLu in mutant generation and execution is investigated and the performance

of MiLu in both single and multi processing mode is reported.

The remainder of this chapter is organised as follows. Section 4.1 formally introduces

the classification of higher order mutants. Section 4.2 presents a higher order mu-

tation testing tool. Section 4.3 describes the experimental setting while the results

are discussed in Section 4.4.

4.1 Higher Order Mutant Classification

There exist a very large number of higher order mutants, and it is therefore im-

practical to use all possible higher order mutants in mutation testing. Classification

of higher order mutants can assist in the identification of those higher order mu-

tants which can potentially benefit from higher order mutation testing. For the sake

of simplicity, in this chapter, a second order mutant case is used to illustrate the

90

proposed HOM classification. However, this approach can also be used to classify

nth order mutants, where n > 1. This section will first introduce this second order

mutant case and then describe the classification approach in detail.

4.1.1 Second Order Mutant Case

The particular second order mutant case considered in this chapter is a simple but

typical example of higher order mutants. Assume there are two first order mutants,

f1 and f2, then h denotes the higher order mutant constructed from the first order

mutants f1 and f2. Assume the existence of a test set Tu; Tu denotes the universal

set of all possible test data. Test sets Tf1, Tf2 and Th denote the set of test data

that kill the first order mutants f1, f2 and the higher order mutant h, respectively.

Figure 4.1 shows a Venn diagram of such a typical second order mutant case.

A

B C D

E

F

G

H

 Universal Test Set Tu

Tf1

Th

Tf2

Figure 4.1: Second order mutant case Venn diagram

91

In Figure 4.1, the rectangle Tu depicts the set of all possible test inputs. Three circles,

Tf1, Tf2 and Th, depict the possible regions of test cases that can kill mutants f1,

f2 and h, respectively. The regions A− F represent unique sets of test data in the

universal test data domain. For example, the test set C includes all test cases that

kill both mutants f1 and h.

These unique test sets are used in the classification proposed in this chapter to

illustrate each type of higher order mutant. For example, if the test sets A,B,D, F

and H are empty, and the test sets C,G and E are non-empty, the higher order

mutant h is a commonly occurring higher order mutant which is predicted by the

coupling effect hypothesis. The formal mathematical notation and the equivalent

textual descriptions of these regions are provided in Table 4.1.

Table 4.1: Description of the unique test sets

Test Set Mathematical

Notation

Textual Description

A Tu\(Tf1∪Tf2∪Th) Denotes the set of test data that do not kill any of mutants

f1, f2 and h.

B Tf1\(Tf2∪Th) Denotes the set of test data that kill only FOM f1.

C (Tf1∩Th)\Tf2 Denotes the set of test data that kill only FOM f1 and

HOM h.

D Th\(Tf1∪Tf2) Denotes the set of test data that kill only HOM h.

E (Tf2∩Th)\Tf1 Denotes the set of test data that kill only FOM f2 and

HOM h.

F Tf2\(Tf1∪Th) Denotes the set of test data that kill only FOM f2.

G Tf1∩Tf2∩Th Denotes the set of test data that kill FOMs f1, f2 and HOM

h simultaneously.

H (Tf1∩Tf2)\Th Denotes the set of test data that kills only FOMs f1 and f2

but not HOM h.

92

A bar notation is used in the proposed classification of higher order mutants in

order to show whether a unique test set is empty or not. Let us assume that the

test set T contains test data that kill the mutant M . In the bar notation used

here, T means that the test set T is not empty and T means that the test set T is

empty. For example, the bar notation of the common higher order mutant following

the coupling effect hypothesis is ABCDEFGH and the Venn diagram is shown in

Figure 4.2.

B
D

F

H

C

E
G

Figure 4.2: Example of the bar notation ABCDEFGH. The shaded area depicts

empty test sets. The diagram shows that the higher order mutant h is killed by

the union of test sets that kill first order mutants f1 and f2. (See Table 4.1 for the

explanations of test sets A - H)

93

4.1.2 Higher Order Mutant Classification

From a testing perspective, some types of higher order mutants are more interesting

then others. Higher order mutants can be divided into two groups, interesting and

uninteresting, as shown in Figure 4.3. The uninteresting group contains higher order

mutants that we believe are of no assistance in fault-based testing. For example, if

two faults are combined and the program (higher order mutants) is predicted by the

coupling effect hypotheses or get even worse (i.e. it becomes more faulty than we

expected), these higher order mutants are said to be uninteresting. This is because

they cannot help the programmer find any new faults for most of the time. The

interesting group contains types of higher order mutants that are potentially able to

assist the programmer in fault-based testing. This interesting group can be further

subdivided into two groups: fault Masking and fault Shifting. The formal definition

of these classes is given in Table 4.2.

Classes

Uninteresting Interesting

Expected Worsening Fault Masking Fault Shifting

Partial Fault
Masking

Total Fault
Masking

Partial Fault
Shifting

Total Fault
Shifting

Figure 4.3: Tree of Classes

Second order mutants will now be used to illustrate this classification theoretically.

All types of second order mutants were first enumerated systematically in a hierarchy

tree structure. The working out of the full tree is shown in Figures 4.4. At the first

level of the tree, three combinations of the first order mutants were considered: (i)

94

Ty
pe

s o
f fi

rs
t o

rd
er

 m
ut

an
ts

BC
EF

G
H

EF
G

H
 ∧

 B
 ∪

 C

 B
 ∪

 C
 ∪

 G
 ∪

 H
 ∧

 E
 ∪

 F
 ∪

 G
 ∪

 H

(b
ot

h
ar

e
EQ

s)
(o

ne
 is

 E
Q

)
(n

ei
th

er
 is

 E
Q

)

D

(H
O

M
 is

 E
Q

)
D

(H
O

M
 is

 n
ot

 E
Q

)
CD

(H
O

M
 is

 E
Q

)
C
∪

 D
(H

O
M

 is
 n

ot
 E

Q
)

B
CD

CD
CD

B
B

B
B

B

CD
EG

C
∪

 D
 ∪

 E
 ∪

 G
(H

O
M

 is
 E

Q
)

(H
O

M
 is

 n
ot

 E
Q

)

BF
BF

BF
BF

H
H

H
H

H

C
D

EG
C

D
EG

C
D

EG
C

D
EG

C
D

EG

C
D

EG
C

D
EG

C
D

EG
C

D
EG

C
D

EG

C
D

EG
C

D
EG

C
D

EG
C

D
EG

C
D

EG

Figure 4.4: Second order classification tree

95

Table 4.2: Description of the HOM classes

Type Description

Expected As predicted by the coupling effect hypothesis.

Tf1∪Tf2=Th

Worsening From a bug perspective, two faults are combined so

that the program gets even worse, i.e. it becomes

more ’buggy’ than expected. Tf1∪Tf2⊂Th

Partial Fault Masking

(PFM)

Two mutants are combined so that they mask each

other, i.e. no new test cases cause the program to

fail, and some old test cases pass the test. Tf1 6=

∅ ∧ Tf2 6= ∅ ∧ Th⊂Tf1∪Tf2

Total Fault Masking

(TFM)

A special case of PFM, where the faults completely

mask each other. Tf1 6= ∅ ∧ Tf2 6= ∅ ∧ Th= ∅

Partial Fault Shifting

(PFS)

Two mutants are combined so that there exist new

test cases that cause the program to fail, and some

old test cases pass the test. Tf1 6= ∅ ∧ Tf2 6=

∅ ∧ Th 6= ∅ ∧ Th\(Tf1∪Tf2)6= ∅ ∧ Th∩(Tf1∪Tf2)6= ∅

Total Fault Shifting

(TFS)

A special case of PFS, where all old test cases

pass the test. Tf1 6= ∅ ∧ Tf2 6= ∅ ∧ Th 6=

∅ ∧ Th\(Tf1∪Tf2)6= ∅ ∧ Th∩(Tf1∪Tf2)= ∅

96

both first order mutants f1 and f2 are equivalent, (ii) one of the first order mutants

is equivalent (here assuming first order mutant f2 is equivalent) and (iii) neither

first order mutant f1 or f2 is equivalent. At the next level of the tree, each of these

situations was further subdivided into two branches: (i) higher order mutant h is

equivalent and (ii) higher order mutant h is not equivalent, Finally, all types of

higher order mutant were enumerated by all possible combinations of the test sets

regions identified in Figure 4.1. The classification based on the tree is shown below.

Both of the FOMs are equivalent, BCEFGH

1. D (HOM h is equivalent) : Expected

2. D (HOM h is not equivalent) : Worsening

One of the FOMs (f2) is equivalent, EFGH ∧ B ∪ C

1. CD (HOM h is equivalent) :-

(a) B : Total Fault Masking

2. C ∪D (HOM h is not equivalent) :-

(a) CD :-

i. B : Total Fault Shifting

(b) CD :-

i. B : Partial Fault Masking

ii. B : Expected

(c) CD :-

i. B : Partial Fault Shifting

ii. B : Worsening

97

Neither of the FOMs is equivalent (B ∪ C ∪G ∪H ∧

E ∪ F ∪G ∪H)

1. CDEG (HOM h is equivalent) : Total Fault Masking

2. C ∪D ∪ E ∪G (HOM h is not equivalent) :-

(a) CDEG: Partial Fault Masking

(b) CDEG: Total Fault Shifting

(c) CDEG: Partial Fault Masking

(d) CDEG: Partial Fault Masking

(e) CDEG: Partial Fault Shifting

(f) CDEG: Partial Fault Masking

(g) CDEG: Partial Fault Masking

(h) CDEG: Partial Fault Shifting

(i) CDEG: Partial Fault Shifting

(j) CDEG: Partial Fault Masking

(k) CDEG: Partial Fault Shifting

(l) CDEG: Partial Fault Shifting

(m) CDEG: Partial Fault Masking

(n) CDEG: Partial Fault Shifting

(o) CDEG: Partial Fault Shifting

In the second order mutant case, fault Masking and fault Shifting can be further

classified based on mutant equivalence. Because instead of considering an equivalent

mutant as a fault, it can also be considered as a meaning preserving patch. A fault

Masking second order mutant with one equivalent first order mutant and one non-

equivalent first order mutant is known as a ‘fault Fixing’ while a fault Shifting

98

second order mutant with one equivalent first order mutant and one non-equivalent

first order mutant is known as a ‘fault Transforming’, as shown in Table 4.3. It is

important to note that this concept only applies to second order mutants.

Table 4.3: Description of special second order classes

Type Description

Partial fault Fixing

(PFF)

A patch (equivalent mutant) is applied to a fault

(non equivalent mutant) resulting in an improve-

ment, i.e. no new test cases cause the program

to fail, and some old test cases pass the test.

Tf1 6= ∅ ∧ Tf2= ∅ ∧ Th⊂Tf1

Total fault Fixing (TFF) A special case of PFM, where all old test cases pass

the test. Tf1 6= ∅ ∧ Tf2= ∅ ∧ Th= ∅

Partial fault Transform-

ing (PFT)

A patch (equivalent mutant) is applied to a fault

(non equivalent mutant) so that new test cases ex-

ist that cause the program to fail, and some old

test cases pass the test. Tf1 6= ∅ ∧ Tf2= ∅ ∧ Th 6=

∅ ∧ Th\Tf1 6= ∅ ∧ Th∩Tf1 6= ∅

Total fault Transforming

(TFT)

A special case of PFS, where all old test cases pass

the test. Tf1 6= ∅ ∧ Tf2= ∅ ∧ Th 6= ∅ ∧ Th\Tf1 6=

∅ ∧ Th∩Tf1= ∅

4.2 Milu: Higher Order Mutation Tool

In the literature of mutation testing, there was only one mutation testing tool,

Mothra [197] which supports to generate higher order mutants. This section intro-

duces a new higher order mutation testing tool, MiLu, which is specifically designed

99

for the study of higher order mutants in C programs and supports mutation testing

in general. MiLu currently supports a subset of mutation operators for the C lan-

guage [6] by default, and provides a set of APIs to implement user-defined mutation

operators. The tool provides a source code analysis and program testing environ-

ment to support full mutation testing of either first order mutants, higher order

mutants or both, and it is fully open source and available from the MiLu website

[1].

Milu (in Chinese characters: 麋鹿) is the name of a deer that is, according to

common folklore, composed of four other animal parts: a horse’s head, a deer’s

antlers, a donkey’s body and a cow’s hooves. This real life animal is sometimes

also known as Père David’s Deer (Elaphurus davidianus) [36]. The construction

of the Chinese name Milu illustrates a higher order mutant where the mutation

operators of nature have been applied four times. Furthermore, the Milu deer is

currently a critically endangered species, so the program name MiLu also signifies

the characteristics of an interesting class of higher order mutants; rare but valuable.

MiLu provides two modes for mutation testing: traditional mode and higher order

mode. Traditional mode is designed to support first order mutation testing. In this

mode, one fault is seeded in each mutant. In higher order mode, multiple faults are

seeded in each mutant. MiLu allow users to use either predefined mutation operators

or their own implemented mutation operators. To automate the testing process, the

user also needs to specify a comparison method, known as a driver, distinguishing

the results between the mutants and the original program. MiLu then takes care

of the rest of the work; it generates the mutants, executes each of them with the

given test set and reports the mutation score and other information that may be of

use to an experimenter. MiLu provides a set of APIs with detailed documentation

for researchers programming for their own needs for the generation and evaluation

of mutants. The mutation process adopted by MiLu is illustrated in Figure 4.5.

100

Program

Mutation
Operators

Mutation
Operators

Mutation
Operators

AST

MutantsMutantsFirst Order
Mutants

Test InputsTest InputsTest Inputs

Mutation
Score

MutantsMutantsHigher Order
Mutants

1

2

3

4

5

Figure 4.5: MiLu mutation processes

Mutation Process

The first step in Figure 4.5 is to parse source code into an abstract syntax tree (AST).

MiLu uses the C library of Clang, the C front-end for the LLVM compiler [156], to

parse the source code, thus it can mutate any C program which can be compiled by

Clang. In the second step, mutants are generated by modifying nodes of the AST.

By default, MiLu supports a subset of C mutation operators [6]. Users are able to

implement new mutation operators by creating the mutator objects. Each mutator

specifies how to modify nodes of the AST to create mutants and how to clean up

the mutation process. A set of AST modification APIs are provided for users to

implement mutators; detailed documentation is available on the MiLu website [1].

Step 3 of Figure 4.5 is to run mutants against a set of test data. By default,

MiLu supports two types of mutation execution strategies: practical execution

strategy and research execution strategy. The practical execution strategy is de-

signed for the general mutation process. This strategy will stop executing a mutant

if a test case kills the mutant. The research execution strategy requires execution

101

of a mutant with all given test cases completely even the mutant is killed. The

research execution strategy is much more time consuming but it provides additional

attributes for each mutant.

To utilise the power of a multicore system, MiLu supports running multiple mutants

simultaneously. There are two common ways to run mutants in parallel on a sin-

gle machine: multi-threading and multi-processing. The multi-threading approach

runs mutated programs within a process, while the multi-processing approach runs

mutated programs as multiple operating system processes. Multi-threading is more

lightweight than multi-processing, as threads have less context switching cost than

processes. However, running mutants using processes is more stable, as any mutant

crashes a thread may bring down the main mutation tool process. MiLu is designed

to be a stable mutation system, thus the mutation execution process is implemented

in multi-processing, and it allows users to choose the number of additional processes

to run according to users’ computer settings. The results of comparing single pro-

cessing and multi-processing are reported in Section 4.4.3.

4.3 Empirical Study

This section describes a set of experiments designed to explore the properties of

higher order mutants. Section 5.4 discusses the research questions that the study

will address. Section 5.4 describes the subject programs used in this study. Section

4.3.3 briefly overviews the selected mutation operators.

4.3.1 Research Questions

This section sets out the research questions addressed in the empirical study and

for which the next section provides answers.

102

RQ1: What is the distribution of different classes of second order mutants?

The main aim of this chapter is to classify higher order mutants from a testing

perspective. Such classification can be used to identify the interesting higher order

mutants which exhibited unusual behaviour due to fault interactions. Therefore, the

natural first research question is to investigate the distribution of all mutants over

the class of second order mutants. In particular, the proportion of Fault Masking

and Fault Shifting higher order mutants will be reported since these higher order

mutants might be able to assist the programmer in finding new faults.

RQ2: What is the distribution of different classes of third to fifth order mutants?

Due to the large number of third to fifth order mutants, it is impossible to enumerate

all of them. We therefore sampled ten subsets of third to fifth order higher order

mutants. Algorithm 1 sets out the steps involved in the experimental procedure.

The second research question investigates the distribution of each class of third to

fifth order mutants.

RQ3: How efficient is MiLu for mutant generation and mutant execution?

In the experiment, we compare the running time of MiLu using the research exe-

cution strategy and the standard execution strategy. We also studied the execution

cost in single processing mode and multiple processing mode.

4.3.2 Subject Programs

The experiment described above was performed with six programs: Mid, Find,

Triangle, TCAS, Totinfo and Replace. Because of the high computational cost

of executing all second order mutants and sampling the higher order mutants, only

small and medium-sized programs were used. In total 2,014,699 mutants were gen-

erated in the experiment.

103

for each subject program do

generate all possible first order mutants, F

generate all possible second order mutants, H2

execute F and H2 on all available tests

classify mutants H2

for repeat 10 times do

randomly generate n 3-5th order H3−5, n = |H2|
10

execute H3−5 on all available tests

classify mutants H3−5

end

end
Algorithm 1: Experimental procedure

Mid, Find and Triangle are three small programs used in previous studies on the

coupling effect hypothesis by Offutt [197]. The Mid program takes three integers as

input and outputs the middle value. The Triangle program is used to determine

the type of a triangle from the length of its sides. The Find program takes an integer

array A and an index value i and sorts the array so that any element on the left

of A(i) is less than or equal to A(i) and any element on the right of A(i) is greater

than or equal to A(F).

TCAS, Totinfo and Replace are three larger programs from the ‘Siemens Suite’

which can be downloaded from the Software-artifact Infrastructure Repository (SIR)

[78]. These programs are widely used as a benchmark for software testing techniques.

TCAS is a program used to avoid an aircraft collision. Totinfo is a program that

computes statistics from input data, and Replace performs pattern matching and

substitution.

In order to capture the fault behaviour, a test suite is needed for each subject pro-

gram. For programs TCAS, Totinfo and Replace, the ‘universe’ test pool from SIR

which includes 1,608 tests achieving adequate statement coverage, branch coverage

104

and du-path coverage, is used. The programs Mid and Triangle take three integers

as inputs; in this experiment all tuple combination of integers from the domain [-5,5]

are enumerated as test inputs. Find takes an array with length of 10 as input, and

pairwise coverage tests are generated from the domain [-5,5] as test inputs. The

characteristics of these programs are shown in Table 4.4.

Table 4.4: Selected Subject Programs

No. of No. of No. of No. of Sampled FOM

Programs Scale Test Cases FOMs 2nd HOMs 3-5 HOMs Mutation Score

Mid 27 LoC 1,331 30 360 360 83.33%

Find 49 LoC 1,671 180 15,712 15,712 69.44%

Triangle 55 LoC 1,331 274 36,810 36,810 92.70%

TCAS 95 LoC 1,608 266 34,697 34,697 77.44%

Totinfo 247 LoC 1,052 516 131,815 131,815 81.39%

Replace 492 LoC 5,542 1,257 786,694 786,694 78.52%

4.3.3 Mutation Operators

The study of Agrawal et al. describes the mutation operators for the C language

into 77 sets. However, not all of the mutation operators increase the effectiveness of

mutation testing. Offutt [212, 203] shows that 5 of 22 Fortran mutation operators

used by Mothra are sufficient for effective mutation testing. Andrews et al. applied

these operators to generate mutants for C programs [14, 15]. They found that the

generated mutants are very good at predicting the detection effectiveness of real

faults. In the experiment presented in this chapter, the subset of the C mutation

operators that fall into Offutt’s five categories [203] will be used, and they are listed

in Table 4.5. As the total number of higher order mutants are related to the number

of first order mutants, this selective mutation approach will reduce the experiment

105

runtime cost.

Table 4.5: Selected C mutation operators

Mutation Operators Description

CRCR Required constant replacement

OAAN Arithmetic operator mutation

OAAA Arithmetic assignment mutation

OCNG Logical context negation

OIDO Increment/decrement mutation

OLLN Logical operator mutation

OLNG Logical negation

ORRN Relational operator mutation

OBBA Bitwise assignment mutation

OBBN Bitwise operator mutation

4.4 Results and Analysis

This section will present the answer to each research question in turn, indicating

how the results answer each question.

4.4.1 Answer to RQ1

RQ1 is designed to investigate the quantity of each class of second order mutants. To

begin the analysis, each column of Table 4.6 presents the number and percentage of

second order mutants found in each category. In general, the expected and worsening

categories are of little interest, since the higher order mutant faults that fall into

these two categories are not able to assist the programmer in finding new faults.

106

A total of 67.43% of second order mutants fall into the expected category, and only

4.24% of mutants fall in the worsening category. The fault masking category has

19.2% of second order mutants; within this category, partial fault masking mutants

comprise approximately 99.5%, and total fault masking mutants comprise only ap-

proximately 0.5%. The number of total fault masking mutants is very small; they

are potentially equivalent second order mutants which require additional human

effort to detect.

A total of 9.11% of second order mutants fall into the fault shifting category, and

within this category, 99.8% of mutants belong to the partial fault shifting class

and only 0.02% are total fault shifting mutants. The total fault shifting higher

order mutants are decoupled higher order mutants; their very small number further

confirms the results of the coupling effect hypothesis as stated by Offutt [197].

4.4.2 Answer to RQ2

RQ2 investigates the quantity of each class of third to fifth order mutants and

results are summarised in Table 4.7. Because it is impossible to enumerate all

third to fifth order mutants, we randomly sampled ten sets of third to fifth order

mutants. The total number of sampled higher order mutants was chosen to be equal

to the number of 2nd order mutants for each program (see Algorithm 1 for details).

Table 4.7 reports the average percentage of third to fifth order mutants found in each

category of the ten samples and the standard deviation in brackets. The comparison

between second order mutants and third to fifth order mutants is shown in Figure

4.6. Figure 4.6 suggests that as the order increases, the number of partial fault

masking category and partial fault shifting category increases.

A total of 29.63% of third to fifth order mutants fall into the expected category

which is less than half of the second order mutants in this category. A total of

107

Table 4.6: Distribution of different classes for second order mutants

Program Expected Worsening PFM TFM PFS TFS

(%) (%) (%) (%) (%) (%)

Mid
213 16 115 0 16 0

(59.17) (4.44) (31.94) (0.00) (4.44) (0.00)

Find
10,179 1,062 2,855 27 1,581 8

(64.78) (6.76) (18.17) (0.17) (10.06) (0.05)

Triangle
25017 1,514 7,572 43 2,655 9

(67.96) (4.11) (20.57) (0.12) (7.21) (0.02)

TCAS
19,733 1,480 7,400 62 6,003 19

(56.87) (4.27) (21.33) (0.18) (17.30) (0.05)

Totinfo
114,977 4329 10,332 100 2,076 1

(87.23) (3.28) (7.84) (0.08) (1.57) (0.00)

Replace
539,503 21,223 115,513 746 109,657 18

(68.58) (2.70) (14.68) (0.09) (13.94) (0.00)

Average (67.43) (4.24) (19.09) (0.11) (9.09) (0.02)

108

4.83% of higher order mutants become worse which is similar to the second order

case. The fault masking category has 38.76% of third to fifth order mutants, which

becomes the biggest category. The percentage of Partial Fault Masking third to

fifth mutants is about twice as much as the second order case while the total fault

masking mutants remain same.

The fault shifting category has 26.78% of third to fifth order mutants. The percent-

age of partial fault shifting third to fifth mutants is about three times as much as

the second order case while the total fault masking mutants remain same. Again

the number of total fault shifting higher order mutants is very small, which confirms

the results of the coupling effect hypothesis[197].

 0

 12

 24

 36

 48

 60

 72

Expected Worsening Partial Fault
Masking

Total Fault
Masking

Partial Fault
Shifting

Total Fault
Shifting

Pe
rc

en
ta

ge
 o

f h
ig

he
r o

rd
er

 m
ut

an
ts

Categories

second order mutants
third to fifth order mutants

Figure 4.6: A Comparison of categories of 2nd order mutants and 3rd to 5th order

mutants.

109

Table 4.7: Distribution of different classes for the ten samples of third to fifth order

mutants. The STD number is the standard divination of ten samples

Program Expected % Worsening % PFM % TFM % PFS % TFS %

(STD) (STD) (STD) (STD) (STD) (STD)

Mid
12.50 2.78 71.11 0.28 13.33 0.00

(4.94) (2.93) (8.20) (0.88) (5.82) (0.00)

Find
20.90 9.54 36.80 0.13 32.60 0.02

(0.64) (0.73) (1.31) (0.14) (1.16) (0.03)

Triangle
22.97 5.78 43.09 0.01 28.13 0.01

(0.60) (0.34) (0.80) (0.02) (1.03) (0.01)

TCAS
11.91 2.78 34.56 0.11 50.60 0.04

(0.68) (0.24) (0.93) (0.03) (1.38) (0.03)

Totinfo
74.63 4.74 16.26 0.02 4.35 0.00

(0.23) (0.11) (0.37) (0.02) (0.20) (0.00)

Replace
34.87 3.375 30.13 0.04 31.58 0.00

(0.27) (0.01) (0.03) (0.00) (0.24) (0.00)

Average 29.63 4.83 38.66 0.10 26.77 0.01

Average STD (1.23) (0.73) (1.94) (0.18) (1.64) (0.01)

110

4.4.3 Answer to RQ3

RQ3 investigates the efficiency of MiLu. Table 4.8 reports the average time for

mutant generation and execution for each program. In Table 4.8 the columns labelled

‘Gen.’ report the average mutant generation time for 100 mutants taken by MiLu

(in seconds). The columns labelled ‘Exe.’ report the average mutant execution

time for 100 mutants taken by MiLu (in seconds). The columns labelled ‘PRA.’

indicate that MiLu runs using the practical execution strategy, that is, MiLu stops

running any mutants which are killed by one test case. The columns labelled ‘RES.’

indicate that MiLu runs using the research execution strategy, that is, MiLu runs

the complete test suite on all mutants. The two labels, ‘SP’ and ‘MP’, indicate

that MiLu runs in the traditional single processing and multi-processing modes,

respectively. In this experiment, MiLu executes mutants with 12 processes in the

multi-processing mode.

