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Abstract

Developers apply changes and updates to software systems to adapt to emerging
environments and address new requirements. In turn, these changes introduce
additional software defects, usually caused by our inability to comprehend the full
scope of the modified code. As a result, software practitioners have developed tools
to aid in the detection and prediction of imminent software defects, in addition to
the effort required to correct them. Although software development effort prediction
has been in use for many years, research into defect-correction effort prediction is
relatively new. The increasing complexity, integration and ubiquitous nature of
current software systems has sparked renewed interest in this field. Effort prediction
now plays a critical role in the planning activities of managers. Accurate predictions
help corporations budget, plan and distribute available resources effectively and
efficiently. In particular, early defect-correction effort predictions could be used by
testers to set schedules, and by managers to plan costs and provide earlier feedback
to customers about future releases.

In this work, we address the problem of predicting the effort needed to resolve a
software defect. More specifically, our study is concerned with defects or issues that
are reported on an Issue Tracking System or any other defect repository. Current
approaches use one prediction method or technique to produce effort predictions.
This approach usually suffers from the weaknesses of the chosen prediction method,
and consequently the accuracy of the predictions are affected. To address this prob-
lem, we present a composite prediction framework. Rather than using one predic-
tion approach for all defects, we propose the use of multiple integrated methods
which complement the weaknesses of one another. Our framework is divided into
two sub-categories, Similarity-Score Dependent and Similarity-Score Independent.
The Similarity-Score Dependent method utilizes the power of Case-Based Reason-
ing, also known as Instance-Based Reasoning, to compute predictions. It relies on
matching target issues to similar historical cases, then combines their known effort
for an informed estimate. On the other hand, the Similarity-Score Independent
method makes use of other defect-related information with some statistical manip-
ulation to produce the required estimate. To measure similarity between defects,
some method of distance calculation must be used. In some cases, this method
might produce misleading results due to observed inconsistencies in history, and
the fact that current similarity-scoring techniques cannot account for all the vari-
ability in the data. In this case, the Similarity-Score Independent method can be
used to estimate the effort, where the effect of such inconsistencies can be reduced.

We have performed a number of experimental studies on the proposed framework
to assess the effectiveness of the presented techniques. We extracted the data sets
from an operational Issue Tracking System in order to test the validity of the model
on real project data. These studies involved the development of multiple tools in
both the Java programming language and PHP, each for a certain stage of data
analysis and manipulation. The results show that our proposed approach produces
significant improvements when compared to current methods.
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Chapter 1

Introduction

In the past few decades, the use of software has become widespread throughout
systems ranging from simple mobile devices to multimillion-dollar defence systems.
It has become an integral part of our economy, military and government oper-
ations. This called for studies into a better understanding of software through
developing Software Process Models [83]. Software Process Models, also known as
Software Development Process Models, are used to describe the structure of the
development process in addition to that of the software itself. These models, ac-
companying some statistical analysis, have been used to predict the effort required
to develop and maintain software systems. Many models such as COCOMO [10]
and Neural Networks [9, 29, 47, 73] have become widely spread in the software com-
munity as effective prediction tools. Consequently, effort prediction has become an
important tool in corporate management’s arsenal, especially for today’s multina-
tional projects. Accurate predictions allow management to plan, budget and notify
customers of the expected delivery dates.

In software development, the maintenance phase constitutes 60% to 70% of
the software development life cycle [12]. It involves making changes to various
software modules, documentation and sometimes even hardware to support the
systems operational effectiveness. Some of these changes are required to improve
a systems performance, correct problems, enhance security, or address user re-
quirements. Therefore, to ensure such modifications do not disrupt operations or
the integrity of the system, organizations employ appropriate change management
procedures and standards. Once again, effort prediction proves to be one of the
important tools which can help in planning and executing these procedures effec-
tively.

In this work, we address the problem of predicting effort for entries in Issue
Tracking Systems early in their lifetime. These systems are used to manage the
different issues and defects that arise during the maintenance phase (an issue could
either be a bug, a feature request or a task). Such early estimates could be used by
testers to set schedules, and by managers to plan costs and provide earlier feedback
to customers about future releases. Predicting defect-correction effort (the effort
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needed to fix a reported issue or bug) is a more challenging task than predicting
software development effort. While software development is a construction process,
defect-correction is mainly a search process possibly involving all of the program’s
code [82]. Furthermore, testers cannot trust the original developers’ assumptions
and conditions [82]. This may require them to explore areas of the code that they
are not familiar with; adding to the complexity of the process.

The heart of our approach to predicting defect-correction effort, is an Instance-
Based Reasoning [67] method called the Nearest Neighbour approach [31, 67]; in-
spired by the method proposed by Weiss et al. in [82]. It leverages experience
from resolved issues to predict correction-effort for similar emergent issues early in
their lifetime. Our proposed framework implements four key enhancements to the
Nearest Neighbour Base Approach: Data Enrichment, Majority Voting, Adaptive
Threshold and Binary Clustering. In addition to the information used to form the
text-similarity query in the Base Approach, Data Enrichment injects additional
issue information collected from the Issue Tracking System. This aims to increase
the accuracy of the similarity scores. The mean prediction method used in the Base
Approach is replaced by Majority Voting. Since effort values are usually taken from
a distinct set; Majority Voting capitalizes on the fact that certain values often ap-
pear more frequently in similar historical matches, which are close to the actual
effort. Adaptive Threshold allows the model to compute estimates by considering
higher scoring matches first, which should yield better results. If no matches are
found at a higher threshold, it is systematically decreased until the required number
of matches is reached. In some cases, similarity scores could be considered too low,
at which point it might be misleading to use them. Binary Clustering alleviates
this problem by using common properties of issues to form clusters (independent
of the similarity scores), which are then used to produce the predictions.

Most of the existing work addressing defect-correction effort prediction use a
single approach to generate predictions. For example, to the best of our knowledge,
no work has used both the Nearest Neighbour Approach with Clustering, or Cluster-
ing with Regression. We can see many works comparing the different approaches,
but not using them in a composite approach. We propose using complimentary
approaches that help address the weaknesses of one another. In addition to em-
ploying the Nearest Neighbour Approach, we use Binary Clustering to address cases
where the Nearest Neighbour Approach would produce misleading results. In this
context, one of our goals is to show how such composite systems can be used to ef-
fectively produce accurate predictions, and to demonstrate how enhancements can
be applied to existing systems.

The next section will describe the problem that this work is trying to address,
with an illustration and a generalization of the components involved. In addition,
it will provide an example of the problem, to give the reader a better understanding
of the interactions between the components.
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1.1 Problem Description

We address the problem of predicting the effort needed to correct an issue posted on
an Issue Tracking System (or any defect repository). We define an issue as being any
of: Bugs, Tasks or Feature Requests. A Bug represents any defect or fault reported
against the software system, which impairs or prevents it from functioning properly.
Tasks are usually development or assertion activities set by developers to achieve
certain goals. A Feature Request is any request for a new feature which is not
yet included in the system. In literature, the term “Defect” usually includes all
of the above types of issues, which is how we will use it for the remainder of this
study. Our method measures effort in “man-hours”, which is often the standard
for defect-correction approaches.

To perform the prediction for a given issue (whether it is a Bug, a Task or a
Feature Request), we present the Effort Prediction System. There are three ma-
jor components involved in our defect-correction effort prediction approach (Effort
Prediction System): Target-Issue Information (T ), Historical Issues Information
(H ) and the Prediction Model (P) (see Figure 1.1). The Target-Issue is the issue
for which we are required to make the effort prediction. The Historical Issues is
the set of all the existing (resolved) issues we use to derive our experience from; i.e.
training issues. Finally, the Prediction Model is the method we use compute the
predictions based on the information we were given. Referring to Figure 1.1, we can
formalize the problem as follows: given T , a vector containing M distinct variables
ti each describing a certain property of T (Project Name, Priority, Type,. . . etc),
H, a matrix of size N ×M , where Hij is the jth property of the ith issue. Produce

an estimate Ê that is within an acceptable distance of the actual effort.

Prediction 

Model

(P)

Target-Issue 

Information (T)

Historical Issues 

Information (H)

Prediction (Ê)

Figure 1.1: A Depiction of an Effort Prediction System.

We use H to learn the behavior, extract rules and identify similarity patterns
from resolved issues. This is equivalent to an expert’s knowledge; while the expert
might have gained that experience in many years, the prediction model P tries
learns it in a much smaller interval. T is the information describing the issue for
which we need to make the prediction. P will use the experience it gained from H,
to produce a prediction for T.
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To facilitate a better understanding of the problem, we give an example to show
how the above components are used and what each variable means. Let T be of
size M = 3, where T =[JBAS, Blocker, Bug ] referring to properties (Project Name,
Priority and Type) in respective order. Let H be a matrix of size N ×M , where
N = 2, meaning we have two issues in our history that we can use to derive the
estimate from (H =[JBAS, Major, Bug ; JAXR, Minor, Task ]). Then P would use
H to derive an informed estimate Ê, based on some criteria set by the prediction
method used by P .

In the next section, we will outline the major contributions of the work presented
in this thesis. They will provide a better perspective of what the reader should
expect out this work, and what goals we are trying to achieve.

1.2 Thesis Contributions

The major contribution of the thesis is to address the problem of defect-correction
effort prediction for issues posted on an Issue Tracking System. Our approach
proposes the application of an effort prediction framework, combining a Nearest
Neighbour approach with a Binary Clustering approach to predict the effort needed
to fix a certain defect. The framework is given information about a target issue and
a set of resolved issues, in addition to some specifications and properties, at which
point it will generate a correction-effort prediction measured in “man-hours”. The
proposed effort prediction framework aims to provide a set a improvements to the
existing Nearest Neighbour Base Approach as follows:

• Develop a way to improve the accuracy of the similarity scoring mechanism,
by introducing additional data related to the target issue into the process.

• Design an improvement to the prediction technique by utilizing properties of
the data from the defect repository. By introducing an alternative prediction
method to the mean (as used by the Base Approach), the proposed framework
uses the repeating historical effort values more effectively. Since these values
are observed to be close to the actual effort, devising a better way to capitalize
on this observation will increase the accuracy of the predictions.

• Enhance the practical application of the framework by improving the percent-
age of issues for which the model makes predictions; achieved by automatically
adding more issues into the set of similar historical matches.

• Introduce an approach that does not depend on similarity scores, which helps
improve predictions if the scores are deemed misleading. By using additional
common information about issues, predictions can be produced independent
of the misleading low similarity scores.

• Develop an extensible effort prediction framework, which can be adapted
and used with any defect repository to produce accurate effort predictions.
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Components can be added or modified to fit the needs of the users and the
specific repository in use.

The next section will outline the organization of the remainder of this thesis.
It will describe the contents and sections of each chapter, and the general topic of
each.

1.3 Thesis Organization

The rest of the thesis is organized as follows:

• Chapter 2 presents a survey of the related works. In the first section, it
discusses literature in the area of software development effort prediction in
general. Then it dedicates another two sections to describing the areas of
Defect Prediction and Defect-Correction Effort Prediction. Defect Prediction
is the science of predicting the number and/or severity of defects that will
affect the system in the future, based on the current software system’s prop-
erties. Defect-Correction Effort Prediction refers to the science of predicting
the effort needed to resolve or fix a reported issue in a software system. These
two related fields of study are sometimes used in conjunction to predict the
effort and costs needed to maintain a software system. Finally, the last sec-
tion presents a survey of literature in the area of Similarity-Based Prediction,
exploring different disciplines and domains that also use this method to make
predictions.

• Chapter 3 presents the Base Approach on which we build our proposed effort
prediction framework. First it describes the scoring technique used to gener-
ate the similarity scores (used as the distance measure between the issues).
Then Nearest Neighbour approach is described along with the computation
method used to produce the predictions. Next, it describes a more advanced
alternative Nearest Neighbour with Thresholds approach to predicting effort.
Finally, it presents a general process flow diagram combining the different
components of the Base Approach together, and introducing the new com-
ponents of the effort prediction framework; leading the reader into the next
chapter.

• Chapter 4 describes the effort prediction framework in more detail, along with
the underlying components. First it describes the process model of the effort
prediction framework in greater detail. Then it describes some weight com-
putation techniques, which are used by the framework in various places to
produce predictions. The effort prediction framework components are bro-
ken down into two categories: Similarity-Score Dependent Enhancements
(SSDE ), and Similarity-Score Independent Enhancements (SSIE. SSDE in-
clude Data Enrichment, Majority Voting and Adaptive Threshold, while SSIE
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include Binary Clustering. Each enhancement is described in detail and the
advantages of each is given. Finally, the a simplification of the effort pre-
diction framework implementation algorithm is presented, combining all of
the proposed enhancements and the appropriate components from the Base
Approach.

• Chapter 5 describes the experimental studies and the evaluation results. It
describes the Issue Tracking System and the data sets we extracted from
it. Then presents an overview of the implementation tools that were used
to perform the experimental studies along with some implementation details.
Then the evaluation method and evaluation metrics are described, in addition
to a discussion of the obtained results. Finally, a summary is presented to
outline what we have learned.

