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A B S T R A C T 
Context: Existing fault-localization techniques combine various program features and similarity coefficients with the aim of 
precisely assessing the similarities among the dynamic spectra of these program features to predict the locations of faults. 
Many such techniques estimate the probability of a particular program feature causing the observed failures. They often 
ignore the noise introduced by other features on the same set of executions that may lead to the observed failures. It is unclear 
to what extent such noise can be alleviated. 

Objective: This paper aims to develop a framework that reduces the noise in fault-failure correlation measurements. 

Method: We develop a fault-localization framework that uses chains of key basic blocks as program features and a 
noise-reduction methodology to improve on the similarity coefficients of fault-localization techniques. We evaluate our 
framework on five base techniques using five real-life medium-scaled programs in different application domains. We also 
conduct a case study on subjects with multiple faults. 

Results: The experimental result shows that the synthesized techniques are more effective than their base techniques by 
almost 10%. Moreover, their runtime overhead factors to collect the required feature values are practical. The case study also 
shows that the synthesized techniques work well on subjects with multiple faults. 

Conclusion: We conclude that the proposed framework has a significant and positive effect on improving the effectiveness of 
the corresponding base techniques. 

Keywords: Fault localization; Key block chain; Noise reduction; Program debugging 
Research Highlights: 
1. Noise in measuring the fault-failure correlation is unavoidable. 
2. A noise-aware framework to refine similarity coefficients is proposed. 
3. Core parts include chains of key basic blocks and noise-reduction terms. 
4. Significant improvements in fault localizaton effectiveness are observed in experiments. 

 

1. Introduction 
Software debugging involves fault localization, fault 

repair, and retesting to confirm the fixing of the faults. Fault 
localization is time-consuming and cannot be done effec-
tively, and is often deemed as the major bottleneck in the 
debugging process. 

Coverage-based fault-localization (CBFL) techniques, 
also known as statistical or spectrum-based techniques, have 
been developed. Examples include Jaccard [1], Tarantula 
[22], CBI [24], SOBER [25], and CP [41]. 

A typical CBFL technique involves a number of phases. 
It first selects a set of program features, and then collects the 
execution statistics of such features for both passed and 
failed executions. By comparing the similarities between 
two such sets of statistics for each feature, it estimates the 
extents of the program features correlated to a fault, and 
ranks the program features accordingly. 

Thus, two basic elements that affect the fault localization 
effectiveness in a CBFL technique are the choice of the 
program features and the similarity coefficient used by the 
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technique. 
Existing work has proposed many similarity coefficients 

[1][4][24][25][30][39][41] or derived coefficients [31][45]. 
Many experiments have been conducted on these different 
coefficients under various benchmarks to compare their 
effectiveness. Nonetheless, for the same class of similarity 
coefficients, there is still no consensus on why one similar-
ity coefficient is consistently better than others in the class. 
Existing literature uses empirical findings to validate the 
proposals, and yet their fault localization effectiveness on 
different program subjects often varies. 

A CBFL technique abstractly models a program as a set 
of features, such as nodes [3][22], edges [31][41], predicates 
[24][25], sequences of edges [12], sequences of conditionals 
in predicates [5][44], and data values [18], and estimates the 
likelihood (such as fault suspiciousness) that each feature is 
related to the observed failures or anomalies. From the 
above list of proposals, we observe that finding a good set of 
features is obviously important. 

Ideally, the source code of a program can be statically 
and completely partitioned into a set of equivalent classes of 
these features. For instance, basic blocks can be used as an 
equivalence criterion, in which case every statement in any 
basic block can be assigned to exactly one partition. Such a 
partitioning process may also be applied when statements, 
edges, and predicates, to name a few, are used as a feature. 

Surprisingly, when a typical CBFL technique focuses on 
one partition A during the fault suspiciousness assessment 
process, it (or its coefficient similarity formula) consistently 
ignores other partitions in the same execution, and yet the 
failure verdict for partition A is in fact related to all the 
partitions along the same execution. For a long-lived 
execution, the noise introduced by such deliberately ignored 
partitions may exhibit a significant impact on the accuracy 
of the measured correlation value. 

Our previous work [37] proposed the notion of noise 
reduction and proposed a technique Minus to reduce noise 
incurred in Tarantula. It showed that reducing the noise 
from unwanted features improves the effectiveness of 
Tarantula. It also proposed a feature known as KBC for fault 
localization, which intuitively means a chain of basic blocks, 
and showed via an empirical study that simultaneously 
applying both Minus and KBC can synthesize a more 
promising novel technique MKBC. Its experiment showed 
that MKBC was more effective than Tarantula, Jaccard, and 
Ochiai in locating faults in three medium-scaled program 
subjects. 

Naish et al. [28] proposed a model for spectrum-based 
fault localization, in which four terms are used as arguments 
of the similarity coefficient formulas of 33 selected 
fault-localization techniques. For example, the similarity 
coefficient of Tarantula is: 
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where aef means the number of failed executions covering a 
target program feature and anf means the number of failed 

executions not covering it. The arguments aep and anp can be 
explained in the same way, except that they count the passed 
executions instead. In our previous work [37], we have 
shown that reducing the noise means subtracting the 
possibility of not executing a feature causing a failure, and 
proposed to exchange the executed and non-executed parts 
to estimate the noise [37]. In the same manner, we use anf 
instead of aef, anp instead of aep, aef instead of anf, and aep 
instead of anp to estimate the noise in Tarantula as follows: 
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For each of the other 32 techniques, can we synthesize a 
new technique similarly? Will they also be effective? 

In this paper, we generalize the concept of noise- 
reduction in MKBC to propose a general fault-localization 
framework that can be used to synthesize various fault- 
localization techniques based on the inputted existing tech-
nique. We reproduce in the second column of Table V the 
synthesized formulas for all the 33 techniques in [28]. To 
verify the efficacy and efficiency of our framework, we 
significantly extend a controlled experiment reported in [37] 
by taking four more existing fault-localization techniques 
Jaccard [1], Ochiai [39], Ochiai2 [28], and Kulczynski2 [28] 
in addition to Tarantula [22] as inputs to synthesize new 
techniques and two more medium-scaled real-life programs 
jmeter and nanoxml in addition to jtopas, xmlsecurity, and 
ant as subject programs. Our framework benefits from the 
ideas of Minus and KBC proposed in our previous work [37] 
in figuring out the factors with significant effects. In this 
paper, we additionally investigate the effect of the synthe-
sized techniques by applying Minus, KBC, or their combina-
tion to an inputted based technique. We find empirically that 
applying either Minus or KBC separately, or applying both 
of them simultaneously, can synthesize a more effective 
technique from any base fault-localization technique over 
any program. We also investigate empirically the impacts of 
program failing rate and the length of a KBC on the 
effectiveness of the synthesized techniques, as well as their 
efficiency issues. The result shows that both the failing rate 
and the length of KBC can be significant factors. Finally, we 
report on a case study demonstrating that our methodology 
can effectively locate faults in a real-life program containing 
multiple faults. 