Table 4.8: Efficiency of running MiLu

Program Gen. Exe. Exe. Gen. Exe. Exe.

(PRA,SP) (PRA,SP) (RES,SP) (PRA,MP) (PRA,MP) (RES,MP)

Mid 0.49 16.25 308.25 0.06 4.66 25.29

Find 0.50 48.64 424.42 0.06 5.77 29.25

Triangle 0.49 171.47 306.98 0.05 11.58 26.51

TCAS 0.54 27.10 372.38 0.09 6.43 31.93

Totinfo 0.67 17.36 247.23 0.10 3.92 25.77

Replace 0.69 79.95 1419.95 0.09 19.18 103.91

Average 0.56 60.13 513.20 0.07 8.59 40.44

In MiLu, the mutant generation process involves parsing source code, applying

syntactic transformation to the source code and outputting mutants. The mutant

execution process involves compiling mutants and executing test suites on mutants.

As shown in Table 4.8, in general, it is much faster to generate mutants (average

111

times range from 0.07 to 0.56 seconds per 100 mutants) than to execute mutants

(average times range from 8.59 to 513.2 seconds per 100 mutants). The practical

execution strategy is much faster than the research execution strategy; specifically,

compared to the research execution strategy, the practical execution strategy is 8.53

times faster in single processing mode and 4.7 times faster in multi-processing mode,

on average. Using 12 processes, compared to the single processing mode, the multi-

processing mode achieves 7 times speed increase in the standard execution strategy

and 12.68 times speed increase in the research execution strategy on average.

Summary

This chapter introduced a new higher order mutant classification. Based on different

types of fault interactions, this approach classifies higher order mutants into four

categories: expected, worsening, fault masking and fault shifting. This chapter also

presents MiLu, a C mutation testing tool that can handle both first and higher

order mutants. The new classification approach was studied empirically using six

programs. The results show that interesting fault masking and fault shifting classes

of higher order mutants can be found in all of the subject programs.

In this chapter, all possible second order mutants were enumerated in order to iden-

tify the interesting mutants. However, this is impossible when running mutation

testing due to the high computational cost. The next chapter will introduce a

search-based optimisation approach for finding optimal higher order mutants which

potentially represent subtle faults in real world programs. This approach has the

potential to overcome the exponential explosion in the number of higher order mu-

tants.

112

Chapter 5

Searching for Higher Order

Mutants

The chapter introduces the concept of subsuming higher order mutants. A subsum-

ing higher order mutant is more difficult to kill than the first order mutants from

which it is constructed. As such, it may be preferable to replace the first order mu-

tants with the single higher order mutant. In particular, this chapter will introduce

the concept of a strongly subsuming higher order mutant. A subsuming higher order

mutant is only killed by a subset of the intersection of test cases that kill each first

order mutant from which it is constructed. Both subsuming and strongly subsuming

higher order mutants belong to the subsets of fault masking and fault shifting higher

order mutants, which were introduced in Chapter 4.

Consider a subsuming higher order mutant, h, constructed from the FOMs f1, ..., fn.

The set of test cases that kill h also kill each and every first order mutant f1, ..., fn.

Therefore, h can replace all of the mutants f1, ..., fn without loss of test effectiveness.

The converse does not hold; there exist test sets that kill all FOMs f1, ..., fn but fail

to kill h. The first order mutants cannot, even taken collectively, replace the higher

113

order mutant without possible loss of test effort. This is the sense in which h can

be said to ‘strongly subsume’ f1, ..., fn.

In order to overcome the inherent computational cost that comes with the large

number of HOMs, this chapter introduces a search-based approach to identify these

subsuming higher order mutants efficiently. The main contributions of the chapter

are as follows:

1. A novel higher order mutation testing paradigm is introduced. The concepts

of subsuming higher order mutants and a search-based approach to overcome

the exponential explosion in the number of higher order mutants are also

introduced. The work presented takes advantage of higher order mutation

testing which clarifies the differences between the higher order mutation testing

paradigm and the first order mutation testing paradigm, as previously studied

and practiced.

2. The proportion of all higher order mutants that are subsuming and strongly

subsuming is explored. The results show that a large proportion of higher

order mutants are subsuming and that a small proportion of these are strongly

subsuming. Although the proportion of strongly subsuming mutants is small,

the number of strongly subsuming mutants is large because the number of

higher order mutants increases exponentially. The search-based algorithms

were able to find small but useful numbers of strongly subsuming higher order

mutants in all of the ten programs studied.

3. The relationship between mutant killing set intersection and mutant order

is investigated. The results demonstrate the degree to which higher order

mutants contain first order mutants that are completely decoupled.

4. Three algorithms for finding optimal higher order mutants are introduced. The

results indicate that the genetic algorithm performs best overall. However, it

114

is also demonstrated that each of the algorithms targets a different kind of

higher order mutant; therefore, all three algorithms are useful.

The rest of this chapter is organised as follows. Section 5.1 formally introduces the

concept of a subsuming higher order mutant. Section 5.2 discussed the advantage

of higher order mutant testing. Section 5.3 presents a search-based approach and

explains three meta-heuristic algorithms used to find higher order mutants. Section

5.4 details the experimental setting, while the results are discussed in Section 5.5.

Section 5.6 discusses threats to the validity of the experiments and the related work.

5.1 Subsuming Higher Order Mutants

Chapter 4 introduced two classes of interesting higher order mutants, fault masking

and fault shifting; however, not all higher order mutants that fall into these two

classes are suitable for practical use in mutation testing. For example, total fault

masking higher order mutants are equivalent mutants should be avoided. To identify

a subset of fault masking and fault shifting higher order mutants representing po-

tential real subtle faults, higher order mutants are further classified in terms of the

way that they are ‘coupled’ and ‘subsuming’, as shown in Figure 5.1. In Figure 5.1,

the region area in the central Venn diagram represents the domain of all higher order

mutants. The sub-diagrams surrounding the central region illustrate each category.

For the sake of simplicity of exposition, these examples illustrate the second order

mutant case; it is assumed that there are two first order mutants, f1 and f2, and h

denotes the higher order mutant constructed from the first order mutants f1 and f2.

The two regions depicted in each sub-diagram represent the test sets containing all

the test cases that kill the first order mutants f1 and f2. The shaded area represents

the test set that contains all test cases that kill the higher order mutant h. The

115

areas of the regions indicate the proportion of the domain of higher order mutants

for each category.

Following the coupling effect hypothesis [197], if a test set that kills the first order

mutants also contains cases that kill the higher order mutant, it can be said that

the higher order mutant is a ‘coupled higher order mutant’, otherwise it is said to be

a ‘de-coupled higher order mutant’. Therefore, in Figure 5.1, the sub-diagram is a

coupled higher order mutant if it contains an area where the shaded region overlaps

with the unshaded regions, for example as in the sub-diagrams (a), (b) and (f).

Since the shaded region from the sub-diagrams (c) and (d) do not overlap with the

unshaded regions, (c) and (d) are de-coupled higher order mutants. Sub-diagram

(e) is a special case of a de-coupled higher order mutant because there is no test

case that can kill the higher order mutant; there is no overlap and thus the higher

order mutant is an equivalent mutant.

Subsuming higher order mutants, by definition, are more difficult to kill than their

constituent first order mutants. Therefore, in Figure 5.1, the subsuming higher

order mutants can be represented as those where the shaded area is smaller than

the area of the union of the two unshaded regions, such as in sub-diagrams (a), (b)

and (c); in contrast, the higher order mutants represented in (d), (e) and (f) are

non-subsuming. Furthermore, the subsuming higher order mutants can be classified

into strongly subsuming higher order mutants and weakly subsuming higher order

mutants. By definition, if a test case kills a strongly subsuming higher order mutant,

it guarantees that its constituent first order mutants are killed as well. Therefore,

if the shaded region lies only inside the intersection of the two unshaded regions, it

is a strongly subsuming higher order mutant, as depicted in (a), which is a subset

of fault masking higher order mutants. Otherwise, it is a weakly subsuming higher

order mutant, as depicted in (b) and (c), which are a subset of fault shifting higher

order mutants.

116

HOMs
(a) Strongly Subsuming

and Coupled

(b) Weakly Subsuming
and Coupled

(c) Weakly Subsuming
and De-coupled

(d) Non-Subsuming
and De-coupled

(f) Non-Subsuming
and Coupled

(e) Non-Subsuming
and De-coupled (equivalent)

Figure 5.1: Subsuming higher order mutant classification. The central Venn diagram

depicts important subclasses into which higher order mutants fall, while the outer

diagrams depict killing test sets for the higher order mutants (shaded) and their

constituent first order mutants (unshaded). For ease of exposition, the diagrams

illustrate only the second order case, whereas the definitions cover any order. Higher

order mutants of type (a), (b) and (c) are more difficult to kill than their constituent

first order mutants, thereby capturing more subtle faults. In particular, type (a)

are both subtle and useful; they can replace their constituent first order mutants

because they are killed by a subset of the intersection of test cases that kill their

constituents.

117

According to the combination of subsuming and de-coupled higher order mutant

types, the six possibilities to be considered are: (a) strongly subsuming and coupled,

(b) weakly subsuming and coupled, (c) weakly subsuming and de-coupled, (d) non-

subsuming and de-coupled, (e) non-subsuming, de-coupled which is equivalent and

(f) non-subsuming and coupled, which is of no use, as shown in Figure 5.1. The

formal definitions of these higher order mutants are now given. Let h be a higher

order mutant, constructed from first order mutants f1, ..., fn. The existence of a test

set T is assumed; T is the set of all test cases under consideration. Th is the subset

of T that kills the higher order mutant h, while T1, ..., Tn are the subsets of T that

kill the constituent first order mutants f1, ..., fn, respectively.

Definition 1 (Strongly Subsuming and Coupled).

Th ⊂
⋂
i

Ti and Th 6= ∅

Definition 2 (Weakly Subsuming and Coupled).

|Th| < |
⋃
i

Ti| , Th 6= ∅ and Th ∩
⋃
i

Ti 6= ∅

Definition 3 (Weakly Subsuming and De-coupled).

|Th| < |
⋃
i

Ti| , Th 6= ∅ and Th ∩
⋃
i

Ti = ∅

Definition 4 (Non-Subsuming and De-coupled).

|Th| ≥ |
⋃
i

Ti| , Th 6= ∅ and Th ∩
⋃
i

Ti = ∅

Definition 5 (Non-Subsuming and De-coupled).

Th = ∅ (Equivalent)

Definition 6 (Non-Subsuming and Coupled).

|Th| ≥ |
⋃
i

Ti| and Th ∩
⋃
i

Ti 6= ∅ (Useless)

118

5.2 Advantages of Higher Order Mutant Testing

At first sight, any move from first order mutants to higher order mutants brings

with it an exponential explosion. Since a higher order mutant is constructed by

combining different first order mutants, the number of higher order mutants can be

computed from the number of first order mutants. For such higher order mutants,

let n be the number of places in the program that can be mutated, and m1...n be

the number of changes that can be applied at location n. The number of the first

order mutants is given by
n∑

i=0

mi. The number of the ith order mutants is given

by
n!

∏n
x=2 mx

i!
. Because of this exponential explosion, using higher order mutants

has previously been considered to be too computationally expensive to be practical.

Furthermore, the coupling hypothesis [68, 196, 197] suggests that the vast majority

of higher order mutants will be coupled to first order mutants, such that test sets

that kill all first order mutants will also kill almost all higher order mutants.

However, the few higher order mutants that are not coupled to their constituent

first order mutants may be very important; they are killed by a different set of test

cases than their constituent first order mutants. For decoupled mutants, the act

of combining first order mutants shifts the fault-revealing test set. Suppose that

the act of combining first order mutants to form a decoupled higher order mutant

not only shifts the fault-revealing set, but also reduces its size so that the higher

order mutant is more difficult to kill than its constituent first order mutants. It is

very likely that such a higher order mutant would potentially be valuable in testing.

Using the nomenclature introduced in this chapter, it would be termed a ‘subsuming

decoupled higher order mutant’.

De-coupling is not the only way to produce a subsuming higher order mutant.

Strongly subsuming higher order mutants are, by definition, coupled since the test

sets that kill them are subsets of those that kill each of their constituent first or-

119

der mutants. Therefore, both coupled and decoupled higher order mutants may

turn out to be more difficult to kill than the first order mutants from which they

are constructed, making them potentially valuable to the mutation testing process.

This chapter will focus on the subsuming higher order mutants in general and the

strongly subsuming higher order mutants in particular since a strongly subsuming

higher order mutant can always be used as a substitute for its constituent first order

mutants. It is reasonable to state that higher order mutation testing can reduce test

effort.

It might be assumed that, since there are exponentially more higher order mutants

than first order mutants, higher order mutation testing would be much more com-

putationally expensive than first order mutant testing. However, it is possible for

it to be less expensive. This apparent paradox is resolved by targeting specifically

those higher order mutants, the strongly subsuming higher order mutants, each of

which can be used to replace more than one first order mutant. Fewer (but better)

mutants mean fewer (but better) test cases. This higher order mutant testing ap-

proach avoids dumb mutants in favour of subtle ones. Of course, in order to find the

subtle higher order mutants, it is necessary to first construct all of their constituent

first order mutants. However, this process is entirely automated by the search-based

optimisation approach.

In contrast, the process of checking the original program’s output for each mutant-

killing test cases often requires a (human) oracle. This oracle cost is often the

most expensive part of the overall test activity. The oracle cost can be reduced by

reducing the size of the test suite. By moving from the first order to the higher order

paradigm, one seeks to reduce the number of mutants considered, simultaneously

increasing their quality. This has the potential to reduce test effort while improving

effectiveness.

Figure 5.2 illustrates a simple example of using strongly subsuming higher order

120

mutant to reduce test effort and to increase test effectiveness at the same time.

Suppose there is a strongly subsuming higher order mutant h which is constructed

from the first order mutants fa and fb. The two regions Ta and Tb in Figure 5.2

represent the test sets containing all the test cases that kill the first order mutants

fa and fb, respectively, while the region Th represents the test set containing all test

cases that kill the strongly subsuming higher order mutant h. In traditional mutation

testing it is easy to find test cases like ta and tb which kill both first order mutants

fa and fb. However, the test case th that kills the strongly subsuming higher order

mutant h is a better choice because it kills the first order mutants fa and fb both

separately and in combination, so a human oracle need only check one test output.

Reduction of test effort can also be achieved by some ‘smart’ techniques with slightly

more effort; for example, clustering test cases to identify the intersection of Ta and

Tb. Although any test case selected from this intersection can achieve the same test

effort as the test cases that kill the strongly subsuming higher order mutant h, such

a test case like tab might not able to find the subtle fault represented by the strongly

subsuming higher order mutant h, thereby losing test effectiveness.

Ta Tb

Tab

ta tb

Th

Figure 5.2: Test Effort Reduction Example

121

5.3 Algorithm

Due to the large number of higher order mutants, it is possible for the computa-

tion cost in finding valuable higher order mutants to turn out to be extremely high.

Therefore, using a normal undirected search is not sufficiently efficient to find sub-

suming higher order mutants. In order to find the subsuming higher order mutants

more effectively, the proposed approach uses three meta-heuristic algorithms (GR,

GA, HC). This section will introduce the representation and fitness function first

and, then, explain the three meta-heuristic algorithms in detail.

Representation

To identify a higher order mutant uniquely, two parameters must be specified: the

position at which to mutate and the mutation operator to be applied. In the pro-

posed approach, higher order mutants are represented as a vector of MutationId

data type. Each MutationId contains two integers representing the location of the

mutant and the type of the mutant, respectively. An example of the data represen-

tation for a second order mutant is shown in Figure 5.3.

Loc Mut Loc Mut

MutantId

Figure 5.3: Data representation for a second order mutant.

122

Fitness Function

In order to measure the fitness of the higher order mutant, a value is needed that

measures the ease with which a first or higher order mutant can be killed. Let T be a

set of test cases, {M1,...,Mn} be a set of mutants, and the kill({M1, ...,Mn}) function

returns the set of test cases which kill the mutants M1, ...,Mn. Fragility will be

defined for a set of mutants so that a single definition caters for individual mutants

(which may be either first order or higher order), but also for sets of individual

mutants, such that the fragility of a mutant shall be defined as follows:

Definition 7 (Fragility).

fragility({M1, ...,Mn}) =

|
n⋂

i=1

kill(Mi)|

|T |

The value of fragility lies between 0 and 1. When fragility takes the value 0 there

is no test case that can kill this mutant, indicating that this mutant is potentially

an equivalent mutant. As the value of fragility increases from 0 to 1, the mutant

is assessed to be weaker, until the value equals 1, when the mutant is so weak that

it can be killed by any of the test cases. In the following, M1...n is used to denote

a higher order mutant consisting of the first order mutants F1 to Fn. The fitness

function for a higher order mutant is defined as follows.

Definition 8 (Fitness Function).

fitness(M1...n) =
fragility({M1...n})

fragility({F1, ..., Fn})

That is, the fitness of a higher order mutant is defined to be the ratio of the fragility

of this higher order mutant to the fragility of its constituent first order mutants.

From the definition, if the fitness is greater than 1, then the higher order mutant

is weaker than its constituent first order mutants (i.e. it is useless). As the fitness

123

decreases from 1 to 0, the higher order mutant becomes gradually stronger than

its constituent first order mutants. However, when the fitness value reaches 0, the

higher order mutant is considered as a potential equivalent higher order mutant,

and so all such zero-valued higher order mutants are discarded. All of the following

algorithms use this fitness function to evaluate the fitness of higher order mutants.

Greedy Algorithms

A greedy algorithm (GR) is an algorithm that makes local optimised choices at each

stage with the hope of achieving a near global optimum [52]. The general procedure

of a greedy algorithm starts by solving the first sub-problem by selecting the solution

with maximum current fitness. The action is then repeated to solve the rest of the

problem. Therefore, greedy algorithms can only be used to solve problems that can

be divided into sub-problems and can only provide a single solution. In order to

apply the greedy approach to finding more than one subsuming higher order mutant,

several optimised changes have been made. An initial first order mutant is chosen

at random as a starting point. Subsequently, the normal greedy algorithm process

is performed to incrementally augment with additional first order mutants. An

archive operation is used to store the subsuming higher order mutants found. The

overall algorithm is iterated with repeated randomised initial position, much like a

random-restart hill climbing algorithm. The pseudo-code is shown in Algorithm 2.

Hill Climbing Algorithm

A hill climbing algorithm (HC) is a local search algorithm in which the next solution

considered will depend on both the fitness value and distance to the current solution.

The process starts from a random initial solution. By comparing the fitness of the

current solution with that of its neighbour solution, the most fit solution becomes

124

Input : Fitness evaluation limit: limit

Output: Mutation vector: hom list

1 set counter = 0

2 while counter < limit do

3 set available foms = getAllFOMs()

4 set hom = generateRandFOM()

5 set best hom = hom

6 foreach FOM m in available foms do

7 temp hom = combine(hom,m)

8 if fitness(temp hom) < fitness(best hom) then

9 best hom = temp hom

10 best fom = m

11 end

12 RemoveFOM(available foms, best fom)

13 archvie(hom list,best hom)

14 end

15 counter ++

16 end

17 return hom list

Algorithm 2: Optimised Greedy Algorithm

125

the new current solution, until fitness cannot be improved further.

Here, a neighbourhood operator considers two types of moves to generate a new mu-

tant, location change neighbour move and mutation change neighbour move. The

first type of move keeps all of the original mutation, but tries to apply them to

different locations. The second type of move keeps all the positions of the original

mutation, but tries to explore different types of mutation at thesis locations. Figure

5.4 illustrates the concept of these two neighbourhood moves. The proposed opti-

mised algorithm is based on a random-restart hill climbing algorithm, which chooses

a random starting solution for each run. The pseudo-code is shown in Algorithm 3.

Loc 1 Mut 1 Loc 2 Mut 2

Loc 1 Mut 1 Loc 2 Mut

Loc 1 Mut 1 Loc Mut 2 *

 *

Location change
neighbour move

Mutation change
neighbour move

Figure 5.4: Two types of neighbour moves for hill climbing algorithm.

Genetic Algorithm

A genetic algorithm (GA) is a population-based evolutionary algorithm that simu-

lates the process of natural genetic selection according to the Darwinian theory of

biological evolution [180]. In a genetic algorithm, every possible solution within the

solution domain is represented as a chromosome, and crossover and mutation oper-

ations are repeatedly performed on chromosomes to produce new solutions until a

126

Input : Running Time Limit: limit

Input : Local move limit: local move limit

Output: Mutation vector: hom list

1 set counter = 0

2 set hom = generateRandFOM()

3 set no improve = 0

4 while counter < limit do

5 temp hom = getRandomNeighbour(hom)

6 if fitness(temp hom) < fitness(hom) then

7 hom = temp hom

8 else

9 no improve = no improve + 1

10 if no improve == local move limit then

11 archvie(hom list, hom)

12 hom = generateRandFOM()

13 end

14 end

15 counter ++

16 end

17 return hom list

Algorithm 3: Optimised Hill Climbing Algorithm

127

member of the evolving population is deemed to represent a suitably ‘good’ solution.

In the proposed genetic algorithm, each gene within the chromosome represents the

position and possible type of mutation (see Section 5.3). The algorithm uses a sin-

gle point crossover operator to generate new mutants, as shown in Figure 5.5. The

mutation operators include three possible changes: add a mutant, delete a mutant,

and change mutation type, as shown in Figure 5.6. In additional to crossover and

mutation operators, an archive operator is used to store the subsuming higher order

mutants found. The pseudo-code is shown in Algorithm 4.

Single point crossover

Loc 1 Mut 1 Loc 2 Mut 2

Loc 3 Mut 3 Loc 4 Mut 4

Loc 1 Mut 1 Loc 4 Mut 4

Loc 3 Mut 3 Loc 2 Mut 2

Figure 5.5: Single point crossover for the genetic algorithm

5.4 Empirical Study

This section describes the set of experiments designed to explore properties of sub-

suming higher order mutants. Section 5.4 discusses the research questions that the

study will address. Section 5.4 describes the subject programs used in this study.

Section 5.4 explains the experimental procedure.

Research Questions

This section sets out the research questions addressed in the empirical study and

for which the next section provides answers.

128

Input : Fitness evaluation limit: limit

Output: Mutation vector: hom list

1 set counter = 0

2 while len(population) < pop size do

3 set m = generateRandHOM()

4 evaluateFitness(m)

5 append(population,m)

6 end

7 while counter < limit do

8 createMatingPool(population)

9 crossover(population)

10 mutate(population)

11 evaluateFitness(population)

12 archvie(hom list, population)

13 counter ++

14 end

15 return hom list

Algorithm 4: Optimised Genetic Algorithm

129

Loc 1 Mut 1 Loc 2 Mut 2

Loc 1 Mut 1 Loc 2 Mut *

Add new a mutant

Change the type of
mutation for a mutant

Loc 1 Mut 1 Loc 2 Mut

Loc 2 Mut 2

Loc 1 Mut 1

Delete an exist mutant

 *

Figure 5.6: Three types of mutation operators for the genetic algorithm

RQ1: How numerous are subsuming higher order mutants?

The main goal of this chapter is to introduce and study subsuming higher order

mutants. Therefore, the natural first research question is how prevalent subsuming

higher order mutants are.

RQ2: What proportion of subsuming higher order mutants have entirely decoupled

constituent first order mutants?

Since the work presented in this chapter seeks ways in which first order mutants

combine to make valuable higher order mutants that partially mask each other, it is

also interesting to ascertain what proportion of higher order mutants contain first

order mutants whose killing sets do not overlap. Where there is no intersection

between the killing sets of the first order mutants, these first order mutants cannot

combine in ways that partially mask one another. This issue is explored in RQ2 by

repeated sampling of higher order mutants to determine the relative proportion (for

130

each program studied) of the higher order mutants that consist of entirely decoupled

first order mutants. This allows the approximation of the overall proportion of

‘decoupled higher order mutants’ and the degree to which this proportion varies per

program studied.

RQ3: What proportion of subsuming higher order mutants are strongly subsuming?

As introduced in Section 5.1, strongly subsuming higher order mutants are the most

valuable higher order mutants that can be applied in higher order mutation testing,

directly. RQ3 studies the proportion of the strongly subsuming higher order mutants

found in all subsuming higher order mutants.

RQ4: What do strongly subsuming higher order mutants look like?

In order to understand higher order mutants better, several of those strongly sub-

suming higher order mutants found by the proposed algorithms were examined in

order to find the simplest example of a strongly subsuming higher order mutant.

This illustrates the way in which faults may partially mask one another so that the

set of test cases that kill all first order mutants is a subset of the intersection of the

test sets that kill the first order mutants. Surprisingly, the proposed algorithms even

managed to find such an example in the familiar Triangle program; it was initially

believed that such a program would have been too small and simple to allow for the

construction of a strongly subsuming higher order mutant.

RQ5: Which algorithms perform best at finding subsuming higher order mutants?

Three algorithms for finding subsuming higher order mutants are introduced. RQ5

explores how these algorithms perform in relative terms.

Subject Programs

The experiments use ten benchmark C programs with branch adequate test sets

from the Software-artifact Infrastructure Repository (SIR) [78], as described in the

131

first two columns of Table 5.1. The Triangle program is a small program that is

used to determine the type of triangle from the length of its sides. This version is

the one used by Offutt in the coupling effect study [197].

The seven programs Replace, TCAS, Schedule2, Schedule, Totinfo, Printtokens and

Printtokens2 are collectively known as the ‘Siemens Suite’, which is widely used

as a benchmark for software testing techniques. TCAS is a program used to avoid an

aircraft collision. Schedule2 and Schedule are programs that prioritise schedulers.

Totinfo is a program that computes statistics from input data. Printtokens and

Printtokens2 are lexical analysers. Replace performs pattern matching and sub-

stitution.

Besides the Triangle program and the Siemens Suite, there are two other ‘real

world’ programs: Gzip and Space. Gzip is a widely used compression program and

Space is an interpreter for an array definition language.