• Chapter 6 presents the thesis contributions, outlines future directions and
ends with some concluding remarks.
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Chapter 2

Related Works

Software development effort prediction has been studied for a few decades now.
It has become an integral part of management’s arsenal of planning tools. The
increasing growth and complexity of software systems today has pushed manage-
ment into adopting more structured and informed ways of estimating development
effort, namely prediction models. Many prediction models have been developed in
an attempt to improve development effort estimation, each with its own slightly
different take on the software process model [11, 14, 25, 41, 44, 53, 80]. Due to
the complexity of the software development process, thus far no one model can
address all of the variability involved. For example, during the course of software
evolution, developers may add new features to address emergent customer needs
or may need to fix existing defects. In turn, these modifications add to the uncer-
tainty of the process by introducing some unaccounted-for side effects. It is for this
reason that some software practitioners have turned to empirical models for effort
estimation [3, 10, 39, 59, 71, 73]. Empirical models allow practitioners to overlook
any assumptions about the underlying processes. Thereby partially relieving the
effect of the software community’s incomplete understanding of the global process
structure. However, global and analytical models are still useful and are usually
quite accurate if calibrated to local environments. Models like COCOMO [10] and
SLIM [63] have been used in practice for many years.

The remainder of this chapter will describe the different effort prediction meth-
ods used in literature for software development and defect-correction. Section 2.1
presents a general categorization of the most common prediction methods used for
software development effort, in addition to discussing some advantages and disad-
vantages of each. Sections 2.2 and 2.3 discuss more related topics to our work,
namely defect prediction, defect-correction effort prediction and similarity-based
prediction methods. In particular, Section 2.2 outlines the different work done in
the fields of defect prediction and defect-correction effort prediction, outlining some
of the problems in current literature. On the other hand, Section 2.3 describes the
work done in the area of Similarity-Based predictions across multiple disciplines
and academic domains. Since the literature in the area of defect-correction effort
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prediction is very limited, we expand our literature search outside the software
domain.

2.1 Effort Prediction Methods

In this section, we outline the different methods commonly used in literature for
software development effort prediction. The following is a generic categorization of
these methods, both empirical and theoretical:

• Parametric Models: The functional form of these models is based on theory
or experimentation [11]. SLIM [63], CHECKPOINT [40], COCOMO [10], PRICE-
S [60], ESTIMACS [66] and the SELECT Estimator [70] are some of the well
established parametric models which were extensively used in the past few
decades. They are built from the authors’ understanding and extensive stud-
ies of the software process. Unfortunately, since most of these models are
proprietary, they cannot be compared in terms of model structure. The ad-
vantages of Parametric Models is that they are based on years of professional
experience, and are usually developed by dedicated teams that study the
many aspects of the software development life cycle. These studies also ben-
efit from an abundant availability of data, since it is usually provided by the
sponsoring private companies (rather than public institutions). However, the
fact that this data is usually provided by one or few institutions, the results
can be misleading. The models can suffer from being too specific to the data
provided to them. To address this problem, some models like COCOMO pro-
vide a local calibration mechanism to fit the model to the patterns in the new
data set.

• Learning Models: Learning-oriented techniques either attempt to build
models that automatically learn from previous experiences, or use similar his-
torical case studies to produce an estimate. The former attempts to construct
a model that describes the relationship between dependent and independent
variables of the underlying process. Neural networks are a common exam-
ple of such a model, and are used by many practitioners to predict software
effort [9, 29, 47, 69, 73]. The latter (Also known as Case-Based Reason-
ing [1] or Instance-Based Reasoning [67]), however, tries to find a range of
well documented similar historical cases. In turn, these cases are used (along
with their recorded effort) as input into certain justified statistical models to
produce an estimate. Jorgensen et al. use Case-Based-Reasoning to predict
software development effort [43]. However, they use an influencing concept
for extreme values known as “Regression toward the Mean”, which adjusts
estimates towards values of more average projects. Shepperd et al. also use
Case-Based Reasoning to predict software development effort [71]. In addi-
tion, they make use of stepwise regression analysis yielding higher accuracy
estimates. Regression-Based techniques could be considered a special class
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of learning models, namely statistical learning. They are extensively used in
literature due to their simplicity, local adjustability and relatively accurate
results. Regression analysis is commonly used in conjunction with parametric
techniques to calibrate the unknown parameters. The calibration is performed
according to some criterion such as Least Squares Error or Mean Magnitude of
Relative Error, as described in [7, 45, 81]. Recently, the application of Artifi-
cial Intelligence in the effort prediction field has become increasingly popular.
Models like Neural Networks [13] and Genetic Algorithms [15] are proving to
be effective due to their adaptive nature. Some very informative Artificial
Intelligence model comparisons have been written, such as Bibi et al.’s book
“Artificial Intelligence Applications and Innovations” [8] and the work done
by Tronto et al. [80]. Bayesian probabilistic models are another interesting
“learning” approach that has been applied to software effort prediction such
as the one used by Pendharkar et al. in [61]. All these methods use some
form of software complexity and size metrics in order to predict effort. Some
studies like [58] and [32], try to develop better metrics which either relate to
effort more closely or represent the complexity of software more accurately.
One advantage of using a learning models to predict effort, is that they can
extract rules from the data directly, without requiring additional previous
assumptions from the user. This saves practitioners from trying to develop
analytical models that can account for the software behavior. However, since
these models rely solely on data, any deviation in the learning data set will
affect the performance and therefore the accuracy of the model. Therefore,
extra care needs to be taken when training these models, by ensuring that
the data reflects the real behavior of the software. Techniques like pruning
can be used achieve this, by eliminating outliers, we can limit their effect on
the performance of the model. Another advantage of using Instance-Based
Reasoning methods, is that they perform very well even when data is limited.
However, similarity (distance) calculation methods play a big role in the accu-
racy of this method, and therefore the appropriate calculation method must
be implemented to measure similarity as accurately as possible.

• Expert-Based Models: Expert-Based techniques rely on the knowledge
and experience of practitioners within a domain of interest. The experts pro-
vide estimates by synthesizing a set of known outcomes of all past projects
known to the expert. This model is useful when there is a lack or shortage of
quantified, empirical data. However, since these models rely on expert judge-
ment, they are prone to opinion bias. None the less, practitioners have used
them with success and such are examples of these studies [10, 34]. Jorgensen
et al. have done a great comparison study of different expert estimation tech-
niques [41], in addition to practical guidelines for using such methods [42].
One of the more popular expert-based methods is the Delphi Technique [16].
It is used to guide a group of experts to a consensus of opinion on a particular
issue, such as the effort needed to complete a software project. It takes the
experts through a number of rounds, where they discuss their estimates and
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give their opinions regarding the topic at the end of the round. This tech-
nique tries to alleviate the problem of opinion bias in expert-based judgment
by ensuring that a panel of expert agree on the estimate, rather than taking
the estimate of one individual. However, this technique still suffers from the
fact that the decisions made are based more on expert opinion rather than
hard empirical data.

• Composite Models: Composite models combine two or more techniques
to formulate the most appropriate functional form for estimation [11]. For
example, some models like COCOMO combine parametric alongside statisti-
cal learning techniques such as regression analysis to achieve accurate results.
COCOMO uses regression to locally calibrate the different variables to the
specific development environment. Composite models are an effective estima-
tion tool; the different methods incorporated into the model allow for greater
adjustment flexibility. If the methods are used correctly, they can comple-
ment the weaknesses of each other. Something that single models usually
lack. However, if the combined methods are not compatible, or could be
considered too similar, then such composite models do not benefit from the
complementary nature that practitioners seek in these methods.

We have presented a number of software development effort prediction tech-
niques, with an overview of some the advantages and disadvantages of each. The
lesson we can take from this summary is that no one technique can be considered
superior to all others. The key to getting accurate predictions is to use a variety of
techniques and tools and understand why the results might differ from one method
to another. If the practitioner understands the differences between the methods
in use, then they are more likely to have a good grasp of the underlying costs
and factors that affect the development of the project. Thus, making them better
equipped to take part in the planning and budgeting undertaken by management.

In the next chapter, we will outline the different defect prediction methods used
in literature, in addition to discussing the various defect-correction effort prediction
approaches.

2.2 Defect-Correction Effort Prediction

Although our research is in the area of defect-correction effort prediction, it is
beneficial to review and understand defect prediction methodologies. This allows
us to better understand defects, their properties and how they can be controlled and
tracked. In turn, this will help us devise better defect-correction effort prediction
methods.

Organizations want to predict faults or defects in software systems before they
are deployed in the field, to gauge their quality, stability and effort required to
maintain them. A wide range of models have been developed for this purpose, and
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most usually rely on complexity and size metrics to predict defects [4, 17, 48, 56].
Others may use a quality measure of the software development process to assess the
system [18, 19], or sometimes multivariate analysis [4, 24]. There are also some novel
approaches that do not quite fit the commonly known approaches. For example,
in [84], the authors describe a method of fitting empirical data to mathematical
functions in various ways, yielding promising results. Also, Padberg et al. propose
the use of Neural Networks coupled with nonlinear regression to estimate defect
content in software systems. In [26], Fenton et al. provide an excellent review and
comparison of the various defect prediction models in literature.

The next step after defect prediction, is to employ some form of a defect-
correction effort prediction to assess the time and resources needed to address them.
It is interesting to note, that only recently has this area of research begun to attract
attention. Again, we give credit to the increasing complexity of software interac-
tions and the need for more formal methods of prediction. Although the number
of literature addressing this area is limited, they are nothing short of pioneering
works. In [85], Zeng and Rine use a self-organizing neural network approach to
predict defect-correction effort. First, they cluster defects from the training set,
then they compute the probability distributions of effort from the resulting clus-
ters. These distributions are then compared to the defects of each instance in
the test set to derive the prediction error. They use the NASA KC1 data set to
evaluate their approach, but unfortunately their only performance measure was
Magnitude of Relative Error. In literature, this metric has been believed to be
asymmetric [27, 50], and the use of supporting measures is usually desired to avoid
any doubts of validity. Additionally, when they apply their prediction method to
an external data set (data set not used in training), their MMRE reaches scores of
up to 159%, with a maximum MRE of about 373%. This shows that while their
technique preformed well when applied to the training data set (with MMRE ¡
30%), it is not reliably extendable to other data sets. On the other hand, Song
et al. proposed the use of association rule mining to categorize effort into inter-
vals [77]. To evaluate their approach, they use NASA’s well known SEL defect
data set. According to their findings, their technique outperformed other methods
such C4.5, Näıve Bayes and PART. Another interesting approach was proposed by
William Evanco in [23]. Using explanatory variables such as software complexity
metrics, fault spread measures and the type of testing conducted; he develops a
statistical model that can be used in conjunction with defect prediction methods to
give estimated defect fix effort with certain a certain probability measure. In [22],
he also proposes a related model using Poisson and multivariate regression analysis
to model the effort. Finally, in [82], Weiss et al. propose a novel approach using an
Instance-Based Reasoning methodology (a type of nonparametric learning method)
called the “Nearest-Neighbour Approach” [31, 67]. They use a text-similarity ap-
proach to identifying nearest neighbours, which they use to generate informative
effort predictions. They test their approach on real data extracted from an Issue
Tracking System, by using an evaluation method that is time-line conscious to sim-
ulate a practical application of the model. Their model shows promising results,
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with Average Absolute Residuals reduced down to about 6 Hours within the actual
effort. In [52], Manzoor creates a list of pointers and guidelines for experts to follow
when estimating defect-correction effort. He groups them by the type of defect and
programming environment, such application architecture, programming practices
and object-oriented design. These pointers can prove to be valuable if studied and
applied effectively.

The above defect-correction effort prediction studies present various attempts
at providing accurate predictions. However, they do not extend their experimental
evaluation to additional data sets (with the exception of [85], which we have shown
to have produced less than impressive results). This raises questions about the
external validity of the proposed approaches. Many approaches can be calibrated
to a specific data set, but only a small number can be extended to additional data
sets. It is those methods that can be applied to additional external data sets,
and still perform well, that can be used in practice. To extend the validity of our
proposed effort prediction framework, we evaluate its performance on an additional
data set, giving the reader greater confidence that our approach can perform well in
practice. In addition, we use multiple performance metrics to assess the accuracy
of the framework. Most performance metrics have some kind of bias [50], therefore
we opt to using complimentary metrics that show the distribution of error for our
predictions in a more comprehensive way.

As we can observe, the literature in the area of defect-correction effort predic-
tion is limited (to the best of our knowledge). Therefore, the next section will
explore similarity-based prediction methods from many other disciplines, ranging
from medicine to economics. This will give us a better understanding of what tech-
niques and tools are currently being employed in literature and practice, to help us
make informed decisions for the implementation of our effort prediction framework.

2.3 Similarity-Based Prediction Techniques

Instance-Based Reasoning methods have been widely used in many domains and
disciplines to produce predictions. For example, it has been used in medicine to
predict drug toxicity [21] and in economics to predict financial distress of com-
panies [78]. Due to the limited number of works in the area of defect-correction
effort prediction, and especially for methods using Instance-Based Reasoning, we
will expand our scope into these alternate disciplines. This will allow us explore,
leverage and possibly apply foreign Instance-Based Reasoning models into the field
of software defect-correction. Our summaries will mainly be concerned with the
use of similarity to generate the prediction, rather than with the methods used
to compute the similarities themselves. Although many papers do propose some
interesting and novel ways of computing the similarities, this area of research is
usually domain specific.

