
A DSL Toolkit for Deferring Architectural

Decisions in DSL-Based Software Design

Uwe Zdun

Information Systems Institute

Vienna University of Technology

Vienna, Austria

zdun@infosys.tuwien.ac.at

A number of mature toolkits and language workbenches for DSL-based design have been

proposed, making DSL-based design attractive for many projects. These toolkits preselect

many architectural decision options. However, in many cases it would be beneficial for

DSL-based design to decide for the DSL’s architecture later on in a DSL project, once the

requirements and the domain have been sufficiently understood. We propose a language

and a number of DSLs for DSL-based design and development that combine important

benefits of different DSL toolkits in a unique way. Our approach specifically targets at

deferring architectural decisions in DSL-based design. As a consequence, the architect can

choose, even late in a DSL project, for options such as whether to provide the DSL as one

or more external or embedded DSLs and whether or not to use an explicit language model.

1 Introduction

Developing custom software for a specific target domain is a challenging task. In this con-

text, Domain-specific Languages (DSLs) receive a constantly growing attention in recent years

[Fow05, Hud96, MHS05]. DSLs have gained popularity through the advance of so-called lan-

guage workbenches [Fow05]. Language workbenches take the well known language-oriented

programming approach and use Integrated Development Environment (IDE) tooling to make it

a viable approach. Examples of language workbenches are Model-driven Development (MDD)

tools [SV06] such as XText [Eff08], software factories [GS04], MetaCase [KT08], OSLO

[Mic08], and MPS [Dmi04]. In contrast to simple language-oriented programming approaches,

1

focusing mainly on parser development and related activities, language workbenches support

many aspects of DSL design and development, including for example the transformation of

DSL code to a platform or the development of language editors for the DSL. In addition to lan-

guage workbenches, some other DSL toolkits exist that support many aspects of DSL design

and development. For example, DSLs in dynamic languages [Fre06] are typically developed as

embedded DSLs that can use the existing tooling and platforms of the dynamic language.

With the DSL toolkits becoming more mature, DSLs are not only used in niches anymore, but

receive widespread adoption. For many architects, DSLs are an interesting approach that can

potentially be used in projects where domain knowledge is hard to capture. DSLs can help here,

as they come with the promise to enable involving domain experts more closely in the software

design activities.

Architecture can be seen as a set of design decisions rather than (only) a set of components

and connectors [JB05]. In this view, the architect needs to understand which architectural de-

cisions are influenced by the choice of an approach or a technology. The above named toolkits

require architects to make important architectural decisions about the DSLs in a project early on

– when the DSL toolkit is chosen. Example decisions are: using an embedded or external DSL

approach, using an implicit or explicit language model (and which kind of explicit language

model should be used), how to define the static semantics of the DSL, how to integrate the DSL

with the host language, and the choice between generation, transformation, and interpretation

for defining the DSL’s execution semantics. Often significant changes or even a complete reim-

plementation of the DSL in another technology would be necessary to change some of these

architectural decisions later on, once a DSL implementation has been completed. For example,

in one of our projects it has been decided during the early DSL design steps to implement an ex-

ternal DSL in a software technical domain using the Microsoft DSL tools (see [GS04]), mainly

because of the attractiveness of the tooling. The choice for using a graphical, external DSL was

hence made implicitly by the choice for the tool. In later stages of the DSL design process,

the project learned that the graphical, external DSL approach was not highly suitable for the

daily work tasks of the software engineers working with the DSL. To change the decision to a

textual, embedded DSL, however, meant to reimplement the entire DSL prototype in a different

technology.

In our experiences, it is often necessary to focus in early stages of DSL projects on getting

the domain abstractions right. Work collaboratively conducted by the domain experts and the

2

software designers is needed, and approaches, such as rapid application development, experi-

menting with DSL ideas, and agile methods with many iterative feedback cycles, are highly use-

ful in DSL-based design and development. The dilemma is: On the one hand, toolkit-specific

architectural decisions, such as the ones named before, should be deferred till the domain ab-

stractions and requirements are sufficiently understood, but, on the other hand, experimenting

with the DSL requires some realistic DSL toolkit that preselects many options for the architec-

tural decisions listed above.

Of course, it is possible to solve this dilemma by developing a throw-away prototype that is

replaced by another technology, once a first sufficient understanding of the domain has been

reached. In contrast, in this paper, we present a study investigating on the feasibility of the idea

to provide a DSL language toolkit that supports incrementally evolving a DSL and still allows

DSL architects to change fundamental architectural decisions later on.

We present a language called Frag (available from [Zdu10]) as a toolkit for DSL-based design

and development (focusing mainly on textual DSLs). In this language, we can either use any

kind of Frag objects to implement the DSL or base the DSL on an explicit language model –

similar to models in model-driven DSL approaches (see [SV06]). In our approach, we combine

the external DSL and the embedded DSL approaches in a unique way: For each language model,

Frag provides an intuitive embedded DSL syntax. In addition, one or more external DSLs can

be added and mapped to Frag, using a flexible rule-based parsing approach that is embedded in

the Frag language. In Frag, developers can define the execution semantics of the DSL using in-

terpreted code, transformation templates, or dynamic language features. Static semantics can be

given using custom code, an OCL-style constraint language, or transformation templates. The

use of the host language in the DSL can be forbidden, or it can be supported using various lan-

guage extension or specialization techniques. Frag is designed so that these alternative choices

for the architectural decisions on DSL-based design can be changed during a DSL project with

a mostly local change impact.

All specifications of DSLs in Frag are provided using DSLs that are embedded in Frag (which is

itself embedded in Java; hence every Frag DSL can be used in Java applications). Such embed-

ded DSLs are provided for specifying language models, constraints, and parser specifications

(including a lexical scanner and mapping specification DSL). That is, the Frag approach for

specifying DSLs follows the DSL approach itself.

3

As our contribution is mainly a novel combination of known concepts from existing tools, our

insights are not limited to Frag. By following our approach, with foreseeable effort, other DSL

toolkits can be modified or adapted to defer specific architectural decisions. The overall goal is

to let the architect decide about fundamental architectural decisions in DSL-based design, and

not the chosen technology. This is particularly relevant for the analysis, design, and implemen-

tation parts of the DSL development process. Our approach aims at reduced costs through lower

efforts required in cases major design decisions on the DSL must be changed in later stages of

the development process. This might also lead to a higher quality of the DSL, as more time can

be spent on domain analysis and design of the DSL, and less time must be spent on adapting the

DSL development to the DSL tool used.

This paper is structured as follows. First, in Section 2, we provide background on DSL concepts

and the major architectural decisions that need to be made during a DSL project. Next, in

Section 3, we present our approach to DSL development. In Section 4 we provide an extensive

example on all aspects of our approach. Next, in Section 5 we use this example to compare to a

set of related approaches and especially the decision making in these other approaches in detail.

Section 6 reports on experiences in various DSL projects in which we have used our approach.

In addition, we measure the costs of our approach in terms of a performance and scalability

evaluation for each of the major parts of the Frag framework. Finally, we conclude.

2 DSL Concepts and Architectural Decisions

A domain-specific language is a tailor-made language that does only provide abstractions suit-

able for one particular problem domain. In recent years, domain-specific languages received a

constantly growing attention, especially in the area of model-driven development [GS04, KT08,

Sch06, Sel03, SV06]. The basic idea of DSLs, however, already has a long history (see, e.g.,

[Ben86, HB88]). In the Unix context, for example, DSLs have a tradition as so called “little

languages” or “mini languages” (see [Ben86, Ray03]), and in the context of languages such

as Common Lisp the development of “embedded languages” is promoted (see [Gra93]). Other

popular examples of DSLs are LATEX for Typesetting [Lam94, Lat08], HTML for hypertext web

pages [PAC+02], the (extended) Backus-Naur Form (BNF) for syntax specification [ISO96], or

SQL for database queries and manipulation [CB74, ISO03].

DSLs can be defined for technical users, such as software developers or architects, as well as

4

non-technical users, such as business analysts, managers, biologists, and so on. In either case,

the DSL should make the domain-knowledge explicit, and help the DSL users to accomplish

their work tasks. For example, if the DSL is built for supporting business analysts who need

to describe compliance concerns in the business processes of an organization, then the DSL

could for instance offer abstractions to describe compliance requirements, risks, and controls,

and support linking them to the existing business process descriptions. In addition, the DSL

implementation should support the business analyst in his daily work tasks, for example by

automating certain recurring work steps, such as generating a compliance documentation for

audit purposes. In general, we can distinguish two different styles of DSLs (see, e.g., [Fow05])

and choosing one of them is an important architectural decision in DSL-based design:

• An embedded DSL (also called internal DSL) is an extension to an existing program-

ming language and uses the syntactic elements of the underlying language, hosting the

DSL. Typical examples of embedded DSLs are the DSLs provided in the Ruby on Rails

framework, the Ruby DSLs described in [Fre06], and the Haskel example presented in

[Hud96].

• An external DSL is defined in a different format than the intended host language(s) and

can use all kinds of syntactical elements. Typical examples of textual external DSLs are

DSLs developed using openArchitectureWare’s XText framework [Ope08] or Microsofts’

OSLO framework [Mic08], and many examples of graphical DSLs such as the domain-

specific modeling languages presented in [KT08].