There are two reasons for choosing these programs. Firstly, previous studies of

higher order mutants are limited to programs on a small scale. In contrast, this

study is able to consider programs from 50 to 6,000 lines of code. Secondly, in order

to measure the fitness of higher order mutants precisely, the higher order mutants

have to be executed against a set of reasonably high quality test cases. The SIR

provides branch adequate test sets, thereby achieving this aim.

Experimental Procedure

Algorithm 5 sets out the steps involved in the experimental procedure. Trivial

mutants are first filtered out from the set of all first order mutants to remove from

consideration those killed by all test cases and those killed by none of the test cases.

The remaining ‘non-trivial mutants’ are used to generate subsuming higher order

mutants. The set of all possible subsuming higher order mutants is unfeasibly large,

132

1 for each subject program do

2 generate all possible first order mutants

3 filter out the first order mutants that are killed by all test cases

4 filter out the first order mutants that are killed by non-test cases

5 store rest first order mutants as the set: ‘non-trivial first order mutants’

6 apply search based optimisation to generate subsuming higher order

mutants from non-trivial first order mutants

7 for 100 trials, from all non-trivial first order mutants, allow the algorithm

to consider 10,000 higher order mutants from which its optimisation

procedure finds as many subsuming higher order mutants as possible,

guided by the fitness function do

8 count the percentage of subsuming higher order mutants within the

higher order mutants

9 count the percentage of strongly subsuming higher order mutants

within the subsuming higher order mutants

10 count the percentage of non-intersection higher order mutants within

the subsuming higher order mutants

11 end

12 end

Algorithm 5: Experimental procedure

133

Table 5.1: Selected Subject Programs: Scale shows the size of the programs ex-

pressed in Lines of Code (LoC), No. of FOMs is a count of all FOMs generated

for each program. The ‘possible equivalent’ FOMs are those not killed by any test

cases, while the ‘dumb FOMs’ are those killed by all test cases.

No. of No. of No. of possible No. of Dumb

Programs Scale Test Cases FOMs Equivalent FOMs FOMs

Triangle 50 LoC 60 601 62 35

TCAS 150 LoC 1,608 744 239 60

Schedule2 350 LoC 2,710 1,603 238 970

Schedule 400 LoC 2,650 1,213 155 810

Totinfo 500 LoC 1,052 2,316 245 1,100

Replace 550 LoC 5,542 4,195 486 3,133

Printtokens2 600 LoC 4,054 1,714 345 569

Printtokens 750 LoC 4,071 1,237 557 210

Gzip 5,500 LoC 228 12,027 1,124 5,770

Space 6,000 LoC 13,498 68,843 26,401 5,378

but search-based optimisation is used to locate them so that size is not a problem.

Rather, it provides a rich set from which to seek useful higher order mutants.

However, in order to answer questions about relative proportions, a kind of sam-

pling approach is required to approximate the answers. Each ‘sample’ is a set of

subsuming higher order mutants, constructed by one of the search-based optimi-

sation algorithms from an allowed ‘budget of consideration’ of 10,000 higher order

mutants. The particular algorithm used is a parameter to the procedure.

In answering RQ5, results are reported for the performance of four algorithms:

a greedy algorithm, a hill climb algorithm, a genetic algorithm and (for baseline

comparison) a random search algorithm. However, to answer the questions regarding

134

the proportions of higher order mutants that have the properties described in RQ1–

RQ3, only the genetic algorithm is used, since this was found to locate the most

subsuming higher order mutants. From each set of 10,000 higher order mutants, the

proportion of higher order mutants constructed by the genetic algorithm that were

subsuming is computed. From the set of subsuming higher order mutants, both

the proportion that were strongly subsuming and the proportion that is entirely

decoupled are computed. These proportions are reported as percentages. In order

to factor out possible effects from sampling, thereby arriving at a more accurate

approximation to the true proportion, the entire process is repeated for 100 trials

per program and per program averages are reported over the 100 trials.

5.5 Results and Analysis

This section will present the answer to each research question in turn, indicating

how the results answer each question.

Answer to RQ1

RQ1 is designed to investigate the number of the subsuming higher order mutants

that exist. To begin the analysis, the second and third columns of Table 5.2 present

the overall results for the sum of percentage subsuming higher order mutants found

in each subject programs by the genetic algorithm with 10,000 fitness evaluations,

repeated for 100 trials (giving 1,000,000 fitness evaluations in total per program).

From the smallest Triangle program (50 LoC) to the largest Space program (6,000

Loc), there exist subsuming higher order mutants.

135

Table 5.2: This table shows the proportion of higher order mutants which are sub-

suming higher order mutants (SHOMs) and the proportion of these subsuming higher

order mutants that are strongly subsuming higher order mutants (SSHOMs) and

non–intersecting higher order mutants (NIHOMs).

Program Non-trivial FOMs % of SHOMs % of SSHOMs % of NIHOMs

Triangle 504 81.6% 0.24% 80.4%

TCAS 445 89.5% 0.11% 97.2%

Schedule2 395 57.5% 0.27% 77.2%

Schedule 248 75.1% 0.39% 64.1%

Totinfo 971 58.2% 0.24% 49.3%

Replace 576 67.5% 0.31% 62.2%

Printtokens2 800 47.0% 0.10% 31.2%

Printtokens 470 52.2% 0.01% 50.9%

Gzip 5,133 71.4% 0.08% 43.3%

Space 39,064 77.5% 0.21% 32.4%

Answer to RQ2

RQ2 is designed to investigate the proportion of entirely decoupled subsuming higher

order mutants. Figure 5.7 shows the percentage of higher order mutants that are

constructed of non-intersecting first order mutants on the vertical axis against the

order of the higher order mutant concerned on the horizontal axis. For example,

a point at (x, y) means that y% of all higher order mutants of order x are non–

intersecting. That is, their first order mutants are entirely decoupled; there is no

pairwise intersection between any of the sets of test cases that kill each of the

constituent first order mutants.

As the figure shows, there is a tendency for decoupling to increase as the order of

the higher order mutant increases (for all programs studied). However, the figure

136

reveals that this property is very different for different programs. For example,

for the program totinfo, only approximately 5% of the 9th order mutants are

composed of entirely decoupled first order mutants, whereas approximately 90% of

the 9th order mutants for triangle and TCAS consist of entirely decoupled first

order mutants.

The rightmost column of Table 5.2 shows the proportion of all higher order mutants

constructed that were found to be composed of entirely decoupled first order mu-

tants. Notice that the number of non-intersecting higher order mutants appears to

decrease as the number of first order mutants increases. A Spearman Rank Correla-

tion test was performed to investigate statistically this observation more rigorously.

The test showed a strong rank correlation between the proportion of subsuming

higher order mutants that are non-intersecting higher order mutants and the num-

ber of first order mutants and also between the proportion of subsuming higher

order mutants that are non-intersecting higher order mutants and the number of

non-trivial first order mutants.

Figure 5.7: Overall Type Distribution

137

Answer to RQ3

RQ3 is designed to investigate the proportion of strongly subsuming higher order

mutants. Of all subsuming higher order mutants found, between approximately

0.01% and 0.4% were found to be of the highly valuable, strongly subsuming type.

This is a very small overall proportion, but there is a very large number of subsum-

ing higher order mutants because the proportion of all higher order mutants that

are subsuming higher order mutants is very large, and so the number of strongly

subsuming higher order mutants is high.

Answer to RQ4

RQ4 focused on the study of strongly subsuming higher order mutants. To answer

RQ4, a case study of a strongly subsuming higher order mutant that was found by

a genetic algorithm in the Triangle program is presented. The Triangle is a small

C program (50 LoC) that has been studied for at least 30 years [68]. The program

takes the length of the sides of a potential triangle and outputs whether the triangle

is a valid shape, and if so, whether it is equilateral, isosceles or scalene. Program

65 details the source of the Triangle program. There are two main factors that

determine the type of the triangle. The first is the side length constraint; the sum

of the length of any two sides must be greater than the length of the third. The

second is captured by the variable trian, whose value is used to specify the type

of triangle. For instance, if a triangle’s trian value equals 0, and the side lengths

satisfy the side length constraint, it is a ‘valid scalene’ triangle.

Program 7 shows two first order mutants and the subsuming higher order mutant

constructed from them, which was found by the proposed optimised genetic algo-

rithm in the Triangle program. The way in which the higher order mutant strongly

subsumes the two first order mutants is subtle and involves an interplay between

138

Program: Triangle

Input : Three sides a, b, c

Output : Type of triangle

1 int trian

2 if (a <= 0 || b <= 0 || c <= 0) then

3 return INVALID

4 trian = 0

5 if (a == b) then trian = trian + 1

6 if (a == c) then trian = trian + 2

7 if (b == c) then trian = trian + 3

8 if (trian == 0) then

9 if (a + b < c || a + c < b || b + c < a) then

10 return INVALID

11 else return SCALENE

12 if (trian > 3) then return EQUILATERAL

13 if (trian == 1 && a + b > c) then

14 return ISOSCELES

15 else if (trian == 2 && a + c > b) then

16 return ISOSCELES

17 else if (trian == 3 && b + c > a) then

18 return ISOSCELES

19 return INVALID

Program 6: The original Triangle program

139

Mutant : FOM i ——————————————–

13 if (trian > 1 && a + b > c) then

14 return ISOSCELES

15 else if (trian == 2 && a + c > b) then

16 return ISOSCELES

17 else if (trian == 3 && b + c > a) then

18 return ISOSCELES

19 return INVALID

Mutant : FOM j ——————————————–

13 if (trian == 1 && a + b <= c) then

14 return ISOSCELES

15 else if (trian == 2 && a + c > b) then

16 return ISOSCELES

17 else if (trian == 3 && b + c > a) then

18 return ISOSCELES

19 return INVALID

Mutant : HOM ij ——————————————-

13 if (trian > 1 && a + b <= c) then

14 return ISOSCELES

15 else if (trian == 2 && a + c > b) then

16 return ISOSCELES

17 else if (trian == 3 && b + c > a) then

18 return ISOSCELES

19 return INVALID

Program 7: The strongly subsuming higher order mutant and its two constituent first

order mutants for the Triangle program. As this case study demonstrates, even from

this trivially small program, extremely subtle strongly subsuming higher order mutants

can be constructed. Table 5.3 depicts the corresponding killing test cases.

140

the validity and type-of-triangle tests in the original program. It is reasonable to

postulate that it is just this sort of subtle interaction that leads to faults that may

go unnoticed in less rigorous testing.

Table 5.3 summarises the reasons why this is an instance of strong subsumption.

From the table, only three types of test cases are able to kill FOM i while two

types of test cases are able to kill FOM j. However, careful inspection reveals that

HOM ij can only be killed by test cases of the form (a == b && a + b > c). Test

cases of this form also kill FOM i and FOM j. There is no other test case that

is able to kill HOM ij. Therefore, strongly subsuming HOM ij can be used to

replace both FOM i and FOM j in mutation testing.

Mutant Test Case Original Result Mutant Result

M1

a == b && a + b > c Isosceles Invalid

a == c && a + b > c && a + c <= b Invalid Isosceles

b == c && a + b > a && b + c <= a Invalid Isosceles

M2

a == b && a + b > c Isosceles Invalid

a == b && a + b <= c Invalid Isosceles

M12 a == b && a + b > c Isosceles Invalid

Table 5.3: Killing Test Cases for the Triangle HOM and its FOMs

Answer to RQ5

RQ5 is designed to investigate the effectiveness of the proposed algorithms. The

chart in Figure 5.8 presents the results of the comparison of the four algorithms,

which answers RQ5. An oracle of all subsuming higher order mutants found is used

to provide a reference against which each algorithm is assessed. The oracle contains

the union of the resulting subsuming higher order mutants from each algorithm. The

141

greater the percentage of this oracle an algorithm can find, the better the algorithm is

deemed to perform. In Figure 5.8 the x-axis shows the four algorithms, and the y-axis

shows the percentage of oracle higher order mutants found. The genetic algorithm

performs best since it finds the highest percentage of oracle higher order mutants;

this is likely because the subsuming higher order mutants are easier to generate from

existing subsuming higher order mutants. In the genetic algorithm, this observation

favours crossover, which is one of the genetic algorithm’s distinguishing features.

Figure 5.8: Algorithm comparison

Although the genetic algorithm found more of the subsuming higher order mutants,

the hill climbing algorithm and the greedy algorithm also have their advantages.

The hill climbing algorithm always finds the highest fitness higher order mutants

because its subroutine repeatedly improves the fitness of higher order mutants, while

the greedy algorithm finds the highest order first order mutants because it starts

from a random first order mutant and tries to achieve as high an order as possible.

Therefore, the results reveal that the genetic algorithm is the best performing al-

gorithm, and the greedy algorithm and hill climbing algorithm can also be used to

augment results and to search for extreme cases. The results also show that even

the random search algorithm is able to find a large number of subsuming higher or-

der mutants indicating that there are a large number of available subsuming higher

142

order mutants that are relatively easy to find.

5.6 Discussion

5.6.1 Threats to Validity

This section considers the threats to validity of the experiments presented in this

chapter. Although due to limitations of the experiments the following threats may

affect some of the results (for example the distribution and classification of subsumed

higher order mutants), it should be noted that they do not affect the proof of the

existence of strongly subsuming higher order mutants found by the experiments.

The selection of mutation operators is the first threat. In order to reduce the com-

putational cost, in the experiments of this chapter a subset of the 77 mutation

operators for the C language [6] were selected to generate higher order mutants.

However, the selected subset belongs to the five selective mutation operator cate-

gories suggested by Offutt [212, 203], so it is typical and also widely used by other

researchers. This threat to validity will be overcome by future work which will

investigate the relationship between higher order mutants and mutation operators.

The quality of the test sets is another potential threat. Since the fitness of higher

order mutants is computed in terms of their fragility, low quality test sets may

affect the results. Although the test sets provided by SIR achieve branch cover-

age [78], given a different test set as input, the experiment may lead to different

results in terms of distribution and classification. To overcome this threat, plans

for future work include the combination of higher order mutation testing with the

co-evolutionary mutation testing approach of Adamopoulos et al. [5]. This will al-

low test sets to be co-evolved that are adequate to kill the co-evolving higher order

143

mutant set.

The last threat is the existence of equivalent mutants. Although the problem of

equivalent mutants has been studied by numerous researchers [124, 200, 208], there

is no approach that can solve it in both an effective and a precise way. In order to

avoid this problem, the fitness function for finding interesting higher order mutants

is designed to filter out potential equivalent mutants. With a low quality test set,

some of the ‘stubborn decoupled’ higher order mutants may be incorrectly treated

as equivalent mutants. However, this would only reduce the number of higher order

mutants found, so the results presented in this chapter can be considered to be a

lower bound on the number of subsuming higher order mutants to be found.

5.6.2 Related Work

This chapter introduces the paradigm of higher order mutation testing. This is

the first time that higher order mutation testing has been considered as a valid

alternative to first order mutation testing, and, indeed, this author prefers the full

precision of strong mutation testing. Weak and firm higher order mutation testing

remain interesting and potentially important topics for future work.

The closest research area related to this work is the previous work on the coupling

effect hypothesis. Although the coupling effect has been studied by many researchers

[196, 197, 184, 37, 274, 275], these studies all focus on verifying or disproving the

coupling effect, rather than finding subsuming higher order mutants, which can be

thought of as special cases.

The experimental studies presented by Offutt [196, 197] show results that support

Offutt’s version of the mutation coupling effect. However, Offutt modifies Demillo

et al.’s original statement of the coupling effect [68]:

144

“ Test data that distinguishes all programs differing from a correct one

by only simple errors is so sensitive that it also implicitly distinguishes

more complex errors [68]. ”

The original formulation appears to suggest that all higher order mutants are cou-

pled, whereas Offutt [197] weakens this to suggest that a ‘large percentage’ are

coupled:

“ Complex mutants are coupled to simple mutants in such a way that a

test data set that detects all simple mutants in a program will detect a

large percentage of the complex mutants [197]. ”

Some of the ‘subsuming higher order mutants’ presented here are drawn from the

minority ‘de-coupled’ mutant set. Offutt’s experiments were based on three small

Fortran77 programs (16-28 LoC). All of the second order and some of the third order

mutants of these programs were generated by the mutation testing tool Mothra. The

results suggested that the selected adequate test set which killed all the first order

mutants killed over 99% of the second and third order mutants. This study implied

that the mutation coupling effect is valid in the most general case, in agreement

with the empirical study by Lipton and Sayward [163] and Morell [184].

The validity of the mutation coupling effect has also been considered in a theoretical

study by Wah [274, 275]. A simple theoretical model, the q function model, considers

a program to be a set of finite functions. By applying test sets of orders 1 and 2 to

this model, the results indicated that the average survival ratio of high order mutants

is 1/n and 1/n2 respectively, which is also similar to the estimated results of the

empirical studies mentioned above. However, compared to a real world program,

this model is too simplistic. In real programs, the data and control flow between

functions are more complex and unpredictable.

145

This chapter proposed using strongly subsuming higher order mutants in mutation

testing. This idea has been partly proven by Polo et al.’s work [227]. In their

experiment, they focused on a specific order of higher order mutants, namely second

order mutants. They proposed different algorithms to combine first order mutants

to generate the second order ones. By applying the second order mutants, test

effort was reduced by approximately 50%, without much loss of test effectiveness.

However, Polo et al. did not use search based optimisation, and so they were limited

to a small number of lower orders. Future work will consider the question of whether

search can find arbitrary order HOMs that can reduce test effort.

In order to apply mutation testing to real world programs, strong mutation testing

is adopted in the experiments of this chapter. In strong mutation testing, a mutant

is killed if its final output is different from the original program. Therefore, each

mutant is executed until it terminates or is killed. In order to reduce the running

cost, previous work also considered weak mutation testing, first proposed by Howden

in 1982 [129]. In weak mutation testing, mutants are evaluated immediately after

execution of their mutation point. This is faster than strong mutation testing but

with a loss of precision. There are also other approaches that lie between strong

and weak mutation testing, known as firm mutation testing [184, 287].

Summary

This chapter focused on an investigation of higher order mutants and their relation-

ship to first order mutants. It introduced the concept of subsuming higher order

mutants; a higher order mutant that is more difficult to kill than its constituent first

order mutants. In terms of fragility, the whole is greater than the sum of its parts.

That is, the higher order mutant is greater than the collection of first order mutants

from which it is constructed because it is less fragile. This chapter introduced a

146

search-based approach to find these subsuming higher order mutants and presented

an empirical study that compared a greedy algorithm, a genetic algorithm and a hill

climbing algorithm.

The experimental results from ten programs indicate that there exist many subsum-

ing higher order mutants in each program studied. The results also reveal that the

genetic algorithm is the most efficient algorithm for finding those subsuming higher

order mutants while the greedy algorithm and hill climbing algorithm can also be

used to improve the quality of the results.

The chapter also introduced the concept of a strongly subsuming higher order mu-

tant. A strongly subsuming higher order mutant is only killed by a subset of the

intersection of the set of test cases that kill its constituent first order mutants.

Therefore, a strongly subsuming higher order mutant is one that is so much more

difficult to kill than the first order mutants from which it is constructed that one can

replace all the first order mutants with the subsuming higher order mutant without

any loss of test effectiveness.

The chapter showed that the search-based approach was able to find a number of

these strongly subsuming higher order mutants in each of the ten programs studied.

Although the proportion of all higher order mutants that are strongly subsuming

higher order mutants is small, the size of the higher order mutant set grows exponen-

tially, so the number of these valuable strongly subsuming higher order mutants is

relatively high. This chapter illustrated the intricate interplay between faults that

strongly subsuming higher order mutants exhibit by describing one of the higher

order mutants found by the genetic algorithm and the test sets that kill it and its

constituent first order mutants in detail. The next chapter will introduce a hybrid

approach to generate test data to kill higher order mutants strongly.

147

Chapter 6

SHOM: Strong Mutation Based

Test Data Generation

Higher order mutation testing has been the subject of much recent attention [24,

120, 170]. As well as its ability to model more complex masking faults [136], there is

evidence to suggest that it may reduce mutation effort [227] and also the proportion

of mutants that are equivalent [155, 223]. Comprehensive higher order mutation

testing requires a test data generation approach for killing higher order mutants.

In test data generation approaches, if a test input distinguishes the behaviour of the

original program from that of one of its mutants, then the test input is said to ‘kill’

the mutant. If the test input merely causes the state to change after the mutation

point is executed, then the mutant is said to be ‘weakly’ killed. However, if the

test input causes this state change to propagate to an output, where there is an

observable failure, then the test input is said to ‘strongly’ kill the mutant. Strong

mutation testing embodies a more demanding criterion for test adequacy than weak

mutation testing so that, wherever possible, it is preferable to use test suites that

are suitable for testing strong mutants [286]. By definition, a test that strongly kills

148

a mutant must also weakly kill it, but not necessarily vice versa.

There has been much work on different techniques and tools for generating mutants,

with over 250 publications on mutation testing in the literature. However, only ten

of these publications (about 4% of the total) address the problem of automatically

generating test data to kill mutants [139]. A summary of these publications is

presented in Table 6.1. While mutation generation remains important, it is also

clearly desirable to be able to use mutation testing to generate test inputs as well

as to assess them.

Previous work on the generation of test data to kill mutants has used traditional

structural-oriented test data generation techniques, for example, traditional sym-

bolic execution [70, 164, 195, 201, 216], dynamic symbolic execution (DSE) [222,

225, 293] and search based software testing (SBST) [17, 102]. However, all of the

existing techniques are designed to achieve only weak mutation adequacy and only

for first order mutants. There is neither existing work on killing higher order mutants

nor any work on generating test data that is adequate for strong mutations.

This chapter presents SHOM, a novel hybrid test data generation approach that

draws on previous work from both DSE and SBST to achieve strong higher order

mutation adequacy 1. This chapter also presents evidence to support the claim that

SHOM is efficient and effective for both first order and higher order mutations. Of

course there remains the question of what a ‘single syntactic change’ is. There are

many definitions of such sets of mutation operators in the literature [6, 203]. Since

higher order mutations must be defined with reference to a set of first order mutation

operators, for the purposes of this thesis it is important only to define the first order

mutation. The contributions of the chapter can be summarised as follows:

1A first order mutant is a special case of a higher order mutant so that SHOM also achieves first order mutation

adequacy.

149

Table 6.1: Mutation-based Test Data Generation. (‡) The work of Fraser

and Zeller achieved (R)eachability and (I)nfection and also a constrained form of

(P)ropagation, because it sought to maximize the mutant’s effect on assertions,

providing a form of propagation and also a way to maximise mutant impact.

Authors

[Ref]

Year (R)eaches,

(I)nfects,

(P)ropagates

Technique Subject

Language

Largest

Subject

Average

Mutation

Score

DeMillo

and Offutt

[195, 70]

1991 R,I (Weak) Static Do-

main Reduc-

tion

Fortran 55 Lines 98%

Offutt et

al. [201,

216, 218]

1994 R,I (Weak) Dynamic

Domain

Reduction

Fortran 100 Lines 98%

Liu et al.

[164]

2006 R,I (Weak) Dynamic

Domain

Reduction

C 21 Lines 95%

Zhang et al.

[293]

2010 R,I (Weak) DSE C# 472 Lines 90%

Papadakis

et al. [224]

2010 R,I (Weak) DSE C 500 Lines 63%

Ayari et al.

[17]

2007 R (Weak) SBST Java 72 Lines 88%

Papadakis

et al. [225]

2010 R (Weak) DSE Java 100 Loc 90%

Fraser and

Zeller [102]

2010 R,I (Firm)‡ SBST Java 412

Classes

72%

150

1. A hybrid test data generation approach for strongly killing both first order and

higher order mutants is introduced. This approach is evaluated on seventeen

subject programs, including seven real world programs (four from two different

closed-source industrial systems and three for which source code is publicly

available). For backward compatibility with comparable recent studies (that

use C) and older studies (that use Fortran), C versions of ten of the smaller

programs studied in this previous work are also included [195, 70, 201, 216].

However, the work presented in this thesis also includes programs an order of

magnitude larger than any of these smaller programs.

2. The results of an empirical evaluation of the efficiency and effectiveness of

SHOM for strong first order mutation adequacy are reported. The results

show that SHOM can kill up to 38% of the first order mutants that remain

unkilled using reachability and infection, which in turn kills up to 36% of the

mutants that remain unkilled using reachability alone.

3. The results of a further empirical study of the efficiency and effectiveness of

SHOM for strong second order mutation adequacy are reported. The results

show that SHOM can kill up to 48% of the second order mutants that remain

unkilled using reachability and infection, which in turn kills up to 41% of the

mutants that remain unkilled using reachability alone.

The rest of this chapter is organised as follows. Section 6.1 introduces a novel hybrid

DSE/SBST approach, while Section 6.2 briefly describes implementation details.

Section 6.3 describes the experimental method, the results of which are discussed in

Section 6.4.

151

6.1 Strongly Killing Higher Order Mutants Using

DSE and SBST

First, it is necessary to define a mutant and a higher order mutant and what it means

to kill them, then the approach taken to generating test data using a combination

of DSE and SBST to strongly kill higher order mutants will be explained.

Definition 9 (First Order Mutant). A first order mutant p′ of a program p is

constructed by making a single syntactic change to p. A transformation that produces

a mutant from the original program is called a ‘mutation operator’.

Of course there remains the question of what constitutes a ‘single syntactic change’.

There are many definitions of such sets of mutation operators in the literature [6,

203]. As previously stated, for the purposes of this thesis it is only important to

define the first order mutation so that a higher order mutation can be defined in

terms of it, since a higher order mutation can only be formally defined with respect

to a set of first order mutation operators.

Definition 10 (Higher Order Mutant). Given a set of first order mutation operators

M , if a mutant p′ is created from a program p by the application of k operators from

M , then p′ is said to be a kth order mutant of p.

Definition 10 of the higher order mutation subsumes Definition 9 of the first order

mutation because setting k = 1 in Definition 10 yields Definition 9. In general, care

will be required to ensure that all of the k mutation operations create a distinct

syntactic change when applied to p. It may also be necessary to define the order

of application of the k mutation operators since different application orders may

produce a different overall syntactic effect. However, these topics will be left for

future studies on higher order mutation.