We can divide the literature into four major categories according to their method
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of using historical similarities to compute an estimate: Clustering, Top-K Regres-
sion, Top-K Mean and Top-K Majority Voting. The following subsections will
describe each in detail, in addition to outlining the different studies performed
using each technique.

2.3.1 Clustering

First we will describe the use of Clustering to produce estimates. Clustering is
an unsupervised learning technique which aims to find structure in a set of unla-
beled data. It is the process of arranging or dividing objects into groups whose
members are similar in some way [54]. Distance-based clustering groups objects
into a cluster if these objects are considered close according to some distance mea-
sure. Conceptual clustering is another kind of clustering which groups objects that
share a common concept; i.e. descriptive concept rather than a defined similarity
measure [54].

In [62], Phansalkar et al. use k-means clustering (as described in [72]) to predict
a software program’s performance. They use five categories of benchmarks to mea-
sure similarity between programs: Instruction Mix, Behavior of branches, Inherent
Instruction Level Parallelism, Data locality and Instruction locality. To reduce the
dimensionality of data (29 metrics), they use Principal Component Analysis which
transforms the data to a new coordinate system. They find the optimal number
of clusters by using the Bayesian Information Criterion a described in [72]. Once
they identify what cluster the target program goes into, they use the performance
measure of the closest program to the center of the cluster as the prediction. An-
other interesting work is presented by Ben-Dor et al. concerning biological Tissue
Classification [6]. They use the CAST clustering algorithm to classify tissues with
gene expression profiles. To classify an unknown instance, they conduct a majority
vote of the element labels in the matching cluster and use the winning label as the
predicted classification. In order to test the performance of this clustering classi-
fication method, they compare it against a simple kNN approach (k = 1). Their
results show that this method is successful in reliably predicting tissue types, and
is comparable to existing methods in literature. The advantage of using Cluster-
ing to classify data and produce effort predictions is that it is a well established
and relatively simple mechanism to perform. However, it relies on defining discrete
labels to groups or clusters which limits the adaptability of the approach.

2.3.2 Top-K Regression

Regression analysis tries to model a dependent (response) variable (e.g. Effort) as
a function of independent variables (e.g. Program Size), their corresponding pa-
rameters (constants) and an error term. The parameters are estimated to give a
“best fit” of the data. Usually evaluated using the least squares method, although
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other methods have been used [7, 81]. The error term is used to represent any unex-
plained variation in the dependent variable. For a good introduction to regression
analysis please refer to [79]. The idea behind Top-K Regression is based on limiting
the training data set to the most similar instances (candidates) only, as compared
to using all of the history. This helps to alleviate the effect of outliers which may
affect the model’s accuracy. On the other hand, we need to compute a different
equation for every target instance (instance for which we need a prediction), since
the set of candidates is different. However, the candidate set is usually small and
the computation is simpler and less time consuming.

Iwata et al. propose a top-30 multiple regression method to predict effort for
embedded software development [37]. The use a collaborative filtering system to
generate the similarity scores between projects. However, of the 73 projects they
use for the evaluation of their approach, 53 of them were missing measurements for
some of the metrics. They mitigate this problem by computing the missing values
based on project similarities using a weighted mean of the similar projects’ metric
values. Now they can obtain a full matrix of projects and their corresponding met-
ric values, in addition to the similarity vector relating the target project to each
of the projects in the matrix. Then they choose the top 30 most similar projects
according to score and scale/size, and use them to generate the regression model
and the prediction. To evaluate their approach they compare it to regular multiple
regression analysis and to collaborative filtering, concluding that their approach
performs favorably. It is beneficial to mention that they use 5 performance metrics
for evaluation: Mean Absolute Error, Variance of Absolute Error, Mean Relative
Error, Variance of Relative Error and Rratio which they define as the inverse of
PRED(15). In [86], Zhu et al. use a multiple linear regression model coupled with
fuzzy membership evaluation to predict soil properties at specific locations [86].
Given a raster layer of the location, with each pixel represented by a similarity vec-
tor, they constrict a multiple linear regression model to predict the soil property
value at a location using a regression between soil property and fuzzy membership
values in each of the soil classes. They conclude that using this method is best
suited for gentle landscapes where the relationships between soil property values
and terrain attributes approach linear. Kapadia et al. also propose the use of
Top-K Regression (which they call “Locally Weighted Polynomial Regression”) to
predict the run-specific resource-usage in a computational grid environment [46].
However, the results indicate that the Top-K Mean and the Top-K Weighted Mean
methods outperform the more sophisticated “Locally Weighted Polynomial Regres-
sion”. Smith et al. use three variants of the Top-K Regression model in an effort to
improve run time (execution time) predictions for jobs that run on computational
grids [74]. Computational grid systems rely on scheduling algorithms to provide
queue wait times for jobs. In turn, scheduling algorithms rely on run time (execution
time) predictions to update schedules and queue wait times. After experimentation,
the authors conclude that the Top-K Mean method performed better than any of
the three regression approaches (linear, logarithmic and inverse). Similarly, in [75],
Smith et al. use Top-K Linear Regression to predict run times for applications
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on computational grid systems. Yet again, their results suggest that Top-K Mean
performs better than th e Top-K Linear Regression approach. Dymo also proposes
the use of Top-K Regression to predict software development time [20]. However,
his work does not show any empirical evaluation of the proposed method, making
it difficult to assess its performance. Top-K Regression relies on the availability
of additional independent variables that can be used as descriptors for the target
issues. This limits its application to only data sets that provide such information.

2.3.3 Top-K Mean

Top-K Mean simply computes the mean of the measure (e.g. Effort) describing the
Top-K candidates. Ebbles et al. suggest the use of Top-3 Mean to predict drug
toxicity based on the similarity of their physiological effects on organisms [21].
They generate a multidimensional similarity matrix by using a pre-existing density
estimation method called CLOUDS. Then they use the average of the top 3 can-
didates, chosen from the matrix, as their prediction. Weiss et al. also use Top-K
Mean to predict the time needed to fix a particular software maintenance issue [82]
(mentioned as well in Section 2.2). Nassif et al. use Top-K Mean to predict job
completion times for applications running on grid computing environments [57].

Top-K Weighted Mean is also a common variant of this method, where a weight
is assigned to each instance in the candidate set based on its similarity score. Li
et al. propose using Top-K Weighted Mean to predict job response times for aid
in large-scale grid resource-allocation scheduling [51]. They use application and
resource state similarities to compute the distance scores. To assess the perfor-
mance of Top-K Weighted Mean, they compare it to a simple nearest neighbour
approach (where they pick the value corresponding to the nearest neighbour as
their prediction). In [76], Smith and Wong propose another method using Top-K
Weighted Mean for predicting application execution times of parallel applications
running on computational grids. Their work will also allow for the prediction of
application wait times in scheduling queues before being allocated the required re-
sources. Jo et al. apply three forecasting techniques to predict firm bankruptcies:
Discriminant Analysis, a Case-Based Forecasting System and Neural Networks [38].
Discriminant Analysis is a statistical model, similar to clustering, commonly used
in classification. It estimates a linear function which can classify objects based on
a group-membership score. Their implementation of the Case-Based Forecasting
System uses a Top-K Weighted Mean approach to produce the estimate. According
to their findings, the Neural Network model outperforms both of the Discriminant
Analysis and the Case-Based Forecasting System methods, with both following
closely behind. They attribute the under-performance of the Case-Based Forecast-
ing System to the low correlation between the dependent and independent variables
used in their approach. However, they believe that Case-Based Reasoning systems
are comparatively useful, especially when training data is scarce. They also out-
line that their future studies will concentrate on developing hybrid systems which
integrate various prediction tools, such as those described above. Phansalkar et al.
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uses Top-K Weighted Mean as an alternative to clustering in [62]. They use the
same method we described in their implementation of Clustering to compute the
similarity scores/distances. They define the weights as the reciprocal of the distance
to each of the programs. The program with the highest similarity (lowest distance)
to the user’s application, gets the highest weight. They experiment with three dif-
ferent weighted mean methods to use for the prediction of performance: geometric
mean, harmonic mean and arithmetic mean. After examining the average error of
each, they decide that the weighted harmonic mean performs the best. Although
they conclude that both the Clustering and the Top-K Weighted Mean approaches
show competitive results, if enough data is present, Clustering seems to follow the
actual data distribution better. In [86], Zhu et al. also use Top-K Weighted Mean
as an alternative to Top-K Regression to predict soil properties. They conclude,
that unlike the Top-K Regression approach, Top-K Weighted Mean performs better
in areas with steep landscape due to the non-linearity of the relationships.

Since Top-K Mean is the simplest predictor approach, it usually preferred by
practitioners for implementation. However, since mean is greatly affected by out-
liers, this method must be used with caution, and data must sometimes be pruned
or manipulated to relieve their effect on the accuracy of the predictions. Top-K
Weighted Mean gives the user more control over the behavior of the predictor,
but the chosen weight computation method is crucial to the performance of the
predictions.

2.3.4 Top-K Majority Voting

Majority Voting counts the repeating occurrence of a certain value in history as
a vote towards its use as the estimate; the value with most votes wins. Top-K
Majority Voting simply limits the history set to the Top-K candidates. This model
is less prone to the effect of outliers, however, in cases of indecision (no majority
vote); an alternative method has to be used.

In [78], Sun et al. propose the use of Top-K Majority Voting to predict the
financial distress of companies ahead of time. Using fuzzy logic, they compute the
similarity scores between the target company and each of the other companies.
After retrieving the k-nearest neighbours, the company class/state with highest
ratio out of the k-nearest neighbors becomes their prediction. To evaluate their
approach, they use data collected for 135 Chinese companies. They conclude that
their method is competitive with Neural Networks, Support Vector Machine, Logit
and Multi Discriminate Analysis approaches. Santos et al. also propose using
Top-K Majority Voting to estimate stellar parameters [68]. What is interesting
about their approach is the fact that they use a Top-K Weighted Majority Voting
approach; where the votes of more similar data points have a higher vote-count
(influence) than the less similar ones. They report achieving competitive results in
their field. Ratanamahatana also uses Top-K Weighted Majority Voting to predict
potential customers who are likely to switch to the new 3G wireless networks [65].
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Ramirez et al. use Top-K Majority Voting to predict stellar atmospheric param-
eters [64]. First they use Genetic Algorithms to reduce the size of the data set
as to decrease the computation overhead needed to generate the similarity scores.
They experimentally deduce that the best value for k is 3, and an increase in k
does not significantly improve the predictive accuracy, while slightly increasing the
running time. Finally, they use Top-K Majority Voting for discrete-valued target
functions and Top-K Weighted Mean for real-valued target functions. A target-
function simply describes the different states for certain atmospheric properties or
parameters.

What we found lacking in the above-mentioned works, is any description of the
methods’ behavior in cases of majority vote indecision. While this may describe
a small percentage of cases, the way in which they are handled may improve the
results, even if slightly. Top-K Majority Voting performs better than Top-K Mean
when dealing with outliers and extreme values. However, Majority Voting can
only be applied to discrete values, and if the effort values come from a continuous
distribution (i.e. not a limited set of values), Majority Voting cannot be used.

An interesting study by Kim et al. uses a composite approach to predict inter-
est rates for two countries [49]. They combine Neural Networks with a Case-Based
Reasoning method. The composite model makes use of the Case-Based Reasoning
method by feeding its prediction into the Neural Network, in addition to the raw
variables. In order to evaluate the performance of the composite model, they com-
pare it to the separate Neural Network and Case-Based Reasoning approaches, in
addition to a random walk model as a benchmark to overall performance. While,
the composite model does not provide an improvement in comparison to the in-
dependent Case-Based Reasoning method, it does perform comparatively with the
Neural Network approach.

The next section will summarize what we presented in this chapter, outline the
lessons learned and how our work plans to solve some of the problems apparent in
current literature.

2.4 Summary

In this chapter we outlined the different categories of effort prediction for software
development, that are used most commonly in literature. We learned that no one
prediction approach can be preferred over all others. The key is to understand
their differences and either combine them or use each in their best performance
environment. We also discussed the different methods used to predict defects and
defect-correction effort. We demonstrated that while current defect-correction effort
prediction methods show reasonable performance, they do not extend the validity of
their approach to other data sets. In cases were the approach was applied to addi-
tional case studies, the prediction performance was compromised. For that reason,
our study applies the proposed framework on multiple case studies to extend the
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validity of our approach, and show its capability to be applied in practice. Finally,
we explored the application of similarity-based effort prediction in other domains,
due to the limited number of studies in the area of software and defect-correction.
We have learned that prediction methods in this area can be divided into four major
categories: Clustering, Top-K Regression, Top-K Mean and Top-K Majority Vot-
ing. Each prediction method has its own advantages and disadvantages, and can
be used effectively if the practitioner understands their strength and weaknesses.
For example, while Top-K Majority Voting performs better with the existance of
outliers, it cannot be used in cases where the effort values are not discrete. On the
other hand, Top-K Mean is a simpler technique and while prone to outliers, it can
be used with continuous effort values.