From a user’s point of view, the DSL consists of language elements. The core definition of

these language elements is provided by the language model that specifies the concepts of the

DSL’s target domain. For instance, if the target domain is Service-oriented Architecture (SOA),

then elements such as service, process, and business object are part of the language model. If

the target domain is core banking, then elements such as account, bond, and customer are part

of the language model. The MDD paradigm advocates to specify the language model (usually

called DSL metamodel) explicitly using a modeling language such as UML or EMF. Other

implementation options for DSLs, such as embedded DSLs based on scripting languages or

dynamic languages [Fre06], do not imply an explicit language model – it is often implemented

and hidden in the DSL implementation source code. In addition, there are also other options

for specifying the language model than meta-models, such as DTDs or XML Schema for XML-

5

parser-based DSLs [Fow08] or context-free grammars for DSLs based on parser generators

[Par07]. If and how an explicit language model is supported is a second central architectural

decision.

In order to use the DSL, we must define its semantics, too. For many DSLs, static semantics are

defined through constraints for the language model, as well as program code defining the execu-

tion semantics of the DSL. In the MDD literature, the language model and the static semantics

of the DSL together are called the abstract syntax of the DSL [GS04]. The architect must de-

cide how static semantics are implemented: Besides constraint languages offered by some of

the model-driven toolkits, expressing them in transformations, in custom code, or not at all are

options for this decision.

In addition to the abstract syntax, each DSL needs a concrete syntax, offered to the user of

the DSL. Each DSL can have multiple concrete syntaxes. We can distinguish textual syntaxes,

graphical syntaxes, form-based syntaxes, table-based syntax, and so on. The architect must de-

cide which kinds of concrete syntaxes are supported by the DSL. The architectural decision for

one or more concrete syntaxes is usually very important, as the concrete syntax is the main user

experience of the DSL. This paper mainly focuses on textual concrete syntaxes. Our approach

allows DSL developers to add additional other kinds of syntaxes on top of the textual syntax, in

the same way as virtually all other textual DSL approaches; hence, in this paper, we do not look

deeper into this architectural decision.

Transformations are defined to transform DSL code written in a concrete syntax to another

model representation or to code that can be executed on a specific platform. In general, a trans-

formation is a directive that defines how one (model) format is to be transformed to another

(model) format. In different approaches, the transformations are realized in different ways:

In the model-driven approaches, a generator performs the transformations. In scripting and

dynamic languages, the concrete syntax code is mapped to directives of the interpreter. A

parser generator creates a parser that triggers instructions in a programming language. In all

approaches, a programming language is eventually used to execute the DSL and is used as the

target of the transformations. This programming language is called the host language. The

architect can choose among these different options for defining the execution semantics of the

DSL.

Sometimes it is useful to use some host language constructs in the DSL. Consider for examples

6

using loops to iterate over statements or substitutions to realize variables. Reuse of host language

features is helpful, as reimplementing such features for a DSL can be a substantial effort. But

on the other hand the accessibility of host language features can be confusing for non-technical

stakeholders using the DSL. Hence, it must be decided whether the use of the host language

should be allowed or forbidden in the DSL and to which extent it should be allowed. Usually, it

is allowed in embedded DSLs (called language extension in [Spi01]) and forbidden in external

DSLs, because these combinations are easy to implement. But also other combinations are

possible, like an (e.g., external) DSL that offers only a limited set of host language features

of the host language (called piggyback in [Spi01]) or language specialization [Spi01], which

describes the creation of a DSL by omitting features of the host language.

The decisions named so far are central architectural decisions on DSL design and will be con-

sidered in the rest of this paper. They are summarized in Table 1. Please note that many other

architectural decisions on DSL design exist. For example, related to the decisions on the con-

crete syntax and transformations is the decision if and how syntax extensions and evolution is

supported. If more than one related DSLs are developed, architects must decide how the dif-

ferent DSLs are integrated. For making the DSL usable it is often necessary to provide custom

error messages that are understandable to the user of the DSL. The architect must decide which

error messages are supported and how/when they are triggered. Frag has a positive influence on

some of these other decisions, too. For example, many parts of Frag allow developers to easily

place custom error messages. However, in this paper we only focus on the decisions summa-

rized in Table 1, as the options for these decision mainly distinguish Frag’s approach from the

related work.

In an ideal world, the architect could decide for all options of these architectural decisions while

gaining experience with the DSL as it is evolving. Unfortunately, most existing DSL toolkits

do not leave many of these choices open. That is, the decision for a particular toolkit preselects

many other decision options: Once significant design and development with a DSL toolkit has

been conducted, it is hard to change the other decisions made by the DSL toolkit designers, if

they turn out to be inappropriate. In the next two sections, we illustrate our idea to provide a

DSL toolkit that leaves these decisions open – first in general and then using a detailed example.

7

Table 1: Architectural Decisions on DSL-based Design Considered in this Paper: Summary

Decision Alternatives Discussed in

How should the language model of the

DSL be realized?

Explicit Language Model based on a meta-model (e.g.,

UML model, EMF model, FMF model), a DTD, an XML

Schema, or a context-free grammar, Implicit Language

Model (language model implemented and hidden in the

DSL implementation code)

Section 3.1

Should an external or embedded DSL be

developed?

Embedded DSL, External DSL, Hybrid DSL (combining the

two former alternatives)

Section 3.2

How should the DSL’s execution seman-

tics be defined?

Generator-based Transformations using Transformation

Templates or Transformation Rules, Interpretation in a Dy-

namic Language or Scripting Language, parser that triggers

instructions in a programming language

Section 3.3

How should the DSL be integrated with

the host language?

Host Language Use Forbidden, Language Extension, Pig-

gyback, Language Specialization

Section 3.4

How should the static semantics for the

language model be realized?

Using a Constraint Languages, Using Transformations, Us-

ing Custom Code, Not At All

Section 3.5

3 DSL-based Design in Frag

Frag [Zdu10] is a dynamic programming language implemented in Java. Its main goal is the

rapid definition of DSLs based on Frag and processing of these languages. Frag is a full-fledged

OO language, but in this paper we will only introduce and use its specific features for DSL-

based design and development. In this section, we will explain the various steps that must be

performed to define a DSL and illustrate the architectural decisions and their alternatives that

can be deferred by using Frag. In the next section, we give a detailed example.

3.1 Specifying and Instantiating a DSL Language Model

Regarding the architectural decision “How should the language model of the DSL be realized?”

Frag supports two options:

• Because Frag is a full-fledged programming language, a DSL architecture in Frag does

not have to be based on an explicit language model. We can also use a structure of

ordinary programming language objects to represent the DSL language model – akin to

many DSLs in dynamic languages (see [Fre06]). Frag objects can either be implemented

8

in Frag or in Java.

• In addition, Frag implements a modeling framework called FMF that is similar to the

modeling frameworks found in model-driven language workbenches [SV06, Fow05]. Us-

ing this modeling framework, an explicit language model can be defined. FMF classes

and objects are ordinary Frag objects. For this reason, deciding for the FMF option does

not limit decision options with regard to other architectural decisions. FMF classes can

also be instantiated in Java, too.

FMF::Class create Book

FMF::Class create Document -attributes {
title String
description String
author String
version String

}

FMF::Composition create Book-Document -ends {
{Book -roleName book -multiplicity 0..1

-navigable true -aggregatingEnd true}
{Document -roleName documents -multiplicity *

-navigable true}
}

Book
title: String
description: String
author: String
version: String

Document

book documents

0..1 *

Figure 1: FMF Example

FMF defines a meta-model for language models that can be used to specify UML-style language

models in Frag. The language model classes are defined using the FMF::Class meta-class.

FMF introduces also a number of relationships between classes: Dependencies, Associations,

Compositions, Aggregations, and Inheritance, as well as extensions using stereotypes, enumer-

ations, and so on. Figure 1 illustrates how a simple UML class model, containing two classes,

a few attributes, and a composition relationship, is mapped to Frag code. The translation is in

most cases a one-to-one mapping. Once we have defined a language model in Frag, we can

use the language model to create instances using the same syntax. Figure 2 illustrates how an

instance of the UML model is mapped to Frag code.

9

Document create doc1 -title "Doc 1" \
-description "My first document" -author "Uwe" -version "0.1"

Document create doc2 -title "Doc 2" \
-description "My second document" -author "Uwe" -version "0.2"

Book create book1 -documents doc1 doc2

book1 : Book

title = "Doc 1"
description = "My first document"
author = "Uwe"
version = "0.1"

doc1: Document

title = "Doc 2"
description = "My second document"
author = "Uwe"
version = "0.2"

doc2: Document

Figure 2: FMF Instance Example

As mentioned previously, the alternative for this decision is to use ordinary Frag (or Java) ob-

jects to realize the language model. This is illustrated using the same example in Figure 3. In

this simple example, the explicit and implicit language model are still pretty similar, but we can

already see the important difference that the modeling language abstractions are not explicitly

present here: the code in Figure 3 contains no explicit relationships, no cardinalities, no naviga-

bility, and no typing of attributes or relationships. Methods are used to implement parts of the

language model.