The main contribution of this paper is twofold: (i) It 
proposes the first framework with a novel noise-reduction 
methodology to synthesize fault-localization techniques. (ii) 
It reports a controlled experiment that applies different base 
fault-localization techniques to different subject programs to 
verify that the synthesized techniques are consistently more 
effective than their base counterpart, which indicates that 
our proposed methodology and framework are promising. 

The rest of this paper is organized as follows. Section 2 
shows a motivating example. Section 3 presents our frame-
work. Section 4 presents an experimental evaluation. Sec-
tion 5 conducts a case study to further analyze the exper-
imental results. Section 6 highlights some potential threats 
aaaaa 
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Java statements and Jimple statements 
Test 
cases t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 

Tarantula 

TM
inusFKBC

 

TKBC
 

TM
inusF 

Jaccard 

JM
inusF 

O
chiai 

O
M

inusF 

Pass/Fail F P F P P P P P P P sus r sus r sus r sus r sus r sus r sus r sus r 
if (isAbsolute) { 
 
 

  index = path.indexOf(File.separatorChar, 0); 
  if (index == -1) { 
    return path.substring(1) + ":[000000]"; 
  } else { 
    device = path.substring(1, index++); }} 
... 

if (!isAbsolute && directory != null) { 

  directory.trim(); 

  directory.insert(0, '.'); } 

s1 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 0.5 6 0.44 4 0.8 4 0.5 3 0.2 6 0.2 4 0.447 5 0.447 3 
s2 ■ ■ ■  ■ ■  ■ ■ ■ 0.57 5 0.44 4 0.8 4 0.57 2 0.25 5 0.25 2 0.5 4 0.5 2 
s3 ■ ■ ■  ■ ■  ■ ■ ■ 0.57 5 0.44 4 0.8 4 0.57 2 0.25 5 0.25 2 0.5 4 0.5 2 

s4 ■        ■  0.8 1 0.44 4 0.8 4 0.44 4 0.33 1 0.219 3 0.5 4 0.25 4 

s5  ■ ■  ■ ■  ■  ■ 0.44 7 –0.13 8 0.44 8 –0.13 7 0.17 7 0.027 7 0.289 8 –0.07 8 
                           

s6  ■ ■ ▲ ▲ ■ ▲ ■  ■ 0.36 8 0.27 7 0.67 7 –0.44 8 0.11 8 -0.22 8 0.5 4 0 7 
s7  ■ ■     ■   0.66 3 0.27 7 0.67 7 0.27 6 0.25 5 0.125 6 0.408 7 0.141 6 

s8  ■ ■     ■   0.66 3 0.27 7 0.67 7 0.27 6 0.25 5 0.125 6 0.408 7 0.141 6 

code examination effort    62.5% 50% 50% 25% 62.5% 25% 62.5% 25% 

Figure 1. A faulty version of program ant and effectiveness comparison of different fault localization techniques. 
Legend. sus: suspiciousness of a statement/block/path being related to a fault; r: ranking of a statement/block/path. 

 
to validity. Section 7 discusses the extensibility of our 
framework. Section 8 reviews related work, followed by 
Section 9 that concludes the paper. 

Motivating example 
This section uses an example to motivate the needs of a 

noise-reduction framework for fault localization. Figure 1 
shows the program code excerpted from a faulty version of 
the program ant, downloaded from the Software-artifact 
Infrastructure Repository (SIR) [14]. The functionality of 
this code excerpt is to translate the path of a file from 
OS-format into VM-format. A fault exists on statement S2, 
where the second parameter of method path.indexOf() 
should be 1 rather than 0. Exercising S2 followed by S4 
triggers a failure. 

2.1 Jimple 
Jimple is an intermediate representation [32][33] of Java, 

which can be directly created based on Java source code and 
Java bytecode/Java class files. We only have to handle 15 
Jimple instructions instead of more than 200 instructions in 
Java bytecode. In addition, Jimple has several desirable 
properties to support fault localization. First, Jimple always 
normalizes every compound Boolean expression into atomic 
Boolean expressions, each of which resides in exactly one 
basic block.1 Second, each basic block contains at most one 
atomic Boolean expression. Third, mapping a Boolean 
expression in Jimple code to its corresponding statement in 
Java code is easy. 

The Jimple code of the program excerpt2 and the control 

                                                             
1 In particular, a Jimple if_stmt [33] is an atomic Boolean expression. In 

this paper, we do not consider other branch statements such as 
goto_stmt, table_switch_stmt, and lookup_switch_stmt [33]. 

2 Note that, to realize the streamlined form [32][33] in Jimple, the source 
code has been transformed with some branches switched without 
altering the program behavior. For example, the condition “index == –1” 

flow graph (CFG) based on Jimple code are shown in Figure 
2. We observe that the compound predicate at s6 is split into 
two basic blocks. Also, a basic block b2 contains the state-
ments s2 and s3. Its preceding block is b1 and its succeeding 
blocks are b3 and b4. The connections between a basic block 
and its preceding/succeeding basic blocks are explicitly 
captured in Jimple representation. All these features can 
help us capture the significance of KBCs in this paper. 

We further denote the predicate in a block Bi by Pi and 
the corresponding predicate at a statement Si by pi. For 
instance, we use P1 to denote predicate for B1 and p3 to 
denote predicate for S3. 
1) Test cases 

Figure 1 shows 10 sample test cases, together with their 
pass/fail status. The statement- and block-execution infor-
mation is also shown in the figure. A cell filled with “■” 
indicates that the corresponding statement or block is 
exercised by the execution of that test case. A cell filled 
with “▲” indicates that the corresponding statement is only 
partially exercised (because not all conditions of a Boolean 
expression are exercised [44]). We also add a dummy block 
b8 for ease of explanation. 

Let us take the fourth test case t4 as an example. When 
the program executes t4, statement s1 is exercised, s6 is 
partially exercised, and basic blocks b1 and b5 are exercised. 
The compound Boolean expression in s6 is split into two 
atomic Boolean expressions e5 and e6 at the Jimple code [32] 
level. Block b5 includes the first conditional e5, which is 
exercised by t4, while block b6 includes the second condi-
tional e6, which is not exercised. Consequently, we mark s6 
by “▲” in the t4 column. The other test cases in the figure 
can be interpreted similarly. 