152

Higher order mutants are generally easier to kill than first order mutants. However,

there also exists a small set of higher order mutants that is more difficult to kill

than the first order mutants from which they are constructed. This type of higher

order mutant is known as a subsuming higher order mutant (SHOM), see Chapter

5 for more details. Figure 6.1 gives a simple illustrative example of a SHOM. Both

mutant 1 and mutant 2 are so-called ‘dumb’ mutants (those which are very easy

to kill). In this case, both are killed by any and every test case; the most dumb

possible. However, the higher order mutants created by inserting both mutant 1

and mutant 2 together is far from dumb; it is much more difficult to kill them than

either of its first order mutants. Essentially, in this kind of situation, fault masking

can create subtle higher order bugs from unsubtle first order bugs.

The killing conditions required to (strongly) kill a first order mutant are well de-

scribed in the literature: A test input needs to satisfy following three conditions:

reachability, infection and propagation (RIP), each of which subsumes the preceding

condition(s):

1. Reachability: The location of the mutant in the program must be executed

by the test case; the mutant is said to have been ‘reached’. Reaching all

the mutants of a program can be achieved by any branch adequate test set;

therefore, reachability is an instance of branch coverage, a research area that

is widely studied in literature [10, 111, 123, 241].

2. Infection: Immediately after mutant execution, the states of the original

program and the mutant must differ. It can be said that the mutant ‘infects’

the state. A test case that achieves infection for a mutant m is also said to

‘weakly kill’ the mutant m [70, 139, 185].

3. Propagation: The infected state must propagate to some point in the pro-

gram at which it can be observed, such as an output statement. A test case

153

Figure 6.1: Illustrative example: two dumb first order mutants combine to make a

more subtle second order mutant

inputs : a , x , y

1 z = x ;

2 z = z + y ;

3 i f (a > 0)

4 return z ;

5 else

6 return 2 ∗ x + z ;

mutant 1: changes line 1 to z = ++x

mutant 2: changes line 2 to z = z + - -y

higher order mutant: combines mutant1 and mutant2

tests original mutant 1 mutant 2 mutant 12

a > 0 x + y x + y + 1 x + y − 1 x + y

a ≤ 0 3x + y 3x + y + 3 3x + y − 1 3x + y + 2

n/a killed by all killed by all killed by half

that achieves propagation for a mutant m is also said to ‘strongly kill’ the

mutant m [70, 139, 185].

6.1.1 Weakly Killing Mutants

DSE has proven to be an effective means of satisfying both the reachability and

infection conditions [111, 241], and, as a result, there has been much work on DSE

as a technique for achieving weak mutation adequacy [222, 225, 293]. However, it

has not been adapted to handle strong mutations.

154

The work of this thesis uses DSE to generate weakly killing constraints and test

data that satisfy them. When generating mutants, properties denoting reachability

infection are collected for each mutant. The reachability property is captured by

the set of critical predicate nodes that transitively control mutant reachability. This

property is generated by traditional control dependence analysis. The second prop-

erty is the infection constraint, which is determined by the specific type of mutant.

This thesis will use the infection conditions proposed by DeMillo and Offutt [70].

6.1.2 Handling Higher Order Mutants

Previous work on DSE for first order mutation testing will be adopted and adapted

so that it is able to handle higher order mutants in addition to first order mutants. A

higher order mutant, m, of order n is a composition of n first order mutants. These

n first order mutants will be termed the ‘constituent’ mutants of m. For each higher

order mutant, there are two important cases to consider. Case 1: There exists a

path that traverses all constituent first order mutants. Case 2: There does not exist

such a path.

If Case 1 applies, then it is possible that the higher order mutant is a subsuming

higher order mutant. A ‘subsuming’ higher order mutant is one that is more diffi-

cult to kill than any of its first order constituents due to fault masking among the

constituent first order mutants [138]. In testing terms, it can be said that ‘the sum

of the collection of first order mutants is more demanding to test than the union of

its parts’. However, if there does not exist a path that passes through all constituent

first order mutants, then, by definition, they cannot all mask one another, and so

the ‘sum is merely the union of its parts’ and is, therefore, easier to kill.

Of course, in Case 2 there could be a path that traverses some subset, S, of the

constituent first order mutants, but this would mean that there would also be a

155

lower order mutant composed of precisely the S constituent mutants. If one seeks

to increase progressively the order of mutants considered, then such a case will

already have been encountered. Therefore, here attention will focus on Cases 1 and

2, as defined above.

Suppose a higher order mutant that one seeks to weakly kill is constructed from a

set of constituent first order mutants f1, . . . , fn. If there is a path in the control

flow graph of the program that passes through all the critical predicate nodes of

f1, . . . , fn, then the higher order mutant may be subsuming; this is Case 1. For these

higher order mutants, the critical predicate nodes of the higher order mutant are

defined as the union of the critical predicate nodes of the f1, . . . , fn. By extension,

the infection constraint of the higher order mutant is the conjunction of the infection

constraints of f1, . . . , fn.

If there is no such path (Case 2), then it is not possible to find a test case that

executes all the constituent first order mutants that combine to make the higher

order mutant. In this situation, the proposed approach treats the higher order

mutant as merely a set of first order mutants; the higher order mutant is killed if

any of the constituent first order mutants are killed.

Here, a different variant of the DSE algorithm to that previously used for mutation

testing will be used [222, 225, 293]. The proposed reachability approach is the

same as that of previously published work, and this is inherited from the standard

DSE approach to branch coverage [111, 241]. However, in the proposed approach,

infection constraints are handled differently due to the need to retain and extend

the constraints for subsequent generation of strongly killing test cases.

Previous work uses a testability transformation to transform the traditional branch

adequacy problem, which is handled well by DSE, into weak mutation adequacy.

This is performed simply by replacing mutants with additional branches, whose

156

predicates capture the infection constraint.

The approach proposed in this thesis does not transform the program. Rather, once

a mutant is reached, the DSE variant continues to generate test data to satisfy the

weak killing constraint of the mutant. This makes it possible to retain a mapping

of mutants and the corresponding infection constraints so that the fitness of each

individual mutant can be assessed when it subsequently comes to the task of prop-

agating infections. The pseudo code of this DSE algorithm is shown in Algorithm

8.

Require: the set of critical predicate nodes N reaching the mutant

Require: the InfectionConstraint of the mutant

For program P, randomly generate concrete test input T

while within execution upper bound do

execution path p← dynamic execution (P, T)

symbolic expression sc← symbolic execution (P, T)

if p does not reach the mutant then

current critical node n← get next critical node (N, p)

p←update constraints (p, n)

T ← constraint solver(p, sc)

else

break

end if

end while

weak killing constraint wkc← InfectionContraint ∧ p

T ← constraint solver(wkc)

return T
Program 8: The dynamic symbolic execution algorithm

If the DSE approach fails to generate weakly adequate test data for a mutant,

157

standard SBST approaches are used to seek to weakly kill it. This is because it

is known [153] that DSE and SBST achieve coverage of distinct, but overlapping,

sets of branches. For example, SBST is well adapted to test data generation in the

presence of floating point computation.

Such distingct coverage motivated work on a hybrid DSE–SBST approach, now

incorporated into the Pex tool [154]. However, for the experiments described in this

thesis (reported in Section 6.3), this search-based weak killing feature of the SHOM

implementation is switched off so that weak adequacy is achieved by DSE alone; this

is because it is desirable to compare the additional effort required and effectiveness

achieved in terms of strong adequacy compared to the DSE–only approaches to weak

adequacy.

Having used DSE to generate weakly adequate test data, the proposed hybrid DSE–

SBST approach uses SBST to search for test inputs that propagate infected data

states to outputs, thereby transforming weak mutation into strong mutation. The

next section describes the proposed SBST approach to strong higher order mutation

testing, which lies at the heart of the proposed overall SHOM approach.

6.1.3 Strongly Killing Mutants

In order to strongly kill a mutant, its infection must be propagated to an output so

that the fault is manifested as a failure. The propagation problem has previously

been considered to be difficult because there may be infinitely many paths from the

infection point to the point at which an output occurs. Therefore, the problem of

propagation, for each mutant, can be reduced to the path coverage problem. Even if

path coverage is approximated, this process must still be repeated for each mutant,

resulting in a potentially prohibitive computational cost.

The proposed approach uses SBST to search for paths from the infection point

158

to the output that are more likely to propagate the infection, based on heuristic

assumptions regarding the differences in paths taken by the original and the mutant,

which should be maximised using the search.

In this way, it is not necessary to try all paths from infection to output explicitly.

Rather, paths that are more likely to propagate are searched for, guided by a fitness

function that measures control flow differences between the original program and the

mutant. First, a testability transformation is used to ensure that the program has

only a single return point; the return of the procedure in which the mutant resides.

This simple transformation is always possible because multiple return statements

can be directed to a single ‘gathered’ return point.

One seeks to maximally disrupt the path taken by the mutant version of the pro-

gram from the infection point to this unique return statement. This increases the

likelihood that any output statement that can be executed after the infection point

will be executed differently (or even not at all). This, in turn, increases the likeli-

hood that the output of the mutant will be distinguishable from that of the original,

thereby strongly killing the mutant.

It is desirable to favour tests that maximise disagreement on predicate choices made

by the original program and mutant, thereby maximally disrupting the control flow

path from the infection to the return. If a test makes the mutant follow a different

path to the original after execution, then it is very likely to produce a different value

at the return point, thereby strongly killing the mutant. Let Branch(p, i, t) denote

the branch taken by program p at predicate i on input t. Let inf(m) denote the

infection point of mutant m and let ret(m) denote the return point of the procedure

containing m. Let pred(p, x, y) denote all critical predicates between point x and

point y in program p.

The decision function d for program p and mutant m at predicate i on input t is

159

defined as follows:

d(p,m, i, t) =

 1 if Branch(p, i, t) = Branch(m, i, t)

0 if Branch(p, i, t) 6= Branch(m, i, t)

The fitness f(p,m, t) of a test case t executed on a mutant m of an original program

p is defined to maximise the average ‘predicate disagreement’ between m and p:

f(p,m, t) =
∑

i∈Pred(m,inf(m),ret(m)) d(p,m,i,t)

n

Recent results [122] have demonstrated that ‘random restart hill climbing’ provides

an effective and efficient way to generate test data using SBST. Motivated by this

finding, the work of this thesis uses a random restart hill climbing algorithm to

search for the test inputs that propagate the infection, as shown in Algorithm 9.

However, the particular choice of SBST algorithm is a parameter to the proposed

approach and a pluggable component to its implementation.

6.1.4 Preserving Weak Adequacy Using Constrained Search

The proposed representation and move operations are designed to guarantee that

the previously obtained reachability and infection constraints are also satisfied by

any candidate input considered during the SBST phase of the overall approach.

To do this, an individual candidate solution to the problem of killing a mutant

is represented as a conjunction of constraints. This conjunction starts off as the

reachability and infection constraints, to which it is only ever possible subsequently

to add additional conjuncts during the search process.

In order to express a potential move to a new test input in the search, an extra

conjunct is added to the current constraint, representing the result in conjunctive

160

normal form (CNF). In this way it is only ever possible to consider weakly killing

test cases. The constraint solver is used to generate a candidate using the extended

CNF consisting of the weakly killing constraint plus some candidate new constraint.

The test input generated by the constraint solver is then evaluated for fitness, and,

if it improves fitness, it becomes the new current solution in the hill climb.

This ‘constrained search’ approach to searching for test data is a novel aspect of

the proposed mutant killing technique since it has not been used in any previous

work on SBST, although it may be found in other applications, in more general

work on SBST outside the domain of mutation testing. This approach enables the

combination of constraint solving and SBST in a manner that preserves the value

captured by the constraints, while extending it to achieve some additional aspiration

using search.

6.2 SHOM Implementation

Figure 6.2 depicts the architecture of SHOM, the implementation of the proposed

hybrid DSE–SBST approach to strong higher order mutation. To compute adequacy

scores, the tool MiLu[136, 138], which was introduced in Chapter 4 Section 4.2, is

used. MiLu is a higher order mutant generation and assessment tool that supports

general purpose first and higher order mutant generation for C. The subset of the

Agrawal et al.’s 77 C mutation operators [6] that fall into the widely studied ‘selec-

tive’ mutation operators, defined and studied first by Offutt el al. [203], are used

here. In addition, a specific implementation of the DSE phase was used so that it

was possible to extend it to include the subsequent SBST phase.

The CIL transformation system [192] was used to pre-process the program and its

mutants for the DSE and SBST phases of the proposed implementation. However,

161

Require: A weak killing test T

Require: The weak killing constraint wkc

if T kills the mutant strongly then

return T

else

while current evaluation ¡ max evaluation do

NeighboursTests← neighbours(T)

for all t in NeighboursTests do

if t kills the mutant strongly then

return t

end if

for all t in NeighboursTests do

if fitness(t) > bestfitness then

BestTest← t

bestfitness←fitness(BestTest)

end if

end for

if bestfitness ≤ fitness(T) then

T ← get a weak killing test T

else

T ← BestTest

end if

end for

end while

end if
Program 9: Our hill climbing algorithm

162

this is merely a testability transformation that reduces constraint and path analysis

effort. It does not alter the semantics of the program under test, nor does it affect the

test adequacy criteria involved. As illustrated in Figure 6.2, the test data generated

using the proposed approach are evaluated on the mutants generated by MiLu, not

the transformed versions.

Three transformation steps are performed. First, the expressions denoting array

indices and other memory access operators are simplified. In this step, additional

temporary variables are introduced to hold intermediate values for complex memory

expressions which involve more than one memory reference. After this step, the value

of the simplified expression only contains a memory constructor. This simplifies the

subsequent static analysis and dynamic symbolic execution by reducing the number

of cases that have to be considered.

The standard transformations of CIL are used to simplify loop and switch state-

ments, reducing all such control flow constructs to a simple canonical form, con-

sisting of conditionals and branches. Once again, this leaves the semantics of the

original unaltered but eases the subsequent downstream analyses.

Finally, each procedure is transformed to an equivalent single–entry/single–exit ver-

sion so that it contains exactly one single return statement, to which the propagation

of infection of all mutants that lie inside that procedure is sought. As explained in

the previous section, this simplifies strong mutation testing since it means that the

proposed SBST phase need only consider a single exit node. For this single exist

node, SBST seeks inputs that cause execution to flow from the infection point along

a maximally disrupted control flow path to the exit node.

CIL is also used to perform a control dependence analysis. This collects the critical

predicate nodes for each mutant, used to form the reachability and infection condi-

tions. The dependence analysis is also used to identify those predicates for which

163

SBST seeks to cause the mutant and original to disagree from infection to return.

The constraints for reachability and infection are represented in conjunctive normal

form. SHOM uses the Yices constraint solver [87] to solve these constraints. Yices

is a satisfiability modulo theories (SMT) constraint solver that uses a collection of

advanced constraint solving techniques to find a satisfying assignment of values to

variables in formulæ; here, it is used to satisfy the constraints for reachability and

infection. Yices was chosen for two reasons:

1. Yices provides a C language application interface. This is necessary since it

is not possible simply to use constraint solving as a ‘black box’ component.

While this is possible for weak mutation killing techniques that simply use

testability transformation to reformulate weak mutation as branch coverage,

it is not possible for strong mutation. For strong mutation, it is necessary to

control over exactly which constraints need to be satisfied at each part of the

overall SHOM process.

2. Yices provides state-of-the-art constraint solving. It supports a wide range

of constraints, including linear expressions, scalar types, recursive data types,

tuples, records, arrays and bit-vectors, all of which can arise in the constraints

found in programming languages. It won first place for several of the categories

of the 2005, 2006 and 2007 SMT-COMP competitions organised as part of the

computer aided verification (CAV) conference.

6.3 Empirical Study

The studies presented here consider first order and higher order mutations separately,

because first order mutation has been the subject of previous work, while no other

164

Figure 6.2: The SHOM Architecture. The DSE and SBST components were built

from scratch; however, the DSE component delegates constraint solving to Yices

[87]. It performs its analysis on transformed mutants, but all test data generated

by SHOM are executed and evaluated by MiLu[136]. Transformation is performed

by CIL [192].

previous studies have considered test data generation to kill higher order mutants.

Only second order mutants and, for larger programs, only sets of randomized samples

from the set of all possible second order mutants are considered. Sampling is required

because of the infeasibility of considering all higher order mutants due to the very

large increase in mutant numbers that occurs at higher orders.

Subject Programs Studied

SHOM was applied to the example subjects in Tables 6.2 and 6.3. The examples in

Table 6.2 are non-trivial real world programs; four are modules from closed-source

industrial production code. Two of them, DeFroster and F1, come from Daimler

and are used in automotive control systems for a rear window defrosting system and

an engine controller, respectively, and have been used in previous studies [117]. The

other two, Hash and Buff, come from ABB and are used in robot controller systems.

165

It is not possible to provide the source code for these examples, because it is propri-

etary closed-source code from industrial partners with whom non-disclosure agree-

ments have been signed. However, to support replication and more robust evalu-

ation, three additional larger programs are also included, for which source code is

readily available.

Table 6.2: The seven larger programs used in the experiments. The first five pro-

grams are industrial proprietary programs, while the final two are open source.

Program Lines Func- Branches First Second

Name Of tions Order Order

Code Mutants Mutants

DeFroster 237 2 76 215 22,732

F2 511 1 42 212 22,113

Hash 1,011 12 76 465 107,211

Space 9,564 136 1,190 4,410 9,715,606

Buff 1,371 14 182 1,544 1,189,040

GArray 808 58 17 1,363 926,286

Gzip 7,933 97 1,717 10,182 51,816,418

The program Space is a widely studied interpreter for an array definition language

used by the European Space Agency. It is not open source, but its code is avail-

able from the Software-artifact Infrastructure Repository (SIR) [77]. The other two

programs, Gzip (v1.5) and GArray (v2.26), are both open source; Gzip is a widely

used compression program and GArray is an array data structure used in the GNU

Glib. All programs in this non-trivial subject set of examples are summarised in

Table 6.2.

The second set of programs, summarised in Table 6.3, contains smaller laboratory

programs that have been studied widely in the literature on mutation-based test

data generation. This set of relatively small programs is included to provide back-

166

ward compatibility with these previously studied examples. The set includes three

programs taken from SIR that originated in the Siemens suite: Tcas is an aircraft

anti-collision system, Schedule is a program that prioritises schedulers and Replace

performs pattern matching and substitution.

Table 6.3: Ten smaller programs included for backward compatibility with previous

studies.

Program Lines Func- Branches First Second

Name Of tions Order Order

Code Mutants Mutants

Triangle 88 1 32 253 31,522

Bubble 35 1 6 80 3,032

Days 86 1 28 242 28,849

Find 88 1 22 201 19,791

Mid 43 1 10 65 1,970

GCD 43 1 6 73 2,526

MinMax 44 1 6 39 657

Tcas 166 8 66 223 24,496

Replace 595 23 176 714 253,585

Schedule 425 18 66 230 26,000

The remainder is a sample of some of the very small programs used in previous

studies. No attempt is made to infer findings from the results obtained using these

very small examples, but include them to facilitate replication. Triangle classifies

the type of a triangle by the lengths of its three edges. Bubble is the standard bubble

sort algorithm. Days calculates the number of days between two given days. Find

locates and sorts the input array with a given index. Mid returns the middle value

of three inputs. GCD is Euclid’s greatest common divisor algorithm and MinMax

returns the minimum and maximum values of an input array.

167

Mutant Generation

Some of the programs studied give no output. For example, many of the very small

programs simply compute a single value as their result. For such programs it is

necessary to clarify what is meant by ‘output’. If an overly pedantic and literal

definition of output is taken, for example: ‘something that appears on an output

device’, then all mutants of such programs would be equivalent because no mutation

can make a change to a non-existent output. Therefore, ‘output’ is allowed to include

the result of the computation returned to the environment (such as a return value

or the result computed in a global variable).

For the larger programs where the code is not a support routine but an entire

program, there is no such issue. These larger programs perform output to screen

and/or files, and this is monitored and compared with the output of the original to

determine whether the mutant is strongly killed.

Research Questions

The work of this chapter asks three research questions, which will now be defined,

explaining how the experiments are designed to address them.

RQ1: How first-order-adequate is SHOM? To explore SHOM’s test effective-

ness for strong first order mutation, SHOM is compared with RI-DSE. The im-

provement RI-DSE achieves over R-DSE is also reported. In both cases test sets for

R-DSE and RI-DSE are generated, and the number of mutants each kills strongly is

computed and compared to the number of mutants strongly killed by SHOM. This

allows an evaluation of the degree to which a reached mutant is infected and prop-

agates merely by reaching it using DSE and also the degree to which those infected

mutants infected using DSE also already happen to propagate. All experiments are

168

repeated ten times and averaged to cater for the stochastic nature of the search

algorithm.

RQ2: How second-order-adequate is SHOM? The number of higher order

mutants grows exponentially with the order k, presenting obvious experimental de-

sign challenges. For all of the ten programs detailed in Table 6.3, the total number

of second order mutants is 392,458, which is manageable. However, for the real

world programs detailed in Table 6.2 the total number of second order mutants is

63,799,406, which is unmanageable.

The quadratic increase in the number of second order mutants makes it impractical

to consider all second order mutants. Therefore a sampling approach is adopted

here. For programs with 0–4,999 second order mutants, 100% of the mutants are

used. For programs with 5,000–49,999 mutants, 10% of the mutants are used. For

programs with 50,000–499,999 mutants, 1% of the mutants are used. For programs

with 500,000–4,999,999 mutants, 0.1% of the mutants are used. For programs with

5,000,000 or more mutants, 0.01% of the mutants are used. To avoid sampling bias,

a random sample was taken from the set of all second order mutants. The sampling

experiment was also repeated ten times and the average level of strong second order

mutation adequacy achieved over all ten samples was computed.

To answer RQ2, SHOM was compared with RI-DSE, and RI-DSE was compared

with R-DSE. However, there is no previous work on generating test data to kill

second order mutants (either weakly or strongly). Therefore, to provide a baseline

for comparison, the union of all test data generated for each of the two first order

mutants from which the second order mutant is constructed was used as follows:

Suppose s is a second order mutant with constituent first order mutants f1 and f2.

R-DSE is used to generate test data to kill f1, creating a set of test data d1. R-DSE

is then used to generate test data to kill f2, creating a second set of test data d2.

169

The result of applying R-DSE to s is defined to be d1 ∪ d2. Similarly, for RI-DSE,

two test sets are generated, one for each of f1 and f2 and the test set produced by

RI-DSE for s is defined to be the union of the two.

Using this approach, R-DSE and RI-DSE should be capable, in theory, of killing all

those second order mutants that are coupled to their first order constituents in a

way that killing either first order mutant kills the second order mutant. However, for

second order mutants where fault masking may take place, a test set that kills both

constituent first order mutants is not guaranteed to kill the second order mutant.

RQ3: How efficient is the SHOM data generation approach? Here, the

efficiency of the SHOM approach is investigated. The efficiency is measured using

both the elapsed time for test data generation and the number of fitness evaluations

required. Again, the stochastic nature of the algorithm needs to be taken into

account. In order to achieve stable and robust results, catering for variation due to

the stochastic nature of the search process, each experiment was repeated ten times,

and average values were calculated.

The time was recorded using the Linux time utility; this is the elapsed time, so

it includes all time taken to generate mutants and test data, and to run test data

on the program under test. As such, the timing information denotes a worst case

upper bound on the total amount of time a tester would be expected to wait for

test data to be produced by each technique. The experiments were performed on a

MacBook Pro laptop with Intel Duo2 2.6 GHz CPU, 4GB memory in the Ubuntu

10.10 operating system.

170

6.4 Results and Analysis

Here, results from the research questions will be presented. Strong first order ef-

fectiveness is considered first, followed by strong second order effectiveness, and,

finally, the efficiency of the SHOM implementation is considered.

Table 6.4: The results for SHOM’s first order and second order adequacy.

Program

R-DSE % RI-DSE % SHOM %

Order Order Imp. on R Order (Std.) Imp. on RI (passed)

1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd

Triangle 48 49 59 61 21 24 62 (1.6) 67 (3.8) 7 (10) 15 (10)

Bubble 76 77 76 77 0 0 76 (0.0) 77 (0.0) 0 (0) 0 (0)

Days 62 66 64 68 5 6 65 (0.5) 72 (2.6) 3 (10) 13 (10)

Find 64 59 69 60 14 2 69 (0.0) 61 (0.2) 0 (0) 3 (10)

Mid 65 62 66 73 3 29 82 (4.2) 82 (2.3) 47(10) 33 (10)

GCD 71 73 73 82 7 33 73 (0.0) 82 (0.0) 0 (0) 0 (0)

MinMax 75 64 77 75 8 31 77 (0.0) 76 (0.2) 0 (0) 4 (10)

Tcas 42 55 54 67 21 27 62 (2.1) 69 (9.1) 17 (10) 6 (10)

Replace 46 42 53 56 13 24 72 (2.2) 77 (11.5) 40 (10) 48 (10)

Schedule 55 57 57 62 4 12 69 (5.4) 70 (7.2) 28 (10) 21 (10)

Hash 51 54 56 61 10 15 63 (2.9) 64 (3.5) 16 (10) 8 (10)

Buff 63 64 71 73 22 25 82 (6.1) 85 (6.5) 38 (10) 44 (10)

GArray 64 68 77 81 36 41 82 (3.7) 86 (5.7) 22 (10) 26 (10)

DeFroster 53 55 62 63 19 18 66 (2.1) 68 (4.0) 11 (10) 14 (10)

F2 44 44 63 60 34 29 66 (1.2) 67 (8.4) 8 (10) 18 (10)

Space 30 32 46 51 23 28 52 (2.3) 57 (12.2) 11 (10) 12 (10)

Gzip 34 33 42 44 12 16 50 (1.5) 52 (13.4) 14 (10) 14 (10)

Average 55 56 62 65 15 21 69 (2.1) 71 (5.3) 15 (7.6) 16 (8.8)

171

SHOM’s First Order Adequacy

The results relating to RQ1 are summarised in Table 6.4. Columns labelled ‘R-

DSE’ and ‘RI-DSE’ report, as percentages, the strong adequacy achieved by R-DSE

and RI-DSE, respectively, for first and second order mutants. Of the four columns

labelled RI-DSE, the third and fourth columns report the percentage of mutants left

unkilled by R-DSE which are killed by RI-DSE. The four columns labelled ‘SHOM’

report the strong adequacy achieved by the proposed SHOM approach. The figures

in the first two columns for SHOM report the average percentage of first and second

order mutants killed over ten runs. The parenthetic numbers report the standard

deviation. The figures in the third and fourth columns for SHOM report the average

percentage improvement of SHOM over RI-DSE for first and second order mutations.