Object create Book -defaults {
documents ""

}
Book method getDocuments {} {

self get documents
}
Book method setDocuments {docs} {

self set documents $docs
}
Object create Document -defaults {

text ""
title ""
description ""
author ""
version ""

}

Figure 3: Implicit Language Model in Frag

In Frag, both alternatives for the decision on the language model realization can be combined

with any choice for the other decisions described in Table 1. Changing this decision later on

10

requires to change the code that refers to language model elements, but the effort is rather

limited. The new kind of language model needs to be implemented. In addition some changes

to parts accessing the language model might be necessary: Class names can stay the same and do

not need to be changed. However, fields and relationships need to be accessed with getter/setter

methods instead of association role names (this change is a straightforward search/replace task).

3.2 Parsing: Scanner and Mapping Specification

In the previous section, we have already introduced one alternative solution for the decision:

“Should an external or embedded DSL be developed?” Any Frag language model (explicit or

implicit) automatically offers an embedded DSL syntax. An example of this syntax is shown in

Figure 2.

To support the external DSL option, too, FMF models or any other Frag object structures can

be created using any parser. For instance, all kinds of parser generators or XML parsers could

be used to create external concrete syntaxes for FMF models. However, to enable deferring

the architectural decisions related to syntax extension and language integration, we propose a

parsing approach based on the composition of lexical scanner rules, followed by a mapping of

the scanner’s output to the language model.

This lexical scanner approach is similar to the lexer in other parser generator approaches such as

ANTLR [Par07]. The mapping described below has the same role as the parser specification in

these parser generators, but offers some extensibility constructs (similar to attribute grammars

[MZ05]; see below).

The main idea of the lexical scanner approach is that all parsing is performed using rules. The

rules are traversed in the order in which they are defined, and if a rule applies it gets executed

(i.e., the order of definition defines the priority of the rules). Rules consist of matchers and

optionally tokens. A rule starts with the symbol ‘%’. If the matcher matches the scanner’s input,

it appends the matched input to a scanned elements list. A token is a literal appended to the rule

specification. If a token is given, all elements appended by this rule to the scanned elements

list get the token. Tokens can be used by a mapping specification (see below) to easier identify

certain scanned elements. In addition, there are rules that ignore the matched input. These start

with ‘%-’.

To foster reuse and make scanner specifications more readable, a scanner specification can also

11

contain matcher variables, defined using the ‘=’ symbol. Matcher variables are simply replaced

in rules or other matcher variables. Both variable and rule definitions are ended by a semicolon.

The syntax of matchers in the scanner specification is pretty similar to other lexical parsing ap-

proaches that are based on or similar to EBNF. You can define alternatives using ‘|’, sequences

by concatenating elements with whitespaces, groups of elements using round brackets ‘(...)’,

character sets using curly braces ‘{...}’, repetitions using multiplicities in square brackets

‘[...]’ (containing numbers, ‘..’, and ‘*’), ‘not’ using ‘!’, and literals in quotation marks.

Frag parsers can be defined using a Java API. In contrast to many other parsing approaches,

Frag also offers the option to define parsers in Frag using an embedded DSL. This way, an

embedded DSL can contain a parser for an embedded sub-language. That is, deferring the

related architectural decision does not only work for one DSL, but also for DSLs integrated in

another DSL.

To illustrate our scanner specification approach, Figure 4 defines the syntax of embedded DSL

for scanner specifications in its own syntax.

Match variables
COMMENT = "#" (!("\r\n" | "\n"))[*];
WS = " " | "\r\n" | "\n" | "\t";
RESERVED = WS | "!" | "(" | ")" | "[" | "]" | "{" | "}" | "|" | ";" | "#" | "\"";
STRING = "\"" ("\\\"" | !"\"")[*] "\"";
MULTIPLICITY = "[" (WS | {0123456789.*})[*] "]";
CHAR_SET = "\{" ("\\\}" | !"\}")[*] "\}";

Rules
%- COMMENT;
%- WS;
% STRING "STRING";
% MULTIPLICITY "MULTIPLICITY";
% CHAR_SET "CHAR_SET";
% "!" "NOT";
% "(" "L_BRACES";
% ")" "R_BRACES";
% "|" "OR";
% ";" "END";
% (!RESERVED)[1..*] "ID";

Figure 4: Scanner Specification Example: Syntax Specification of the Embedded DSL for Scan-

ner Specifications

The result of scanning a text is a tokenized list of elements. The literals at the end of ‘%’ rules are

the tokens assigned by the rules. The tokens can be used later on to easily interpret the scanned

elements list.

12

To ease mapping the scanned elements lists to the language model, we provide a mapping DSL.

It basically can map elements, sequences of elements, alternatives, and repetitions in the scanned

elements lists. It triggers code fragments that create and fill instances of the language model with

the parsed information. Elements that are matched can have a condition that must evaluate to

true in order for the element to match. These conditions are similar to attributes in attribute

grammars [MZ05], as they can be used to decide whether a rule applies or not.

Figure 5 shows a simple DSL mapping for metadata lists that are embedded in other DSL state-

ments. In the example, a sample metadata block is shown. It is also shown how it is parsed

into a scanned elements list with tokens (BLOCK and WORD) (as created by a scanner specifica-

tion). This list is the input for the mapping specification shown at the bottom of the figure. The

mapping specification accepts any repetition of a sequence of two elements, where the first ele-

ment has the token WORD and the second element has the token BLOCK. Before the repetition is

mapped, a Metadata object is created. After each sequence of elements, the metadata keyword

and value are set on the metadata object. Finally, when the end of the repetition is reached, the

metadata object is set as the metadata for the current document.

A mapping can invoke another mapping (an example is shown in Section 4). This way a map-

ping can reuse and incrementally extend existing mappings. This is similar to grammar exten-

sion through inheritance in attribute grammars in the approach by Mernik and Zumer [MZ05].

However, our approach rather resembles extension through delegation than inheritance.

Our approach to define parsing and mapping specifications within the Frag language allows us

to defer the architectural decision on the external vs. embedded syntax until late in the project.

In Frag, always an embedded syntax is needed. To change the decision and also provide an

external syntax, only the implementation effort for this external syntax is required. It is possible

to only use an embedded syntax, to hide the embedded syntax and only offer the external syntax,

or to use an hybrid approach and offer both syntaxes to the user. This decision has no influence

on other decisions.

3.3 Executing the DSL

As Frag is a dynamic language, we can use the ordinary option for executing a DSL in a dy-

namic language: Using the interpreter of Frag to execute the language. In addition, as Frag is

embedded in Java, we also have the option to use Java classes to implement the DSL execu-

13

meta {

title {Basics}
description {Frag Documentation}
author {Uwe Zdun}

}

DSL::DSLMapping create MetadataEltMapping -mapping {
@rep * {

@seq {
@elt key {$token == WORD}
@elt value {$token == BLOCK}

} {} {$metaData set $key $value]}
} {set metadata [Metadata create]}

{$doc set metadata $metadata}
}

title Basics

WORD BLOCK

description

WORD

Frag Documentation

BLOCK

author Uwe Zdun

WORD BLOCK

Figure 5: Example of a DSL mapping and its input

tion semantics (Frag imports Java classes automatically via reflection). For example, we can

extend the Document object from Figure 3 with a mixin (an extensional class) that interprets

the document and creates HTML code from it, as shown in Figure 6.

In addition to this obvious alternative for the decision “How should the DSL’s execution se-

mantics be defined?” we can also support other options in Frag. Frag additionally supports

transformation templates, as they can be found in model-driven language workbenches. Using

these transformation templates any code can be generated. For example, Figure 7 shows a trans-

formation template generating HTML code from an FMF model. Likewise, other code in other

languages or other models can be generated. The template creates the same HTML code, as

created by the example in Figure 6 for the explicit language model in Figure 1.

Finally, there is a third option supported by Frag: As Frag combines a dynamic language with

a DSL language model, the classes of the DSL language model can also be transformed us-

ing Frag’s dynamic language features, such as reclassing Frag objects, changing superclasses,

renaming objects/classes, and so on (see [Zdu10] for details).

None of these options is influenced by any of the other architectural decisions, and hence these

options can be selected at any stage at which designing execution semantics for the DSL is

necessary. Changing the decision means just rewriting the DSL execution code; no other parts

14

Object create DocumentHTMLMixin
DocumentHTMLMixin method transformText {} {

...
}
DocumentHTMLMixin method mandatoryNotEmptyArguments {argList} {

...
}
DocumentHTMLMixin method transformToHTML {} {

self mandatoryNotEmptyArguments {title description author version}

string build `
<html>

<head>
<title>`[self get title]`</title>
<meta NAME="description" CONTENT="`[self get description]`">

</head>
<body>

<h1>`[self get title]`</h1>
<h3>`Author: [self get author]`</h3>
<h3>`Version: [self get version]`</h3>
`[self transformText]`

</body>
</html>`

}
Document mixins DocumentHTMLMixin

Figure 6: DSL Execution Semantics Defined Using Interpreted Code

of the DSL are affected.