                                                                                                     
in S3 is changed to “index != –1” with the corresponding branches 
swapped. 
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Java statements and Jimple statements 
Test cases t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 

CFG 
Pass/Fail F P F P P P P P P P 

 

Block 1:[preds:] [succs: 2 5] 
... 
e1: 1: if isAbsolute == 0 goto if isAbsolute!=0. 
 
Block 2:[preds: 1] [succs: 3 4] 
2: $c0 = <java.io.File: char separatorChar> 
2: index = virtualinvoke path.($c0, 0) 
e2: 3: if index != -1 goto index = index + 1 
 
Block 3:[preds: 2] [succs:] 
... 
4: return $r3 
 
Block 4:[preds: 2] [succs: 5] 
5: index = index + 1 
5: virtualinvoke path. ... 
 
Block 5:[preds: 1 4] [succs: 6 8] 
e5: 6: if isAbsolute != 0 goto return 
 
Block 6:[preds: 5] [succs: 7 8] 
e6: 6: if directory == null goto return 
 
Block 7:[preds: 6] [succs: 8] 
7: virtualinvoke directory. ... 
8：... 
 
Block 8:[preds: 5 6 7] [succs:] 
return  

b1 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 

 

b2 ■ ■ ■  ■ ■  ■ ■ ■ 

b3 ■        ■  

b4  ■ ■  ■ ■  ■  ■ 

b5  ■ ■ ■ ■ ■ ■ ■  ■ 

b6  ■ ■   ■  ■  ■ 

b7  ■ ■     ■   

b8           

Figure 2. Jimple code and CFG for program excerpt in Figure 1. 
 

2.2 Sample techniques 
We use the Jaccard, Ochiai, and Tarantula techniques to 

demonstrate the idea of fault-localization framework, which 
synthesizes more effective new techniques from a given one. 
Let us take the technique Tarantula as example. We use the 
terms TMinusF, TKBC, and TMinusFKBC to stand for the 
techniques synthesized by separately and simultaneously 
applying the Minus and the KBC concepts, respectively. 
Further, we use JMinusF and OMinusF to stand for the 
synthesized techniques for Jaccard and Ochiai by using the 
Minus concept only. We apply the eight techniques to the 
example and compute, for each statement, a suspiciousness 
score and its rank. They are shown in the “sus” and “r” 
columns, respectively. By calculating the value of expense 
[41] for each technique, the effectiveness of these 
techniques in locating the fault in s2 is measured by the 
percentage of code that must be examined (as recommended 
by the expense) to include S2. The value of expense is 
shown in the “code examination effort” row. 

2.3 Our idea 
Our idea of synthesizing a fault-localization technique 

from a given one consists of three steps. First, a similarity 
coefficient is chosen from the base technique. Our frame-
work then creates a new term according to the Minus 
concept to quantify the noise related to the given similarity 
coefficient. 

Let us revisit the concepts of KBC and Minus to motivate the 
idea. To construct KBC, we traverse the Jimple code, block 
by block starting from b1, to search for a chain of adjacent 
blocks that end with a branch statement (which contains an 
atomic Boolean expression [44]). Because the last statement 
in b1 is a branch statement, we mark b1 and continue the 
traversal with b2. We also mark b2 because its last statement 
is again a branch statement. We then visit b3, which does not 
end with branch statement. Thus, we link the marked blocks 
b1 and b2 to form a key block chain (or KBC for short). In 
Figure 2, the thick (red) arrow from b1 to b2 denotes that 
they form a KBC. Note that b3 is not included. We then clear 
the marks and continue with the traversal to the next block, 
which is b4. Finally, we construct another KBC by linking b5 
and b6, as shown by the dashed (blue) arrow. In short, we 
have two KBCs. The chains of atomic Boolean expressions 
(in the branch statements) are c1 = 〈e1, e2〉 and c2 = 〈e5, e6〉. 
We use the term KBC predicates to refer to such chains. In 
fact, the above process can be applied directly to Java code. 
We will give an example in Section 7.2. 

A KBC predicate may contain several atomic Boolean 
expressions. We use them to construct sub-paths according 
to the evaluation sequences [44] of their decision results. 
Given a KBC ci, let esj(ci) denote the j-th sub-path of ci. In 
Figure 3, three sub-paths are constructed for each of the two 
KBCs c1 and c2, which will be our fault predicators here. Let 
us revisit the technique derived from Tarantula in our 
previous work [37] to inspire the idea in this paper. 

b1 
 

b4 
 

b3 
 

b2 
 

b5 
 

b6 
 

b7 
 

b8 
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KBC predicates for TKBC TMinusFKBC 

c1 = 〈e1, e2〉 sus r sus r 
es1(c1) b1gb5 0 6 –0.57 6 
es2(c1) b1gb2gb3 0.8 1 0.44 1 
es3(c1) b1gb2gb4 0.44 3 –0.13 3 

c2 = 〈e5, e6〉 sus r sus r 
es1(c2) b5gb8 0 6 –0.57 6 
es2(c2) b5gb6gb8 0 6 –0.57 6 
es3(c2) b5gb6gb7 0.67 2 0.27 2 

Figure 3. KBC predicates and calculation process for TKBC and TMinusFKBC. 
Legend. sus: suspiciousness of a statement/block/path being related to a fault; r: ranking of a statement/block/path 

 
The coefficient used by Tarantula (denoted by 

α!"#"$%&'") calculates the ratio of (i) the percentage of 
failed executions that exercise esj(ci) and (ii) the percent-
age of all executions that exercise esj(ci). We estimate the 
noise (denoted by 𝛽!"#"$%&'") using the ratio of (iii) the 
percentage of failed executions that do not exercise esj(ci) 
and (iv) the percentage of all executions that do not 
exercised esj(ci). Finally, we use an expression of the form 
“α – β” to model the suspiciousness estimated by the 
synthesized technique, where α and β are given by: 

 
𝛼!"#"$%&'"

=   

𝑎!"(𝑒𝑠!(𝑐!))
𝑎!"(𝑒𝑠!(𝑐!)) + 𝑎!"(𝑒𝑠!(𝑐!))

𝑎!"(𝑒𝑠!(𝑐!))
𝑎!"(𝑒𝑠!(𝑐!)) + 𝑎!"(𝑒𝑠!(𝑐!))

+
𝑎!"(𝑒𝑠!(𝑐!))

𝑎!"(𝑒𝑠!(𝑐!)) + 𝑎!"(𝑒𝑠!(𝑐!))

 

 
𝛽!"#"$%&'"

=

𝑎!!(𝑒𝑠!(𝑐!))
𝑎!"(𝑒𝑠!(𝑐!)) + 𝑎!"(𝑒𝑠!(𝑐!))