In these two columns the parenthetic numbers report the number of runs, out of

ten, for which SHOM outperformed RI-DSE.

Answer to RQ1: SHOM produces increases in strong first order mutation adequacy

compared to RI-DSE, which, in turn, produces noticeable improvements on the

strong adequacy achieved by R-DSE. For the smaller programs, the improvement in

strong adequacy achieved by both RI-DSE and SHOM is less notable than it is for

the larger programs.

This difference in behaviour is a further justification for including larger programs in

the study of mutation-based test data generation. As already seen, using only very

small program examples may skew the results due to the relatively trivial nature of

the test data generation problem for these very small programs.

R-DSE and RI-DSE are entirely deterministic. SHOM builds on RI-DSE, but it

is a randomised algorithm, so it can produce different values each time it is run.

However, it is guaranteed to perform no worse than RI-DSE by construction, so the

172

improvement it achieves (averaged over ten runs) together with standard deviation

are reported.

These are the first results reported for strong mutation test data generation, so it is

not possible to directly compare the current results with previous findings, such as

those in Table 6.1. Perhaps the closest work to that presented here is that of Frazer

and Zeller [102].

Although Fraser and Zeller report on test data generation for Java, while here test

data generation for C is reported, their work is evaluated on two larger, non-trivial

subjects, and it achieves a form of propagation (to assertions in the program rather

than outputs). Fraser and Zeller reported an overall average first order mutation

score of 72%, which lies between the weighted average strong first order mutation

score for the whole programs (which was 59%) and that achieved for the libraries

(which is 76%) in the work presented here.

There is a noticeable difference in the performance of all techniques for smaller

and larger programs. For the smaller programs, from Table 6.3, R-DSE is able to

strongly kill between 42% and 76% of the first order mutants. RI-DSE can improve

on this, but for some of the programs the test problem is so trivial that even weakly

adequate test sets achieve high levels of strong mutation adequacy.

For the larger programs the results are more interesting. The behaviour of all

three techniques falls into two distinct categories, depending on whether the larger

program is a whole program or merely a collection of library routines to be called

by some other program. Of the larger programs, Hash, Buff and GArray are each

collections of routines to be called from elsewhere; these three programs consist of

libraries of subordinate routines and they have no main function. The other four of

the larger programs, DeFroster, F2, Space and Gzip, are invoked, in their entirety,

from their main function so that the whole program is tested.

173

It has been known for some time [16] that whole program analyses are more chal-

lenging than inter-procedural analyses that focus on a single procedure. This is also

true for test data generation. For the libraries, it is merely needed to test each pro-

cedure in turn, thereby focusing the testing on a single procedure body rather than

a whole program. The single procedure may call others in the library, so testing is

still an inter-procedural activity, but it is not a ‘whole program activity’.

This dichotomy between whole programs and libraries is borne out in the results.

For the libraries, R-DSE is able to strongly kill between 51% and 64% of the first

order mutants, whereas for the whole programs, it kills between 30% to 53% of the

mutants. RI-DSE improves on this, killing between 10% and 36% of the remaining

mutants for the libraries and between 12% and 34% of the remaining mutants for

the whole programs.

SHOM further improves strong first order mutation scores in all of the larger pro-

grams studied. For the library programs, it manages to kill between 16% to 38%

of the remaining mutants left unkilled by RI-DSE. For the whole programs, SHOM

kills between 8% and 14% of the remaining mutants unkilled by RI-DSE.

Second Order Adequacy of SHOM

As can be seen from Table 6.4, on average, over all programs studied, all three

techniques (R-DSE, RI-DSE and SHOM) are better at killing second order mutants

than first order mutants. This is to be expected since second order mutants are, in

general, coupled to first order mutants [139, 155]. These are the first results reported

in the literature for automated test data generation to kill second order mutants, so

they provide a baseline for future work.

The results also provide a baseline against which to evaluate SHOM. Over all pro-

grams studied, SHOM produces an improvement in strong second order adequacy

174

over RI-DSE, which, in turn, produces an improvement over R-DSE. Once again,

average performance for SHOM (over ten runs) and standard deviation are reported.

Note that statistical tests such as the t-test or Mann Whitney test are not suitable

here. The empirical evaluation is required to determine the size of this improvement,

but SHOM is guaranteed to perform no worse than RI-DSE by construction.

For the larger programs detailed in Table 6.2, the dichotomy between libraries and

whole programs is evident for second order mutation (as it is for first order mutation).

For whole programs, the adequacy of all techniques is reduced compared to that for

libraries. Over all larger programs, RI-DSE kills between 15% and 41% of the

second order mutants left unkilled by R-DSE, while SHOM further increases this

effectiveness, killing between 8% and 44% of the mutants left unkilled by RI-DSE

Efficiency of SHOM

Table 6.5 reports the number of fitness evaluations and time required to kill all

mutants. In Table 6.5, the two columns labelled ‘Time’ report the average time

taken by SHOM (in minutes). The next two columns, labelled ‘Fitness’ report the

average number of thousand fitness evaluations required. The number of fitness

evaluations required is not dissimilar to that required for branch coverage of similar

sized programs using search-based techniques [10], so performance can be expected

to be in line with previous work on SBST.

For the practicing software tester, the number of fitness evaluations, though machine-

independent, will be of less interest; the results for the time taken to find an ade-

quate test set are more important. The largest of the programs previously studied

for mutation-based test data generation with C are the Siemens suite examples

(Schedule, Replace and Tcas from Table 6.3). For these programs, it is possible to

generate a weakly killing test set in a matter of seconds.

175

It is not possible to compare these findings with the previously reported results from

the literature on mutant test data generation for C. This is because the relevant

papers for which a comparison would be meaningful reported, in detail, upon only

the effectiveness (mutation score) of the approaches, while they did not report the

execution time details required for a comparison.

Of course, after two decades of Moore’s Law, even if timing data were available for

the older studies from the 1990s, a head-to-head time-based comparison would be

grossly unfair to the achievements of previous work. For the more recently reported

results (from 2010), even if timing data were available, differences in techniques,

platforms and configurations would also make comparison problematic. Here, ex-

ecution times, configuration and platform details are reported in order to support

potential backward comparison in future work on strong and higher order mutation

testing.

Mutation testing is generally regarded as a comparatively slow and expensive ap-

proach to testing. Despite this, it has endured as a research topic for more than

three decades, perhaps because of results that demonstrate that it provides a par-

ticularly demanding test adequacy criterion and one that is attractively generic and

flexible.

Given these historical perspectives, the time findings presented here are encouraging

because they indicate that weak, strong and higher order mutation testing can all

be used to generate test data within reasonable time-scales on a standard laptop.

Generation of test data by hand (the only currently available alternative for either

strong or higher order mutation) would take considerably longer, and, using human

effort rather than machine effort would be (perhaps prohibitively) more expensive.

176

Table 6.5: The results for SHOM efficiency experiments.

Program

Time Fitness

Order Order

1st 2nd 1st 2nd

Triangle 13 102 3 17

Bubble 22 141 0.2 8

Days 14 114 5 13

Find 28 191 2 9

Mid 6 48 0.3 4

GCD 12 88 0.2 5

MinMax 22 84 0.1 3

Tcas 200 272 8 18

Schedule 110 202 4 15

Hash 81 128 5 8

Buff 152 176 11 7

GArray 95 131 2 3

DeFroster 102 272 2 11

F2 122 321 2 14

Space 1,423 884 43 18

Gzip 2,762 1,794 92 64

Average 307 301 11 13

177

Threats to Validity

The experiments presented here attempt to compare the proposed hybrid DSE test

data generation approach with the traditional branch-based and mutation-based

DSE-based approaches in terms of test effectiveness. Although the experiment was

designed to be as fair as possible, it also faces a number of threats to the validity.

There are two main threats, one relating to the mutant generation process and

another relating to the test data generation process.

When generating mutants, the results can be influenced by the mutation operator

used. To reduce the computation cost, Offutt’s five sufficient mutation operators

set was used to generate both first and higher order mutants. These operators have

been used widely in many mutation studies [139]. However, for different types of

subject programs, the generated mutants might be different in terms of the number

and the type of distributions. To reduce the effect of this threat, the experiment was

conducted on a variety of open-source programs, which represent many application

domains.

Another possible threat related to mutants is that only second order mutants were

studied in the higher order experiment. Generating all possible higher order mu-

tants for a typical source unit is impossible, therefore only second order mutants

were focused on here. Second order mutants are very good examples of higher order

mutants; they not only have similar test effectiveness as first order mutants, having,

thus, been suggested as a replacement to the first order mutations to reduce the

running cost of mutation testing [223, 227], but they also contain some interest-

ing subsuming cases which are more subtle than the first order mutants they are

constructed from [136, 138]. In future experiments this threat can be addressed by

searching the strongly subsuming mutants based on the their fragility. There are

also some threats in the test data generation process. These threats mainly come

178

from the limitation of the CIL library and the Yieas constraints solver.

Summary

In this chapter, a hybrid DSE and SBST approach to generate strongly adequate

test data to kill first and higher order mutants was introduced. The approach

was implemented in a tool called SHOM. Two previously published approaches

were also implemented, based on reachability alone and reachability together with

infection, and these implementations were used to evaluate the proposed approach in

17 example programs. The results show that SHOM is able to achieve higher levels

of strong mutation coverage than either previously published approach for first order

mutants. For second order mutants there is no previous work on test data generation,

so the presented second order test sets were compared with those composed from

the union of the corresponding first order sets. Once again, SHOM was found

to outperform approaches based on either reachability alone or reachability and

infection.

179

Chapter 7

Conclusions and Future Work

It is widely believed that higher order mutation testing is too computationally ex-

pensive to be practical and, as a result, work in the field of mutation testing has

focused largely on first order mutants. This thesis has shown that higher order mu-

tation testing can be practical when implemented as a search process that seeks fit

mutants (both first and higher order) from the space of all possible mutants.

The fitness function can be tailored to the program under test and the specific

goals of testing, thereby reducing the number of mutants required (compared to the

traditional enumerative approach) and simultaneously increasing the quality and

fitness for purpose of the selected mutants. The fitness function is able to take

account of fault histories, known problems and likely pitfalls and is thereby able to

simulate relevant potential faults that may have gone unnoticed in preceding testing

efforts.

In this way the search based approach is able not only to generate smaller sets of

more fit mutants, but also to target more realistic sets of mutants. It may even prove

possible to use appropriately defined fitness functions to guide the search away from

likely equivalent mutants, thereby reducing the impact of the equivalent mutant

180

problem.

7.1 Summary of Achievements

The overall aim of this thesis was to make higher order mutation testing applicable

and practical using a search process that seeks fit mutants (both first and higher

order) from the space of all possible mutants. The detailed aims and objectives of

this thesis were as follows:

1. To investigate higher order mutants from a fault interaction perspective.

2. To apply search-based optimisation approaches to locate very fit mutants (both

first and higher order) within the search space of all possible mutants and to

investigate empirically the higher order mutants found by the algorithms.

3. To extend the current state-of-the-art mutant-based test data generation tech-

niques to handle higher order mutants and to evaluate this extended test data

generation approach on both first order mutants and higher order mutant.

Higher order mutant classification

A fault-based higher order mutant classification was introduced in Chapter 4. Based

on different types of fault interactions, this approach classifies higher order mutants

into four categories: expected, worsening, fault masking and fault shifting. The

chapter proposed a theoretical model for second order mutants and produced a

classification tree for all second order mutants. In order to investigate practically

the class of higher order mutants, the chapter also presents MiLu, a C mutation

testing tool that is able to handle both first and higher order mutants. In an

empirical study, all second order mutants were enumerated and third to fifth order

181

mutants were sampled for six subject programs. In total, more than two million

higher order mutants were generated with 9.2 billion test executions. The results

show that 30% of higher order mutant faults fell within the fault mask and the fault

shift categories; a potentially interesting result for future work on software testing.

Search-based higher order mutation

Subsuming and strongly subsuming higher order mutants were introduced in Chap-

ter 5. These form subsets of fault masking and fault shifting higher order mutants

which can be used in higher order mutation testing. A subsuming higher order

mutant is a higher order mutant that is more difficult to kill than its constituent

first order mutants. This chapter introduced a search-based approach to find these

subsuming higher order mutants and presented an empirical study that compared

a greedy algorithm, a genetic algorithm and a hill climbing algorithm. A strongly

subsuming higher order mutant is only killed by a subset of the intersection of the

set of test cases that kill its constituent first order mutants. Therefore, a strongly

subsuming higher order mutant is one that is so much more difficult to kill than

the first order mutants from which it is constructed that one can replace all the

first order mutants with the subsuming higher order mutant without any loss of test

effectiveness.

The results from ten test programs indicate that there exist many subsuming higher

order mutants in each of the programs studied. It is revealed that the genetic al-

gorithm is the most efficient algorithm for finding those subsuming higher order

mutants, while the greedy algorithm and hill climbing algorithm can be used to

improve the quality of the results. The results also show that the search-based ap-

proach was able to find a number of strongly subsuming higher order mutants in

each of the ten programs studied. Although the proportion of all higher order mu-

tants that are strongly subsuming higher order is small, the size of the higher order

182

mutant set grows exponentially, so the number of these valuable strongly subsum-

ing higher order mutants is relatively large. This chapter illustrated the intricate

interplay between faults exhibited by strongly subsuming higher order mutants by

describing in detail one of the higher order mutants found by the genetic algorithm

and the test sets that kill it and its constituent first order mutants.

Mutation-based test data generation

Chapter 6 introduced a hybrid mutation testing approach whereby the DSE and

SBST approaches are combined to generate strongly adequate test data to kill first

and higher order mutants. The approach was implemented in the SHOM research

tool. Two previously published approaches were also implemented, based on reach-

ability alone and reachability together with infection, as a means to evaluate the

proposed approach in 17 example programs. The results show that, for first or-

der mutants, SHOM is able to achieve improved strong mutation scores than either

of the previously published approaches. There is no previous work on test data

generation for second order mutants, so the presented second order test sets were

compared with those composed from the union of the corresponding first order sets.

Once again, SHOM was found to outperform approaches based on either reachability

alone or reachability and infection.

7.2 Summary of Future Work

Since the research presented in this thesis was published, there has been increasing

interest in the topic of higher order mutation testing [24, 120, 223, 170, 149]. Sig-

nificantly, there is evidence now to suggest that higher order mutants may reduce

mutation effort [227] and also the proportion of mutants that are equivalent [223].

183

Genetic programing has also been used to generate interesting higher order mutants

[155]. Recently higher order mutation has been applied to concurrent programs [170]

as well as to detect equivalent mutants [149]. However, much more remains that can

be done.

Applying fault models in higher order mutant testing

There is often fault data available for systems that are, or have been, under de-

velopment over a substantial period of time. For systems developed in a certain

domain or by a certain team of developers there may also be fault information avail-

able regarding the domain or team. In such situations a fault model is, in effect,

developed; rather than simply constructing all possible faults, it is possible to focus

on the faults characterised by the fault model. Future work will include, by using

higher order mutant testing, to seek combinations of faults that may have gone un-

detected due to partial masking. By definition, a subsuming higher order mutant

is one in which the first order constituent mutants partly mask one another so that

the higher order mutant so-constructed is more difficult to kill than its constituent

first order mutants.

The search based approach proposed in this thesis is well adapted to the presence

of a fault model; it can be used to search for faults that are not only exemplars of

the fault model, but also higher order mutants which denote subtle combinations of

known likely faults. It is planned that in the future the search based approach will

also be used to seek out near neighbours of known faults, using the fault model as a

guide. In this way the search based approach can relax constraints so that the fault

model is not used literally. Rather, it is treated as a guide to the kind of faults that

may occur.

184

Co-evolving higher order mutants and test data

Co-evolution is an approach to evolutionary optimisation whereby two or more can-

didate populations evolve together, with the fitness of one population being de-

termined by the fitness of the other [51]. In this way, the two populations evolve

simultaneously. This can be a cooperative process, simulating symbiotic behaviour

in natural evolution, or it can be competitive, simulating the familiar predator/prey

model of co-evolutionary adaption and advancement.

For mutation testing it has been argued [5] that the predator/prey model of compet-

itive co-evolution can be used to develop sets of hard-to-kill higher order mutants

and, simultaneously, sets of very good quality test cases that are adapted to re-

veal subtle and hard-to-detect faults. In this approach the two populations are the

population of candidate higher order mutants and the population of candidate test

cases. The fitness for the higher order mutants is measured in terms of their ability

to evade the test cases (how many test cases fail to kill them). The fitness of the

test cases is measured in terms of their ability to kill the mutants.

A low fitness can be given to mutants that evade all test cases. These may be equiv-

alent mutants. Of course, these mutants may also merely be stubborn so that the

presented test cases are insufficient to reveal them. Such stubborn (nearly equiva-

lent) mutants are precisely the kind of mutants that it is desirable to find. However,

evolution is a mercifully robust process and the genes of such stubborn mutants will

be scattered throughout the mutant population. If mutants which initially appeared

to be equivalent are, in fact, merely stubborn, then it is likely that they will be re-

discovered at a later stage of the evolution because they remain distributed through

the gene pool. As ever, this means that maintenance of population diversity will be

important for this form of co-evolution to succeed.

The argument for mutation testing, developed over the thirty years of its history,

185

may seem circular. That is, mutants are ‘good’ if they avoid being killed by test

cases, but it is difficult to ascertain the quality of the test cases; test cases are

deemed to be ‘good’ if they kill all, or at least many, mutants. The co-evolutionary

approach turns this uncomfortable circularity from a problem into an advantage.

Therefore future work will co-evolve sets of strongly subsuming higher order mutants

with the test cases that are able to kill them with the goal of generating a set of

very subtle faults and a set of test data that is sufficient to reveal them. That is, the

apparently circular nature of mutation testing makes it an ideal candidate for a co-

evolutionary approach. The aim is to make this a virtuous circle of co-evolutionary

improvement.

186

Appendix A

Subject Programs used in the

Literature of Mutation Testing

Table A.1: Programs used in Empirical Studies

Name Size Description First Use No. of Uses

Triangle 30 Loc Return the type of a triangle 1978 25

Find 30 Loc Patition the input array by order using input

index

1988 22

Bubble 10 Loc Bubble sort algorithm 1988 18

MID 15 Loc Return the mid value of three integers 1989 16

Calendar/Days 30 Loc Compute number of days between input

days

1988 15

Euclid 10 Loc Euclide’s algorithm to find the greatest com-

mon divisor of two intergers

1991 15

Quad 10 Loc Find the root of a quadratic equation 1991 14

Insert 15 Loc Insert sort algorithm 1991 13

Warshall 10 Loc Calculates the ttransitive closure of Boolean

matrix.

1991 12

Pat 20 Loc Decide if a pattern is in a subject 1991 10

Continued on next page

187

Table A.1 – continued from previous page

Name Size Description First Use No. of Uses

SPACE 6000 Loc European Space Agency program 1997 9

Bsearch 20 Loc Binary search on an interger array 1992 6

Totinfo 350 Loc Information measure 1998 6

Schedule1 300 Loc Priority scheduler 1998 6

Schedule2 300 Loc Priority scheduler 1998 6

TCAS 140 Loc Altitude separation 1998 6

Printtok1 400 Loc Lexical analyzer 1998 6

Printtok2 480 Loc Lexical analyzer 1998 6

Replace 510 Loc Pattern replacement 1998 6

Max 5 Loc Return the greater from the inputs 1978 4

STRMAT 20 Loc Search String based on input pattern 1993 4

TEXTFMT 30 Loc Text formating program 1993 4

Banker 40 Loc Deadlock avoid algorithm 1994 4

Cal 160 Loc Print a calendar for a specified year or month 1994 4

Checkeq 90 Loc Report missing or unbalanced delimiters and

.EQ / .EN pairs

1994 4

Comm 145 Loc Select or reject lines common to two sorted

files

1994 4

Look 135 Loc Find words in the system dictionary or lines

in a sorted list

1994 4

Uniq 85 Loc Report or remove adjacent duplicate lines 1994 4

Gcd 55 Loc Compute greatest common divisor of an ar-

ray

1988 3

Sort 20 Loc Sort algorithm foran array 1988 3

Binom 6 Func Solves binomial equation 1994 3

Col 275 Loc Filter reverse paper motions from nroff out-

put for display on a terminal

1994 3

Sort(Linux) 842 Loc Sort and merge files 1994 3

Spline 289 Loc Interpolate smooth curve based on given

data

1994 3

Continued on next page

188

Table A.1 – continued from previous page

Name Size Description First Use No. of Uses

Tr 100 Loc Translate characters 1994 3

Ant 21,000 Loc A build tool from Apache 2002 3

Determinant 60 Loc Matrix manipulation programs based on LU

decomposition

1994 2

Matinv 30 Loc Matrix manipulation programs based on LU

decomposition

1994 2

Transpose 80 Loc Transpose routine of a sparse-matrix pack-

age

1994 2

Deadlock 50 Loc Check for deadlock 1994 2

Stats 4 Func Not reported 1994 2

Twenty-four 2 Func Not reported 1994 2

Conversions 8 Func Not reported 1994 2

Operators 4 Func Not reported 1994 2

Crypt 120 Loc Encrypt and decrypt a file using a user sup-

plied password

1994 2

Bisect 20 Loc Not reported 1996 2

NewTon 15 Loc Not reported 1996 2

MRCS Not reported Mars Robot Communication System 2004 2

Xml-Security 143 Class Implements security XML 2005 2

Jmeter 389 Class A Java desktop application designed to load

test functional behavior and measure perfor-

mance

2005 2

JTopas 50 Class A java library used for parsing text data 2005 2

ATM 5500 Loc The ATM component are ValidatePin 2005 2

Tetris Not reported AspectJ benchmark 2006 2

Max index 15 Loc Find the max value in the input array 1988 1

NASA’s plan-

etary lander

control soft-

ware

Not reported NASA’s planetary lander control software 1992 1

Continued on next page

189

Table A.1 – continued from previous page

Name Size Description First Use No. of Uses

QCK Not reported Non-recurisive interger quicksort 1992 1

Gold Version

G

2000 Loc A battle simulation software 1992 1

Count 10 Loc Not reported 1994 1

Dead 10 Loc Not reported 1994 1

TCAS Not reported Air craft avoid colision system 1994 1

STU 15 Func A part of a nuclear reactor safety shutdown

system that periodically scans the position

of the reactor’s control rods.

1996 1

DIV/MOD Not reported Not reported 1996 1

EBC 10 Loc Not reported 1996 1

Search 14 Nod Not reported 1997 1

Secant 9 Nod Not reported 1997 1

State chart of

Citizen watch

Not reported State chart of Citizen watch 1999 1

Queue Not reported ADS class library 1999 1

Dequeue Not reported ADS class library, double-ended queue 1999 1

PriorityQueue Not reported ADS class library, priority queue 1999 1

Areasg 50 Loc Calculates the areas of the segments formed

by a rectangle inscribed in a circle

1999 1

Minv 44 Loc Computes the inverse ofthe square N by N

matrix A

1999 1

Rpcalc 55 Loc Calculates the value of a reverse polish ex-

pression using a stack

1999 1

Seqstr 70 Loc Locate sequences of integers within an input

array and copies them to an output array

1999 1

Streql 45 Loc Compares two strings after replacing con-

secutive white space characters with asingle

space

1999 1

Continued on next page

190

Table A.1 – continued from previous page

Name Size Description First Use No. of Uses

Tretrv 55 Loc Performs an in-order traversal of a binary

tree of integers to produce a sequence of in-

tegers

1999 1

Alternating-

bit protocol

Not reported Estelle specification Alternating-bit protocol 2000 1

Append 15 Loc A component of a text editor 2001 1

Archive 15 Loc A component of a text editor 2001 1

Change 15 Loc A component of a text editor 2001 1

Ckglob 25 Loc A component of a text editor 2001 1

Cmp 15 Loc A component of a text editor 2001 1

Command 70 Loc A component of a text editor 2001 1

Compare 20 Loc A component of a text editor 2001 1

Compress 15 Loc A component of a text editor 2001 1

Dodash 15 Loc A component of a text editor 2001 1

Edit 25 Loc A component of a text editor 2001 1

Entab 20 Loc A component of a text editor 2001 1

Expand 15 Loc A component of a text editor 2001 1

Getcmd 30 Loc A component of a text editor 2001 1

Getdef 30 Loc A component of a text editor 2001 1

Getfn 10 Loc A component of a text editor 2001 1

Getfns 25 Loc A component of a text editor 2001 1

Getlist 20 Loc A component of a text editor 2001 1

Getnum 20 Loc A component of a text editor 2001 1

Getone 25 Loc A component of a text editor 2001 1

Gtext 15 Loc A component of a text editor 2001 1

Makepat 30 Loc A component of a text editor 2001 1

Omatch 35 Loc A component of a text editor 2001 1

Optpat 15 Loc A component of a text editor 2001 1

Spread 20 Loc A component of a text editor 2001 1

Subst 35 Loc A component of a text editor 2001 1

Continued on next page

191

Table A.1 – continued from previous page

Name Size Description First Use No. of Uses

Translit 35 Loc A component of a text editor 2001 1

Unrotate 30 Loc A component of a text editor 2001 1

LogServiceProvider 230 Loc An abstract class which is extended by

classes providing logging services.