It can also be noted that current literature does not focus on providing exten-
sible and modular frameworks, that can adapt to the user’s needs. We propose
a modular framework, where the different components can be updated, or addi-
tional modules can be added. This allows the user to customize the framework
to suite their particular data set. Also, while current defect-correction effort pre-
diction literature compares the different prediction methods, it does not combine
them in one framework. We propose combining two approaches that complement
the weaknesses of one another. Our framework does not limit the combination to
two methods. Additional methods can be added if deemed appropriate.

The next two chapters will describe our proposed effort prediction framework.
First, Chapter 3 will present the Base Approach on which we build our effort pre-
diction framework, and a brief outline of the general architecture of the framework.
Chapter 4 describes the effort prediction framework in more details, presenting it
as a set of enhancements applied to the Base Approach.
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Chapter 3

Proposed Framework Introduction

To facilitate an easier understanding of our proposed framework, we describe a base
approach to which we apply a set of enhancements (which make up the core of the
effort prediction framework). In Section 3.1, we present the base approach, by first
describing the mechanism used to generate the similarity scores, then describing
two prediction methods that use the Nearest Neighbour Approach. In Section 3.2,
we outline the different components of the effort prediction framework, with the aid
of a simplified process model describing the framework. Finally, Section 3.3 outlines
what we discussed in this chapter and leads the reader into the next chapter.

3.1 The Base Approach

This section describes the base approach, inspired by the work presented by Weiss
et al. in [82], to which we apply our enhancements. We propose two prediction
approaches: the Nearest Neighbour Approach (described in Subsection 3.1.2) and
the Nearest Neighbour Approach with Thresholds (described in Subsection 3.1.3.
Nearest Neighbour approaches require a distance or scoring mechanism to assess
the similarity between the different instances (in our case issues). Subsection 3.1.1
describes the text-similarity approach along with the tool we use to generate the
similarity scores.

3.1.1 Generating Similarity Scores

In obtain the nearest neighbours to target issue, we need to define a distance or
similarity measure. We use a text-similarity measuring approach, inspired by [82],
and motivated by the fact that most of the information about an issue is available
in the title and description fields of the issue report. The text-similarity measuring
engine we use is called Lucene; an open source project developed by the Apache
Foundation [33]. It has demonstrated its competence through its deployment in
many major systems at high profile organizations such as MIT, FedEx and New
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Scientist Magazine. Lucene uses a vector-based approach to measuring the similar-
ity between two texts, which it uses to index resolved issue reports into a repository.
Before we perform the indexing, we remove all English stop words such a, an and
the, we also remove all symbols such as +, - and ().

When we need to find the Nearest Neighbours for a new target issue, we form
a query containing the information known about the issue. Then, compare it to
all the existing (indexed) issues in the repository, to generate the similarity scores.
Lucene returns scores between 0 and 1; where scores closer to 0 indicate marginal
similarity and ones closer to 1 indicate very high similarity. On a more technical
note, we use the Multi-field Query provided by Lucene to combine the different
query fields into a single score. Lucene compares the different fields seperately and
combines the results into a single score using a boost factor. We use an equal boost
factor for all fields in our experiments, which instructs the search engine to give the
same weight to all similarities for the different fields.

The approach in [82] proposes the use of only the Title and Description fields
of an issue; however, we propose to use additional information in the query to
increase the accuracy of the similarity scores, and consequently, the performance of
the predictions.

3.1.2 The Nearest Neighbours Approach(kNN )

The Nearest Neighbour Approach (kNN ) has been widely used in software develop-
ment to predict the effort or the cost for software projects early in their lifetime [71].
It has also been shown to perform better than traditional prediction methods such
as COCOMO and linear regression [71]. A great advantage of kNN is its flexibility
and ease of use in practice, in addition to its ability to perform well even in situ-
ations where data is limited. Therefore, we adopt the kNN approach to produce
our defect correction effort prediction, based on reasoning adopted from research
in the area of software cost estimation; i.e. it is very likely that similar issues will
have similar correction times.

We use kNN to produce a prediction as follows: the target issue (to be predicted)
is compared to the resolved ones in the Issue Tracking System. The distance mea-
sure (as defined in Subsection 3.1.1) is used to produce a similarity score between
the target issue and every resolved issue. Then, the k most similar issues (candi-
dates) are selected, and their reported efforts are combined to produce a prediction.
If the users require a justification of the prediction, we can provide the candidates
used to derive it, giving them a better understanding of the prediction. In [82], the
authors use the mean of the candidate issues to generate the prediction, however,
our approach proposes a multi-step Top-K Majority Voting approach which makes
better use of the discrete nature of the recorded effort values.
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3.1.3 The Nearest Neighbours Approach with Thresholds
(α-kNN )

To make a prediction, kNN chooses the k nearest neighbours according to the simi-
larity scores and computes the mean, with no regard to the score values; i.e. it uses
the scores to sort the issues according to similarity. This technique might be inac-
curate at times, where even the highest scores are very low, consequently producing
misleading results. For example, if the nearest neighbours have scores below 0.1,
kNN will still use them to make the prediction, although it might be inaccurate.
Therefore, to address this problem, we introduce the concept of thresholds, as orig-
inally presented in [82]. We define a variant of kNN called the Nearest Neighbour
with Thresholds (α-kNN ). α-kNN applies a lower bound on the acceptable scores;
i.e. if α = 0.5, then only issues with scores ≥ 0.5 are allowed as candidates, up
to k issues. This implies that for higher values of α, α-kNN may not choose any
candidates and will return “Unknown” rather than a prediction. However, this is
one of the problems resolved by introducing two enhancements in our approach:
Adaptive Threshold and Binary Clustering.

The next section will show how the above components are combined into our
proposed framework, and outline their interactions. With the aid of a simplified
process model diagram, we will briefly describe the different components and illus-
trate how the Base Approach fits into the effort prediction framework.

3.2 Simplified Framework Composition

This section will outline the different components that make up the composite
effort prediction framework. It will give a simplified overview of the process model,
including the interactions of the different components. It will also summarize where
the Base Approach components fit in the framework.

There are five different components/modules that make up the framework, as
illustrated by Figure 3.1: Data Enrichment, Text Similarity Engine (Lucene), Near-
est Neighbours with Thresholds (α-kNN ), Adaptive Threshold and the prediction
modules (Majority Voting and Binary Clustering). The Base Approach compo-
nents (shown by the black boxed modules in Figure 3.1) are made up of the Text
Similarity Engine (as described in Subsection 3.1.1) and the Nearest Neighbours
with Thresholds (as described in Subsection 3.1.3). We chose to use α-kNN in
our framework since the results of using this prediction method outperform the
standard Nearest Neighbours approach kNN. It also allows us to manipulate the
threshold to control the scope of data we would like incorporate in our predictions.
The new modules/components (shown in dashed red boxes in Figure 3.1) are the
enhancements introduced to the Base Approach, which make up the remainder of
the effort prediction framework. They are described and illustrated in more details
in Chapter 4.
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Data Enrichment is an enhancement that incorporates more issue related infor-
mation into the similarity engine text query. This should generate more accurate
similarity scores since the similarity engine can now focus its search to more related
issues (assuming similar results have similar actual effort [82]). Adaptive Threshold
automatically adjusts the threshold value to a lower limit if no matches are found
until we reach a similarity level were scores are deemed misleading. This solves
the problem of returning “Unknown” results to user when using α-kNN. Rather
than leaving the user without a prediction, we provide the best possible prediction
while still keeping the lowest scores out of the similarity matches. By providing
the user with the matches that were used to produce the prediction along with
their similarity score, the user can then perform his or her own reasoning based on
that information. At the same time, since we provide a minimum limit where the
similarity scores are believed to be misleading, and revert to alternative prediction
methods, the user can set this limit to whatever threshold value they want. This
allows great flexibility when performing the predictions. In cases were the simi-
larity scores are high enough to pass the threshold limit, we use Majority Voting
to calculate the effort prediction. Otherwise, if the similarity scores are too low,
or we have no matches for a particular target issue, we use an alternative predic-
tion method, called Binary Clustering. Binary Clustering uses other common issue
information from the Issue Tracking System to calculate the predictions (indepen-
dent of the similarity scores). To keep the framework extendable and modular,
Binary Clustering can be replaced by any similarity score independent approach.
Additional methods can also be added prior or after Binary Clustering to calculate
the predictions for those issues which it could not make a prediction. For example,
in cases where a cluster contains no members, Binary Clustering cannot make a
prediction. For our framework, resolve that problem by using a different clustering
criterion, and recalculating the prediction. However, that does not limit users from
using a different prediction method instead.

The next section will summarize what we discussed in this chapter and intro-
duce the following chapter which describes the effort prediction framework in more
details.

3.3 Summary

In this chapter, we introduced the Base Approach to which we apply a set of en-
hancements. The Base Approach is composed of a similarity measuring engine,
which calculates the distance between the issues needed to identify the Nearest
Neighbours, and the Nearest Neighbour Approach (kNN or α-kNN ), which cal-
culates the predictions based on the similarity scores. We described our effort
prediction framework as a set of enhancements to the Base Approach, from which
we used α-kNN for its superior performance. We introduced four enhancement:
Data Enrichment, Adaptive Threshold, Majority Voting and Binary Clustering.
These enhancements make up the core of our proposed composite effort predic-
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tion framework. The next chapter will describe the effort prediction framework in
more details, and will provide a summary pseudo-code algorithm which shows its
implementation.
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Chapter 4

Effort Prediction Framework

In this chapter we describe our proposed effort prediction framework for defect
correction effort prediction. First, Section 4.1 presents two weight computation
techniques that we use in cases where the approach reverts to computing the ef-
fort prediction using a Weighted Mean method. Then, Section 4.2 describes the
proposed enhancements to the Base Approach, including when and how they are
used. Section 4.3 presents a summary algorithm (pseudo-code) that combines the
proposed enhancements, and a corresponding description of its operation. Finally,
Section 4.4 summarizes what we discussed, including the different enhancements
and weight computation methods presented, and introduces the following chapter
of experimental studies.

4.1 Weight Computation Methods

When using Majority Voting, we may encounter cases where a majority vote is
not reached. In cases where we have multiple similarity matches in the candidate
set, but no majority vote, we opt to use a Weighted Mean approach. It expresses
the prediction as a weighted sum of the effort values, corresponding to the issues
in the candidate set. We experiment with two techniques to compute the weights
as explained next. These techniques show similar performance, and a small, but
noticeable, improvement over simply using the mean (equal weights).

4.1.1 Least Squares Learning

This technique uses the method of least squares, also known as regression analysis,
to compute the weights based on minimizing the sum of the squared residuals
(a residual is the difference between the actual and the predicted effort). This
technique is Similarity-Score Dependent since it relies on similarity-scores to sort
and filter training issues. The training set is the group of issues that we use to
compute the weights. The key to generating useful and accurate weights is to choose

25



the training set properly. Our technique relies on the fact that the similarity-scores
are a good indicator of similarity [82], and chooses the training set the same way
as the candidate set is chosen (a weight is assigned to an issue’s position in the
sorted candidate set array). Ideally, this should produce a training set that has
similar properties to the candidate set. The following is a formalization of how
Least Squares Leaning is used to compute the weights:

Êi =
M∑
j=1

wjEij (4.1)

MSE =
1

N

N∑
i=1

(Ei − Êi)2 (4.2)

=
1

N

N∑
i=1

(Ei −
M∑
j=1

wjEij)
2 (4.3)

where M is the number of candidate issues, wj represents the weight coefficient for
the jth candidate issue, Eij represents the actual effort of the jth candidate issue of

the ith training issue, Êi is the predicted effort for the ith issue, N is the number
of training issues and Ei represents the actual effort for the ith issue. In order to
minimize the Mean Square Error (MSE ), we differentiate w.r.t. wq for 1 ≤ q ≤M
and set ∂MSE

∂q
= 0; resulting in:

M∑
j=1

N∑
i=1

EijEiqwj =
N∑
i=1

EiEiq (4.4)

By computing (4.4) for all q, we obtain a system of linear equations for finding the
weights wj (1 ≤ j ≤M).

4.1.2 Historical Value Frequency

This technique benefits from the fact that the recorded effort values are discrete;
i.e. effort is usually rounded to the nearest 15 minutes. To compute the weights,
this technique counts the number of occurrences of each effort value in the history,
and computes the normalized relative weights (estimate of probabilities) accord-
ingly. This is equivalent to minimizing the mean squared residuals (by computing
the statistical expectation conditioned on the candidate set) by solely relying on
the history to estimate the probability values (ignoring the similarity scores, and
consequently, the order in the candidate set).

The following is an example of how these weights are computed: we are given
the Candidate Set = [1, 2, 4], which contains the effort values for the target issue
candidates, and History = [1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 4, 4, 5], a vector of all effort values
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in history (resolved issues). First, we compute the frequency of each effort value in
the Candidate Set as it appears in History, this give us the Candidate Set Historical
Frequencies (F ) = [count(1), count(2), count(4)] = [3, 5, 2]. Then, to compute the
normalized weights, we divide the resulting frequencies by the sum of the frequencies
in the Candidate Set Historical Frequencies vector, as shown in Candidate Set
Weights = [ 3

sum(F )
, 5
sum(F )

, 2
sum(F )

] = [ 3
10
, 5

10
, 2

10
] = [0.3, 0.5, 0.2]. Now that we have

computed the weights, we can apply them to the Candidate Set by multiplying each
entry accordingly, and the final Weighted Candidate Set = [(0.3 ·1), (0.5 ·2), (0.2 ·4)]
= [0.3, 1, 0.8]. Finally, to produce the prediction, we compute the sum of the
Weighted Candidate Set.