𝑎!!(𝑒𝑠!(𝑐!))
𝑎!"(𝑒𝑠!(𝑐!)) + 𝑎!"(𝑒𝑠!(𝑐!))

+
𝑎!!(𝑒𝑠!(𝑐!))

𝑎!"(𝑒𝑠!(𝑐!)) + 𝑎!"(𝑒𝑠!(𝑐!))

 

 
We observe from Figure 1 that Tarantula cannot rank 

s2 as the most suspicious statement. Statements s7 and s8 
are mistakenly deemed as highly suspicious. Intuitively, 
these statements are erroneously considered dubious 
because they are closest to the fault and, at the same time, 
have been executed by both failed and passed test cases. 
We have learned from our previous work [37] that 
applying both KBC and Minus simultaneously can improve 
the fault localization effectiveness. Therefore, we apply 
KBC and Minus on Tarantula and synthesize a technique 
TMinusFKBC. In Figure 3, TMinusFKBC deems es2 to be 
the most suspicious sub-path, which means that the blocks 
b1, b2, and b3 or the statements s1, s2, s3, and s4 would be 
the most suspicious, and thus performs a little better than 
Tarantula. We now turn our focus to TKBC, which means 
applying the KBC concept to Tarantula. We find that it 
generates results identical to TMinusFKBC. We further 
examine the result of TMinusF, which means applying 
only the Minus concept to Tarantula, and find that it 
requires 25% code examining effort to locate the fault, 
which is more effective than the former two techniques. 
We apply the same process to Jaccard and Ochiai and 
observe similar phenomena. JMinusF and OMinusF outper-
form Jaccard and Ochiai by more accurately recognizing 

the two most suspiciousness statement s2 and s3. 
We have demonstrated that it is possible to propose a 

framework of synthesizing fault-localization techniques 
from base techniques, and the synthesized techniques from 
Tarantula, Jaccard, and Ochiai seem promising in locating 
faults more effectively. Further, we want to know (with a 
high level of confidence) whether the encouraging result 
observed is not coincidental. On closer look, we find that 
the three best synthesized techniques TMinusF, JMinusF, 
and OMinusF mostly benefit from reducing the suspicious-
ness of s4, which is always mistakenly deemed as the fault 
by Tarantula, Jaccard, and Ochiai. Statement s4 may not be 
at fault since the execution with respect to test case t3 fails 
but does not execute it. As a result, we can conclude that 
in this example, by applying Minus to reduce the unwanted 
effect of such noise, our framework always synthesizes a 
technique that gives more accurate results than the 
corresponding base techniques. 

2.4 Further issues 
The above example interestingly motivates us to 

develop a general fault-localization framework. However, 
what is the general form of the noise coefficient β for a 
given a similarity coefficient α? The motivating example 
shows that the Minus concept in our previous work [37] 
has a good effect in the proposed framework, while 
applying KBC seems to have less effect. Is it a common 
phenomenon or an exceptional case? Do we really need 
the KBC methodology since the motivating example gives 
contrary evidence? How do we locate suspicious state-
ments after we have found suspicious KBCs? In the next 
two sections, we are going to investigate these issues as 
well as present our framework. 

2. Our framework 
Before we start elaborating our framework, we need to 

revisit the problem settings and preliminaries first. We 
then describe how to construct KBCs, how to synthesize a 
new technique, and how to map the suspiciousness of 
KBCs to the suspiciousness of statements to generate a 
ranked list of statements. 
3.1 Problem setting and preliminaries 

Given a program, we use G(P) = 〈B, E〉 to denote the 
control flow graph (CFG) of its Jimple code, where B = 
{b1, b2, …, bn} is the set of basic blocks [6]. Let T = {t1, t2, 
…, tu} be a set of passed test cases, and T' = {t1', t2', …, 
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tv'} be a set of failed test cases. Our aim is to find the most 
suspicious code that causes the observed failures. 

3.2 MinusFKBC Framework 
Our framework consists of four major steps: the 

identification of program features, the calculation of suspi-
ciousness scores, and the mapping of the suspiciousness 
scores from Jimple blocks to Java statements, if necessary. 
In the first step, we assume the existence of a Jimple code 
parser so that we can work on the Jimple blocks to find 
KBC predicates and use them as program features. In the 
second step, we work on the collected execution data and 
calculate the suspiciousness score for each program feature. 
In the third step, we map the suspiciousness of identified 
program features to the suspiciousness of Jimple blocks. In 
the fourth step, if the mapping of Jimple code to Java code 
is not unique, we map the suspiciousness of Jimple code to 
Java statements. The four steps are illustrated in the over-
view in Figure 4. 

3.2.1 Constructing KBC predicates as program feature 
To construct KBCs, we traverse the Jimple [32][33] 

code, block by block, starting from the first one. We in 
turn mark every block visited until we encounter a block 
whose last statement is not a branch statement. We link up 
all the marked blocks to form a section, and then clear all 

the marks and continue with the traversal process. In such 
a way, we partition the Jimple code into a number of 
sections, and refer to each section as a Key Block Chain 
(KBC). In Figure 2, for example, we start from the first 
block b1 in the Jimple code, mark b1 and b2 in turn, find 
that b3 does not end with a branch statement, and thus 
construct a KBC n1. 

Every KBC contains a sub-path for exercising blocks, 
each of which contains exactly one atomic predicate. The 
sub-path of atomic predicates in a KBC is called a KBC 
predicate. According to Jimple semantics, if such an 
atomic predicate in a block is evaluated to be true, the next 
adjacent block in the same KBC will not be executed, but 
the execution will jump to a succeeding block (defined by 
the “[succ]” annotation) of that block. For each KBC, by 
enumerating the possible underlying decision value of 
each atomic predicate, the corresponding KBC predicate 
can be mapped to a set of sub-paths in the program. We 
use the notation esj(ci) to denote the j-th sub-path with 
respect to the KBC ci. In Figure 3, for example, the KBC c1, 
which contains the atomic Boolean expressions e1 and e2, 
may be resolved into three sub-paths b1gb5, b1gb2gb3, 
and b1gb2gb4. 

Suppose we use a Java program parser to obtain the list 
of Jimple blocks 𝐵 = 𝑏!, 𝑏!,…  from the Java code 
excerpt. The resultant set of sub-paths 𝑃 = 𝑝!, 𝑝!,…  is 

 
Figure 4. Overview of our framework. 
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obtained using Algorithm A. Since this is straightforward 
and has been demonstrated in Section 2, we will not 
explain it further in the paper. 

In step 7, the sub-paths (according to evaluation 
sequences) are obtained using the process described in 
[37]. For example, 𝑐! = 𝑒!, 𝑒! , the sub-paths are shown 
in Table I. 