<html>
<head>

<title> <~ $doc title ~></title>
<meta NAME="description" CONTENT="<~ $doc description ~>">

</head>
<body>

<h1><~ $doc title ~></h1>
<h3>Author: <~ $doc author ~></h3>
<h3>Version: <~ $doc version ~></h3>
<~ $doc text ~>

</body>
</html>

Figure 7: Transformation template example

3.4 Integrating the DSL with the Host Language

The possible integration of the DSL with the host language is linked to the decision on an

embedded vs. an external DSL: In an embedded DSL, per default you can use any host language

feature. That is, the language extension pattern [Spi01] is used. In an external DSL, per default

no host language feature can be used. To change the decision on the host language integration,

without changing the decision on embedded vs. external DSL is usually some effort. Frag

15

supports this change to a certain extent, though.

Frag provides a modular architecture, in which each host language command is bound to the

interpreter as an object that is registered in the interpreter at startup time of the interpreter. A

similar architecture can also be found in other modular interpreter architectures, such as the Tcl

[Ous94] or Hecl [Wel10] interpreters. For interpreting an embedded language without certain

parts of the Frag language, we can simply not register or de-register the problematic commands.

This can go pretty far by using an embedded interpreter that virtually knows only the basic Frag

parsing rules and the embedded DSL statements. However, this is also a considerable effort and,

after all, we still have the Frag parsing rules in place. Hence, this alternative mainly makes sense

in order to remove certain commands that are considered “dangerous” for domain experts. This

approach is called a safe interpreter [LOW97], and it is well applicable for changing parts of the

host language integration decision for embedded DSLs with low effort. That is, this approach

uses the language specialization pattern [Spi01] to create a DSL by removing features from the

host language.

For the other case, adding host language commands to external DSLs, our approach only offers

the support that can also be found in other model-driven approaches: a transformation must be

used that generates or interprets the host language statement that should be added to the external

DSL. For instance, if generation is used, the transformation templates explained before can be

used. This realizes the piggyback pattern [Spi01]: selected host language features are provided

in the DSL and will be passed untouched by the transformations. This is useful for linguistic

elements such as expressions, substitutions, loops, and so on. Using the piggyback approach,

these elements can be offered with small effort in an external DSL.

3.5 Static Semantics for the Language Model

Regarding the architectural decision “How should the static semantics for the language model

be realized?” Frag offers a constraint language called FCL that can be used to specify OCL-

style constraints for language models. As an alternative static semantics can be implemented as

ordinary Frag or Java code. Also the transformation templates described before can be used.

Which of these alternatives should be chosen for realizing the static semantics of the DSL is

not always obvious early during a DSL project. For example, it makes sense to use OCL-style

constraints to link the DSL implementation and design. However, custom code can be more

16

useful, if the semantics are hard to express in OCL or if the Frag/Java code should be reused in

other functions of the transformation templates or in the interpreted code.

FCL is a DSL to specify OCL-style constraints in a modular fashion using the Frag syntax.

Figure 8 shows an example where a Port meta-class is extended by an EventPort stereotype.

We use the UML extension relationship to define the stereotype. A port can have an arbitrary

number of required interfaces. The extension limits the number of required interfaces to 1, using

an OCL constraint. Figure 8 shows how this simple constraint is translated to FCL. Apart from

the different concrete syntaxes, FCL and OCL have very similar concepts.

«stereotype»
EventPort

FMF::Stereotype create EventPort -extends UML2::Port
...
EventPort addInvariant {

[size [[self basePort] required]] == 1
}

«metaclass»
Port

inv:
self.basePort.required->size()=1

«metaclass»
Interface

required

provided
*
*

Figure 8: FCL Example

For model-based constraints like the one above, FCL might be more appropriate, as it enables

developers to translate OCL constraints of the model very easily. In contrast, some other con-

straints require custom code. An example, is the mandatoryNotEmptyArguments invocation

in Figure 6. This invocation triggers a constraint that checks whether a set of arguments is exist-

ing and non-empty, otherwise a custom error message is raised. The example code is shown in

Figure 9. This would be very cumbersome to express in OCL or FCL. Hence, the custom code

is the better alternative in this example. The same code can also be called from or integrated in

a transformation template.

As constraints are only additional code, this decision has no influence on the other architectural

decisions. To change a constraint from one implementation to another only requires rewriting

the constraint and making sure the constraint is triggered, when the constraints are checked.

17

DocumentHTMLMixin method mandatoryNotEmptyArguments {argList} {
foreach arg $argList {

if {![self varExists $arg] || [self get $arg] == ""} {
throw [Exception create -msg

"Mandatory argument '$arg' missing or empty for document: '[self]'"]
}

}
}

Figure 9: Static Semantics Constraint Implemented in Frag Code

3.6 Approach Summary

Table 2 summarizes how the architectural decisions, summarized in Table 1, are resolved using

solutions for the decisions’ alternatives in Frag. As we can see, Frag offers one alternative

solution for each of the general alternatives summarized in Table 1. Except for the decision on

the integration of the host language, none of the decisions have a dependency to other decisions

that would make it to be changed later in the development process. Hence, in most cases, the

only change effort that needs to be considered is the change effort required for changing the

architectural decision itself. Only the decision on the integration of the host language needs

to be considered together with the decision on embedded vs. external DSL, and options are

presented to change it to a certain extent even if the choice goes against the default provided by

an embedded or external DSL.

Frag offers support for low change effort of the decisions, too. As we can see mostly local

changes to the components directly influenced by the architectural decisions are required. Only

a few simple non-local changes, such as replacing field and relationship access code in the first

decision in Table 2, might be required.

4 Detailed Example

In this section, we illustrate DSL-based design in Frag. We focus on the decision “Should an

external or embedded DSL be developed?” in this illustration. As an external DSL in Frag

is entirely based on the embedded DSL design and implementation, we usually start off with

embedded DSL design and development when developing a DSL in Frag. Once the abstract

syntax concepts are maturing (in a first version) and an initial test suite has been developed, we

can add the external DSL artifacts – in case they are needed.

18

Table 2: Alternatives, Dependencies, and Change Effort Required for the Architectural Deci-

sions in Frag

Decision Alternative solutions provided in Frag Dependencies

to other deci-

sions

Change effort required

How should the language

model of the DSL be real-

ized?

Explicit language model in FMF, im-

plicit language model using Frag or

Java objects

None Implement new language model,

search/replace of field and relation-

ship accesses

Should an external or em-

bedded DSL be devel-

oped?

Embedded DSL as Frag code, exter-

nal DSL using Frag’s parsing approach,

hybrid DSL (combining the two former

alternatives), using an external parser

(e.g., XML parser, parser generator, ...)

None Embedded syntax is always needed,

for supporting external syntax only

this syntax needs to be imple-

mented

How should the DSL’s ex-

ecution semantics be de-

fined?

Frag interpreted code, Frag transforma-

tion templates, dynamic language fea-

tures

None Only implement new DSL execu-

tion code

How should the DSL be

integrated with the host

language?

Forbidden (using external DSL),

language extension (using embedded

DSL), language specialization through

removing interpreter commands,

piggyback using transformations

Forbidden

alternative

is linked to

external DSL,

language exten-

sion is linked to

embedded DSL

Some effort is needed to realize lan-

guage specialization or piggyback

alternatives, the others comes for

free

How should the static se-

mantics for the language

model be realized?

Using the FCL constraint languages,

using custom Frag code, using Frag

transformation templates

None Implement the new constraint and

make sure it gets triggered

19

As an alternative, we could also have started by developing an external mockup syntax first, e.g.,

together with the domain experts, and hence defer the decisions on the language model design.

In our experience, Frag’s embedded parsing approach requires only little efforts to experiment

with syntax ideas early on (i.e., before implementing the DSL). As reported in [SZ09], this has

helped us in some projects in the communication with the domain experts in cases the domain

concepts were highly unclear. Of course, once these syntax and language ideas mature, we need

to start a language model design, because for the final DSL a close correspondence between

parser and language model are necessary in any case [AP04]. In this example, however, we

directly start with the language model design, as the domain concepts are roughly clear.

In this paper, we want to explore the steps for DSL-based design and development in Frag using

Fowler’s introductory example (see [Fow08]). This example has two main benefits: firstly, it

is easy to understand, but non-trivial. Secondly, it has been realized in a number of other DSL

toolkits, enabling us to compare the solutions (see Section 5). The example is about describing

state machines used to implement machinery to lock and unlock secret compartments. Figure

10 shows a sample state machine presented by Fowler: Miss Grant’s system. She has a secret

compartment in her bedroom that is normally locked and concealed. To unlocked it for her to

open, she has to close the door, open a drawer in her chest, and turn a light on. Many variations

of the sequence of actions that can be carried out and the resulting behavior of the controller

software exist. The example DSL should support the company, providing the controllers, so that

they can install a new system with minimal effort.

To model state charts as the one in Figure 10 using the DSL, we need to be able to declare

events, commands, states, and transitions between states. States contain references to actions,

which should be executed when entering the state. The transitions are triggered by events, and

link between a source and target state. In this example, the first step to realize this DSL in Frag

is to design and implement the language model of the DSL. Figure 11 shows a language model

that we have derived and adapted from Fowler’s example.