In the next section, we describe the proposed enhancements that make up the
core of the framework in detail. In addition, we provide an illustration, similar to
Figure 3.1 in Chapter 3, but with a more detailed look into the components the
make up each of the enhancements.

4.2 Proposed Enhancements

Our approach could be described as a set of enhancements to the Base Approach.
To help understand our approach, we divide the four proposed enhancements into
two categories: Similarity-Score Dependent Enhancements (SSDE ) which include
Data Enrichment, Majority Voting and Adaptive Threshold, and Similarity-Score
Independent Enhancements (SSIE ) which include Binary Clustering as depicted in
Figure 4.1. It can be observed that SSDE is used when the similarity scores are
high, and SSIE is used otherwise. This is justified based on studies showing that
prediction methods using historical similarity can be more effective in comparison to
those which do not (such as COCOMO or regression models [71, 43]). However, at
lower scores, SSDE could actually negatively affect the accuracy of the model [82].
For this reason, we adopt the SSIE in such cases, relying only on issue-related
information.

Figure 4.1 shows the process model describing our effort prediction framework,
we will give a brief walk-through to help better understand the process. First, we
extract the Target Issue Information along with the Resolved Issues from the Issue
Tracking System. Then we form a match query through Data Enrichment, where
we include a number of issue properties. While the Base approach uses the Title
and Description properties only, our approach includes additional issue properties
such as Project Name and Issue Type. Then after feeding the query (along with the
Resolved Issue) into the text-similarity engine, we obtain the similarity scores with
each resolved issue. The scores, in addition to the similarity threshold (α) provided
by the user, are then used by α-kNN to find the similarity matches (candidates).
If no matches are found at the given α value, Adaptive Threshold kicks in and
decrements α if possible. Then the new α is fed back into α-kNN, and the process
is restarted. This continues until we either find a match or reach a threshold limit
(i.e. predictions based on scores below this threshold are considered misleading), at
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which point we switch to Binary Clustering. If we find matches, Majority Voting is
used to compute the prediction, otherwise, Binary Clustering uses its own criteria
to cluster related issues and produce the prediction.

The following subsections give a description of the enhancements (refer to Fig-
ure 4.1 to see where each fits in the process):

4.2.1 Data Enrichment

In Section 3.1.1, we described how we use a text similarity measuring engine to
extract similarities between issues. The Base approach uses the issue’s Title and
Description in Lucene’s search query to generate the similarity scores. While that
has generated promising results, we believe that incorporating more related data
into the search query should better focus the results. For example, on a search
engine like Google, if we search for the word “apple”, we might get mixed results
giving us links related to the fruit and the computer company. However, if we enrich
the query by adding more relevant criteria like “computer”, the results should be
more relevant to what we really are looking for. Nevertheless, we will notice that
the number of the results returned for the enriched query will decrease, since we
have defined a narrower scope for the search. In most cases, we do not notice the
effect of this decrease in the number of results since search engines like Google index
millions of documents, and the decrease is minute relative to the number of results.

Similarly, if we apply the above philosophy to our engine’s search query; incor-
porating more data relevant to the target issue into the query, we should obtain
more accurate scores. We should see an improvement in the relevancy of the as-
sociated issues. A more contextual example would be: if we include the issue’s
Project Name and Issue Type, given that those two properties are correlated to the
actual effort values, we should see more representative matches higher up in the
score array (i.e. more relevant matches should obtain higher scores). However, as
mentioned above, there are two unfavorable side effects: 1) in general there will
be less matching issues, 2) the number of high scoring matches will also decrease;
both side effects are due to the more specific nature of the query. Contrary to the
Google case, we will notice these effects on our data set, since our index contains
only a few hundred documents. This implies that, while yielding more accurate
results, using the α-kNN method will have lower FEEDBACK values for high α’s,
(FEEDBACK is a performance metric that measures the percentage of issues for
which the model makes predictions).
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To implement this enhancement, we perform a two step analysis to determine
which issue properties to include. This process is performed per data set and the
determined properties are used universally for all predicted issues for each given
data set. Initially, we perform a correlation analysis between each issue property
available from the Issue Tracking System, and the actual effort. Then, we choose the
properties with highest significant correlation values as our base set. An systematic
analysis is then performed to identify the effect of each property on the accuracy
of the scoring mechanism. First, we test the effect of enriching the query with
each property individually. Once we identify the best group of properties, we again
systematically test them together until we arrive at the best set of properties,
giving the most accurate results possible. During the testing we also take into
consideration the FEEDBACK value; as we mentioned above, the FEEDBACK
decreases as introduce more criteria into the query. In general, we try to avoid
cases where FEEDBACK reaches the 0% mark; intuitively we would like it be as
high as possible, at the same time we want the accuracy of the scoring mechanism
to also be high (it is a balancing act). One issue property that we did not use in
our study, is the associated files changed. The main reason behind our decision to
exclude this information, is the fact that this information is not usually available in
the initial stages of the issue’s life. In fact, it is usually the end result of the issue
resolution cycle. Therefore, using such information in our approach is not justified,
and may not prove to be useful if it is to be used as an effort assessment tool for
such repositories. Additionally, issues that did have such information constituted
only about 12% of the data set, not allowing us a significant ratio to work with.

4.2.2 Adaptive Threshold

As mentioned in Subsection 4.2.1, introducing Data Enrichment can negatively
influence FEEDBACK, the magnitude depending on how many properties are in-
corporated into the search query. Adaptive Threshold is used to compensate this
negative effect for α-kNN. If for some α, α-kNN does not find any candidates, we
automatically decrement α. We can also set certain match-goals to trigger such an
event; for example, decrement α until we reach a required FEEDBACK percentage,
or have a majority vote, or simply receive a match (which is the approach we have
implemented). Moreover, we can control how fast α decreases, giving us greater
control over the range of the score spectrum we would like to include (we used 0.1
as the decrement value, similar to [82]).

We take a number of steps to implement this enhancement. Since this en-
hancement is Similarity-Score Dependent, it is implemented as a LOOP structure
containing the SSDE. The user inputs the initial desired α value into the algorithm.
If we can find a match (or matches) given the current α value, we submit them
to the prediction module (whether it is Mean or Majority Voting it is a modular
approach). If no match is found, we decrement α by a certain decrement-value
and repeat the search for matches given the new α. On the other hand, if α is
determined to be too low at to grant a reliable prediction at this point, Adaptive
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Threshold terminates the Similarity-Score Dependent Enchantments LOOP, and
hands the prediction over to the Similarity-Score Independent Enhancements. As
we can see, this approach is dependent on two main variables that must calibrated
per data set, namely Threshold Decrement and Threshold Limit. Threshold Decre-
ment determines the value by which we decrement α at each interval or step during
the Adaptive Threshold automatic adjustment procedure. If Threshold Decrement
is set a low value, the threshold is decremented at a finer level. This forces the
algorithm to obtain less but more relevant matches as it decrements; i.e. if we set
the Threshold Decrement to 0.01 as opposed to 0.1, then the algorithm will try to
obtain matches at finer intervals (1.00, 0.99, 0.98, 0.97 . . . etc. rather than stepping
to 0.9 directly). While finer intervals give more relevant matches higher priority,
the fact that we may obtain less matches means that any error in the scoring pro-
cess could be magnified if the given matches are misleading. This is the reason
why we revert to using 0.1 as our preferred decrement value, as also supported
experimentally. Also, when applying Data Enrichment, we obtain less high scor-
ing matches as described in Subsection 4.2.1, therefore finer Threshold Decrement
values at high α’s will also magnify this effect. We also determine Threshold Limit
experimentally. Threshold Limit defines the point at which we consider the scores
misleading; i.e. predictions based on Similarity-Score Dependent Enhancements are
considered inaccurate. We compare different limits by assessing the performance
of our approach beyond the given threshold. If the Similarity-Score Independent
Enhancements perform better beyond the limit, we consider it a cut off point for
the SSDE. We concluded that a Threshold Limit of 0.1 was appropriate for both
data sets in our study.

Adaptive Threshold applied to α-kNN, can also be used as a superior technique
to the simple kNN model. For each target issue, we only consider the highest
scoring matches to compute the prediction. For example, for some target issue the
highest scoring match might be at α = 0.9, while another might be at α = 0.6. If
we set our match-goal to a single match; starting at α = 1 and decrementing until
we receive at least one match, we ensure that we are using only the most similar
matches to compute the prediction. If the scoring mechanism is accurate enough,
this method should yield more accurate results than kNN.

4.2.3 Majority Voting

In [82], the authors use Top-K Mean to predict effort. After studying the data,
we observed that about 80% of the issues have repeating values in their candidate
sets, and many of those values were close to the actual effort. We also noticed that,
often, there are outliers that could greatly skew the mean. These observations led
us to using Majority Voting in place of the mean, as it is better suited to deal with
outliers, and makes better use of the discrete nature of the effort values.

We also observed that that about 91% of the issues have effort < 40 Hours,
78% < 16 Hours and 64% < 8 Hours. This indicates that the data is skewed
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towards lower values, and the majority of the issues have effort less than 5 work
days. However, this also means that a larger number of the other 9% of effort values
could be extreme outliers, which is the case in our data sets. As mentioned above,
this can greatly skew the predictions made by Top-K Mean, which is gives greater
confidence in adopting our proposed Majority Voting approach.

When a majority vote cannot be reached, we employ a Least Variable Window
method which narrows down the candidate set to the group of issues that has the
least variation in their corresponding effort values (for a given window size). Least
Variable Window also takes the similarity scores into consideration; i.e. if two sets
have the same standard deviation, the one with the higher score-mean is chosen.
If there is only one issue in the windowed candidate set, we use the corresponding
effort as the prediction. Otherwise, the prediction is computed using a Weighted
Mean approach. In this case, we can use Least Squares Learning or Historical
Value Frequency to compute the weights and produce the prediction. We show the
performance for using each technique in the effort prediction framework comparison
with the Base approach.

To describe the Least Variable Window method in more details, first we outline
two window adjustment methods we experimented with during our studies, namely
Window Size and Window Variability. Window Size controls the window by ad-
justing its size or length; i.e. the number of elements allowed in the window. On the
other hand, Window Variability controls the window by adjusting the maximum
variability (Standard Deviation) of the elements included in the window. First we
describe the Least Variable Window method using the Window Size adjustment
technique. Given a list of effort values and the scores associated with each, Least
Variable Window first sorts the effort values in non-decreasing order, while keeping
the score associations intact. Then using the given window size, traverses the new
sorted vector from starting from the smallest effort value to highest, producing a
list of windows of the specified size (order of traversal is not important since we
produce a full list of windows). Next, the variability (Standard Deviation) of each
window is computed, and the window with the smallest standard deviation is cho-
sen. If more than one window has the same standard deviation value, the score
mean of each window is computed and the window with the highest score is cho-
sen. The Window Variability control technique uses the Window Size technique to
compute its best window. Given a maximum standard deviation threshold, Least
Variable Window starts with a window size equal to the size of the entire candidate
set (the aim is to try to find the maximum window size with variability less than
or equal to the threshold), and computes the standard deviation. If variability is
higher than the threshold, decrement the window size by 1 and retry. This pro-
cess is repeated until we reach a window with variability below or equal to the
given threshold. If we could not find any window with the required variability, we
return the issue (effort value) with the highest score. After experimenting with
both methods, we concluded that using the Window Size adjustment method gave
us better results. We use the Least Variable Window method in both Majority
Voting (as descirbed avbove) and in Binary Clustering as described in the next
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Subsection 4.2.4. Again, the size of the window must be calibrated for each data
set separately, as the variability in the data is different in each case.

4.2.4 Binary Clustering

As mentioned in [82], predictions based on low similarity matches could in fact be
misleading. For these cases, we implement a Similarity-Score Independent enhance-
ment called Binary Clustering, to produce reasonably accurate predictions. This
enhancement uses the basic idea of clustering to group similar issues into clusters.
However, we use a simplified binary distance function, which returns “0” if the issue
has the same properties as that of the cluster, or “1” otherwise. Only issues with
a distance of “0” are accepted into the cluster. Cluster properties can be chosen
from whatever information we can extract from the Issue Tracking System. For
example, properties like project name, issue type and issue priority could all be
used as clustering criteria. The target issue defines the values of the properties for
a cluster; i.e. if we use project name as the cluster property and the project name of
the target issue is “FOO”, then only historical issues with the project name “FOO”
are accepted into the cluster.

To decide which properties to use for the clustering, we perform correlation anal-
ysis between the different issue properties and the actual effort. If more than one
property is found to be highly correlated, then multiple properties are used. This
means that issues have to match all properties before entering a cluster. Once the
set of properties is narrowed down by the correlation analysis, we perform system-
atic experimentations to isolate the best group to be used for clustering. First, we
determine the effect of clustering using each property individually. Then through
combining the best set of properties together and observing the results, we deter-
mine the idea group for each data set. Once we decide on the clustering properties,
we populate the cluster by applying the binary distance function between the tar-
get issue and each issue in the history. Now, we have a vector of related issues,
and their corresponding effort values. We use the Least Variable Window method
to limit the variability of the determined set, and then compute the mean of the
resulting window.