Table I. Sub-paths for KBC in Jimple. 

Sub-paths for 𝒆𝟓  &&  𝒆𝟔 Evaluation 
result on e5 

Evaluation 
result on e6 

es1(c2): b5gb8 F ⊥ [44] 
es2(c2): b5gb6gb8 T F 
es3(c2): b5gb6gb7 T T 

 

3.2.2 Synthesizing techniques to compute suspiciousness 
We compute the suspiciousness score of a sub-path 

using an expression of the form “α – β”. 
The first term 

 
𝛼 = 𝐹(𝑎!", 𝑎!" , 𝑎!", 𝑎!") 

 
is the coefficient of the given base technique. According to 
the base technique, α estimates the probability that esj(ci) is 
exercised when a failure occurs. Thus, it computes the sus-
piciousness of the sub-path as per the base technique. 

The second term 
 

𝛽 = 𝐹(𝑎!", 𝑎!" , 𝑎!", 𝑎!") 
 
is a similar coefficient that assesses the noise in the first 
term. It estimates the probability that esj(ci) is actually not 
exercised when a failure occurs. 

In this way, the expression α – β reduces the suspi-
ciousness of the sub-path to a more accurate estimate. 

For example, the formula α – β for the technique syn-
thesized from Tarantula is listed in Section 2.3. Let us take 
the sub-path b1gb2gb4 in Figure 3 as an illustration. We 
have anp = 3, anf = 1, aep = 5, and aef = 1. Hence, α = 0.44, 
β = 0.57, and θ 𝑒𝑠!(𝑐!)   = –0.13. 

A list of techniques is shown in Table V, in which we 
show how our framework computes the noise coefficient 
part to synthesize a fault-localization technique for each of 
the 33 base techniques collected by Naish et al. [28]. 

3.2.3 Mapping suspiciousness of KBC predicates to blocks 
Finally, mapping feature suspiciousness to block suspi-

ciousness is often used in existing fault-localization tech-
niques. We follow the tradition in this step. However, a 
block may be related to multiple sub-paths, and we cannot 
simply assign the suspiciousness score of a sub-path to its 
related blocks. We define the suspiciousness score of a 
block to be the maximum suspiciousness score of all the 
sub-paths (of that KBC) related to the block. It is denoted 
by sus(bi) and defined as: 
 

𝑠𝑢𝑠 𝑏! = max θ 𝑒𝑠!(𝑐!)  
 

We choose to use the maximum operator because we 
aim to keep a close relationship between the block and the 
most effective sub-path that the block resides on. Finally, 

we apply a tie breaking strategy to resolve tie cases [22]. 
We use the mean suspiciousness score of all the sub-paths 
(of the same KBC) related to the block as the tie breaker 
value. It is denoted by conf(bi) and defined as: 
 

𝑐𝑜𝑛𝑓 𝑏! =   θ 𝑒𝑠!(𝑐!)  

3.2.4 Synthesizing a ranked list of statements 
After obtaining the suspiciousness score and tiebreaker 

value for every block, it is simple to assign them to every 
Jimple statement in that block. However, a statement in 
Java source code may be split up into multiple Jimple 
statements, which may belong to different blocks. We 
therefore choose the highest suspiciousness score and the 
highest tiebreaker value of all the transformed Jimple 
statements to be the suspiciousness score and the tie 
breaker value of the statement in the source code. Finally, 
we order the Java statements according to their computed 
suspiciousness scores and tie breaker values and assign a 
rank to each of them. Like our previous work [37], the 
rank of a statement is defined as the total number of state-
ments whose suspiciousness values are higher or equal to 
it. 

3.3 Further issues 
Sometimes, a function in a program may contain no 

predicate. In that case, we simply add a dummy predicate 
that is always evaluated to be false at the end of the first 
block, so that the faults in such a function will not be 
overlooked. We also note that we only need to check 
whether the last statement of each block is a branch 
statement, so that the traversal can be performed in O(n) 
time, where n is the number of blocks in the Jimple code. 

3. Controlled experiment 
In this section, we report on the results of a controlled 

experiment that verifies our framework by evaluating the 
effectiveness of the techniques thus synthesized. 

4.1 Experimental setup 
4.1.1 Environment 

Our experiments were conducted in a Ubuntu 8.04 
desktop system serving a VMware virtual machine with a 

 
Algorithm A: 
 

Input:  set of blocks 𝐵 = 𝑏!, 𝑏!,…  
Intermediate:  KBC C= 𝑒!, 𝑒!,…  
Output:  set of sub-paths 𝑃 = 𝑝!, 𝑝!,…  
 

 

1. 𝐶 ←     
2. 𝑃 ← ∅ 
3. Foreach 𝑏! ∈ 𝐵 
4.   If   𝑏! ends with an atomic Boolean expression ei 
5.     append ei to 𝐶 
6.   Elseif  𝐶 ≠     
7.     𝑃 ← 𝑃 ∪ sub-paths of 𝐶 
8.     𝐶 ←     
9.   End If 

10. End Foreach 
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configuration of a single Intel® Core™ Duo 2.66 GHz CPU, 
and 512 MB memory. Our tool was developed on top of 
Soot version 2.3.0. All the programs and tools were 
compiled with JDK 1.6. Test cases were managed by the 
JUnit framework version 3. All the work was driven auto-
matically using bash scripts. 

4.1.2 Subject programs 
The controlled experiment used five medium-scaled 

real-life programs, namely, jtopas, xmlsecurity, ant, jmeter, 
and nanoxml. We downloaded them (including all the 
faulty versions and associated test suites) from the SIR site 
[14]. Table II shows the descriptive statistics of each 
subject program, including the versions, the program size 
(in LOC), the number of faulty versions, and the size of 
the associated test pool. Following [22], we executed each 
version with each test case, and input the entire set of 
executions to each technique, which will be described 
below. 

Following the documentation of SIR and the experi-
mental process in previous work [1][24][41][44], we 
excluded the versions whose faults cannot be revealed by 
any test case. This is because both our techniques and peer 
techniques do comparisons on profiling produced by failed 
test cases and passed test cases. In addition, several old 
program versions such as ant versions prior to 1.6 (which 
were based on JDK 1.4) were excluded because our 
instrumentation tool, implemented on Soot version 2.3.0 
running on JDK 1.6, does not support them. For nanoxml, 
we used the JUnit wrapper class test cases of its TSL test 
suite. These JUnit test cases are behaviorally equivalent to 
the TSL test suites provided with nanoxml. We finally 
used all the remaining 177 faulty versions in the experi-
ment, as shown in Table II. 
4.1.3 Base techniques 

We chose five representative techniques from [28], 
namely Jaccard, Ochiai, Tarantula, Ochiai2, and 
Kulczynski2. We chose Tarantula because it is one of the 
earliest fault-localization techniques and has many variants 
[23][31][39]. It is representative of a family of variant 
techniques. We chose Jaccard and Ochiai because they are 
the two most effective fault-localization techniques 
reported in previous work [28][31][41]. We further chose 
the Ochiai2 technique. It is an enhancement of Ochiai and 
includes a noise-reduction part. We would like to know 
whether our noise-reduction proposal works compatibly 

with it. Finally, we randomly picked Kulczynski2 from the 
remaining 29 techniques. 