We use FMF to implement the model in Frag. Figure 12 shows the language model implementa-

tion for the example (only an excerpt is shown). Various classes and associations between these

classes, following the design in Figure 11, are defined. We use object names to denote identi-

fiers for states, events, and commands. Hence, we do not need to implement the NamedElement

class. The isResetting property is defined with false as a default value, as most events are

not resetting. Apart from these two implementation details, the Frag implementation corre-

20

unlockDoor
lockPanel

idle

active

doorClosed

waitingForDraw waitingForLight

lightOn
drawOpened

unlockPanel
lockDoor

unlockedPanel

drawOpened lightOn

panelClosed

Reset Events:
doorOpened

Figure 10: Fowler’s example state chart (from [Fow08])

StateMachine State

stateMachine

1 states

*

stateMachine

1 start

1

Transition

stateMachine1

transitions *

transition

transition

1

1

source target1 1

code: String

AbstractEvent

isResetting: Boolean

Event
Command

actions *

state

1

transition 1

trigger 1

name: String

NamedElement

Figure 11: Language model for the state chart DSL (adapted from [Fow08])

21

sponds exactly to Figure 12.

FMF::Class create StateMachine
FMF::Class create State
FMF::Association create StateMachineStates -ends {

{StateMachine -roleName stateMachine
-multiplicity 1 -navigable true}

{State -roleName states
-multiplicity * -navigable true}

}
FMF::Association create StateMachineStart -ends {

{StateMachine -roleName stateMachine
-multiplicity 1 -navigable true}

{State -roleName start
-multiplicity 1 -navigable true}

}
FMF::Class create Transition
...

Figure 12: Example language model (excerpt)

Once a language model is defined, we can use the Frag syntax to create instances of the model.

That is, by defining the language model, we automatically have a rich embedded Frag syntax

that can be used. This syntax is the same syntax as for defining the language model. Figure

13 shows an example in which we create a model instance that implements the state chart from

Figure 11.

This example uses the Frag syntax in a pretty plain way. Actually, only two language features

of Frag that are not derived from the language model are used. Firstly, we use list build to

pass lists to the state machine instance. Secondly, we use unnamed objects for transitions. Both

features are used to simplify the code and do not have to be used. However, we can also go

much further, and use all kinds of language constructs defined in Frag. For instance, the code

in Figure 14 shows a foreach loop doing the same as the Command instantiations in Figure 13.

This syntax would be useful, if some additional tasks must be performed for each Command that

is instantiated.

The two examples show the benefits and liabilities of embedded DSL syntaxes. As a benefit, we

can use the Frag language features for simplifying and shortening the code. We can use features,

such as control structures and substitutions, to ease (recurring) tasks. Software developers will

appreciate such features being available, as they allow them to automate tasks and make the

code more readable. However, as a liability the user of the DSL must understand the Frag

22

Event create doorClosed -code D1CL
Event create drawOpened -code D2OP
Event create lightOn -code L1ON
Event create doorOpened -code D1OP -isResetting true
Event create panelClosed -code PNCL

Command create unlockPanel -code PNUL
Command create lockPanel -code PNLK
Command create lockDoor -code D1LK
Command create unlockDoor -code D1UL

StateMachine create MissGrantsSystem -states [list build
[State create idle -actions {unlockDoor lockPanel}]
[State create active]
[State create waitingForLight]
[State create waitingForDraw]
[State create unlockedPanel

-actions {unlockPanel lockDoor}]
] -transitions [list build

[Transition create -source idle -target active
-trigger doorClosed]

[Transition create -source active
-target waitingForLight -trigger drawOpened]

[Transition create -source active
-target waitingForDraw -trigger lightOn]

[Transition create -source waitingForLight
-target unlockedPanel -trigger lightOn]

[Transition create -source waitingForDraw
-target unlockedPanel -trigger drawOpened]

[Transition create -source unlockedPanel
-target idle -trigger panelClosed]

] -start idle

Figure 13: Example of the embedded DSL syntax

23

features. Even if users use only a limited subset of Frag, they must be aware that they are using

an embedded DSL. For non-technical users there is the danger that they accidentally use Frag

features and/or receive (for them) hard to understand error messages.

The important point to stress here is that in Frag the toolkit does not make a decision on the use

of Frag language elements or the usability of error messages. As a combination of all options is

provided, the architect can decide for the most appropriate choices for these decisions.

foreach {cmdName code} {
unlockPanel PNUL
lockPanel PNLK
lockDoor D1LK
unlockDoor D1UL

} {
Command create $cmdName -code $code

}

Figure 14: Using a foreach loop in the embedded DSL syntax

One benefit of the Frag approach is that we can first start-off by defining an embedded DSL,

which is useful for developing, testing, and evolving the language model, and then add the ex-

ternal DSL artifacts. This architectural decision can be deferred until the first DSL prototype

has been realized. Consider we want to make the example DSL usable for non-technical stake-

holders later on in our project. Fowler suggests the external syntax for the DSL that is shown in

Figure 15.

events
doorClosed D1CL
drawOpened D2OP
lightOn L1ON
doorOpened D1OP
panelClosed PNCL

end
resetEvents

doorOpened
end
commands

unlockPanel PNUL
lockPanel PNLK
lockDoor D1LK
unlockDoor D1UL

end
state idle

actions {unlockDoor lockPanel}
doorClosed => active

end
state active

drawOpened => waitingForLight
lightOn => waitingForDraw

end
state waitingForLight

lightOn => unlockedPanel
end
state waitingForDraw

drawOpened => unlockedPanel
end
state unlockedPanel

actions {unlockPanel lockDoor}
panelClosed => idle

end

Figure 15: External DSL syntax (from [Fow08])

24

To use this syntax for our example DSL, we must define a lexical scanner and mapping speci-

fication. The syntax of the scanner specification is shown in Figure 16. It ignores whitespaces

(WS). A WORD is a repetition of something that is not a whitespace or curly braces. Three kinds

of elements are added to the scanned elements list using rules: non-nested curly braces blocks

consisting of words or whitespaces with the token BLOCK, arrows with the token ARROW, and

words with the token WORD.

WS = " " | "\r\n" | "\n" | "\t";
WORD = (! (WS | "}" | "{"))[1..*];

%- WS;
% ("{" (WORD | WS)[*] "}") "BLOCK";
% "=>" "ARROW";
% WORD "WORD";

Figure 16: Syntax specification of the external DSL

The main mapping defined in Figure 17 accepts any repetition of the four block types (events,

resetEvents, commands, and state) used in Fowlers example. For each of the block types, the

mapping first requires the keyword, then any number of elements that are not “end”, and finally

the element “end”. Each block’s contents are assembled in a variable body.

The interpretation of the blocks is handled by specialized mappings, such as the one shown in

Figure 18, triggered in the switch statement (depending on the block’s keyword). For example,

the mapping specification in Figure 18 defines how resetting events blocks are handled. Basi-

cally these blocks consist of a sequence of elements, and each element must be an event. If an

element is not an event, we raise a custom error message. Otherwise we modify the event object

to be a resetting event. All other block mappings similarly provide mappings of the scanned

elements to the language model.

In this example we can see some of the main benefits of external DSLs in Frag. We can provide

a custom syntax, check all elements semantically either during the mapping or in later stages of

working with the models, and provide custom error messages that are useful for the DSL user.

Hence, we can provide a much saver and easier way to use DSLs for non-technical stakeholders

than with the embedded DSL approach.

The benefit of Frag’s parsing and mapping approach in this example is that it is easy to change

scanner rules and mappings, we define the grammar and mapping inside the Frag interpreter

without need for further tools, custom error messages can easily be embedded, and mappings

25

DSL::DSLMapping create MainMapping -mapping {
@rep * {

@seq {
@elt id {$id == "events" || $id == "resetEvents" ||

$id == "commands" || $id == "state"}
@rep * {

@elt e {$e != "end"} {append body $e}
} {set body ""} {

switch $id {
events {

KeyCodeBlockMapping map $body "set class Event"
}
resetEvents {

ResetEventsBlockMapping map $body
}
commands {

KeyCodeBlockMapping map $body "set class Command"
}
state {

set transitionCode [string append $transitionCode "\n"
[StateBlockMapping map $body "set smObj $smObj"]]

}
}

}
@elt end {$end == "end"}

}
} {set transitionCode ""} {

eval $transitionCode
}

}

Figure 17: Main DSL mapping for the external DSL

DSL::DSLMapping create ResetEventsBlockMapping -mapping {
@rep * {

@seq {
@elt event {} {

if {![interp isObject $event] || ![$event isType Event]} {
throw [ErrorException create -msg "object $event is not an event"]

}
$event isResetting true

}
}

}
}

Figure 18: DSL mapping for resetting events block

26

can be directed to different language models. This flexibility enables us to defer the related

decisions until the design of the external syntax.

5 Comparison to Related Work

5.1 Related Work on DSL Toolkits

In the literature, we find a number of other implementations of Fowler’s example. Fowler him-

self present 3 realizations [Fow08]: a Java API implementation, an external XML syntax, and

an external syntax implemented using the ANTLR parser generator. All 3 realizations com-

pletely exclude many architectural decision options as they support only a part of the DSL-based

design and development tasks. All architectural decision options that are supported are prese-

lected: Only an external syntax or the Java-API is supported, and all 3 realizations support only

a limited version of an explicit language model.