2001 1

Print Writer

Log Service

Provider

85 Loc Used for writing textual log messages to a

print stream (for example, to the console)

2001 1

Logger 170 Loc Provides the central control for the PSK

logging service such as registering multiple

log service providers to be operative concur-

rently

2001 1

LogMessage 150 Loc A Message format to be logged by the log-

ging service

2001 1

LogException 55 Loc Base exception class for exceptions thrown

by the logger and log service providers

2001 1

Junit 1,500 Loc A unit testing framework 2002 1

GraphPath 150 Loc Finds the shortest path and distance be-

tween specified nodes in a directed graph

2002 1

Paint 330 Loc Calculates the amount of paint needed to

paint a hous

2002 1

MazeGame 1,600 Loc A game that involves finding a rescuing a

hostage in a maze

2002 1

Specification

of electrionic

purse

Specification of electrionic purse 2003 1

Parking

Garage system

12 Class Java 2004 1

Video shop

manager

17 Class Java 2004 1

EJB Trading Not reported An EJB trading Component 2004 1

Continued on next page

192

Table A.1 – continued from previous page

Name Size Description First Use No. of Uses

RSDIMU Not reported The application was part of the navigation

system in an aircraft or spacecraft

2005 1

Roots Not reported Determines whether a quadratic equation

has real roots or not

2005 1

Calculate Not reported Calculates sum, product and average of the

inputs

2005 1

BAMean Not reported Calculates mean of the input and both aver-

ages of numbers below and above mean

2005 1

SCMSA Not reported Application defined by the Web Services In-

teroperability Organization

2005 1

BOOK 250 Loc An application between the diagnosis accu-

racy and the DBB sizes

2006 1

VirtualMeeting 1500 Loc A server that simulates business meetings

over network

2006 1

Nunit 20,000 Loc A .NET unit test application 2006 1

Nhibernate 100,000 Loc Library for object-relational mapping dedi-

cated for .NET

2006 1

Nant 80, 000 Loc .Net build tool 2006 1

System.XML 100,000 Loc The Mono class libraries 2006 1

Assign value Not reported A safety-critical software component of the

DARTs

2006 1

Vending Ma-

chine

50L Loc A vending maching example 2006 1

Sudoku 3360 Loc A puzzle board game 2006 1

Polynomial

Solver

450 Loc A Polynomial solver 2006 1

MinMax 10 Loc Return the maximum and minimum ele-

ments of an interger array

2006 1

Field 65 Loc org.apache.bcel.classfile 2006 1

BranchHandle 80 Loc org.apache.bcel.generic 2006 1

Continued on next page

193

Table A.1 – continued from previous page

Name Size Description First Use No. of Uses

String Repre-

sentation

190 Loc org.apache.bcel.verifier.statics 2006 1

Pass2Verifier 1000 Loc org.apache.bcel.verifier.statics 2006 1

ConstantPoolGen 405 Loc org.apache.bcel.generic 2006 1

LocalVariable 145 Loc org.apache.bcel.classfile 2006 1

ClassPath 250 Loc org.apache.bcel.until 2006 1

IntructionList 560 Loc org.apache.bcel.generic 2006 1

JavaClass 465 Loc org.apache.bcel.classfile 2006 1

CodeExceptionGen 120 Loc org.apache.bcel.generic 2006 1

LocalVariables 95 Loc org.apache.bcel.structurals 2006 1

NextDate 70 Loc Determines the date of the next input day 2007 1

TicketsOrderSim 75 Loc A simulation program in which agents sell

airline tickets

2007 1

LinkedList 300 Loc A program that has two threads adding ele-

ments to a shared linked list

2007 1

BufWriter 213 Loc A simulation program that contains a num-

ber of threads that write to a buffer and one

thread that reads from the buffer

2007 1

AccountProgram 145 Loc A banking simulation program where

threads are responsible for managing ac-

counts

2007 1

Finance 5500 Loc A reuses interfaces provided by an open

source Java library MoneyJar.jar

2007 1

iTrust 2630 Loc A web-based healthcare application 2007 1

Bean Not reported AspectJ benchmark suites 2008 1

NullCheck Not reported AspectJ benchmark suites 2008 1

Cona-sim Not reported AspectJ benchmark suites 2008 1

Spring.NET 100,000 Loc An environment for programs execution 2008 1

Castle.DynamicProxy6,600 Loc A library for implementation of the Proxy

design pattern

2008 1

Continued on next page

194

Table A.1 – continued from previous page

Name Size Description First Use No. of Uses

Castle.Core 6,200 Loc Comprises the basic classes used in Castle

projects

2008 1

Castle.ActiveRecord21,000 Loc Implements the ActiveRecord design pattern 2008 1

Adapdev 68,000 Loc Extends the standard library of the .NET

environment

2008 1

Ncover 4,300 Loc A tool for the quality analysis of the source

code in .NET programs

2008 1

CruiseControl 31,300 Loc A server supporting a continuous integration

of .NET programs

2008 1

Pprotection 220 Loc Password Protection controls a reserved area 2008 1

Hhorse MP3 170 Loc Manages MP3 audio files 2008 1

PHPP.Protect 1,300 Loc Protects files 2008 1

AmyQ 200 Loc Control a FAQ System 2008 1

EasyPassword 490 Loc Manages password 2008 1

Show Pictures 1140 Loc A mini Web portal 2008 1

Administrator 1400 Loc Controls and administers reserved area 2008 1

Cmail 720 Loc Sends email 2008 1

Workflow 7500 Loc Manages a workflow system 2008 1

195

Bibliography

[1] Milu website. http://www.cs.ucl.ac.uk/staff/Y.Jia/Milu/.

[2] R. Abraham and M. Erwig. Mutation Operators for Spreadsheets. IEEE

Transactions on Software Engineering, 35(1):94–108, January-February 2009.

[3] A. T. Acree. On Mutation. Phd thesis, Georgia Institute of Technology,

Atlanta, Georgia, 1980.

[4] A. T. Acree, T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G. Sayward.

Mutation Analysis. Technique Report GIT-ICS-79/08, Georgia Institute of

Technology, Atlanta, Georgia, 1979.

[5] K. Adamopoulos, M. Harman, and R. M. Hierons. How to Overcome the

Equivalent Mutant Problem and Achieve Tailored Selective Mutation Using

Co-evolution. In Proceedings of the Genetic and Evolutionary Computation

Conference (GECCO’04), volume 3103 of LNCS, pages 1338–1349, Seattle,

Washington, USA, 26th-30th, June 2004. Springer.

[6] H. Agrawal, R. A. DeMillo, B. Hathaway, W. Hsu, W. Hsu, E. W. Krauser,

R. J. Martin, A. P. Mathur, and E. Spafford. Design of Mutant Operators

for the C Programming Language. Technique Report SERC-TR-41-P, Purdue

University, West Lafayette, Indiana, March 1989.

196

[7] B. K. Aichernig. Mutation Testing in the Refinement Calculus. Formal Aspects

of Computing, 15(2-3):280–295, November 2003.

[8] B. K. Aichernig and C. C. Delgado. From Faults Via Test Purposes to Test

Cases: On the Fault-Based Testing of Concurrent Systems. In Proceedings of

the 9th International Conference on Fundamental Approaches to Software En-

gineering (FASE’06), volume 3922 of LNCS, pages 324–338, Vienna, Austria,

27-28 March 2006. Springer.

[9] R. T. Alexander, J. M. Bieman, S. Ghosh, and B. Ji. Mutation of Java

Objects. In Proceedings of the 13th International Symposium on Software

Reliability Engineering (ISSRE’02), pages 341–351, Annapolis, Maryland, 12-

15 November 2002. IEEE Computer Society.

[10] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege. A Systematic

Review of the Application and Empirical Investigation of Search-Based Test-

Case Generation. IEEE Transactions on Software Engineering, 36(6):742–762,

2010.

[11] P. Ammann and J. Offutt. Introducation to Software Testing. Cambridge

University Press, 2008.

[12] P. Anbalagan and T. Xie. Efficient Mutant Generation for Mutation Testing of

Pointcuts in Aspect-Oriented Programs. In Proceedings of the 2nd Workshop

on Mutation Analysis (MUTATION’06), page 3, Raleigh, North Carolina,

November 2006. IEEE Computer Society.

[13] P. Anbalagan and T. Xie. Automated Generation of Pointcut Mutants for Test-

ing Pointcuts in AspectJ Programs. In Proceedings of the 19th International

Symposium on Software Reliability Engineering (ISSRE’08), pages 239–248,

Redmond, Washingto, 11-14 November 2008. IEEE Computer Society.

197

[14] J. H. Andrews, L. C. Briand, and Y. Labiche. Is Mutation an Appropriate Tool

for Testing Experiments? In Proceedings of the 27th International Conference

on Software Engineering (ICSE’05), pages 402 – 411, St Louis, Missouri, 15-21

May 2005.

[15] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin. Using Muta-

tion Analysis for Assessing and Comparing Testing Coverage Criteria. IEEE

Transactions on Software Engineering, 32(8):608–624, August 2006.

[16] D. C. Atkinson and W. G. Griswold. The Design of Whole-Program Analysis

Tools. In International Conference on Software Engineering (ICSE ’96), pages

16–27, 1996.

[17] K. Ayari, S. Bouktif, and G. Antoniol. Automatic Mutation Test Input Data

Generation via Ant Colony. In Proceedings of the Genetic and Evolutionary

Computation Conference (GECCO’07), pages 1074–1081, London, England,

7-11 July 2007.

[18] J. S. Baekken and R. T. Alexander. A Candidate Fault Model for AspectJ

Pointcuts. In Proceedings of the 17th International Symposium on Software

Reliability Engineering (ISSRE’06), pages 169–178, Raleigh, North Carolina,

7-10 November 2006. IEEE Computer Society.

[19] D. Baldwin and F. G. Sayward. Heuristics for Determining Equivalence of

Program Mutations. Research Report 276, Yale University, New Haven, Con-

necticut, 1979.

[20] E. F. Barbosa, J. C. Maldonado, and A. M. R. Vincenzi. Toward the deter-

mination of sufficient mutant operators for C. Software Testing, Verification

and Reliability, 11(2):113–136, May 2001.

198

[21] S. S. Batth, E. R. Vieira, A. R. Cavalli, and M. U. Uyar. Specification of

Timed EFSM Fault Models in SDL. In Proceedings of the 27th IFIP WG 6.1

International Conference on Formal Techniques for Networked and Distributed

Systems (FORTE’07), volume 4574 of LNCS, pages 50–65, Tallinn, Estonia,

26-29 June 2007. Springer.

[22] B. Beizer. Software testing techniques (2nd ed.). Van Nostrand Reinhold Co.,

New York, NY, USA, 1990.

[23] F. Belli, C. J. Budnik, and W. E. Wong. Basic Operations for Generating

Behavioral Mutants. In Proceedings of the 2nd Workshop on Mutation Analysis

(MUTATION’06), page 9, Raleigh, North Carolina, 2006. IEEE Computer

Society.

[24] F. Belli, N. Güler, A. Hollmann, G. Suna, and E. Yõldõz. Model-Based Higher-

Order Mutation Analysis. In Advances in Software Engineering, volume 117

of Communications in Computer and Information Science, pages 164–173.

Springer Berlin Heidelberg, 2010.

[25] J. Bieman, S. Ghosh, and R. T. Alexander. A Technique for Mutation of

Java Objects. In Proceedings of the 16th IEEE International Conference on

Automated Software Engineering (ASE’01), page 337, San Diego, California,

26-29 November 2001.

[26] P. E. Black, V. Okun, and Y. Yesha. Mutation of Model Checker Specifications

for Test Generation and Evaluation. In Proceedings of the 1st Workshop on

Mutation Analysis (MUTATION’00), pages 14–20, San Jose, California, 6-

7 October 2001. published in book form, as Mutation Testing for the New

Century.

[27] B. Bogacki and B. Walter. Evaluation of Test Code Quality with Aspect-

Oriented Mutations. In Proceedings of the 7th International Conference on

199

eXtreme Programming and Agile Processes in Software Engineering (XP’06),

volume 4044 of LNCS, pages 202–204, 2006, Oulu, 17-22 June 2006.

[28] B. Bogacki and B. Walter. Aspect-oriented Response Injection: an Alternative

to Classical Mutation Testing. In Software Engineering Techniques: Design

for Quality, volume 227 of IFIP, pages 273–282, 2007.

[29] N. Bombieri, F. Fummi, and G. Pravadelli. A Mutation Model for the Sys-

temC TLM2.0 Communication Interfaces. In Proceedings of the Conference on

Design, Automation and Test in Europe (DATE’08), pages 396–401, Munich,

Germany, 10-14 March 2008.

[30] L. Bottaci. A genetic algorithm fitness function for mutation testing. In

Proceedings of the 8th Wrokshop on Software Engineering using Metaheuristic

INovative Algorithms (SEMINAL’01), pages 3–7, 2001.

[31] J. H. Bowser. Reference Manual for Ada Mutant Operators. Technique Report

GIT-SERC-88/02, Georiga Institute of Technology, Atlanta, Georgia, 1988.

[32] J. S. Bradbury, J. R. Cordy, and J. Dingel. ExMAn: A Generic and Customiz-

able Framework for Experimental Mutation Analysis. In Proceedings of the

2nd Workshop on Mutation Analysis (MUTATION’06), pages 57–62, Raleigh,

North Carolina, November 2006. IEEE Computer Society.

[33] J. S. Bradbury, J. R. Cordy, and J. Dingel. Mutation Operators for Con-

current Java (J2SE 5.0). In Proceedings of the 2nd Workshop on Mutation

Analysis (MUTATION’06), pages 83–92, Raleigh, North Carolina, November

2006. IEEE Computer Society.

[34] J. S. Bradbury, J. R. Cordy, and J. Dingel. Comparative Assessment of Testing

and Model Checking Using Program Mutation. In Proceedings of the 3rd Work-

shop on Mutation Analysis (MUTATION’07), pages 210–222, Windsor, UK,

200

2007. IEEE Computer Society. published with Proceedings of the 2nd Testing:

Academic and Industrial Conference Practice and Research Techniques (TAIC

PART’07).

[35] P. Brady. MutateMe. http://github.com/padraic/mutateme/tree/master,

2007.

[36] Brinklow. Gestation periods in the Pere David’s Deer (Elaphurus davidianus):

evidence for embryonic diapause or delayed development. Reproduction, Fer-

tility and Development, 5:567–575, 1993.

[37] T. A. Budd. Mutation Analysis of Program Test Data. Phd thesis, Yale

University, New Haven, Connecticut, 1980.

[38] T. A. Budd and D. Angluin. Two Notions of Correctness and Their Relation

to Testing. Acta Informatica, 18(1):31–45, March 1982.

[39] T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G. Sayward. The Design

of a Prototype Mutation System for Program Testing. In Proceedings of the

AFIPS National Computer Conference, volume 74, pages 623–627, Anaheim,

New Jersey, 5-8 June 1978. ACM.

[40] T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Theoretical

and Empirical Studies on Using Program Mutation to Test the Functional

Correctness of Programs. In Proceedings of the 7th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL’80), pages 220–

233, Las Vegas, Nevada, 28-30 January 1980.

[41] T. A. Budd and A. S. Gopal. Program Testing by Specification Mutation.

Computer Languages, 10(1):63–73, 1985.

[42] T. A. Budd, R. Hess, and F. G. Sayward. EXPER Implementor’s Guide.

Technique report, Yale University, New Haven, Connecticut, 1980.

201

[43] T. A. Budd and F. G. Sayward. Users Guide to the Pilot Mutation System.

Technique Report 114, Yale University, New Haven, Connecticut, 1977.

[44] R. H. Carver. Mutation-Based Testing of Concurrent Programs. In Proceed-

ings of the IEEE International Test Conference on Designing, Testing, and

Diagnostics, pages 845–853, Baltimore, Maryland, 17-21 October 1993.

[45] Cetress. Certitude. http://www.certess.com/product/, 2006.

[46] W. K. Chan, S. C. Cheung, and T. H. Tse. Fault-Based Testing of Database

Application Programs with Conceptual Data Model. In Proceedings of the

5th International Conference on Quality Software (QSIC’05), pages 187–196,

Melbourne, Australia, 19 -20 September 2005.

[47] R. N. Charette. Why software fails. IEEE Spectrum, 42(9):42–49, 2005.

[48] P. Chevalley. Applying Mutation Analysis for Object-oriented Programs Us-

ing a Reflective Approach. In Proceedings of the 8th Asia-Pacific Software

Engineering Conference (APSEC 01), page 267, Macau, China, 4-7 December

2001.

[49] P. Chevalley and P. Thévenod-Fosse. A Mutation Analysis Tool for Java

Programs. International Journal on Software Tools for Technology Transfer,

5(1):90–103, November 2002.

[50] B. Choi and A. P. Mathur. High-performance Mutation Testing. Journal of

Systems and Software, 20(2):135–152, February 1993.

[51] S. Y. Chong, P. Tino, and X. Yao. Measuring generalization performance in

co-evolutionary learning. IEEE Transactions on Evolutionary Computation,

12(4):479–505, August 2008.

[52] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to

Algorithms, Second Edition. The MIT Press, September 2001.

202

[53] Y. Crouzet, H. Waeselynck, B. Lussier, and D. Powell. The SESAME Expe-

rience: from Assembly Languages to Declarative Models. In Proceedings of

the 2nd Workshop on Mutation Analysis (MUTATION’06), page 7, Raleigh,

North Carolina, November 2006. IEEE Computer Society.

[54] M. Daran and P. Thévenod-Fosse. Software Error Analysis: A Real Case Study

Involving Real Faults and Mutations. ACM SIGSOFT Software Engineering

Notes, 21(3):158–177, May 1996.

[55] R. Delamare, B. Baudry, and Y. Le Traon. AjMutator: A Tool For The

Mutation Analysis Of AspectJ Pointcut Descriptors. In Proceedings of the 4th

International Workshop on Mutation Analysis (MUTATION’09), pages 200–

204, Denver, Colorado, 1-4 April 2009. IEEE Computer Society. published

with Proceedings of the 2nd International Conference on Software Testing,

Verification, and Validation Workshops.

[56] M. E. Delamaro. Proteum - A Mutation Analysis Based Testing Environmen.

Masters thesis, University of São Paulo, Sao Paulo, Brazil, 1993.

[57] M. E. Delamaro and J. C. Maldonado. Proteum-A Tool for the Assessment

of Test Adequacy for C Programs. In Proceedings of the Conference on Per-

formability in Computing Systems (PCS’96), pages 79–95, New Brunswick,

New Jersey, July 1996.

[58] M. E. Delamaro and J. C. Maldonado. Interface Mutation: Assessing Testing

Quality at Interprocedural Level. In Proceedings of the 19th International

Conference of the Chilean Computer Science Society (SCCC’99), pages 78–

86, Talca, Chile, 11-13 November 1999.

[59] M. E. Delamaro, J. C. Maldonado, and A. P. Mathur. Integration Testing

Using Interface Mutation. In Proceedings of the seventh International Sympo-

203

sium on Software Reliability Engineering (ISSRE ’96), pages 112–121, White

Plains, New York, 30 October - 02 November 1996.

[60] M. E. Delamaro, J. C. Maldonado, and A. P. Mathur. Interface Mutation: An

Approach for Integration Testing. IEEE Transactions on Software Engineer-

ing, 27(3):228–247, May 2001.

[61] M. E. Delamaro, J. C. Maldonado, A. Pasquini, and A. P. Mathur. Inter-

face Mutation Test Adequacy Criterion: An Empirical Evaluation. Technique

report, State University of Maringá, Parana, Brasil, 2000.

[62] M. E. Delamaro, J. C. Maldonado, A. Pasquini, and A. P. Mathur. Inter-

face Mutation Test Adequacy Criterion: An Empirical Evaluation. Empirical

Software Engineering, 6(2):111–142, June 2001.

[63] M. E. Delamaro, J. C. Maldonado, and A. Vincenzi. Proteum/IM 2.0: An

Integrated Mutation Testing Environment. In Proceedings of the 1st Workshop

on Mutation Analysis (MUTATION’00), pages 91–101, San Jose, California,

6-7 October 2001. published in book form, as Mutation Testing for the New

Century.

[64] R. A. DeMillo. Program Mutation: An Approach to Software Testing. Tech-

nical report, Georgia Institute of Technology, 1983.

[65] R. A. DeMillo, D. S. Guindi, K. N. King, and W. M. McCracken. An Overview

of the Mothra Software Testing Environment. Technique Report SERC-TR-

3-P, Purdue University, West Lafayette, Indiana, 1987.

[66] R. A. DeMillo, D. S. Guindi, K. N. King, W. M. McCracken, and A. J. Offutt.

An Extended Overview of the Mothra Software Testing Environment. In Pro-

ceedings of the 2nd Workshop on Software Testing, Verification, and Analysis

204

(TVA’88), pages 142–151, Banff Alberta,Canada, July 1988. IEEE Computer

society.

[67] R. A. DeMillo, E. W. Krauser, and A. P. Mathur. Compiler-Integrated Pro-

gram Mutation. In Proceedings of the 5th Annual Computer Software and Ap-

plications Conference (COMPSAC’91), pages 351–356, Tokyo, Japan, Septem-

ber 1991. IEEE Computer Society Press.

[68] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on Test Data Selection:

Help for the Practicing Programmer. Computer, 11(4):34–41, April 1978.

[69] R. A. DeMillo and A. P. Mathur. On the Use of Software Artifacts to Evaluate

the Effectiveness of Mutation Analysis in Detecting Errors in Production Soft-

ware. Technique Report SERC-TR-92-P, Purdue University, West Lafayette,

Indiana, 1992.

[70] R. A. DeMillo and A. J. Offutt. Constraint-Based Automatic Test Data Gener-

ation. IEEE Transactions on Software Engineering, 17(9):900–910, September

1991.

[71] R. A. DeMillo and A. J. Offutt. Experimental Results From an Automatic Test

Case Generator. ACM Transactions on Software Engineering and Methodol-

ogy, 2(2):109–127, April 1993.

[72] A. Derezińska. Object-oriented Mutation to Assess the Quality of Tests. In

Proceedings of the 29th Euromicro Conference, pages 417– 420, Belek, Turkey,

1-6 September 2003.

[73] A. Derezińska. Advanced Mutation Operators Applicable in C# Programs.

Technique report, Warsaw University of Technology, Warszawa, Poland, 2005.

205

[74] A. Derezińska. Quality Assessment of Mutation Operators Dedicated for C#

Programs. In Proceedings of the 6th International Conference on Quality Soft-

ware (QSIC’06), Beijing, China, 27-28 October 2006.

[75] A. Derezińska and A. Szustek. CREAM- A System for Object-Oriented Mu-

tation of C# Programs. Technique report, Warsaw University of Technology,

Warszawa, Poland, 2007.

[76] A. Derezińska and A. Szustek. Tool-Supported Advanced Mutation Approach

for Verification of C# Programs. In Proceedings of the 3th International Con-

ference on Dependability of Computer Systems (DepCoS-RELCOMEX’08),

pages 261–268, Szklarska Porêba, Poland, 26-28 June 2008.

[77] H. Do, S. Elbaum, and G. Rothermel. Supporting Controlled Experimen-

tation with Testing Techniques: An Infrastructure and its Potential Impact.

Empirical Software Engineering, 10(4):405 – 435, Oct. 2005.

[78] H. Do, S. G. Elbaum, and G. Rothermel. Supporting Controlled Experimenta-

tion with Testing Techniques: An Infrastructure and its Potential Impact. Em-

pirical Software Engineering: An International Journal, 10(4):405–435, 2005.

[79] H. Do and G. Rothermel. A Controlled Experiment Assessing Test Case

Prioritization Techniques via Mutation Faults. In Proceedings of the 21st

IEEE International Conference on Software Maintenance (ICSM’05), pages

411–420, Budapest, Hungary, 25-30 September 2005.

[80] H. Do and G. Rothermel. On the Use of Mutation Faults in Empirical Assess-

ments of Test Case Prioritization Techniques. IEEE Transactions on Software

Engineering, 32(9):733–752, September 2006.

[81] J. J. Domı́nguez-Jiménez, A. Estero-Botaro, and I. Medina-Bulo. A Frame-

work for Mutant Genetic Generation for WS-BPEL. In Proceedings of the 35th

206

Conference on Current Trends in Theory and Practice of Computer Science,

volume 5404 of LNCS, pages 229 – 240, Spindleruv Mlyn, Czech Republic,

January 2009. Springer.

[82] W. Du and A. P. Mathur. Vulnerability Testing of Software System Using

Fault Injection. Technique Report COAST TR 98-02, Purdue University,

West Lafayette, Indiana, 1998.

[83] W. Du and A. P. Mathur. Testing for Software Vulnerability Using Environ-

ment Perturbation. In Proceeding of the International Conference on Depend-

able Systems and Networks (DSN’00), pages 603–612, New York, NY, 25-28

June 2000.

[84] L. du Bousquet and M. Delaunay. Mutation Analysis for Lustre programs:

Fault Model Description and Validation. In Proceedings of the 3rd Workshop

on Mutation Analysis (MUTATION’07), pages 176–184, Windsor, UK, 10-

14 September 2007. IEEE Computer Society. published with Proceedings of

the 2nd Testing: Academic and Industrial Conference Practice and Research

Techniques (TAIC PART’07).

[85] L. du Bousquet and M. Delaunay. Using Mutation Analysis to Evaluate

Test Generation Strategies in a Synchronous Context. In Proceedings of the

2nd International Conference on Software Engineering Advances (ICSEA’07),

page 40, Cap Esterel, French Riviera, France, 25-31 August 2007.

[86] V. Durelli, J. Offutt, and M. Delamaro. Toward harnessing high-level language

virtual machines for further speeding up weak mutation testing. In Software

Testing, Verification and Validation (ICST), 2012 IEEE Fifth International

Conference on, pages 681 –690, april 2012.

207

[87] B. Dutertre and L. M. de Moura. A Fast Linear-Arithmetic Solver for

DPLL(T). In Proceedings of the 18th International Conference on Computer

Aided Verification (CAV’06), pages 81–94, 2006.

[88] S. Eldh, S. Punnekkat, H. Hansson, and P. Jönsson. Component Testing Is

Not Enough - A Study of Software Faults in Telecom Middleware. In Proceed-

ings of the 19th IFIP International Conference on Testing of Communicating

Systems and 7th International Workshop on Formal Approaches to Testing

of Software (TestCom’07) and the 7th International Workshop (FATES’07),

Tallinn, Estonia, 26-29 June 2007.

[89] Ellims. Csaw. http://www.skicambridge.com/papers/Csaw v1 files.html,

2007.