4.1.4 Synthesizing strategies 
We used each of the five techniques as base technique 

to synthesize new fault-localization techniques. We used 
two synthesizing strategies: (i) Applying Minus or KBC 
separately to the 5 base techniques over 5 different pro-
grams. (ii) Applying both Minus and KBC simultaneously 
to the 5 base techniques over 5 different programs. Thus, 
we can know the effects of Minus and KBC separately and 
evaluate the effect of their combination. 

For the base technique Tarantula, we used the name 
TKBC for the synthesized technique that uses KBC as 
program features, TMinusF for the one that applies the 
Minus noise reduction in our framework, and TMinusFKBC 
for the one that applies both Minus and KBC simultane-
ously. We named the techniques synthesized for the base 
techniques Jaccard and Ochiai in the same manner. To 
distinguish the Ochiai2 family from the Ochiai family, we 
added a number ‘2’ in the names for the former family. 
For example, when choosing Ochiai2 as the base technique, 
the three synthesized techniques were named as O2MinusF, 
O2KBC, and O2MinusKBC. The synthesized techniques for 
the base technique Kulczynski2 were similarly named. 
4.1.5 Effectiveness metrics 

Each of these techniques produces a ranked list of all 
the executed statements in descending order of their 
computed suspiciousness values. The rank of a statement 
is defined as the sum of the number of statements having 
higher suspiciousness scores and the number of statements 
sharing the same suspicious score. 

Previous work [39] defined the expense metric as the 
ratio between the rank of the faulty statement and the total 
number of executable statements. We consider, however, 
that the use of the number of executed statements as the 
denominator in the expense formula is more suitable 
because other unrelated statements do not need to be 
checked in practice according to the PIE model [34]. We 
refer to this metric as the code examination effort. 

If a fault is on a non-executable statement (such as a 
code omission fault), the use of dynamic execution 
information cannot help locate it directly. Following [18], 
we mark the directly affected statement or an adjacent 
executable statement as a fault position, followed by 
applying the expense metric. 

Table II. Descriptive statistics of subject programs. 

 Real-Life versions Program description LOC No. of versions No. of test cases 

jtopas 0.4 – 0.6 Text parser 5400 25 207 

xmlsecurity 1.0.4 – 1.0.71 XML signature and encryption 16800 49 94 

ant 1.6 beta Tool building 80500 22 830 

jmeter 1.8 – 1.9 Performance test tool 43400 11 95 

nanoxml 1.1–1.3,1.5 XML parser 7646 70 214 

   Total 177 1440 
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In the experiment, we inputted the entire test pool for 
each faulty version to each technique, and measured their 
expense values. 

4.2 Effectiveness analysis 
4.2.1 Overall effectiveness 

Figure 5 shows the overall effectiveness of the tech-
niques synthesized from our framework. The x-axis indi-
cates the code examination effort, as explained Section 
4.1.5. The y-axis indicates the percentage of faults located 
within the code examination effort indicated by the x- 
coordinate. 

The curve with name X is generated by counting the 
faults located for all the 25 scenarios, that is, applying five 
different techniques to five different programs. For 
instance, by examining no more than 10 percent of the 
code in each of the 177 faulty versions, Jaccard locates 
faults in 27.68% of all the 177 faulty versions, while 
Ochiai, Tarantula, Ochiai2, and Kulczynski2 can locate 
faults in 27.68%, 24.86%, 9.61%, and 18.08% of all the 
177 faulty versions, respectively. Thus, on average, a base 
technique can locate faults in (27.68% + 27.68% + 24.86% 
+ 9.61% + 18.08%) / 5 = 21.58% in all the 177 faulty 
versions and hence the curve X passes through the point 
(10%, 21.58%). The curves XMinusF, XKBC, and 
XMinusFKBC, can be interpreted similarly. 

We observe that the curves XMinusF and XKBC have 
consistent gaps above the curve X. It means that applying 
either Minus or KBC separately in our framework 
synthesizes a technique having better effectiveness than 

the base technique. Further, we observe that the curve 
XMinusFKBC has consistent gaps above the curves 
XMinusF and XKBC. It means that applying Minus and 
KBC simultaneously in our framework is a better choice 
(in this analysis dimension). 

Further, we also want to know the detailed information 
on the effectiveness of applying each of the five tech-
niques to each of the five programs, and will analyze them 
in the next section. 

4.2.2 Individual effectiveness 
Figure 6 shows the effectiveness of the five technique 

families over the five different programs. To give a better 
presentation, we use a box-plot to show the effectiveness 
of each technique. 

In each plot, we use four columns to show (from left) 
the effectiveness of the base technique, the synthesized 
technique by applying Minus, the synthesized technique by 
applying KBC, and the synthesized technique by simul-
taneously applying Minus and KBC, respectively. For each 
column, the upper star shows the maximum code examina-
tion effort of applying a technique to locate faults in each 
faulty version of the specific program, whereas the lower 
star shows the minimum code examination effort. The top 
of the box corresponds to the 75% percentile of the code 
examination efforts of applying a technique to locate faults 
in each faulty version of the specific program, whereas the 
bottom of the box corresponds to the 25% percentile. The 
cross in the box indicates the median value of the code 
aaaaa 

 
 

Figure 5. Overall effectiveness. 
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Figure 6. Individual effectiveness. 
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examination efforts of applying a technique to locate faults 
in each faulty version of the specific program. 

Let us take the Jaccard technique over the jtopas 
program as an example (see the left-most column in the 
top-left plot). The lower star shows that Jaccard uses a 
minimum code examination effort of 0.99% to locate a 
fault in one of 24 faulty versions of jtopas. The upper star 
shows that for difficult faults in some versions, Jaccard 
has to examine 100% of the code to locate them. The 
bottom and top of the box shows that the 25% and 75% 
percentiles for the code examination efforts with respect to 
each of the 24 faulty versions are 4.82% and 79.73%, 
respectively. The cross in the box indicates that the median 
value of the code examination effort for the 24 faulty 
versions is 11.49%. The other plots can be interpreted 
similarly. 