Efftinge presents an implementation of Fowler’s example using XText [Eff08]. XText is a

model-driven DSL approach that introduces a grammar language based on ANTLR. It is part

of the openArchitectureWare generator. In contrast to ANTLR, it offers rather limited means

for syntax specification (more sophisticated parse rules must be specified as “native” ANTLR

rules). But within these limits many custom syntaxes can be defined. That is, XText supports

only a limited number of external syntaxes well. XText supports an explicit language model, de-

fined using EMF (this decision option is also preselected). A unique benefit of XText, due to its

rather limited grammar language, is that it can generate the language model from the grammar

specification. XText provides languages for defining constraints and custom error messages;

here, the architect is free to choose.

The AMMA (Atlas Model Management Architecture) platform supports the model-driven def-

inition of DSLs [JBK06]. Its architecture is similar to XText and openArchitectureWare, but

some details differ. For building DSLs, a meta-model based on the KM3 (the Kernel Meta-

meta-model) must be built. In contrast to XText, concrete syntaxes and DSL semantics can be

represented either as models or transformations. TCS (Textual Concrete Syntax) is provided as

a DSL that is used to specify the concrete syntax of DSLs. TCS and XText are the two initial

contributions for TMF, the Eclipse Textual Modeling Framework [Ecl10].

JetBrains MPS system [Dmi04] provides a another similar approach to XText. A main differ-

27

ence is that the concrete syntax is based on forms that are filled with the MPS tool. The language

model is used to define the content of the forms. These decisions are preselected by the tool and

cannot be changed.

Corneliussen [Cor08] illustrates how to implement Fowler’s example using Microsoft’s new

modeling platform, code-named Oslo [Mic08]. Oslo uses MSchema to define schemas for data

instances (this is more comparable to XSD and DTD rather than an EMF model). MGraph is

an exchange format for capturing concrete data instances. MGrammar is a grammar language

that transforms a textual DSL to MGraph. To use this output, a programmatic mapping (e.g.,

using C#) is needed. The error messages are standard errors by the parser. That is, many major

architectural decision options are preselected by the technology.

In a dynamic language, such as Ruby, developing embedded DSLs is supported by some of

the language’s constructs [Fre06]. This approach is pretty comparable to developing embedded

DSLs in object-oriented, functional languages such as Scala [Dub06]. The integration with the

host language is hence quite good. The depth of host language integration can be selected by

the architect, but it is no option to exclude the use of the host language entirely. Usually DSL

statements work on Ruby objects directly, without an explicit language model. Like the model-

driven approaches, Frag supports building an explicit language model for the DSL, which eases

DSL modeling and understanding. As a dynamic language, Frag can also support building

DSLs without an explicit language model, as in Ruby DSLs. The grammar and the mapping to

Ruby is defined in a purely programmatic fashion; other options are possible but require hand-

crafting. A few choices are left open for the architect: For instance, custom error messages

can be placed anywhere in the Ruby code. Many options for integrating different Ruby DSLs

exist. Frag support the options of dynamic language DSLs plus language model options and the

extensible syntax of external DSL approaches. In a dynamic language based DSL, the syntax

can be changed only as far as possible in the host language.

In comparison to Frag, all other approaches focus either on embedded or external DSLs. Frag

is the only approach that supports both approaches. Converge’s approach [Tra08a, Tra08b]

is to provide DSL blocks that contain DSL code. Hence, Converge combines embedded or

external DSLs, too. The DSL code is written in a different syntax than the host language. The

DSL syntax is specified using a declarative grammar language. Custom error messages can be

defined. In Converge, however, not both approaches can be used, but DSLs defined using the

specification techniques for external DSLs are embedded in a host language using a construct

28

called DSL blocks. Ghosh demonstrates that Scala’s parser combinators can be used to realize a

similar solution for external DSL grammars [Gho08], but Scala does not support the DSL block

feature.

One of the big benefits of the Frag approach is that it provides host language integration in both

cases, external and embedded DSLs. None of the other external DSL approaches support both

architectural decision options. That is, if programmatic tasks are needed in the DSL develop-

ment or use, such as scripting or checking DSL code, we cannot use the same syntax for this

code as for defining the DSL, but must use a different language such as the host language.

For specifying the semantics of the DSL, the other approaches either use custom code in case of

the language-oriented approaches, or transformations (execution semantics) and constraint lan-

guages (static semantics) in case of the model-driven approaches (which sometimes can trigger

custom code). Hence, the choices for specifying execution and static semantics are also made

by the DSL tool chosen and are rather hard to change. In contrast, Frag offers both choices for

both kinds of semantics.

Custom error messages are very important for defining DSLs for end users, as they should not

have to deal with a parser’s output or similar cryptic error messages. Reuse by non-technical

users is hardly possible without error messages that are meaningful from a domain-oriented

point of view. Most approaches support custom error messages: Some are easier to use than

others, tough. In contrast to Frag, in some approaches the choices where a custom error message

can be triggered are more limited.

In conclusion, we can assess that Frag provides a unique combination of the most important

benefits of a number of DSL toolkits. In contrast to the existing DSL toolkits it leaves many

architectural decisions in DSL-based design open as long as possible by supporting a particular

combination of most of the options provided by the other approaches.

5.2 Related Work on Reusable Knowledge in DSL Development

While the related work presented in the previous section is directly related to the approach pro-

posed in this article, a number of related approaches focus on reusable design and implemen-

tation knowledge on DSLs. Hence, these approaches are related to the notion of architectural

decisions on DSLs, proposed in this article.

29

Several authors introduced patterns and pattern languages that can be applied in DSL develop-

ment. This includes patterns for the design and implementation of DSLs [Spi01] and patterns

for evolving frameworks into DSLs [RJ96, RJ97]. A pattern is a time-proven solution to a re-

curring design problem. The patterns do not only describe how a DSL is developed, but also

why it is developed in a specific way. The patterns for the design and implementation of DSLs

by Spinellis [Spi01] have been used by Mernik et al. [MHS05], who provide a survey of deci-

sion factors for the decision, analysis, design, and implementation phases of DSL development.

These decision factors can be considered during the DSL development.

The alternatives of our architectural decisions can be seen as (candidate) patterns for DSL de-

sign. Our performance and scalability measures, presented in Section 6, provided some rea-

soning for making informed architectural decisions. The patterns as such, however, provide no

support for deferring the decision for or against them.

Similar to patterns, lessons learned have been used as a vehicle to convey best practices of DSL

development. For example, Wile reports on twelve lessons learned from three DSL experiments

[Wil04]. For each lesson he introduces a respective rule of thumb and gives an overview of the

experiences that are the origin of the corresponding rule. Luoma et al. [LKT04] conducted a

study including 23 industrial projects for the definition of domain-specific (graphical) modeling

languages. A number of DSLs are systematically compared. These approaches have in common

with our approach that they are based on DSL project experiences (see Section 6). Like the

patterns, the lessons learned describe specific design considerations during DSL design and

are hence comparable to the architectural decisions in our work. Again, they do not focus on

deferring decisions though.

Both the patterns and lessons learned on DSLs do not provide tool or language support as pro-

vided in our approach.

One contribution of our work is that it makes different options for the architectural decisions on

DSLs comparable within one framework. For example, in Section 6 we compare different ap-

proaches to DSL implementation, such as external vs. embedded DSLs, in the Frag framework.

Only a few studies exist so far that systematically compare different options for the DSL imple-

mentation. Kosar et al. [KLBM08], for instance, compare 10 DSL implementation approaches

with regard to implementation effort and end-user effort. In contrast to our work, Kosar et al. fo-

cus on technical options for DSL implementation, such as source-to-source, macro processing,

30

embedded, interpreter, and compiler generator. In this context, they also provide quantitative

evidence for design knowledge on the decision for external vs. embedded DSLs that can be

generalized and reused in other contexts.

6 Experiences and Performance/Scalability Evaluation

We and others have applied our DSL approach and the Frag prototypes in a number of projects.

These experiences are summarized in Table 3. The table includes the three DSLs, we built

to realize our approach, that have been introduced in this paper: the Frag mapping DSL, the

Frag rule-based parsing DSL, and the Frag templating DSL. In addition, a number of other

DSL projects in which the author was involved are listed, along with the author’s roles in these

projects. In general, these experiences all supported the claims made in this paper. For example,

in most of the external DSLs we were able to start-off with an internal syntax (that is, we built

an embedded DSL as a prototype first), and then revised this decision later in time.

For the three Frag internal DSLs, as well as for Frag itself, we provide tool support in form of

Eclipse Editor plugins, supporting syntax highlighting, launching, error markers, outline views,

preferences, and so on. It is our plan to develop a product line for automatically deriving editors

for all our Frag DSLs.