Binary Clustering is just one approach to introducing Similarity-Score Inde-
pendent Enhancements. For example, we can use Regression Analysis or Artificial
Intelligence methods like Neural Networks to support the Similarity-Score Depen-
dent Enhancements. Also, we can take a multiple step approach when producing
predictions using SSIE. For example, in our approach, we use multiple steps of
Binary Clustering depending on the nature of the data set. In some cases, clus-
tering using certain criteria like Project Name does not produce predictions 100%
of the time (i.e. some projects only have 1 issue listed under them). Therefore,
we implement a second Binary Clustering step using a different criterion or set of
criteria (e.g. Issue Type), where cases that are not predicted by the first step of
Binary Clustering could be predicted by the second (possibly less accurate) step.
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This technique could also be applied with different Similarity-Score Independent
Enhancements.

The next section presents a simplified pseudo-code algorithm implementation
of the framework. It discusses the different operational features of the algorithm,
in addition to explaining the different important variables involved in the running
of the code.

4.3 Framework Implementation

In this section, we bring the four enhancements together in an algorithm that de-
scribes the process we used to implement our approach, and apply the empirical
studies. We outline the enhancements in the comments within the algorithm, and
to keep the pseudo-code easy and simply to understand, we name the variables and
functions with their corresponding methods as mentioned in previous sections. The
code is also partitioned into three sections, Variables Initialization, SSDE Imple-
mentation and SSIE Implementation. Variables Initialization simply contains all
the important variables initialization. The SSDE Implementation partition shows
the section of the code implementing the Similarity-Score Dependent Enhance-
ments. Our goal is clearly demonstrate how these enhancements interact with one
another. Finally, SSIE Implementation shows the Similarity-Score Independent
Enhancement, namely Binary Clustering. However, we would like to emphasize
that this where multiple steps of Binary Clustering or SSIE enhancements would
be implemented, by simply introducing additional filters/steps following the first
prediction attempt.

The following algorithm shows a simplification of the final composition of our
framework, incorporating all of the above enhancements. First, some variable
names: threshold decrement specifies the granularity at which to decrement the
threshold, lsl coefficients holds the weights computed by Least Squares Learn-
ing, hvf coefficients holds the weights computed by Historical Value Frequency,
mv window size specifies the Least Variable Window size for the Weighted Mean
alternative in Majority Voting, bc window size specifies the Least Variable Window
size for Binary Clustering, issue history contains all of the resolved issues that are
older than the target issue (including the similarity scores).
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1: {—————Variables Initialization—————}
2: prediction⇐ null
3: threshold⇐ 1
4: threshold decrement⇐ 0.1
5: threshold limit⇐ 0.1
6: mv window size⇐ 3
7: bc window size⇐ 5
8: {—————SSDE Implementation—————}
9: while prediction = null & threshold ≥ threshold limit do {Adaptive Threshold}

10: topk ⇐ choose topk(issue history, k, threshold) {α-kNN }
11: if size(topk) = 0 then
12: threshold⇐ threshold− threshold decrement
13: continue
14: end if
15: [vote, frequency]⇐ majority vote(topk) {Majority Voting}
16: if frequency < 2 then {No Majority Vote}
17: if size(topk) = 1 then {Single Match}
18: prediction⇐ topk
19: else {Multiple Matches}
20: topk window ⇐ least variable window(mv window size, topk)
21: lsl coefficients⇐ least squares learning(issue history)
22: hvf coefficients⇐ historical value frequency(topk, issue history)
23: prediction⇐ sum(topk window · (lsl coefficients or hvf coefficients))
24: end if
25: else {We have a Majority Vote}
26: prediction⇐ vote
27: end if
28: end while
29: {—————SSIE Implementation—————}
30: if prediction = null then
31: related issues⇐ binary clustering(target issue, issue history) {Binary Clustering}
32: related issues window ⇐ least variable window(bc window size, related issues)
33: prediction⇐ mean(related issues window)
34: end if

Lines 2− 7 show the variable initializations. Lines 9− 28 implement the SSDE :
lines 9, 11− 14 implement the Adaptive Threshold enhancement, line 10 represents
the α-kNN method, line 15 performs the Majority Voting, lines 15−24 are executed
if no majority vote can be reached (at which point either a single match is available
or multiple matches are found). If a single match is available, the corresponding
effort is used as the prediction, otherwise, the Least Variable Window method
is used to reduce the variability for the multiple matches, then one of the weight
computation techniques is used to compute the prediction using the Weighted Mean.
If there is a majority vote, line 26 is executed and the prediction is returned as
the vote. Lines 30 − 34 implement the SSIE, if no matches were found from the
similarity-score dependent method, we execute these lines; at line 31 we perform
the Binary Clustering, and at line 32 we find the Least Variable Window for the
related issues obtained from the cluster, then the prediction is computed using the
mean of the window at line 33.
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Both bc window size and mv window size are determined experimentally; we
observed that a window size larger than 5 makes the results worse for Binary
Clustering, and larger than 3 worse when multiple matches exist but no majority
vote can be reached. threshold decrement could be set to a smaller value for finer
threshold traversal. After numerous experiments with different values, we found
that the best results are produced using decrements of 0.1. Any similarity score
below the threshold limit is considered too low, so if there are no matches with
scores ≥ 0.1, the effort prediction is handed over to Binary Clustering. We also
experimented with different values for this limit and 0.1 seems to be a good cut
off point for both data sets used in this work (this value should be calibrated
for different data sets). As for the SSIE, we can specify as many filters/steps as
required to predict 100% of the issues. In some cases, certain criteria/propoerties
form empty clusters for certain target issues, yielding no prediction. To resolve that,
we can apply multiple steps of Binary Clustering, each using a different criterion
for clustering, until we obtain a prediction.

The next chapter will summarize the work we have presented in this chapter,
and lead the reader into the contents of the next chapter.

4.4 Summary

In this chapter, we described our proposed composite effort prediction framework
in detail. First by introducing the weight computation methods, used when the
framework reverts to using a Weighted Mean method to predicting effort. We also
provided a more detailed look at each of the enhancements, with a more detailed
process model diagram describing the interactions between them. Finally, we pre-
sented a simplified pseudo-code algorithm that described the implementation of the
framework, and the different variables and functions involved.

In the following chapter, we will present the experimental studies performed to
evaluate the performance of our framework using case studies from live, operat-
ing Issue Tracking Systems. First, we present the case studies, then describe the
implementation tools we used used to develop our testing code. Next, we outline
the evaluation method and metrics we used to measure the performance of the
framework. Finally, we present the results obtained from the evaluation studies.

36



Chapter 5

Experimental Studies

In this chapter, we present the experimental studies performed to evaluate the per-
formance of our effort prediction framework. Section 5.1 describes the case studies
we use to perform our experimental studies, in addition to the Issue Tracking System
from which they were extracted. Then, Section 5.2 describes the implementation
tools and experiment setup. Section 5.3 presents the evaluation method along with
the performance metrics we use to assess our proposed approach. In addition, it
shows the results of the evaluation study in addition to a comparison between the
effort prediction framework with the Base Approach. Finally, Section 5.4 summa-
rizes the results of the evaluation study.

5.1 Case Studies: JBoss and Codehaus

Many Issue Tracking Systems currently exist in the software community. Systems
like Bug-Zilla, Mantis, DevTrack and JIRA, all track bugs and issues effectively.
However, only a limited number of them provide us with effort information. Since
effort data is not directly related to the issue being tracked, most repositories do
not keep a record of it. In addition, it takes extra effort on part of the issue tester to
keep track of effort. Another common problem with testers recording effort, is the
tendency for humans to over state their own effort, rendering the data in accurate.

JIRA is a project management and issue tracking system, which companies can
use to manage bugs, features, tasks, improvements or any issue related to their
projects. What makes JIRA particulary useful, is the fact it keeps track of the
actual effort spent on an issue. While JIRA provides the utility to record the
effort, it is not mandatory. Therefore, we need to filter the available projects to
obtain the ones which do record the effort values. A number of open source projects
are currently being tracked through JIRA such as: Apache, Spring, Flex, Codehaus,
JBoss and more. For our purposes, the only projects that contain enough issues
with enough recorded actual effort values are JBoss and Codehaus. Weiss et. al. [82]
use the JBoss data set (with issues tracked up until 05/05/2006) to evaluate their
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approach. In order to provide a comparison basis, we use the same data set for the
evaluation of our approach. In addition, we use the Codehaus data set (with issues
tracked until 01/03/2008) to evaluate our final composite approach, which we also
compare against Base approach.

JBoss is a division of RedHat that develops and maintains a range certified open
source middle-ware projects based on the J2EE platform. The JBoss community
projects sit between application code and the operating system to provide services
such as persistence, transactions, messaging and clustering. The JIRA JBoss issue
tracking branch currently tracks 85 different projects and just under 35, 000 issues.
The issues can be broken up into about 15, 000 bugs, 7, 000 Feature Requests,
8, 000 tasks and the rest are assorted issues. Codehaus is a project that provides a
collaborative environment for other open source projects needed to meet real world
needs. The JIRA Codehaus issue tracking branch tracks more than 100 different
projects and about 56, 000 issues. About 28, 000 are bugs, 5, 000 are feature requests
and another 5, 000 are tasks. Table 5.1, summarizes the above statistics describing
each case study.

JIRA Branch Projects Issues Bugs Feature Requests Tasks

JBoss 85 35,000 15,000 7,000 8,000
Codehaus > 100 56,000 28,000 5,000 5,000

Table 5.1: Summary of Statistics Describing Case Studies

The JBoss data set we use comprises of about 600 issues, and the Codehaus
data set comprises of about 500 issues. Although we rely on the same evaluation
method and performance measures as described in [82], we use a smaller set of
testing issues. Since the issue time-stamp determines the size of the training set,
some test issues will have a smaller training set than others. For that reason, we
limit our testing set to the most recent 300 issues. This makes the size of the
training sets more uniform across all test issues. In reality, this should not be a
problem unless the project is in its initial phases.

JIRA provides the following easily accessible issue information (properties):
(Project Name, Title, Description, Summary, Type, Priority, State, Resolution,
Reporter, Assignee). Conforming to the criteria set by Weiss et al. in [82], we
consider a limited number of categories for each property. Priority has 5 categories:
(Blocker, Critical, Major, Minor, Optional), State has 3: (Closed, Resolved, Re-
opened), Resolution has 3: (Done, Out of Date, Unresolved) and finally, Type has
4: (Bug, Task, Sub-Task, Feature Request).

We use these properties for the Data Enrichment enhancement (as query cri-
teria) and for the Binary Clustering enhancement (as clustering criteria). After
correlation analysis, we found that the following setup gives the best results (as
described in Sections 4.2.1 and 4.2.4):
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• JBoss Dataset:

– Data Enrichment: (Title, Description, Project Name, Type, Priority,
State).

– Binary Clustering: (Type).

• Codehaus Dataset:

– Data Enrichment: (Title, Description, Project Name).

– Binary Clustering: we use two step clustering, first using (Project Name),
then issues that do not receive a prediction we cluster using (Type). This
was due to the fact that some projects had only 1 issue.

5.2 Implementation Tools

To extract the issue information from JIRA [5], we developed PHP [30] (v5.2.6)
scripts to crawl, collect and filter the information. Only issues that contained
actual effort information were retained into our MySQL [2] (MySQL Community
Server v5.0) database. We also, used PHP scripts to populate, extract and format
information from the database. PHP simplifies string manipulation, in addition
to database interaction, which was the reason we chose this scripting language to
perform the described functions.

We use the Java Programming Language [35] (Java SE v6) to generate the
similarity scores, mainly due to the fact that Lucene [28] is developed in Java. We
used version 2.3 of Lucene, which was the most up to date version available on the
Apache Foundation web site. We used the Multi-Field Query provided by Lucene to
query the different issue information, in addition to the “time” filter (to eliminate
issues newer than the target issue) and “stop-word” filter (to eliminate common
English stop-words).

Finally, we implemented the proposed approach and performed the data analysis
using MATLAB [36] (vR2007b). The way MATLAB handles vectors and large data
sets simplifies the implementation of our approach, in addition to the set of useful
statistical analysis tools that are embedded into it. To exchange the required data
between the different phases described above, we use “.csv” files.
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Figure 5.1 describes the general implementation architecture we used to evaluate
the proposed framework. It highlights the high level process architecture, grouping
the different components by their corresponding implementation language. It also
illustrates the interactions between the different processes and the data output
of each. The “Filter Issues” process filters out any issues that do not conform
to the categories described in Section 5.1, and those that do not have a record
of the actual effort. To keep the illustration simple and easy to understand, we
emitted some details of intermediate steps that we took to format the data into a
readable format for MATLAB. More specifically, the “Issue” data that MATLAB
uses from the “Issue Database”, goes through a PHP script that formats it into
“.csv” files that are easily readable in MATLAB. The “Similarity Score Matrix” is
also outputted in “.csv” form, however, it is directly formatted in JAVA.