[90] M. Ellims, D. C. Ince, and M. Petre. The Csaw C Mutation Tool: Initial

Results. In Proceedings of the 3rd Workshop on Mutation Analysis (MUTA-

TION’07), pages 185–192, Windsor, UK, 10-14 September 2007. IEEE Com-

puter Society. published with Proceedings of the 2nd Testing: Academic and

Industrial Conference Practice and Research Techniques (TAIC PART’07).

[91] A. Estero-Botaro, F. Palomo-Lozano, and I. Medina-Bulo. Mutation operators

for WS-BPEL 2.0. In Proceedings of the 21th International Conference on

Software and Systems Engineering and their Applications (ICSSEA’08), Paris,

France, 9-11 December 2008.

[92] S. C. P. F. Fabbri, J. C. Maldonado, P. C. Masiero, and M. E. Delamaro.

Proteum/FSM: A Tool to Support Finite State Machine Validation Based on

Mutation Testing. In Proceedings of the 19th International Conference of the

Chilean Computer Science Society (SCCC’99), page 96, Talca, Chile, 11-13

November 1999.

208

[93] S. C. P. F. Fabbri, J. C. Maldonado, P. C. Masiero, M. E. Delamaro, and

W. E. Wong. Mutation Testing Applied to Validate Specifications Based on

Petri Nets. In Proceedings of the IFIP TC6 8th International Conference on

Formal Description Techniques VIII, volume 43, pages 329–337, 1995.

[94] S. C. P. F. Fabbri, J. C. Maldonado, T. Sugeta, and P. C. Masiero. Mutation

Testing Applied to Validate Specifications Based on Statecharts. In Proceed-

ings of the 10th International Symposium on Software Reliability Engineering

(ISSRE’99), page 210, Boca Raton, Florida, 1-4 November 1999.

[95] S. P. F. Fabbri, M. E. Delamaro, J. C. Maldonado, and P. Masiero. Muta-

tion Analysis Testing for Finite State Machines. In Proceedings of the 5th

International Symposium on Software Reliability Engineering, pages 220–229,

Monterey, California, 6-9 November 1994.

[96] X. Feng, S. Marr, and T. O’Callaghan. ESTP: An Experimental Software

Testing Platform. In Proceedings of the 3rd Testing: Academic and Industrial

Conference Practice and Research Techniques (TAIC PART’08), pages 59–63,

Windsor, UK, 29-31 August 2008.

[97] F. C. Ferrari, J. C. Maldonado, and A. Rashid. Mutation Testing for Aspect-

Oriented Programs. In Proceedings of the 1st International Conference on

Software Testing, Verification, and Validation (ICST ’08), pages 52–61, Lille-

hammer, Norway, 9-11 April 2008. IEEE Computer Society.

[98] V. N. Fleyshgakker and S. N. Weiss. Efficient Mutation Analysis: A New

Approach. In Proceedings of the International Symposium on Software Testing

and Analysis (ISSTA’94), pages 185–195, Seattle, Washington, August 1994.

ACM Press.

209

[99] P. G. Frankl, S. N. Weiss, and C. Hu. All-Uses Versus Mutation Testing:

An Experimental Comparison of Effectiveness. Technique report, Polytechnic

University, Brooklyn, New York, 1994.

[100] P. G. Frankl, S. N. Weiss, and C. Hu. All-uses vs Mutation Testing: an

Experimental Comparison of Effectiveness. Journal of Systems and Software,

38(3):235–253, September 1997.

[101] G. Fraser and F. Wotawa. Mutant Minimization for Model-Checker Based

Test-Case Generation. In Proceedings of the 3rd Workshop on Mutation Anal-

ysis (MUTATION’07), pages 161–168, Windsor, UK, 10-14 September 2007.

IEEE Computer Society. published with Proceedings of the 2nd Testing: Aca-

demic and Industrial Conference Practice and Research Techniques (TAIC

PART’07).

[102] G. Fraser and A. Zeller. Mutation-driven generation of unit tests and oracles.

In Proceedings of the 19th International Symposium on Software Testing and

Analysis (ISSTA’10), pages 147–158, Trento, Italy, 12-16 July ISSTA ’10.

ACM.

[103] R. Geist, A. J. Offutt, and F. C. Harris. Estimation and Enhancement of Real-

Time Software Reliability Through Mutation Analysis. IEEE Transactions on

Computers, 41(5):550–558, May 1992.

[104] A. K. Ghosh, T. O‘Connor, and G. McGraw. An Automated Approach for

Identifying Potential Vulnerabilities in Software. In Proceedings of the IEEE

Symposium on Security and Privacy (S&P’98), pages 104–114, Oakland, Cal-

ifornia, 3-6 May 1998.

[105] S. Ghosh. Testing Component-Based Distributed Applications. Phd thesis,

Purdue University, West Lafayette, Indiana, 2000.

210

[106] S. Ghosh. Towards Measurement of Testability of Concurrent Object-oriented

Programs Using Fault Insertion: a Preliminary Investigation. In Proceedings

of the 2nd IEEE International Workshop on Source Code Analysis and Ma-

nipulation (SCAM’02), page 7, Los Alamitos, California, 2002.

[107] S. Ghosh, P. Govindarajan, and A. P. Mathur. TDS: a Tool for Testing Dis-

tributed Component-Based Applications. In Proceedings of the 1st Workshop

on Mutation Analysis (MUTATION’00), pages 103–112, San Jose, California,

6-7 October 2001. published in book form, as Mutation Testing for the New

Century.

[108] S. Ghosh and A. P. Mathur. Interface Mutation to Assess the Adequacy

of Tests for Componentsand Systems. In Proceedings of the 34th Interna-

tional Conference on Technology of Object-Oriented Languages and Systems

(TOOLS’00), page 37, Santa Barbara, California, 30 July - 4 August 2000.

[109] S. Ghosh and A. P. Mathur. Interface Mutation. Software Testing, Verification

and Reliability, 11(3):227–247, March 2001.

[110] M. R. Girgis and M. R. Woodward. An Integrated System for Program Testing

Using Weak Mutation and Data Flow Analysis. In Proceedings of the 8th

International Conference on Software Engineering (ICSE’85), pages 313–319,

London, England, August 1985. IEEE Computer Society Press.

[111] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed Automated Random

Testing. In Proceedings of the 2005 ACM SIGPLAN Conference on Program-

ming Language Design and Implementation (PLDI’05), volume 40 of 6, pages

213–223, Chicago, Illinois, USA, 11–15 June 2005. ACM.

[112] A. S. Gopal and T. A. Budd. Program Testing by Specification Mutation.

Technical Report TR 83-17, University of Arizona, Tucson, Arizona, 1983.

211

[113] B. J. M. Grün, D. Schuler, and A. Zeller. The Impact of Equivalent Mutants. In

Proceedings of the 4th International Workshop on Mutation Analysis (MUTA-

TION’09), pages 192–199, Denver, Colorado, 1-4 April 2009. IEEE Computer

Society. published with Proceedings of the 2nd International Conference on

Software Testing, Verification, and Validation Workshops.

[114] R. G. Hamlet. Testing Programs with the Aid of a Compiler. IEEE Transac-

tions on Software Engineering, 3(4):279–290, July 1977.

[115] J. M. Hanks. Testing Cobol Programs by Mutation. Phd thesis, Georgia

Institute of Technology, Atlanta, Georgia, 1980.

[116] M. Harman. The Current State and Future of Search Based Software En-

gineering. In Proceedings of the 29th International Conference on Software

Engineering, Minneapolis, USA, 2007.

[117] M. Harman, Y. Hassoun, K. Lakhotia, P. McMinn, and J. Wegener. The

Impact of Input Domain Reduction on Search-Based Test Data Generation.

In ACM Symposium on the Foundations of Software Engineering (FSE ’07),

pages 155–164, Dubrovnik, Croatia, September 2007.

[118] M. Harman, R. M. Hierons, and S. Danicic. The Relationship Between Pro-

gram Dependence and Mutation Analysis. In Proceedings of the 1st Workshop

on Mutation Analysis (MUTATION’00), pages 5–13, San Jose, California, 6-

7 October 2001. published in book form, as Mutation Testing for the New

Century.

[119] M. Harman, L. Hu, R. M. Hierons, J. Wegener, H. Sthamer, A. Baresel, and

M. Roper. Testability Transformation. IEEE Transactions on Software Engi-

neering, 30(1):3–16, Jan. 2004.

212

[120] M. Harman, Y. Jia, and W. B. Langdon. A Manifesto for Higher Order

Mutation Testing. In Proceedings of the 5th International Workshop on Muta-

tion Analysis (MUTATION’10), Paris, France, 6 April 2010. IEEE Computer

Society. published with Proceedings of the 3rd International Conference on

Software Testing, Verification, and Validation Workshops.

[121] M. Harman and B. F. Jones. Search-based Software Engineering. Information

and Software Technology, 43(14):833–839, December 2001.

[122] M. Harman and P. McMinn. A Theoretical and Empirical Analysis of Evo-

lutionary Testing and Hill Climbing for Structural Test Data Generation. In

International Symposium on Software Testing and Analysis (ISSTA’07), pages

73 – 83, London, United Kingdom, July 2007.

[123] M. Harman and P. McMinn. A Theoretical and Empirical Study of Search-

Based Testing: Local, Global, and Hybrid Search. IEEE Transactions on

Software Engineering, 36(2):226–247, 2010.

[124] R. M. Hierons, M. Harman, and S. Danicic. Using Program Slicing to Assist

in the Detection of Equivalent Mutants. Software Testing, Verification and

Reliability, 9(4):233–262, December 1999.

[125] R. M. Hierons and M. G. Merayo. Mutation Testing from Probabilistic Finite

State Machines. In Proceedings of the 3rd Workshop on Mutation Analy-

sis (MUTATION’07), pages 141–150, Windsor, UK, 10-14 September 2007.

IEEE Computer Society. published with Proceedings of the 2nd Testing: Aca-

demic and Industrial Conference Practice and Research Techniques (TAIC

PART’07).

[126] R. M. Hierons and M. G. Merayo. Mutation Testing from Probabilistic

and Stochastic Finite State Machines. Journal of Systems and Software,

82(11):1804–1818, November 2009.

213

[127] J. R. Horgan and A. P. Mathur. Weak Mutation is Probably Strong Mutation.

Technical Report SERC-TR-83-P, Purdue University, West Lafayette, Indiana,

1990.

[128] S.-S. Hou, L. Zhang, T. Xie, H. Mei, and J.-S. Sun. Applying Interface-

Contract Mutation in Regression Testing of Component-Based Software. In

Proceedings of the 23rd International Conference on Software Maintenance

(ICSM’07), pages 174–183, Paris, France, 2-5 October 2007.

[129] W. E. Howden. Weak Mutation Testing and Completeness of Test Sets. IEEE

Transactions on Software Engineering, 8(4):371–379, July 1982.

[130] S. Hussain. Mutation Clustering. Masters thesis, King’s College London, UK,

2008.

[131] J. Hwang, T. Xie, F. Chen, and A. X. Liu. Systematic Structural Testing

of Firewall Policies. In Proceedings of the IEEE Symposium on Reliable Dis-

tributed Systems (SRDS ’08), pages 105–114, Napoli, Italy, 6-8 October 2008.

[132] Itregister. Plextest. http://www.itregister.com.au/products/plextest.htm,

2007.

[133] D. Jackson and M. R. Woodward. Parallel firm mutation of Java programs.

In Proceedings of the 1st Workshop on Mutation Analysis (MUTATION’00),

pages 55–61, San Jose, California, 6-7 October 2001. published in book form,

as Mutation Testing for the New Century.

[134] C. Ji, Z. Chen, B. Xu, and Z. Zhao. A Novel Method of Mutation Clus-

tering Based on Domain Analysis. In Proceedings of the 21st International

Conference on Software Engineering and Knowledge Engineering (SEKE’09),

Boston, Massachusetts, 1-3 July 2009. Knowledge Systems Institute Graduate

School.

214

[135] Y. Jia. Mutation Testing Repository. http://www.dcs.kcl.ac.uk/pg

/jiayue/repository/, 2009.

[136] Y. Jia and M. Harman. Constructing Subtle Faults Using Higher Order Mu-

tation Testing. In Proceedings of the 8th International Working Conference on

Source Code Analysis and Manipulation (SCAM’08), pages 249–258, Beijing,

China, 28-29 September 2008.

[137] Y. Jia and M. Harman. MILU: A Customizable, Runtime-Optimized Higher

Order Mutation Testing Tool for the Full C Language. In Proceedings of

the 3rd Testing: Academic and Industrial Conference Practice and Research

Techniques (TAIC PART’08), pages 94–98, Windsor, UK, 29-31 August 2008.

IEEE Computer Society.

[138] Y. Jia and M. Harman. Higher Order Mutation Testing. Journal of Informa-

tion and Software Technology, 51(10):1379–1393, October 2009.

[139] Y. Jia and M. Harman. An Analysis and Survey of the Development of Mu-

tation Testing. IEEE Transactions of Software Engineering, To appear, 2010.

[140] C. Jing, Z. Wang, X. Shi, X. Yin, and J. Wu. Mutation Testing of Protocol

Messages Based on Extended TTCN-3. In Proceedings of the 22nd Inter-

national Conference on Advanced Information Networking and Applications

(AINA’08), pages 667–674, Okinawa, Japan, 25-28 March 2008.

[141] R. Just, F. Schweiggert, and G. M. Kapfhammer. Major: An efficient and

extensible tool for mutation analysis in a java compiler. In Proceedings of

the 2011 26th IEEE/ACM International Conference on Automated Software

Engineering, ASE ’11, pages 612–615, Washington, DC, USA, 2011. IEEE

Computer Society.

215

[142] K. Kapoor. Formal Analysis of Coupling Hypothesis for Logical Faults. In-

novations in Systems and Software Engineering, 2(2):80–87, July 2006.

[143] S. Kim, J. A. Clark, and J. A. McDermid. Assessing Test Set Adequacy for

Object Oriented Programs Using Class Mutation. In Proceedings of the 3rd

Symposium on Software Technology (SoST’99), Buenos Aires, Argentina, 8-9

September 1999.

[144] S. Kim, J. A. Clark, and J. A. McDermid. The Rigorous Generation of Java

Mutation Operators Using HAZOP. In Proceedings of the 12th International

Cofference Software and Systems Engineering and their Applications (ICSSEA

99), Paris, France, 29 November-1 December 1999.

[145] S. Kim, J. A. Clark, and J. A. McDermid. Class Mutation: Mutation Testing

for Object-oriented Programs. In Proceedings of the Net.ObjectDays Confer-

ence on Object-Oriented Software Systems, 2000.

[146] S. Kim, J. A. Clark, and J. A. McDermid. Investigating the effectiveness of

object-oriented testing strategies using the mutation method. In Proceedings

of the 1st Workshop on Mutation Analysis (MUTATION’00), pages 207–225,

San Jose, California, 6-7 October 2001. published in book form, as Mutation

Testing for the New Century.

[147] S.-W. Kim, M. J. Harrold, and Y.-R. Kwon. MUGAMMA: Mutation Analysis

of Deployed Software to Increase Confidence and Assist Evolution. In Proceed-

ings of the 2nd Workshop on Mutation Analysis (MUTATION’06), page 10,

Raleigh, North Carolina, November 2006. IEEE Computer Society.

[148] K. N. King and A. J. Offutt. A Fortran Language System for Mutation-Based

Software Testing. Software:Practice and Experience, 21(7):685–718, October

1991.

216

[149] M. Kintis, M. Papadakis, and N. Malevris. Isolating first order equivalent

mutants via second order mutation. In Proceedings of the 2012 IEEE Fifth In-

ternational Conference on Software Testing, Verification and Validation, ICST

’12, pages 701–710, Washington, DC, USA, 2012. IEEE Computer Society.

[150] E. W. Krauser. Compiler-Integrated Software Testing. Phd thesis, Purdue

University, West Lafyette, 1991.

[151] E. W. Krauser, A. P. Mathur, and V. J. Rego. High Performance Software

Testing on SIMD Machines. In Proceedings of the 2nd Workshop on Software

Testing, Verification, and Analysis (TVA’88), pages 171 – 177, Banff Alberta,

July 1988. IEEE Computer Society.

[152] E. W. Krauser, A. P. Mathur, and V. J. Rego. High Performance Software

Testing on SIMD Machines. IEEE Transactions on Software Engineering,

17(5):403–423, May 1991.

[153] K. Lakhotia, P. McMinn, and M. Harman. Automated Test Data Gener-

ation for Coverage: Haven’t We Solved This Problem Yet? In 4th Test-

ing Academia and Industry Conference — Practice And Research Techniques

(TAIC PART’09), pages 95–104, Windsor, UK, 4th–6th September 2009.

[154] K. Lakhotia, N. Tillmann, M. Harman, and J. de Halleux. FloPSy — Search-

Based Floating Point Constraint Solving for Symbolic Execution. In 22nd IFIP

International Conference on Testing Software and Systems (ICTSS 2010),

pages 142–157, Natal, Brazil, November 2010. LNCS Volume 6435.

[155] W. B. Langdon, M. Harman, and Y. Jia. Efficient multi-objective higher order

mutation testing with genetic programming. Journal of systems and Software,

83:2416–2430, December 2010.

217

[156] C. Lattner and V. Adve. Llvm: A compilation framework for lifelong program

analysis & transformation. In Proceedings of the international symposium on

Code generation and optimization: feedback-directed and runtime optimization,

CGO ’04, pages 75–, Washington, DC, USA, 2004. IEEE Computer Society.

[157] Y. Le Traon, T. Mouelhi, and B. Baudry. Testing Security Policies: Going

Beyond Functional Testing. In The 18th IEEE International Symposium on

Software Reliability, pages 93–102, Trollhättan, Sweden, 5-9 November 2007.

IEEE Computer Society.

[158] S. Lee, X. Bai, and Y. Chen. Automatic Mutation Testing and Simulation on

OWL-S Specified Web Services. In Proceedings of the 41st Annual Simulation

Symposium (ANSS’08), pages 149–156, Ottawa, Canada., 14-16 April 2008.

[159] S. C. Lee and A. J. Offutt. Generating Test Cases for XML-Based Web Com-

ponent Interactions Using Mutation Analysis. In Proceedings of the 12th In-

ternational Symposium on Software Reliability Engineering (ISSRE’01), pages

200–209, Hong Kong, China, November 2001.

[160] J. B. Li and J. Miller. Testing the Semantics of W3C XML Schema. In Pro-

ceedings of the 29th Annual International Computer Software and Applications

Conference (COMPSAC’05), pages 443–448, Turku, Finland, 26-28 July 2005.

[161] N. Li, U. Praphamontripong, and A. J. Offutt. An Experimental Compar-

ison of Four Unit Test Criteria: Mutation, Edge-Pair, All-uses and Prime

Path Coverage. In Proceedings of the 4th International Workshop on Mutation

Analysis (MUTATION’09), pages 220–229, Denver, Colorado, 1-4 April 2009.

IEEE Computer Society. published with Proceedings of the 2nd International

Conference on Software Testing, Verification, and Validation Workshops.

[162] R. Lipton. Fault Diagnosis of Computer Programs. Student Report, Carnegie

Mellon University, 1971.

218

[163] R. J. Lipton and F. G. Sayward. The Status of Research on Program Mutation.

In Proceedings of the Workshop on Software Testing and Test Documentation,

pages 355–373, December 1978.

[164] M.-H. Liu, Y.-F. Gao, J.-H. Shan, J.-H. Liu, L. Zhang, and J.-S. Sun. An

Approach to Test Data Generation for Killing Multiple Mutants. In Pro-

ceedings of the 22nd IEEE International Conference on Software Maintenance

(ICSM’06), pages 113–122, Philadelphia, Pennsylvania, USA, 24-27 Septem-

ber 2006.

[165] B. Long, R. Duke, D. Goldson, P. Strooper, and L. Wildman. Mutation-based

Exploration of a Method for Verifying Concurrent Java Components. In 18th

International Parallel and Distributed Processing Symposium (IPDPS’04),

page 265, Santa Fe, New Mexico, 26-30 April 2004.

[166] Y.-S. Ma, M. J. Harrold, and Y.-R. Kwon. Evaluation of Mutation Testing for

Object-Oriented Programs. In Proceedings of the 28th international Confer-

ence on Software Engineering (ICSE ’06), pages 869–872, Shanghai, China,

20-28 May 2006.

[167] Y.-S. Ma, Y.-R. Kwon, and A. J. Offutt. Inter-class Mutation Operators

for Java. In Proceedings of the 13th International Symposium on Software

Reliability Engineering (ISSRE’02), page 352, Annapolis, Maryland, 12-15

November 2002. IEEE Computer Society.

[168] Y.-S. Ma, A. J. Offutt, and Y.-R. Kwon. MuJava: An Automated Class

Mutation System. Software Testing, Verification & Reliability, 15(2):97–133,

June 2005.

[169] Y.-S. Ma, A. J. Offutt, and Y.-R. Kwon. MuJava: a Mutation System for Java.

In Proceedings of the 28th international Conference on Software Engineering

(ICSE ’06), pages 827–830, Shanghai, China, 20-28 May 2006.

219

[170] P. Madiraju and A. S. Namin. ParaMu - A Partial and Higher-Order Mutation

Tool with Concurrency Operators. In Proceedings of the 6th International

Workshop on Mutation Analysis (Mutation 2011), Berlin, Germany, March

2011.

[171] B. Marick. The Weak Mutation Hypothesis. In Proceedings of the 4th Sym-

posium on Software Testing, Analysis, and Verification (TAV’91), pages 190–

199, Victoria, British Columbia, Canada, October 1991. IEEE Computer So-

ciety.

[172] E. E. Martin and T. Xie. A Fault Model and Mutation Testing of Access

Control Policies. In Proceedings of the 16th International Conference on World

Wide Web, pages 667–676, Banff, Alberta, Canada, 8-12 May 2007. ACM.

[173] P. R. Mateo, M. P. Usaola, and J. Offutt. Mutation at system and functional

levels. In Proceedings of the 2010 Third International Conference on Software

Testing, Verification, and Validation Workshops, ICSTW ’10, pages 110–119,

Washington, DC, USA, 2010. IEEE Computer Society.

[174] A. P. Mathur. Performance, Effectiveness, and Reliability Issues in Software

Testing. In Proceedings of the 5th International Computer Software and Ap-

plications Conference (COMPSAC’79), pages 604–605, Tokyo, Japan, 11-13

September 1991.

[175] A. P. Mathur. CS 406 Software Engineering I. Course Project Handout,

August 1992.

[176] A. P. Mathur and E. W. Krauser. Mutant Unification for Improved Vectoriza-

tion. Technique Report SERC-TR-14-P, Purdue University, West Lafayette,

Indiana, 1988.

220

[177] A. P. Mathur and W. E. Wong. An Empirical Comparison of Mutation and

Data Flow Based Test Adequacy Criteria. Technique report, Purdue Univer-

sity, West Lafayette, Indiana, 1993.

[178] A. P. Mathur and W. E. Wong. An Empirical Comparison of Data Flow and

Mutation-based Test Adequacy Criteria. Software Testing, Verification and

Reliability, 4(1):9 – 31, 1994.

[179] P. McMinn. Search-Based Software Test Data Generation: A Survey. Software

Testing, Verification and Reliability, 14(2):105–156, 2004.

[180] M. Mitchell. An Introduction to Genetic Algorithms. The MIT Press, 1996.

[181] I. Moore. Jester - a JUnit test tester. In Proceeding of eXtreme Programming

Conference (XP’01), 2001.

[182] I. Moore. Jester and Pester. http://jester.sourceforge.net/, 2001.

[183] L. J. Morell. A Theory of Error-Based Testing. Phd thesis, University of

Maryland at College Park, College Park, Maryland, 1984.

[184] L. J. Morell. Theoretical Insights Into Fault-Based Testing. In Proceedings of

the 2nd Workshop on Software Testing, Verification, and Analysis (TVA’88),

pages 45–62, Banff Alberta, Canada, July 1988. IEEE Computer Society.

[185] L. J. Morell. A Theory of Fault-Based Testing. IEEE Transactions on Soft-

ware Engineering, 16(8):844–857, August 1990.

[186] T. Mouelhi, F. Fleurey, and B. Baudry. A Generic Metamodel For Security

Policies Mutation. In Proceedings of the IEEE International Conference on

Software Testing Verification and Validation Workshop (ICSTW’08), pages

278–286, Lillehammer, Norway, 9-11 April 2008. IEEE Computer Society.

221

[187] T. Mouelhi, Y. Le Traon, and B. Baudry. Mutation Analysis for Security

Tests Qualification. In Proceedings of the 3rd Workshop on Mutation Anal-

ysis (MUTATION’07), pages 233–242, Windsor, UK, 10-14 September 2007.

IEEE Computer Society. published with Proceedings of the 2nd Testing: Aca-

demic and Industrial Conference Practice and Research Techniques (TAIC

PART’07).

[188] E. S. Mresa and L. Bottaci. Efficiency of Mutation Operators and Selective

Mutation Strategies: An Empirical Study. Software Testing, Verification and

Reliability, 9(4):205–232, December 1999.

[189] A. S. Namin and J. H. Andrews. Finding Sufficient Mutation Operators via

Variable Reduction. In Proceedings of the 2nd Workshop on Mutation Analysis

(MUTATION’06), page 5, Raleigh, North Carolina, November 2006. IEEE

Computer Society.

[190] A. S. Namin and J. H. Andrews. On Sufficiency of Mutants. In Proceedings

of the 29th International Conference on Software Engineering (ICSE COM-

PANION’07), pages 73–74, Minneapolis, Minnesota, 20-26 May 2007.

[191] A. S. Namin, J. H. Andrews, and D. J. Murdoch. Sufficient Mutation Opera-

tors for Measuring Test Effectiveness. In Proceedings of the 30th International

Conference on Software Engineering (ICSE’08), pages 351–360, Leipzig, Ger-

many, 10-18 May 2008.

[192] G. Necula, S. McPeak, S. Rahul, and W. Weimer. CIL: Intermediate Language

and Tools for Analysis and Transformation of C Programs. In R. Horspool,

editor, Compiler Construction, volume 2304 of Lecture Notes in Computer

Science, pages 209–265. Springer Berlin / Heidelberg, 2002.