An important aspect is: at what price come the benefits of our approach? In general, the ap-

proach mainly has an impact on the performance and the scalability of systems using it. To be

able to follow a systematic approach to analyze the performance and scalability impacts of the

various parts of our approach, we analyzed the smaller DSLs from Table 3 to understand how a

realistic small-scale setting of the elements (model elements, model instances, external syntax

elements, and template elements) looks like. Next, we scaled the setting up to more elements

using the factors 1, 2, 5, 10, 50, and 100. We measured the performance for each setting with

each scale factor to analyze how scalable the approach is. We measured the performance on a

rather weak desktop machine, as our approach will usually need to run on the local machine of

developers. The machine had an Intel Core2 Duo CPU, 1.60 GHz processor with 1.96 GB RAM

and was running under Windows XP. We used the Java JRE 1.6.0 07 and Frag 0.8 running on

it. We have run each measurement 100 times and calculated both the average in microseconds

as well as the standard deviation of the results. The results are shown in Table 4. To have a

baseline for assessing the scalability, we compared to a hypothetical linear scaling, calculated

31

Table 3: Overview of DSL Projects

Domain Technologies

Used

DSL Type Target Project Type Our Role(s) Project

Duration

Bibliography manage-

ment

Frag, HTML,

Latex

Embedded,

External

Code generation Research

project

DSL De-

signer, Devel-

oper

3 month

DSL editor specifica-

tion

Eclipse, Java,

Frag

Embedded DSL Interpreta-

tion

Research

project

Architect, Ob-

server

1 year

Frag mapping DSL Java, Frag Embedded DSL Interpreta-

tion

Research

project

DSL De-

signer, Devel-

oper

2 years

Frag rule-based parsing

DSL

Java, Frag Embedded,

External

DSL Interpreta-

tion

Research

project

DSL De-

signer, Devel-

oper

2 years

Frag templating DSL Java, Frag External DSL Interpreta-

tion

Research

project

DSL De-

signer, Devel-

oper

1 year

Multimedia home plat-

form

Frag, Java

MHP plat-

form

Embedded DSL Interpreta-

tion

Industry

project proto-

type

DSL De-

signer, De-

veloper,

Observer

1 year

QoS specification Frag, Apache

CXF, Java

Embedded,

External

DSL Interpreta-

tion

Case study Architect, Ob-

server

1 year

Software architectural

knowledge

Frag, HTML,

Latex

Embedded Code generation Research

project

DSL De-

signer, Devel-

oper

3 month

Software documenta-

tion

Frag, HTML,

Latex

Embedded,

External

Code generation Research

project

DSL De-

signer, Devel-

oper

3 month

32

by multiplying the average result for factor 1 with the higher factors. This comparison is shown

in Figures 19 and 20.

Size = 500

Size = 1000

Constructing and Interpreting Language Models

Size = 20

Size = 50

Size = 100

Size 500

0 50000 100000 150000 200000

Size = 10

Linear Scaling (Expected) Average ResultsLinear Scaling (Expected) Average Results

Size = 1000

Creating Model Instances with an Internal Syntax

Size = 50

Size = 100

Size = 500

0 20000 40000 60000 80000 100000

Size = 10

Size = 20

Linear Scaling (Expected) Average Results

Figure 19: Comparing the Average Results to Expected Linear Scaling Result (1)

We first measured the performance and scalability of constructing and interpreting language

models. As the language models in Frag have been expressed in terms of special programming

language objects, the numbers should be pretty comparable to other dynamic languages running

in virtual machines (if they would implement a modeling framework like FMF, too). Hence,

these numbers can serve as a baseline for comparing to the other performance measures that are

specific to our approach. As can be seen, in the first block of Table 4, we have measured the

performance for language models of various sizes. The smallest interpreted language model had

10 elements: 4 classes, 2 inheritance relationships, 1 aggregation relationship, and 3 fields. This

distribution of model elements was typical in some smaller DSL examples we have analyzed.

Using the factors above, we have scaled up the measurements to 1000 language model elements

of the same distribution. As can be seen, even very large language models with 1000 elements

can be created in less than 0,17 seconds, meaning that the performance is acceptable for typical

use cases such as MDD. Only for high-performance use cases needing for example the models at

33

runtime and very large models, the performance can be unacceptable. The average performance

scales almost linearly (see Figures 19 and 20).

However, for small models there is a rather great standard deviation, which gets better for larger

models, but is still high. We think this high standard deviation is mainly due to running on a

virtual machine and garbage collection of Java and Frag. We see similar standard deviations for

all other measurements as well. We think this is a general drawback of running our approach on

virtual machine architectures.

Secondly, we measured creating model instances with an internal syntax. We used the language

model of a small DSL with 44 language model elements as the foundation for these measure-

ments. We created an model instance with 1 instance object, 8 fields, and 1 relationship. Again,

this was a typical distribution from our DSL experiences. This measurement was also scaled up

to a 1000 elements. It showed a similar scaling behavior as in the first measurement: first a little

better than linear scaling and then getting a little worse than linear scaling. We think that both

the performance and scalability is acceptable for most typical use cases as well.

Size = 5000

Size = 10000

Parsing with an External Syntax

Size = 200

Size = 500

Size = 1000

Size 5000

0 50000 100000 150000 200000 250000 300000 350000

Size = 100

Linear Scaling (Expected) Average ResultsLinear Scaling (Expected) Average Results

Size = 100

Code Generation from Templates

Size = 5

Size = 10

Size = 50

0 50000 100000 150000 200000

Size = 1

Size = 2

Linear Scaling (Expected) Average Results

Figure 20: Comparing the Average Results to Expected Linear Scaling Result (2)

34

Thirdly, we measured parsing with an external syntax. In this case we used a larger starting

size of 100 language elements, as usually more than 1 language element is used to depict a

concept in a DSL. We used 100 language elements to start off and scaled up to 10000 language

elements. Again, we used the language model with 44 model elements. We used a small scan-

ner specification with the syntax specification shown in Figure 16 (without the arrow rule). A

mapping specification with 10 mapping elements was used. A simple syntax that is mapping the

language elements one-to-one to the language model was used. As shown in Table 4, the distri-

bution of results is roughly comparable to the previous measurements and hence acceptable as

well. However, it is important to note that this measurement has some open variables: an overly

complex grammar or mapping specification can easily impede the performance significantly. In

addition, the performance for parsing an external syntax must be added to the creation of model

instances. That is, the penalty of an external syntax is very roughly leading to a performance

decrease by the factor 2 (or even more). This can be a problem for very large instance models.

Fourthly, we measured the times for template generation. It must be noted that these are just

very early results, as our template engine is still in an early stage of development. We have

measured the performance of the instance model, explained before, with 10 instances, 80 fields,

and 10 relationships. We generated from templates with 1 to 100 template elements (template

directive to generate code). Normally, templates only have a few directives, hence we focused

on these smaller template element sizes. As can be seen the template engine scales much better

than linearly. We think this is due to the initialization time needed for setting up the template

engine to parse and map the template code, before the actual transformation of the language

model instances can happen. This initialization time requires a constant overhead that is more

significant for templates with only one or a few template elements. But still the performance for

these small element sizes is acceptable. Please note that template generation is also – like an

external syntax – an additional cost. Often more than one template is needed to generate all code

from a set of language model elements. Hence, templating can have a significant performance

impact. However, templating usually happens at design time. The alternative, interpretation of

the DSL code, has an performance impact on the system while it runs.

In summary, even though these numbers are specific to our Frag implementation, they show that

it is possible to create an implementation of a DSL toolkit that allows us to defer architectural

decisions of DSL design, even on a virtual machine architecture, with acceptable performance

and scalability impacts. For a very few use cases, such as very large models at runtime, the

35

performance impacts might not be acceptable, though. However, surely our prototype imple-

mentation can be improved and/or optimized for such cases, if needed. An important lesson

learned is that it is important to measure the performance impact and scalability when making

architectural decisions about DSL design, as the combination of decisions can lead to signifi-

cant performance or scalability problems. The numbers presented in this section are hence an

important contribution to making these architectural decisions, as they give rough estimates for

the performance and scalability impacts that can be expect. They can also be used to direct

optimization efforts.

7 Conclusion

In this paper we have introduced an approach to DSL-based design that combines ideas from

various related works in a unique way. Our main goal was to overcome some liabilities directly

or indirectly linked to implicitly making architectural decisions very early in a DSL project as

a consequence of selecting a DSL toolkit. Frag supports deferring these architectural decisions

by the following means: it provides a combination of the dynamic programming language ap-

proach to DSL-based design and the modeling framework approach known from model-driven

language workbenches; it provides a flexible rule-based, embedded parsing approach; it sup-

port transformation, generation, and interpretation as options to define the execution semantics

of DSLs; it makes all DSL artifacts modular entities that can be selected or deselected at any

stage during DSL-based design. This way we can support deferring the architectural decisions

in DSL-based design till after the domain abstractions have been sufficiently understood. Also,

many decisions can be changed after they have been made once (e.g., an external DSL can be

added later on), without having to change the DSL toolkit and with rather low change impact.

Our insights are not limited to the Frag toolkit, though. By following our approach or combin-

ing parts of our approach with other DSL toolkits, with foreseeable effort, other DSL toolkits

can be modified or adapted to defer specific architectural decisions. Using a number of DSL

project experiences and systematic performance and scalability measures we have shown that

the approach is feasible in practice.