The following section will present the results of evaluating our proposed effort
prediction framework. It will also describe the evaluation method and the perfor-
mance metrics we use in the study.

5.3 Framework Evaluation

In this section we present the formulation and results of the experimental study per-
formed to evaluate the performance of our proposed framework. In Subsection 5.3.1,
we describe the evaluation method in addition to the evaluation measures or metrics
used in the study. Subsection 5.3.2 presents the results obtained from performing
the experimental study. It illustrates the effect of introducing the enchantments
individually, then provides a comparison between the effort prediction framework
and the Base Approach.

5.3.1 Performance Metrics

To evaluate the performance of the predictions, we retrace the history of the Issue
Tracking System. In other words, we consider each issue in the data set as a
target issue (test issue), but we only use issues that have been submitted before
the target issue in the training set. The training set is then used to search for the
nearest neighbours. This means that for the first submitted issue, we cannot make
a prediction. This is the reason why we limit our testing set to the most recent 300
issues. We use the following performance measures in our evaluation:

First, we define the residual (or error) ri as the absolute difference between the
predicted effort êi and the actual effort ei reported for an issue i. Clearly, the lower
the residual, the more accurate is the prediction.

ri = |ei − êi| = |Actual Effort− Estimated Effort|
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Average Absolute Residual: also known as the Mean Absolute Error, is defined
as follows:

AAR =

∑n
i=1 ri
n

This measure assumes that both over and under estimates are equally bad, which
might not be true in all situations. However, it is closely related to the Sum of
Absolute Residuals, which considered an unbiased statistic [50].

Percentage of predictions within ±x%: Pred(x) is a commonly used perfor-
mance metric, which measures the percentage of predictions that lie within ±x%
of the actual effort value ei. Once again, this measure does not distinguish between
over and under estimates. We use Pred(25) and Pred(50) for the purposes of our
experiments.

Pred(x) =
|{i|ri/ei ≤ x/100}|

n

FEEDBACK: this metric measures the percentage of issues for which the ap-
proach makes a prediction. In some cases, α-kNN reports “Unknown” rather than
making a prediction, this metric allows us to measure the percentage of time this
occurs. For kNN and α-kNN with α = 0, FEEDBACK is 100%.

Interpreting AAR values is simple; larger number of good predictions results in
a smaller AAR value, while a larger number of bad predictions results in a larger
AAR value. However, AAR is easily influenced by outliers; i.e. very large residuals
can lead to misinterpretations of the model’s performance. For that reason, we
also report the Pred(25) and Pred(50) measures, to give a better picture of the
residuals’ distribution. Higher Pred(x) values mean a better quality of predictions.

In the next subsection we discuss the results obtained from performing the
experimental studies on the above mentioned case studies.

5.3.2 Discussions on Obtained Results

The following subsections will describe the results obtained from performing the
evaluation study. In the “Enhancement Evaluation” subsection, we will present the
results of applying the individual enhancements to the Base Approach. This will
help the reader understand the effect of each enhancement on the performance of
the predictions. Then, in the “Framework Evaluation” subsection, we will provide
a performance comparison between the effort prediction framework and the Base
Approach. We will also present the results of applying the final framework to the
additional Codehaus dataset, extending the validity of our work.

Enhancement Evaluation

The following charts will only illustrate the α-kNN approach. Although the en-
hancements do in fact improve the kNN approach, our focus is to show improve-
ments on the best results of the Base approach, as shown in [82]. Figures 5.2, 5.3, 5.4
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and 5.5 show the performance charts describing the our approach using Histori-
cal Value Frequency for weight computation (based on using the most recent 300
issues).

�

��

��

��

��

��

��

��

	�


�

���

�

�

�

�

	

��

��

��

��

�	

��

� ��� ��� ��� ��� ��� ��� ��� ��	 ��
 �

�
�
��
�
�
��
�	



�
�


��

�

��
 �
������ �
������ ��������

Figure 5.2: Performance Metrics for the Base Approach (JBoss Dataset).

Figure 5.2 shows the performance results for the Base Approach, using the Near-
est Neighbours with Thresholds method (α-kNN ), with k = inf. In this chart, when
α = 0, the prediction is basically the mean of the entire training set. We can see
that α-kNN performs the best at α = 1, with AAR ≈ 6 Hours, PRED(25) ≈ 30%
and PRED(50) ≈ 45%. However, FEEDBACK reaches as low as 14%. α-kNN
shows a noticeable improvement as α increases. Starting at α = 0.1, with AAR
≈ 14 Hours, PRED(25) ≈ 15% and PRED(50) ≈ 25%, we get approximately a
15% improvement for PRED(25) and a 20% improvement for PRED(50). The most
significant improvement is in AAR, where we get an improvement of about 8 Hours.
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Figure 5.3: Performance Metrics for the Base Approach with Data Enrichment
(JBoss Dataset).

From Figure 5.3, we can see that introducing Data Enrichment does in fact
improve upon the Base Approach results. At its best point, Data Enrichment has:
AAR = 2 Hours, PRED(25) = 35% and PRED(50) = 55%, compared to the
Base Approach (shown in Figure 5.2): AAR = 6 Hours, PRED(25) = 30% and
PRED(50) = 45%. This translates into an improvement of 4 Hours for AAR, 5%
for PRED(25) and 10% for PRED(50). The overall FEEDBACK is lower than that
of the Base Approach (as expected and explained in Section 4.2.1 of Chapter 4).
We notice some unexpected behavior for α > 0.7; if we look at the FEEDBACK
beyond that point we notice that it is very low (< 10%). We attribute the sudden
change in behavior of the metrics to the low FEEDBACK ; when it is this low, any
errors in the scoring process are magnified and can greatly influence the results.
Since Data Enrichment is aimed at improving the accuracy of the similarity scores,
we can see that reflected in the rapid drop in AAR even for low values of α (< 0.4).
AAR is reduced from about 14 Hours to less than 4 hours at α = 0.3.
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Figure 5.4: Performance Metrics for the Base Approach with Majority Voting
(JBoss Dataset).

Figure 5.4 illustrates that introducing Majority Voting produces a more consis-
tent improvement over all values of α. It outperforms the Base Approach results
in terms of AAR for α < 0.4, but then levels off to match it for higher values of α.
However, the PRED measures show good consistent improvement over all values of
α. With results reaching a high of about 55% for PRED(50), PRED(25) reaching
up to 35% and AAR to a minimum of about 6 Hours. We can observe at least a 5%
improvement overall due to introducing Majority Voting in place of the mean used
by the Base Approach. The FEEDBACK however is the same as that of the Base
Approach, since using Majority Voting does not modify the percentage of issues for
which we make predictions. Rather, it just modifies the method used for prediction,
for the same issue similarity-scores.
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Figure 5.5: Performance Metrics for the Base Approach with Data Enrichment,
Majority Voting and Adaptive Feedback (JBoss Dataset).

As shown in Figure 5.5, applying the three SSDE to the Base Approach shows
significant improvement; at the best point we obtain AAR = 3 Hours, PRED(25) =
38% and PRED(50) = 60%. Compared to the best Base Approach results (AAR
≈ 6 Hours, PRED(25) ≈ 30% and PRED(50) ≈ 45%); this is about 3 Hours AAR
improvement and about 10% improvement for both of the PRED measures. Note
that with the introduction of Adaptive Threshold, the FEEDBACK deterioration
(caused by the introduction of Data Enrichment shown in Figure 5.3) is resolved,
as explained in Chapter 3, Section 4.2.

Framework Evaluation

The following will present a comparison between the performance of the effort
prediction framework and the Base Approach. We will apply the evaluation to
both the JBoss and Codehaus datasets to extend the validity of our framework.
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Method AAR PRED(25) PRED(50)
RE RE RE

FEEDBACK
Max Mean StdDev

EPF
LSL 8.9 Hours 23.3 % 41.3 % 79 1.77 5.48

100 %HVF 8.9 Hours 23.6 % 41.6 % 79 1.75 5.49
BA (kNN, k = 1) 13.8 Hours 15 % 31.7 % 191.00 5.37 19.03

EPF
LSL 3.3 Hours 35.6 % 57.8 % 6.2 0.82 1.13

15 %HVF 3.2 Hours 37.8 % 60.0 % 6.2 0.72 1.07
BA (α-kNN, α = 1) 5.8 Hours 28.6 % 45.2 % 12 1.48 2.45

EPF
LSL 4.9 Hours 34.4 % 53.1 % 9.5 1.03 1.67

21 %HVF 4.8 Hours 35.9 % 54.7 % 9.5 0.97 1.65
BA (α-kNN, α = 0.9) 6.2 Hours 26.6 % 45.3 % 12 1.17 2.03

Table 5.2: Comparison between the Effort Prediction Framework and the Base
Approach (JBoss Dataset)
EPF - Effort Prediction Framework, BA - Base Approach, LSL - Least Squares
Learning, HVF - Historical Value Frequency, RE - Relative Error

The Effort Prediction Framework always produces results with 100% FEED-
BACK. Therefore, to provide a comparison basis with the α-kNN Base Approach,
we disable the Binary Clustering enhancement, thereby allowing us to control the
FEEDBACK of the approach using the SSDE. We set the threshold limit to a
point where FEEDBACK is comparable with that returned by the Base Approach.
As we can see in Table 5.2, there is significant improvement for all FEEDBACK
cases, even in comparison to the best results produced by the Base Approach (α-
kNN, α = 1). The Effort Prediction Framework shows an improvement of more
than 3 Hours in AAR for the 100% FEEDBACK case, and about a 10% improve-
ment for both of the PRED measures. As for the other two FEEDBACK cases
(15% and 21%), we get about 2 Hours of improvement in AAR and about a 10%
improvement for PRED(25). As for PRED(50), for the 15% FEEDBACK case, we
see approximately a 15% improvement, and about a 10% improvement for the 21%
FEEDBACK case. The other metrics (Relative Error Maximum, Relative Error
Mean and Relative Error Standard Deviation) are mainly displayed to show the
performance difference between the use of the two weight computation methods.
For this dataset, we do not see a large difference in performance since the percent
of issues that use a Weighted Mean is very small as shown in Table 5.3.

FEEDBACK MV SM (No MV) MM (No MV) BC

100 % 4.3 % 15.3 % 1.7 % 78.7 %
15 % 26.7 % 66.7 % 6.7 % N/A
21 % 20.3 % 71.9 % 7.8 % N/A

Table 5.3: Percentage of Issues Predicted by each Method (JBoss Dataset)
MV - Majority Voting, SM - Single Match, MM - Multiple Matches, BC - Binary
Clustering

Table 5.3 gives a deeper perspective on the behavior of the Effort Prediction
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Framework as described in Table 5.2, by showing the percentage of issues predicted
by each method (JBoss Dataset). The methods shown in Table 5.3 refer to the
ones described in Chapter 3, and as depicted in Figure 4.1 which describes the
process model. We can see four different ways to producing the effort prediction;
1) Majority Voting, 2) Single Similarity Match (when no majority vote is reached),
3) Multiple Similarity Matches (when no majority vote is reached) and 4) Binary
Clustering. As reflected by Table 5.3, we can see why the effect of LSL vs. HVF
is not significant for the JBoss Dataset; where the percentage of issues predicted
using these methods (for multiple matches when no majority vote can be reached)
is less than 10% for all FEEDBACK cases, and as low as about 2% for the 100%
FEEDBACK case.

Method AAR PRED(25) PRED(50)
RE RE RE

FEEDBACK
Max Mean StdDev

EPF
LSL 5.5 Hours 20.0 % 41.0 % 140.75 1.96 8.71

100 %HVF 5.4 Hours 19.3 % 40.7 % 140.75 1.92 8.68
BA (kNN, k = 2) 8.8 Hours 18.0 % 35.0 % 261.50 6.34 25.97

EPF
LSL 8.9 Hours 27.8 % 57.4 % 11.34 1.23 2.13

18 %HVF 8.2 Hours 24.1 % 55.6 % 7.08 1.04 1.50
BA (α-kNN, α = 1) 12.1 Hours 22.2 % 53.7 % 37.40 2.03 5.44

EPF
LSL 11.2 Hours 15.39 % 38.5 % 191.00 4.44 19.25

48 %HVF 8.8 Hours 12.6 % 37.8 % 265.25 5.06 27.27
BA (α-kNN, α = 0.35) 8.5 Hours 14.7 % 35.7 % 261.50 4.52 22.31

Table 5.4: Comparison between the Effort Prediction Framework and the Base
Approach (Codehaus Dataset)
EPF - Effort Prediction Framework, BA - Base Approach, LSL - Least Squares
Learning, HVF - Historical Value Frequency, RE - Relative Error

To extend the validity of the Effort Prediction Framework, we apply it to an
alternate dataset (Codehaus). From Table 5.4, we can again see clear improvement
for all FEEDBACK cases. But, we would like to point out that, although we used
the same Lucene setup, the scoring was particularly misleading for this dataset. We
can see that reflected in the results above for the α-kNN Base Approach (α = 1),
and in the fact that the results using the Least Squares Learning weight computa-
tion method performs worse (since it depends on similarity scores). Although the
PRED measures do show improvement as α increases, the AAR metric is affected
negatively. This maybe explained by a different style of issue documentation in the
Codehaus project; more in depth analysis is needed to identify the exact reason. In
this case, Binary Clustering greatly helped in improving the results due to its in-
dependence of similarity-scores. We can see about a 3 Hour improvement in AAR
for the 100% FEEDBACK case, and about 1% and 5% for the PRED(25) and
PRED(50) measures respectively. For the 18% FEEDBACK case, we see about
4 Hours improvement in AAR and approximately a 2% improvement for both the
PRED measures. Finally, for the 48% FEEDBACK case, we only see minor but
apparent improvement for the PRED(50) measure (about 2%), however, the AAR
and PRED(25) suffer slightly (about 0.3 Hours and 1% respectively).