[193] R. Nilsson, A. J. Offutt, and S. F. Andler. Mutation-based Testing Criteria

for Timeliness. In Proceedings of the 28th Annual International Computer

222

Software and Applications Conference (COMPSAC’04), pages 306–311, Hong

Kong, China, 28-30, September 2004.

[194] R. Nilsson, A. J. Offutt, and J. Mellin. Test Case Generation for Mutation-

based Testing of Timeliness. In Proceedings of the 2nd Workshop on Model

Based Testing (MBT 2006), volume 164 of ENTCS, pages 97–114, Vienna,

Austria, 25-26 March 2006.

[195] A. J. Offutt. Automatic Test Data Generation. Phd thesis, Georgia Institute

of Technology, Atlanta, GA, USA, 1988.

[196] A. J. Offutt. The Coupling Effect: Fact or Fiction. ACM SIGSOFT Software

Engineering Notes, 14(8):131–140, December 1989.

[197] A. J. Offutt. Investigations of the Software Testing Coupling Effect. ACM

Transactions on Software Engineering and Methodology, 1(1):5–20, January

1992.

[198] A. J. Offutt. Private Communication, July 2008.

[199] A. J. Offutt, P. Ammann, and L. L. Liu. Mutation Testing implements

Grammar-Based Testing. In Proceedings of the 2nd Workshop on Mutation

Analysis (MUTATION’06), page 12, Raleigh, North Carolina, November 2006.

IEEE Computer Society.

[200] A. J. Offutt and W. M. Craft. Using Compiler Optimization Techniques to

Detect Equivalent Mutants. Software Testing, Verification and Reliability,

4(3):131–154, September 1994.

[201] A. J. Offutt, Z. Jin, and J. Pan. The Dynamic Domain Reduction Approach

for Test Data Generation: Design and Algorithms. Technical Report ISSE-

TR-94-110, George Mason University, Fairfax, Virginia, 1994.

223

[202] A. J. Offutt and K. N. King. A Fortran 77 Interpreter for Mutation Analysis.

ACM SIGPLAN Notices, 22(7):177–188, July 1987.

[203] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf. An Experimental

Determination of Sufficient Mutant Operators. ACM Transactions on Software

Engineering and Methodology, 5(2):99–118, April 1996.

[204] A. J. Offutt and S. Lee. An Empirical Evaluation of Weak Mutation. IEEE

Transactions on Software Engineering, 20(5):337–344, May 1994.

[205] A. J. Offutt and S. D. Lee. How Strong is Weak Mutation? In Proceedings of

the 4th Symposium on Software Testing, Analysis, and Verification (TAV’91),

pages 200 – 213, Victoria, British Columbia, Canada, October 1991. IEEE

Computer Society.

[206] A. J. Offutt, Y.-S. Ma, and Y.-R. Kwon. An Experimental Mutation System

for Java. ACM SIGSOFT Software Engineering Notes, 29(5):1–4, September

2004.

[207] A. J. Offutt and J. Pan. Detecting Equivalent Mutants and the Feasible Path

Problem. In Proceedings of the 1996 Annual Conference on Computer As-

surance, pages 224–236, Gaithersburg, Maryland, June 1996. IEEE Computer

Society Press.

[208] A. J. Offutt and J. Pan. Automatically Detecting Equivalent Mutants and

Infeasible Paths. Software Testing, Verification and Reliability, 7(3):165–192,

September 1997.

[209] A. J. Offutt, J. Pan, K. Tewary, and T. Zhang. An Experimental Evalua-

tion of Data Flow and Mutation Testing. Software:Practice and Experience,

26(2):165–176, February 1996.

224

[210] A. J. Offutt, J. Pan, and J. M. Voas. Procedures for Reducing the Size of

Coverage-based Test Sets. In Proceedings of the 12 International Conference

on Testing Computer Software, pages 111–123, Washington, DC, June 1995.

[211] A. J. Offutt, R. P. Pargas, S. V. Fichter, and P. K. Khambekar. Mutation

Testing of Software Using a MIMD Computer. In Proceedings of the Inter-

national Conference on Parallel Processing, pages 255–266, Chicago, Illinois,

August 1992.

[212] A. J. Offutt, G. Rothermel, and C. Zapf. An Experimental Evaluation of

Selective Mutation. In Proceedings of the 15th International Conference on

Software Engineering (ICSE’93), pages 100–107, Baltimore, Maryland, May

1993. IEEE Computer Society Press.

[213] A. J. Offutt and R. H. Untch. Mutation 2000: Uniting the Orthogonal. In Pro-

ceedings of the 1st Workshop on Mutation Analysis (MUTATION’00), pages

34–44, San Jose, California, 6-7 October 2001. published in book form, as

Mutation Testing for the New Century.

[214] A. J. Offutt, J. Voas, and J. Payne. Mutation Operators for Ada. Technique

Report ISSE-TR-96-09, George Mason University, Fairfax, Virginia, 1996.

[215] A. J. Offutt and W. Xu. Generating Test Cases for Web Services Using Data

Perturbation. In Proceedings of the Workshop on Testing, Analysis and Ver-

ification of Web Services (TAV-WEB), pages 1 – 10, Boston, Massachusetts,

11-14 July 2004.

[216] A. J. Offutt, J. Zhenyi, and J. Pan. The Dynamic Domain Reduction Proce-

dure for Test Data Generation. Software:Practice and Experience, 29(2):167–

193, February 1999.

225

[217] A. J. Offutt, J. Zhenyi, and J. Pan. The Dynamic Domain Reduction Proce-

dure for Test Data Generation. Software:Practice and Experience, 29(2):167–

193, February 1999.

[218] J. Offutt. Private communication, March 2013.

[219] V. Okun. Specification Mutation for Test Generation and Analysis. Phd thesis,

University of Maryland Baltimore County, Baltimore, Maryland, 2004.

[220] T. Olsson and P. Runeson. System Level Mutation Analysis Applied to a

State-based Language. In Proceedings of the 8th Annual IEEE International

Conference and Workshop on the Engineering of Computer Based Systems

(ECBS’01), page 222, Washington DC, 17-20 April 2001.

[221] J. Pan. Using Constraints to Detect Equivalent Mutants. Masters thesis,

George Mason University, Fairfax VA, 1994.

[222] M. Papadakis and N. Malevris. An Effective Path Selection Strategy for Mu-

tation Testing. In Proceedings of the 16th Asia-Pacific Software Engineering

Conference (APSEC’09), pages 422 – 429, Penang, Malaysia, 1-3 December

2009. IEEE Computer Society.

[223] M. Papadakis and N. Malevris. An Empirical Evaluation of the First and

Second Order Mutation Testing Strategies. In Proceedings of the 5th Inter-

national Workshop on Mutation Analysis (MUTATION’10), Paris, France, 6

April 2010. IEEE Computer Society. published with Proceedings of the 3rd

International Conference on Software Testing, Verification, and Validation

Workshops.

[224] M. Papadakis and N. Malevris. Automatic mutation test case generation

via dynamic symbolic execution. In Proceedings of the 21st International

226

Symposium on Software Reliability Engineering (ISSRE’10), California, USA,

November 2010.

[225] M. Papadakis, N. Malevris, and M. Kallia. Towards Automating the Genera-

tion of Mutation Tests. In Proceedings of the 5th Workshop on Automation of

Software Teste (AST’10), pages 111–118, Cape Town, South Africa, 3-4 May

2010. ACM.

[226] Parasoft. Parasoft Insure++. http://www.parasoft.com/jsp/products/

home.jsp?product=Insure, 2006.

[227] M. Polo, M. Piattini, and I. Garcia-Rodriguez. Decreasing the Cost of Muta-

tion Testing with Second-Order Mutants. Software Testing, Verification and

Reliability, 19(2):111 – 131, June 2008.

[228] M. Polo, S. Tendero, and M. Piattini. Integrating techniques and tools for

testing automation: Research Articles. Software Testing, Verification and

Reliability, 17(1):3–39, March 2007.

[229] A. Pretschner, T. Mouelhi, and Y. Le Traon. Model-Based Tests for Access

Control Policies. In Proceedings of the 1st International Conference on Soft-

ware Testing, Verification, and Validation (ICST ’08), pages 338–347, Lille-

hammer, Norway, 9-11 April 2008. IEEE Computer Society.

[230] R. Probert and F. Guo. Mutation Testing of Protocols: Principles and Pre-

liminary Experimental Results. In Proceedings of the Workshop on Protocol

Test Systems, pages 57–76, Leidschendam, Netherland, 15-17 October 1991.

[231] R. Purushothaman and D. E. Perry. Toward Understanding the Rhetoric of

Small Source Code Changes. IEEE Transactions on Software Engineering,

31(6):511–526, 2005.

227

[232] S. T. Redwine and W. E. Riddle. Software Technology Maturation. In Pro-

ceedings of the 8th International Conference on Software Engineering, pages

189–200, London, England, 1985.

[233] ReelTwo. http://www.reeltwo.com, 2007.

[234] C. K. Roy and J. R. Cordy. Towards a Mutation-based Automatic Framework

for Evaluating Code Clone Detection Tools. In Proceedings of the Canadian

Conference on Computer Science and Software Engineering (C3S2E’08), pages

137–140, Montreal, Quebec, Canada, 12-13 May 2008. ACM.

[235] C. K. Roy and J. R. Cordy. A Mutation / Injection-based Automatic Frame-

work for Evaluating Code Clone Detection Tools. In Proceedings of the 4th

International Workshop on Mutation Analysis (MUTATION’09), pages 157–

166, Denver, Colorado, 1-4 April 2009. IEEE Computer Society. published

with Proceedings of the 2nd International Conference on Software Testing,

Verification, and Validation Workshops.

[236] Rubyforge. Heckle. http://seattlerb.rubyforge.org/heckle/, 2007.

[237] M. Sahinoglu and E. H. Spafford. A Bayes Sequential Statistical Procedure

for Approving Software Products. In Proceedings of the IFIP Conference on

Approving Software Products (ASP’90), pages 43–56, Garmisch Partenkirchen,

Germany, September 1990. Elsevier Science.

[238] D. Schuler, V. Dallmeier, and A. Zeller. Efficient Mutation Testing by Check-

ing Invariant Violations. In Proceedings of the International Symposium on

Software Testing and Analysis (ISSTA’09), Chicago, Illinois, 19-23 July 2009.

[239] D. Schuler, V. Dallmeier, and A. Zeller. Efficient Mutation Testing by Check-

ing Invariant Violations. Technique report, Saarland University, Saarbrucken,

Telefon, 2009.

228

[240] D. Schuler and A. Zeller. (Un-)Covering Equivalent Mutants. In Proceed-

ings of the 3rd International Conference on Software Testing Verification and

Validation (ICST’10), Paris, France, 6 April 2010. IEEE Computer Society.

[241] K. Sen, D. Marinov, and G. Agha. CUTE: A Concolic Unit Testing Engine

for C. In Proceedings of the 13th ACM SIGSOFT International Symposium

on Foundations of Software Engineering (FSE’05), pages 263–272, Lisbon,

Portugal, 2005.

[242] Y. Serrestou, V. Beroulle, and C. Robach. Functional Verification of RTL De-

signs Driven by Mutation Testing Metrics. In Proceedings of the 10th Euromi-

cro Conference on Digital System Design Architectures, Methods and Tools,

pages 222–227, Lubeck, Germany, 29-31 August 2007.

[243] Y. Serrestou, V. Beroulle, and C. Robach. Impact of Hardware Emulation on

the Verification Quality Improvement. In Proceedings of the IFIP WG 10.5

International Conference on Very Large Scale Integration of System-on-Chip

(VLSI-SoC’07), pages 218–223, Atlanta, GA, 15-17 October 2007.

[244] H. Shahriar and M. Zulkernine. MUSIC: Mutation-based SQL Injection Vul-

nerability Checking. In Proceedings of the 8th International Conference on

Quality Software (QSIC’08), pages 77–86, Oxford, UK, 12-13 August 2008.

[245] H. Shahriar and M. Zulkernine. Mutation-Based Testing of Buffer Overflow

Vulnerabilities. In Proceedings of the 2nd Annual IEEE International Work-

shop on Security in Software Engineering, pages 979–984, 28 July -1 August,

Turku, Finland 2008.

[246] H. Shahriar and M. Zulkernine. Mutation-Based Testing of Format String

Bugs. In Proceedings of the 11th IEEE High Assurance Systems Engineering

Symposium (HASE’08), pages 229–238, Nanjing, China, 3-5 Dec 2008.

229

[247] H. Shahriar and M. Zulkernine. MUTEC: Mutation-based Testing of Cross

Site Scripting. In Proceedings of the 5th International Workshop on Software

Engineering for Secure Systems (SESS’09), pages 47–53, Vancouver, Canada,

19 May 2009.

[248] D. P. Sidhu and T. K. Leung. Fault Coverage of Protocol Test Methods.

In Proceedings of the 7th Annual Joint Conference of the IEEE Computer

and Communcations Societies (INFOCOM’88), pages 80–85, New Orleans,

Louisiana, 27-31 March 1988.

[249] A. Simao, J. C. Maldonado, and R. da Silva Bigonha. A Transformational Lan-

guage for Mutant Description. Computer Languages, Systems & Structures,

35(3):322–339, October 2009.

[250] B. H. Smith and L. Williams. An Empirical Evaluation of the MuJava Mu-

tation Operators. In Proceedings of the 3rd Workshop on Mutation Analy-

sis (MUTATION’07), pages 193–202, Windsor, UK, 10-14 September 2007.

IEEE Computer Society. published with Proceedings of the 2nd Testing: Aca-

demic and Industrial Conference Practice and Research Techniques (TAIC

PART’07).

[251] SourceForge. Nester. http://nester.sourceforge.net/, 2002.

[252] SourceForge. Jumble. http://jumble.sourceforge.net/, 2007.

[253] S. D. R. S. D. Souza, J. C. Maldonado, S. C. P. F. Fabbri, and W. L. D. Souza.

Mutation Testing Applied to Estelle Specifications. Software Quality Control,

8(4):285–301, December 1999.

[254] S. D. R. S. D. Souza, J. C. Maldonado, S. C. P. F. Fabbri, and W. L. D. Souza.

Mutation Testing Applied to Estelle Specifications. In Proceedings of the 33rd

230

Hawaii International Conference on System Sciences (HICSS’08), volume 8,

page 8011, Maui, Hawaii, 4-7 January 2000.

[255] E. H. Spafford. Extending Mutation Testing to Find Environmental Bugs.

Software:Practice and Experience, 20(2):181–189, February 1990.

[256] T. Srivatanakul, J. A. Clark, S. Stepney, and F. Polack. Challenging Formal

Specifications by Mutation: a CSP Security Example. In Proceedings of the

10th Asia-Pacific Software Engineering Conference (APSEC’03), pages 340–

350, Chiang Mai, Thailand, 10-12 December 2003.

[257] T. Sugeta, J. C. Maldonado, and W. E. Wong. Mutation Testing Applied to

Validate SDL Specifications. In Proceedings of the 16th IFIP International

Conference on Testing of Communicating Systems, volume 2978 of LNCS,

page 2741, Oxford, UK, 17-19 March 2004.

[258] A. Sung, J. Jang, and B. Choi. Fault-Based Interface Testing Between Real-

Time Operating System and Application. In Proceedings of the 2nd Workshop

on Mutation Analysis (MUTATION’06), page 8, Raleigh, North Carolina,

November 2006. IEEE Computer Society.

[259] A. Tanaka. Equivalence Testing for Fortran Mutation System Using Data Fow

Analysis. Masters thesis, Georgia Institute of Technology, Atlanta, Georgia,

1981.

[260] P. Thévenod-Fosse, H. Waeselynck, and Y. Crouzet. An Experimental Study

on Software Structural Testing: Deterministic versus Random Input Genera-

tion. In Proceedings of the 25th International Symposium on Fault-Tolerant

Computing (FTCS’91), pages 410–417, Montréal, Canada, 25-27 June 1991.

231

[261] N. Tillmann and J. de Halleux. Pex–White Box Test Generation for .NET.

In Proceedings of the 2nd International Conference on Tests and Proofs

(TAP’08), volume 4966, pages 134–153, Prato, Italy, April 2008.

[262] M. Trakhtenbrot. New Mutations for Evaluation of Specification and Imple-

mentation Levels of Adequacy in Testing of Statecharts Models. In Proceedings

of the 3rd Workshop on Mutation Analysis (MUTATION’07), pages 151–160,

Windsor, UK, 10-14 September 2007. IEEE Computer Society. published with

Proceedings of the 2nd Testing: Academic and Industrial Conference Practice

and Research Techniques (TAIC PART’07).

[263] U. Trier. DBLP. http://www.informatik.uni-trier.de/ ley/db/.

[264] J. Tuya, M. J. S. Cabal, and C. de la Riva. SQLMutation: A Tool to Gener-

ate Mutants of SQL Database Queries. In Proceedings of the 2nd Workshop

on Mutation Analysis (MUTATION’06), page 1, Raleigh, North Carolina,

November 2006. IEEE Computer Society.

[265] J. Tuya, M. J. S. Cabal, and C. de la Riva. Mutating Database Queries.

Information and Software Technology, 49(4):398–417, April 2007.

[266] R. H. Untch. Mutation-based Software Testing Using Program Schemata. In

Proceedings of the 30th Annual Southeast Regional Conference (ACM-SE’92),

pages 285–291, Raleigh, North Carolina, 1992.

[267] R. H. Untch. Schema-based Mutation Analysis: A New Test Data Adequacy

Assessment Method. Phd thesis, Clemson University, Clemson, South Car-

olina, December 1995. Adviser-Harrold, Mary Jean.

[268] R. H. Untch, A. J. Offutt, and M. J. Harrold. Mutation Analysis Using Mutant

Schemata. In Proceedings of the International Symposium on Software Testing

and Analysis (ISSTA’93), pages 139–148, Cambridge, Massachusetts, 1993.

232

[269] G. Vigna, W. Robertson, and D. Balzarotti. Testing Network-based Intru-

sion Detection Signatures using Mutant Exploits. In Proceedings of the 11th

ACM Conference on Computer and Communications Security, pages 21–30,

Washington DC, USA, 2004.

[270] P. Vilela, M. Machado, and W. E. Wong. Testing for Security Vulnerabilities

in Software. In Software Engineering and Applications, 2002.

[271] A. M. R. Vincenzi, J. C. Maldonado, E. F. Barbosa, and M. E. Delamaro. Unit

and Integration Testing Strategies for C Programs Using Mutation. Software

Testing, Verification and Reliability, 11(4):249–268, November 2001.

[272] J. Voas and G. McGraw. Software Fault Injection: Inoculating Programs

Against Errors. John Wiley & Sons, 1997.

[273] K. S. H. T. Wah. Fault Coupling in Finite Bijective Functions. Software

Testing, Verification and Reliability, 5(1):3–47, 1995.

[274] K. S. H. T. Wah. A Theoretical Study of Fault Coupling. Software Testing,

Verification and Reliability, 10(1):3–46, April 2000.

[275] K. S. H. T. Wah. An Analysis of the Coupling Effect I: Single Test Data.

Science of Computer Programming, 48(2-3):119–161, August-September 2003.

[276] R. Wang and N. Huang. Requirement Model-Based Mutation Testing for Web

Service. In Proceedings of the 4th International Conference on Next Generation

Web Services Practices (NWeSP’08), pages 71–76, Seoul, Republic of Korea,

20-22 October 2008.

[277] S. N. Weiss and V. N. Fleyshgakker. Improved Serial Algorithms for Mutation

Analysis. ACM SIGSOFT Software Engineering Notes, 18(3):149–158, July

1993.

233

[278] E. J. Weyuker. On Testing Non-Testable Programs. The Computer Journal,

25:456–470, 1982.

[279] W. E. Wong. On Mutation and Data Flow. Phd thesis, Purdue University,

West Lafayette, Indiana, 1993.

[280] W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur. Effect of Test Set

Minimization on Fault Detection Effectiveness. Software:Practice and Experi-

ence, 28:347–369, 1998.

[281] W. E. Wong, J. R. Horgan, A. P. Mathur, and A. Pasquini. Test Set Size

Minimization and Fault Detection Effectiveness: A Case Study in a Space

Application. Journal of Systems and Software, 48(2):79–89, October 1999.

[282] W. E. Wong and A. P. Mathur. Fault Detection Effectiveness of Mutation

and Data Flow Testing. Software Quality Journal, 4(1):69–83, March 1995.

[283] W. E. Wong and A. P. Mathur. Reducing the Cost of Mutation Testing: An

Empirical Study. Journal of Systems and Software, 31(3):185–196, December

1995.

[284] M. R. Woodward. Mutation Testing-An Evolving Technique. In Proceedings of

the IEE Colloquium on Software Testing for Critical Systems, pages 3/1–3/6,

London, UK, 19 June 1990.

[285] M. R. Woodward. OBJTEST: an Experimental Testing Tool for Algebraic

Specifications. In Proceedings of the IEE Colloquium on Automating Formal

Methods for Computer Assisted Prototying, page 2, 14 Jan 1990.

[286] M. R. Woodward. Errors in Algebraic Specifications and an Experimental

Mutation Testing Tool. Software Engineering Journal, 8(4):221–224, July

1993.

234

[287] M. R. Woodward and K. Halewood. From Weak to Strong, Dead or Alive?

an Analysis of Some Mutationtesting Issues. In Proceedings of the 2nd Work-

shop on Software Testing, Verification, and Analysis (TVA’88), pages 152–

158, Banff Albert, Canada, July 1988. IEEE Computer Society.

[288] W. Xu, A. J. Offutt, and J. Luo. Testing Web Services by XML Perturbation.

In Proceedings of the 16th IEEE International Symposium on Software Reli-

ability Engineering (ISSRE’05), pages 257–266, Chicago Illinois, 14-16 July

2005.

[289] H. Yoon, B. Choi, and J. O. Jeon. Mutation-Based Inter-Class Testing. In Pro-

ceedings of the 5th Asia Pacific Software Engineering Conference (APSEC’98),

page 174, Taipei, Taiwan, 2-4 December 1998.

[290] C. N. Zapf. A Distributed Interpreter for the Mothra Mutation Testing System.

Masters thesis, Clemson University, Clemson, South Carolina, 1993.

[291] Y. Zhan and J. A. Clark. Search-based Mutation Testing for Simulink Models.

In Proceedings of the Conference on Genetic and Evolutionary Computation

(GECCO’05), pages 1061–1068, Washington DC, USA, 25-29 June 2005.

[292] L. Zhang, S.-S. Hou, J.-J. Hu, T. Xie, and H. Mei. Is operator-based mutant

selection superior to random mutant selection? In Proceedings of the 32nd

ACM/IEEE International Conference on Software Engineering - Volume 1,

ICSE ’10, pages 435–444, New York, NY, USA, 2010. ACM.

[293] L. Zhang, T. Xie, L. Zhang, N. Tillmann, J. de Halleux, and H. Mei. Test gen-

eration via dynamic symbolic execution for mutation testing. In Proceedings

of the 26th International Conference on Software Maintenance (ICSM’10),

Timisoara, Romania, September 2010.

235

[294] S. Zhang, T. R. Dean, and G. S. Knight. Lightweight State Based Muta-

tion Testing for Security. In Proceedings of the 3rd Workshop on Mutation

Analysis (MUTATION’07), pages 223–232, Windsor, UK, 10-14 September

2007. IEEE Computer Society. published with Proceedings of the 2nd Testing:

Academic and Industrial Conference Practice and Research Techniques (TAIC

PART’07).

[295] C. Zhou and P. Frankl. Mutation Testing for Java Database Applications. In

Proceedings of the 2nd International Conference on Software Testing Verifica-

tion and Validation (ICST’09), pages 396–405, Davor Colorado, 01-04 April

2009.

236

	Declaration
	Abstract
	Acknowledgements
	1 Introduction
	1.1 Mutation Testing with Examples
	1.1.1 Problems with Mutation Testing

	1.2 Higher Order Mutation as Solution
	1.3 Problems of the Thesis
	1.4 Aims and Objectives
	1.5 Contributions of the Thesis
	1.6 Organisation of the Thesis

	2 Literature Survey
	2.1 The Theory of Mutation Analysis
	2.1.1 Fundamental Hypotheses
	2.1.2 The Process of Mutation Analysis

	2.2 Cost Reduction Techniques
	2.2.1 Mutant Reduction Techniques
	2.2.2 Execution Cost Reduction Techniques

	2.3 Equivalent Mutant Detection Techniques
	2.4 Applications
	2.4.1 Program Mutation
	2.4.2 Specification Mutation
	2.4.3 Other Testing Applications

	2.5 Empirical Evaluation

	3 Analysis of the Development of Mutation Testing
	3.1 Publication Trends
	3.2 Development Trends
	3.3 Tools for Mutation Testing
	3.3.1 Academic Tools
	3.3.2 Industry and Open Source Tools

	3.4 Discussion

	4 Higher Order Mutants Classification
	4.1 Higher Order Mutant Classification
	4.1.1 Second Order Mutant Case
	4.1.2 Higher Order Mutant Classification

	4.2 Milu: Higher Order Mutation Tool
	4.3 Empirical Study
	4.3.1 Research Questions
	4.3.2 Subject Programs
	4.3.3 Mutation Operators

	4.4 Results and Analysis
	4.4.1 Answer to RQ1
	4.4.2 Answer to RQ2
	4.4.3 Answer to RQ3

	5 Searching for Higher Order Mutants
	5.1 Subsuming Higher Order Mutants
	5.2 Advantages of Higher Order Mutant Testing
	5.3 Algorithm
	5.4 Empirical Study
	5.5 Results and Analysis
	5.6 Discussion
	5.6.1 Threats to Validity
	5.6.2 Related Work

	6 SHOM: Strong Mutation Based Test Data Generation
	6.1 Strongly Killing Higher Order Mutants Using DSE and SBST
	6.1.1 Weakly Killing Mutants
	6.1.2 Handling Higher Order Mutants
	6.1.3 Strongly Killing Mutants
	6.1.4 Preserving Weak Adequacy Using Constrained Search

	6.2 SHOM Implementation
	6.3 Empirical Study
	6.4 Results and Analysis

	7 Conclusions and Future Work
	7.1 Summary of Achievements
	7.2 Summary of Future Work

	A Subject Programs used in the Literature of Mutation Testing
	Bibliography