We observe that in most cases in our framework, 
applying Minus or KBC separately or applying both Minus 
and KBC simultaneously to any base technique synthesizes 
a technique with better fault localization effectiveness, 
regardless of the program under study. Further, applying 
both Minus and KBC simultaneously synthesizes a more 
promising technique than applying Minus or KBC sepa-
rately. This confirms our previous observation on Figure 5. 

However, we also observe opposite effects in some 
exceptional situations when applying Minus and KBC 
simultaneously. For example, when applying Minus and 

KBC simultaneously to Ochiai2 over nanoxml, the fault 
localization effectiveness deteriorates. We suspect that 
such unexpected results could be due to test suites that are 
ineffective in revealing failures and program structures 
that confuse fault-localization techniques. 

Nevertheless, in most cases, applying both Minus and 
KBC simultaneously to a base technique can synthesize a 
more promising technique than applying Minus or KBC 
separately. In the next sections, we will further investigate 
the effectiveness of the former. 

4.2.3 Impacts of failing rate 
In this section, we investigate the effect of failing rate 

on fault-localization techniques. We refer to the failing 
rate of a faulty version as the proportion of failed execu-
tions among all executions,. This concept is formally 
defined in our previous work [20][21]. 

We collect the code examination effort for applying 
every technique to locate a fault in each faulty version. We 
perform curve fitting to study the impacts of failing rate on 
code examination effort. Figure 7 shows the impacts of 
failing rate on code examination effort using different 
techniques, whereas Figure 8 shows the impacts of failing 
rate on code examination effort for different programs. 
Our curve-fitting strategy is to try linear, logarithmic, 
polynomial, power, exponential, and moving average 
curves, and adopt the one (namely, line fitting) with the 
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Figure 7. Impacts of failing rate on fault localization effectiveness for different techniques. 
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Figure 8. Impacts of failing rate on fault localization effectiveness for different programs. 
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least average fitting error. We believe that it will not only 
provide a good presentation but will better reflect the 
trends of the impacts under study. 

We observe that for different techniques and different 
programs, failing rates always have negative impacts on 
fault localization effectiveness. In other words, the 
synthesized technique in our framework always needs to 
examine more code to locate faults with high failing rates. 
For example, the first plot of Figure 8 shows the impacts 
of failing rates on code examination effort using five 
different synthesized techniques over the jtopas program. 
The slopes for the lines are 0.2069, 0.204, 0.2026, 0.1721, 
and 0.2064 for JMinusFKBC, OMinusFKBC, TMinusFKBC, 
O2MinusFKBC, and K2MinusFBC, respectively. It roughly 
means that the ratio of the increasing speed of code 
examination effort and the increasing speed of the failing 
rate of faults is about 1:5 for different techniques over the 
jtopas program. 

As a summary, we find that the techniques synthesized 
in our framework work better on faults with low failing 
rates. In practice, many faults are seldom exposed, and 
debuggers may be required to locate the fault in a program 
when only a small number of failed executions are availa-
ble. If we deem the faults in more practical contexts to be 
faults with low failing rates, we can re-summarize our 
observation as “the techniques synthesized in our frame-

work work better in more practical scenarios”. 

4.2.4 Impacts of KBC length 
In this section, we investigate the effect of the KBC 

length on fault-localization techniques. We collect the 
code examination effort to locate a fault using each synthe-
sized technique over every faulty version, fit a curve to 
find the impacts of KBC length on code examination effort, 
and show the findings in Figures 9 and 10. 

Figure 9 shows the impacts of KBC length on code 
examination effort using different techniques, whereas 
Figure 10 shows the impacts of KBC length on code exam-
ination effort for different programs. Our curve-fitting 
strategy is the same as that in the last sub-section. 

We observe from Figures 9 and 10 that KBC lengths 
have positive impacts on fault localization effectiveness 
for different techniques and different programs except for 
jtopas. In other words, the synthesized techniques in our 
framework can examine less code to locate faults in pro-
grams with a long KBC, with the exception of jtopas. For 
example, the last plot in Figure 10 shows the impacts of 
KBC lengths on fault localization effectiveness using five 
different synthesized techniques over the program nanoxml. 
The slopes for the lines are –1.794, –1.7966, –1.773, 
–1.0222, and –1.8075 for JMinusFKBC, OMinusFKBC, 
TMinusFKBC, O2MinusFKBC, and K2MinusFBC, respec-
tively. It roughly means that the ratio of the decreasing 
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Figure 9. Impacts of KBC length on fault localization effectiveness using different techniques. 
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Figure 10. Impacts of KBC length on fault localization effectiveness for different programs. 
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speed of code examination effort and the increasing speed 
of the KBC length of programs is about 2:1 for different 
techniques (except O2MinusFKBC) over the ant program. 
It also means that KBC length has less impact on the fault 
localization effectiveness of the O2MinusFKBC technique 
than on others. 

Let us now focus on the jtopas issue. We refer to the 
jtopas lines in all the plots of Figure 9 and all the lines in 
the jtopas plot of Figure 10, that is, the ten lines with (red) 
bold labels. We find that jtopas behaves exceptionally 
when compared with other programs. On closer investiga-
tion, we found the reasons. Three versions of jtopas are 
used in the experiment, as listed in Table II. They are 
jtopas versions 0.4, 0.5, and 0.6. Among them, only the 
result of jtopas 0.6 shows exceptional trends. We thus 
conclude that the unexpected phenomenon is due to jtopas 
0.6. We check the average KBC lengths for jtopas versions 
0.4, 0.5, and 0.6 and obtain the results 1.85, 1.86, and 2.17, 
respectively. We find considerable program structure 
changes from jtopas 0.5 to jtopas 0.6. The fault localiza-
tion effectiveness achieved by different techniques on the 
two versions is not quite comparable. In particular, we find 
that one particular fault is consistently difficult to locate in 
jtopas 0.6 whereas the same fault can be more easily 
located in jtopas 0.5 and 0.4. If we exclude this 
problematic case, nine of the ten lines (except the use of 
O2MinusFKBC over the jtopas program) show consistent 
trends with the other lines and plots in Figures 9 and 10. 
Applying the same review to the other program subjects 
results in very marginal changes, since they do not suffer 
from similar problems due to an overhaul of the program 
structure. 

Except for the jtopas issue, most plots in the two 
figures show consistent trends in the impacts of KBC 
lengths on fault localization effectiveness. It appears that 
when the KBC length increases, the KBC predicates can 
provide together more information to help locate faults. 
Longer KBCs maintain more sub-paths, which give more 
clues to program structures and executions, thus favoring 
fault localization. 