36

Table 4: Performance and Scalability Measurements

Constructing and Interpreting Language Models

Size 10 20 50 100 500 1000

Average (mi-

croseconds)

1502 2491 5219 10054 64871 163598

Standard

Deviation

633 865 1541 2735 9211 14337

Creating Model Instances with an Internal Syntax

Size 10 20 50 100 500 1000

Average (mi-

croseconds)

668 1015 2055 3562 25471 78430

Standard

Deviation

345 417 715 861 4897 9109

Parsing with an External Syntax

Size 100 200 500 1000 5000 10000

Average (mi-

croseconds)

2870 5685 14468 30207 169053 312452

Standard

Deviation

904 1126 3014 6303 6144 12700

Code Generation from Templates

Size 1 2 5 10 50 100

Average (mi-

croseconds)

1574 2175 3936 6534 26868 51137

Standard

Deviation

662 864 1210 2059 4456 6850

37

Acknowledgments

This work was partly supported by the European Union FP7 project COMPAS, grant no. 215175.

http://www.compas-ict.eu/.

References

[AP04] M. Alanen and I. Porres. A relation between context-free grammars and meta

object facility metamodels. TUCS Technical Report No 606, http://tucs.fi/

publications/insight.php?id=tAlPo04a, 2004.

[Ben86] J. Bentley. Programming Pearls – Little Languages. Communications of the

ACM, 29(8):711 – 721, August 1986.

[CB74] D.D. Chamberlin and R.F. Boyce. Sequel: A structured english query language.

In Proc. of the ACM SIGFIDET (now SIGMOD) Workshop on Data Description,

Access and Control, pages 249–264, May 1974.

[Cor08] L. Corneliussen. Fowler’s DSL example with MGrammar. http://

startbigthinksmall.wordpress.com/2008/11/26/fowlers-dsl-example-with-

mgrammar-draft/, 2008.

[Dmi04] S. Dmitriev. Language Oriented Programming: The Next Programming

Paradigm. http://www.onboard.jetbrains.com/is1/articles/04/10/lop/, November

2004.

[Dub06] G. Dubochet. On embedding domain-specific languages with user-friendly syn-

tax. In Proceedings of the 1st ECOOP Workshop on Domain-Specific Program

Development, pages 19–22, Nantes, France, July 2006.

[Ecl10] Eclipse. Textual Modeling Framework. http://www.eclipse.org/modeling/tmf/,

2010.

[Eff08] S. Efftinge. XText – Documentation. http://wiki.eclipse.org/Xtext/

Documentation, 2008.

[Fow05] M. Fowler. Language Workbenches: The Killer-App for Domain Specific Lan-

guages? http://martinfowler.com/articles/languageWorkbench.html, June 2005.

38

[Fow08] M. Fowler. Domain Specific Languages – An Introductory Example. http://

martinfowler.com/dslwip/Intro.html, 2008.

[Fre06] J. Freeze. Creating DSLs with Ruby. Ruby Code & Style, Artima, http://

www.artima.com/rubycs/articles/ruby as dsl.html, March 2006.

[Gho08] D. Ghosh. External DSLs made easy with Scala Parser Combina-

tors. http://debasishg.blogspot.com/2008/04/external-dsls-made-easy-with-

scala.html, 2008.

[Gra93] P. Graham. On Lisp – Advanced Techniques for Common Lisp. Prentice Hall,

1993.

[GS04] J. Greenfield and K. Short. Software Factories: Assembling Applications with

Patterns, Frameworks, Models & Tools. J. Wiley and Sons Ltd., 2004.

[HB88] R.M. Herndon and V.A. Berzins. The Realizable Benefits of a Language

Prototyping Language. IEEE Transactions on Software Engineering (TSE),

14(6):803–809, June 1988.

[Hud96] P. Hudak. Building Domain-Specific Embedded Languages. ACM Computing

Surveys, 28:196, December 1996.

[ISO96] Information technology – Syntactic metalanguage – Extended

BNF – ISO/IEC 14977:1996. http://www.iso.org/iso/iso catalogue/

catalogue tcashcatalogue detail.htm?csnumber=26153, 1996.

[ISO03] Information technology – Database languages – SQL – Part 1: Frame-

work (SQL/Framework) – ISO/IEC 9075-1:2003. http://www.iso.org/iso/

iso catalogue/catalogue tcashcatalogue detail.htm?csnumber=34132, 2003.

[JB05] A. Jansen and J. Bosch. Software architecture as a set of architectural design

decisions. In WICSA ’05: Proceedings of the 5th Working IEEE/IFIP Confer-

ence on Software Architecture, pages 109–120, Washington, DC, USA, 2005.

IEEE Computer Society.

[JBK06] F. Jouault, J. Bézivin, and I. Kurtev. Tcs:: a dsl for the specification of textual

concrete syntaxes in model engineering. In GPCE ’06: Proceedings of the 5th

39

international conference on Generative programming and component engineer-

ing, pages 249–254, New York, NY, USA, 2006. ACM.

[KLBM08] T. Kosar, P.E. Martinez López, P.A. Barrientos, and M. Mernik. A prelimi-

nary study on various implementation approaches of domain-specific language.

Information and Software Technology, 50(5):390–405, 2008.

[KT08] S. Kelly and J.-P. Tolvanen. Domain-Specific Modeling: Enabling Full Code

Generation. John Wiley & Sons, 2008.

[Lam94] L. Lamport. LaTeX: A Document Preparation System (2nd Edition). Addison-

Wesley, 1994.

[Lat08] LATEX Project Homepage. http://www.latex-project.org, 2008.

[LKT04] J. Luoma, S. Kelly, and J.-P. Tolvanen. Defining Domain-Specific Modeling

Languages: Collected Experiences. In Proc. of the 4th OOPSLA Workshop on

Domain-Specific Modeling, October 2004.

[LOW97] J.Y Levy, , J.K. Ousterhout, and B.B. Welch. The safe-tcl security model. Tech-

nical report, Mountain View, CA, USA, 1997.

[MHS05] M. Mernik, J. Heering, and A.M. Sloane. When and How to Develop Domain-

Specific Languages. ACM Computing Surveys, 37(4):316–344, December 2005.

[Mic08] Microsoft. Microsoft Modeling Platform (code named Oslo). http://

msdn.microsoft.com/en-us/library/cc709420.aspx, 2008.

[MZ05] M. Mernik and V. Zumer. Incremental programming language development.

Computer Languages, Systems & Structures, 31(1):1–16, 2005.

[Ope08] Open Architecture Ware. openArchitectureWare.

http://www.openarchitectureware.org/, 2008.

[Ous94] J. K. Ousterhout. Tcl and Tk. Addison-Wesley, 1994.

[PAC+02] S. Pemberton, D. Austin, T. Celik, D. Dominiak, H. Elenbaas, B. Epperson,

M. Ishikawa, S. Matsui, S. McCarron, A. Navarro, S. Peruvemba, R. Relyea,

S. Schnitzenbaumer, and P. Stark. XHTML 1.0 The Extensible HyperText

40

Markup Language (Second Edition) – A Reformulation of HTML 4 in XML

1.0. http://www.w3.org/TR/xhtml1, August 2002.

[Par07] T. Parr. The Definitive ANTLR Reference: Building Domain-Specific Lan-

guages. The Pragmatic Bookshelf, Raleigh, 2007.

[Ray03] E.S. Raymond. The Art of Unix Programming. Addison-Wesley, 2003.

[RJ96] D. Roberts and R. Johnson. Evolve Frameworks into Domain-Specific Lan-

guages. In Proc. of the 3rd Pattern Languages of Programs Conference (PLoP),

Washington University Technical Report (wucs-97-07), Allerton Park, Illinois,

September 1996.

[RJ97] D. Roberts and R. Johnson. Patterns for Evolving Frameworks. In Pattern

Languages of Program Design 3. Addison-Wesley Longman Publishing Co.,

Inc., 1997.

[Sch06] D.C. Schmidt. Model-Driven Engineering – Guest Editor’s Introduction. Com-

puter, 39(2):25, February 2006.

[Sel03] B. Selic. The Pragmatics of Model-Driven Development. IEEE Software,

20(5):19–25, 2003.

[Spi01] D. Spinellis. Notable design patterns for domain-specific languages. Journal of

Systems and Software, 56(1):91–99, February 2001.

[SV06] T. Stahl and M. Völter. Model-Driven Software Development. John Wiley &

Sons, 2006.

[SZ09] M. Strembeck and U. Zdun. An approach for the systematic development

of domain-specific languages. Software: Practice and Experience (SP&E),

39(15):1253–1292, 2009.

[Tra08a] L. Tratt. Domain specific language implementation via compile-time meta-

programming. TOPLAS, 30(6):1–40, 2008.

[Tra08b] L. Tratt. Evolving a DSL implementation. In Generative and Transformational

Techniques in Software Engineering II, volume 5235 of LNCS, pages 425–441,

2008.

41

[Wel10] D. Welton. Hecl – The Mobile Scripting Language. http://www.hecl.org/, 2010.

[Wil04] D. Wile. Lessons learned from real DSL experiments. Science of Computer

Programming, 51(3):265–290, June 2004.

[Zdu10] U. Zdun. Frag. http://frag.sourceforge.net/, 2010.

42