48



FEEDBACK MV SM (No MV) MM (No MV) BC

100 % 0.7 % 11.3 % 6.0 % 82.0 %
18 % 3.7 % 63.0 % 33.3 % N/A
48 % 2.1 % 66.4 % 31.5 % N/A

Table 5.5: Percentage of Issues Predicted by each Method (Codehaus Dataset)
MV - Majority Voting, SM - Single Match, MM - Multiple Matches, BC - Binary
Clustering

Table 5.5 shows the percentage of issues predicted by each method for the
Codehaus Dataset. In contrast to the JBoss Dataset percentages shown in Table 5.3,
we can see that the percentage of issues predicted by MM (no MV) is much higher.
Especially in the 18% and 48% FEEDBACK cases, where it reaches up to 33%
and 31%, respectively. This is reflected by the effect of LSL and HVF on the
performance of the predictions in Table 5.4, as compared to Table 5.2 for the JBoss
Dataset. Another interesting observation, is the fact that the percentage of issues
predicted by Majority Voting for the Codehaus Dataset is much lower than that
of the JBoss Dataset; Codehaus with a high of about 4% and JBoss with a high
of about 27%. This shows the different properties of data sets that the approach
must handle. However, the percentage of issues predicted by Binary Clustering is
very close for both datasets, about 80%.

The following section will summarize what we discussed in this chapter regarding
the case studies, implementation tools, evaluation method, performance metrics and
the obtained results. It will also summarize the what we learned from the results
discussed in this section, and introduce the final chapter of the thesis.

5.4 Summary

In this chapter, we have described the case studies along with the Issue Tracking
System (JIRA) we have used to extract them. We also outlined the implementa-
tion tools and methods we used to implement our experimental studies. Then, we
explained our approach to evaluating the performance of the predictions produced
by our approach, along with the performance metrics we used to measure it. We
used the same data set (JBoss) used by the Weiss et al. study to provide a compar-
ison basis and allow us to assess the relative performance of our approach. Were
possible, we compared our framework to the Base Approach, by showing the effect
of adding each enhancement independently, and in all cases our approach produced
competitive results. Finally, we compared the Effort Prediction Framework, show-
ing the effect of using each weight computation technique independently, to the
best results produced by the Base Approach. We also applied the same comparison
to a different data set to extend the validity of our results. In both case studies, our
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approach performed better. The results demonstrate that our composite effort pre-
diction framework performs better than a comparable single method approach. The
modular nature of the framework allowed us to adapt to the misleading similarity
scores and adjust the components to produce more accurate predictions. The en-
hancements evaluation charts show that while the application of each enhancement
individually improved the performance of the predictions, combining the different
methods improved it even further.

In the following chapter, we will outline the contributions of the thesis and
discuss future directions of this research.
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Chapter 6

Conclusion and Future Directions

In this chapter, we summarize the findings of the thesis and outline future directions
that could be pursued from this research. Section 6.1 summarizes the contributions
of the work presented in the thesis. Then, Section 6.2 outlines some potential future
work to extending this research. Finally, Section 6.3 ends with a summary of the
findings and some concluding remarks.

6.1 Contributions

This work addressed the problem of predicting effort for defect-correction of issues
posted on a defect repository or an Issue Tracking System. We emphasize the
fact that the proposed effort prediction framework could be applied to any defect
database that records actual effort. Our framework proposes applying a composite
method to predicting effort, combining a Nearest Neighbour approach with Binary
Clustering. The framework takes a target issue and a set of resolved historical
issues, and generates prediction for the effort needed to resolve the target issue
in “man-hours”. The major contributions of the framework can be summarized
through the enhancements applied to the base Nearest Neighbours approach:

• Data Enrichment: aims to improve the accuracy of similarity scoring, by
introducing additional data related to the target issue into the process.

• Majority Voting: uses the repeating historical effort values as a superior
predictor to the mean approach. Since these values are observed to be close
to the actual effort, this method improves the accuracy of the predictions.
This method also improves the framework’s resilience against outliers in the
data.

• Adaptive Threshold: improves the percentage of issues for which the frame-
work makes predictions, by automatically adding more issues into the set of
similar historical matches.
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• Binary Clustering: introduces an approach that does not depend on sim-
ilarity scores, which helps improve predictions if the scores are deemed mis-
leading. It uses common information about issues to group and use them as
a prediction basis.

We also propose two weight computation techniques, which we use in cases where
the model reverts to a Weighted Mean method for computing the predictions (when
multiple similarity matches are available, but no majority vote can be reached).
These methods are designed to be modular, and can be replaced by any method
the user deems appropriate or more effective. The Weighted Mean effort prediction
method (as compared to the mean) allows the user greater control over the influence
of particular issues on the prediction. The following describes the two techniques
used in our study:

• Least Squares Learning: uses similar issues to compute weights based on
regression analysis, using the Least Squares approach (also known as the Mean
Square Error measure). If the similarity scores are accurate, this technique
improves the accuracy of the predictions by attempting to minimize the Mean
Square Error for historical issues.

• Historical Value Frequency: uses a historical count of effort values to com-
pute the corresponding weights. This method relies on the discrete nature of
effort values in the Issue tracking System. In cases where the similarity scores
are deemed to be misleading, this method computes weights independent of
these scores, reducing their negative effect on the prediction.

The framework is also designed to be modular, extensible and applicable in prac-
tice. Additional components can be incorporated into the framework, or existing
modules can be updated easily. For example, the Binary Clustering enhancement
can be replaced with an equivalent similarity-score independent method, or added
in conjunction. The Majority Voting prediction method can also be replaced with
an equivalent, such as Regression or Clustering, as long as the required information
is available. Also, since the evaluation studies applied the framework to case studies
taken from an operational Issue Tracking System, it can be used in practice with
local calibration.

The following section will outline future directions of this research, and describe
some the work that could extend on the current framework.

6.2 Future Work

Our approach taps into a relatively unexplored area of defect correction effort pre-
diction, namely the composite approaches. We believe that there are numerous
ways to improve our approach; some lie into improving the scoring mechanism and
others in exploring alternative Similarity-Score Independent approaches:
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• If we can extract additional data from the Issue Tracking System, such as
source code of files to be changed early in the life of the issue; methods
like the one proposed by Mirarab et al. in [55], can be used to predict the
magnitude of change caused by correcting the issue in question. In [55], the
authors propose the use of Bayesian Belief Networks to predict module or
code change propagation in software systems. If we can obtain the code or
the estimated code to be changed in the system, we can use such methods to
predict the effect of these changes on the system, and empirically derive an
estimate of code change and from that an effort estimate. However, currently,
the problem with this approach is the fact that information like changed
source code is only available later in the life time of an issue, rendering this
approach unfeasible.

• Better methods need to be implemented to identify similarity among issues,
in order to utilize the full potential benefits of the Similarity-Score Dependent
approaches. As for text-similarity approaches, such as the use of Lucene to
measure similarities. We need to explore additional, richer ways, of combining
the strings in a query. Currently, the query strings are simply OR’ed together,
which is the way Lucene implements the Multi-Field Query. However, Lucene
allows us to define our own query classes, which we can use to implement more
complex and smarter ways of combining the field strings. Although this may
seem like a simplistic remark, we believe it will affect the accuracy of the
scores significantly, if implemented correctly. Moreover, when considering
similarity scores, one can develop a more through model per project by using
methods like regression analysis, and use it as a support tool along with the
Nearest Neighbour approach to arrive at more informed estimates.

• As outlined in Chapter 2, there are a number of approaches used in literature
to perform the predictions using the Nearest Neighbour approach, one of which
we have not explored, namely Top-K Regression. Since regression analysis is
a widely used technique in software cost estimation, we believe it might prove
to be an effective tool when implemented with our approach. Also, other
common Artificial Intelligence methods such genetic algorithms and Neural
Networks are prime candidates to be used for prediction of defect correc-
tion effort, especially as support methods for Similarity-Score Independent
approaches. Exploring alternate Similarity-Score Independent enhancements
will definitely be beneficial; as we have seen that any errors in the scoring
process can have a significant negative impact on the final results.

• We have implemented two weight computation methods, namely Least Squares
Learning and Historical Value Frequency. We believe that further refining of
the candidate sets and better filtering algorithms will greatly improve the
performance of these two methods. Moreover, additional weight computation
methods need to be explored and implemented to maximize the performance
of the prediction models, as we have seen a noticeable improvement in the
results using the above two techniques. In general, the area of defect effort
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prediction is relatively new, and many breakthroughs are awaited before full
trust can be developed into such systems.

• Since we have designed the effort prediction framework to be extensible, it
is easy to replace or update the different components. For this reason, we
can encourage further experimentation into alternative effort predictors and
similarity-score independent prediction methods. For example, alternative
methods to Majority Voting can be investigated, such as Clustering. It may
prove beneficial to study the behavior of the different prediction methods and
their relation to the properties of the case studies.This would give practition-
ers valuable insight into the effectiveness of the different methods for different
data properties. Similarly, additional similarity-score independent prediction
methods can be incorporated into the framework to enhance the accuracy of
the predictions, in cases where the similarity scores are deemed misleading.

The next section will provide a summary of the framework and findings, in
addition to some concluding remarks regarding the research involved in the thesis.

6.3 Conclusion

In this work, we have presented a framework for predicting defect correction ef-
fort. We discussed how it can be used to produce the predictions and how such
approaches can be superior to others. While it is based on a Nearest Neighbour
approach, it also benefits from a Binary Clustering approach which relies on its
own interpretation of the data.

First, we described a Base Approach on which we apply a set of enhancements
that make up the core of the composite effort prediction framework. The Base
Approach describes the text-similarity scoring technique we use to generate the
distance measures needed for the Nearest Neighbour approach. Then two Nearest
Neighbour prediction approaches are described, from which we use the superior per-
forming Nearest Neighbours with Thresholds (α-kNN ) in our framework. There are
four enhancements that make up the effort prediction framework: Data Enrichment
(improves the accuracy of the similarity scores), Adaptive Threshold (improves the
percentage of issues for the framework makes predictions), Majority Voting (im-
proves the framework’s resilience against outliers and capitalizes on the discrete
nature of effort values) and Binary Clustering (improves the accuracy of the pre-
diction in cases where the similarity scores are considered misleading). In addition
to the above enhancements, we propose two weight computation techniques used in
cases where the framework reverts to computing the effort using a Weighted Mean
method. Weighted Mean is used when multiple similarity matches are available, but
no majority vote can be reached. The two techniques are: Least Squares Learning
and Historical Value Frequency. Least Squares Learning uses regression analysis
and tries to minimize the Mean Square Error in order to compute the best possible
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weights. This method of weight computation is dependent on similarity scores. On
the other hand, Historical Value Frequency, relies on the discrete nature of effort
values and computes the weights by using the frequency of a certain value in history.
This method of weight computation is independent of the similarity scores.

We have evaluated the effectiveness and performance of the effort prediction
framework on two open source data sets extracted from an operational Issue Track-
ing System. Although each data set had its own style of issue records, the compos-
ite model performed favorably for both. We also compared our approach with a
similar existing study, and again we have shown that our enhancements produced
significantly better results. To demonstrate the effect of each enhancement on the
performance of the framework, we showed how each influences the predictions and
compared the results with the Base Approach. It was evident that the proposed
enhancements improved the prediction performance significantly; when applying
the three enhancements (Data Enrichment, Adaptive Threshold and Majority Vot-
ing), PRED(50) and AAR were improved by about 50% and PRED(25) by 30%.
We also compared the effort prediction framework performance to the Base Ap-
proach for the two data sets, were we also saw noticeable improvement. When the
framework is performing at 100% FEEDBACK, we saw about 35% improvement
in AAR, 50% improvement in PRED(25) and 30% improvement in PRED(50) for
the one of the case studies. Similarly, we saw about 30% improvement in AAR, 1%
improvement in PRED(25) and 14% improvement in PRED(50) for the other case
study. For future work, we can apply the effort prediction framework to additional
case studies, as more projects are added to the Issue Tracking System, to extend
its validity.

We have shown that using a composite approach to predict effort is indeed an
effective strategy. Intrinsically, issues have different properties and features that
we should exploit to adapt the best approach for prediction. An important feature
of our approach is that it can be applied to any issue database that records effort
information. It can leverage any information available to build similarities and
predict effort. With the power of multiple prediction methods, the weaknesses of
each individual approach are remedied and the approach becomes more adaptive.
Adaptive approaches are the next step in effort prediction and we believe more
research should be applied to this area.
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