Finally, we note that a KBC can be viewed as a 
program unit. A longer KBC indicates that the program has 
more branches, which implies that the program unit is of 
higher complexity (in terms of McCabe cyclomatic 
complexity [10]). In summary, we find that the techniques 
synthesized in our framework work better on programs of 

higher complexity than others, which confirms the useful-
ness of our proposal. 

4.3 Performance analysis 
We will not list out all the detailed time logs for the 

techniques synthesized in our framework. Instead, we can 
summarize that the running time of a synthesized 
technique (by applying Minus and KBC simultaneously) is 
about twice that of the corresponding base technique. The 
running time is tallied from program instrumentation to the 
output of a ranked list of statements. 

We further look into the two most time-consuming 
steps: program execution and instrumentation. Table III 
shows the instrumentation duration as well as the program 
execution duration before and after instrumentation. Take 
the first row as an example. The execution of the faulty 
jtopas version over an average test case consumes 18.75 
ms. The instrumentation of the program takes 4089 ms on 
average. The execution of the instrumented program on 
average takes 72.65 ms. 

Our observation is that the time duration increases with 
the program length (LOC). Figure 11 shows the effect of 
LOC on instrumentation duration. We observe that the 
instrumentation duration increases with LOC. This is 
understandable and reasonable, and also tells us that the 
larger the program, the longer the instrumentation duration 
will be. The fitted line in Figure 11 shows that instrumen-
tation duration has approximately a linear relationship with 
LOC. Figure 12 shows the correlation of running times 
before and after instrumentation. We observe that the 
longer the running time before instrumentation, the longer 
the running time after instrumentation will be. The fitted 
line in Figure 12 shows that instrumentation takes about 
0.8 of the original running time. 

 
Figure 11. Correlation of program running times before and after 

instrumentation. 

Table III. Running time (in ms). 

 Running time before 
instrumentation 

Instrumentation 
duration 

Running time after 
instrumentation 

jtopas 18.75 4089 72.65 

xmlsecurity 20.00 25816 34.43 

ant 301.56 113011 564.38 

jmeter 115.64 80099 185.15 

nanoxml 3.79 4238 4.96 

 
Figure 12. Effect of program length on instrumentation duration. 
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Considering Table III, Figure 11 and Figure 12, we 
conclude it is reasonable that the running time of the 
techniques synthesized in our framework increase with 
program scale and the techniques synthesized in our 
framework are applicable in practice. 

4. Case study 
We used a case study to analyze the effectiveness of 

our synthesized techniques in localizing faults in 
multi-fault program versions. We chose jtopas 0.4 as the 
program subject to evaluate the technique synthesized in 
our framework because we want to choose the most 
unfavorable subject to study and, according to the findings 
in the last sections, it happens to be jtopas. There are five 
faults in this release of jtopas, namely, FAULT_i for i = 1, 
2, 5, 6, 10, as listed in Table IV. 

In a multi-fault scenario, one fault may be the noise of 
another. We raise the following research question: 

 
 

Q1: Does applying Minus and KBC simultaneously 
also synthesize a promising fault-localization technique 
for multi-fault programs? 

 

We find that FAULT_1 and FAULT_2 are in the same 
class and the same method. Their locations are so close 
that both of them are trigged in most cases and one can 
hardly view them as two separate faults. FAULT_5 and 
FAULT_6 are in the same class but different methods. They 
have some impact on each other but are not tightly related. 
FAULT_10 is in a class different from the previous four. 

The jtopas test cases are designed in a function- 
oriented manner. There are 8 test cases in total, each of 
which contains many test methods targeting at different 
functions of jtopas. For example, there are 24 methods in 
the test case de.susebox.TestExceptions. 

During the execution of any test case, FAULT_10 or the 
combination of {FAULT_1, FAULT_2} seldom interacts 

with the other faults. On the other hand, when executing a 
large number of test cases, FAULT_5 and FAULT_6 interact 
with each other. Because of the latter phenomenon, we 
decide to investigate the effectiveness of the synthesized 
techniques synthesized in locating FAULT_5 and FAULT_6, 
and their combination (that is, a 2-fault version with 
FAULT_5 and FAULT_6 enabled). 

The synthesized technique based on Jaccard located 
FAULT_5 in its single-fault version with a rank of 6. At the 
same time, the technique located FAULT_6 in its 
single-fault with a rank of 74. For the 2-fault version with 
both FAULT_5 and FAULT_6 enabled, FAULT_5 is the 
dominant one and the technique deems the statement 
containing FAULT_5 to be more suspicious. As a result, 
during the suspiciousness assessment, the noise from the 
statement containing FAULT_6 was reduced. The state-
ment containing FAULT_5 was still given a rank of 6 while 
the statement containing FAULT_6 was ranked 829. This 
further illustrates the idea behind Minus: It confirms the 
rank of the dominant faulty statement by reducing the 
noise from other faults and hence lowering their ranks in a 
multi-fault program. 

Further, we applied all the techniques to all the 2-fault 
versions of jtopas 0.4, and found that the techniques 
synthesized in our framework always have an advantage 
over the base technique. The results are shown in Figure 
13, which can be interpreted similarly to Figure 6. For 
example, we observe that by applying Minus and KBC 
simultaneously, the synthesized technique JMinusFKBC 
has a better fault localization effectiveness than its base 
technique Jaccard in terms of the code examination effort 
for the best cases (0.6% and 0.7% for JMinusFKBC and 
Jaccard, respectively) and the mean code examination 
effort (0.7% and 1.2% for JMinusFKBC and Jaccard, 
respectively). Similar phenomena can be observed for the 
other base techniques. As a result, we can summarize the 
study and answer Q1 as follows. 

 

A1: We find that our methodology can be promising 
for medium-sized multi-fault programs. 

5. Threats to validity 
5.1 Construct validity 

KBC is a chain of basic blocks. After locating the most 
suspicious KBCs, we proceed to map the suspiciousness of 
KBCs to those of statements for consistency with the 
conventional output format of fault-localization techniques. 
Directly evaluating the suspicious KBCs may result in 
different observations and conclusions. 

Table IV. Statistics of faults in jtopas 0.4 

Fault Package Class Method Lines 

FAULT_1 de.susebox.java.io de.susebox.java.io.ExtIOException ExtIOException(…) 43, 50 

FAULT_2 de.susebox.java.io de.susebox.java.io.ExtIOException ExtIOException(…) 52, 58 

FAULT_5 de.susebox.java.util de.susebox.java.util.AbstractTokenizer isKeyword(…) 773, 783 

FAULT_6 de.susebox.java.util de.susebox.java.util.AbstractTokenizer test4Normal(…) 921 

FAULT_10 de.susebox.java.lang de.susebox.java.lang.ExtIndexOutOfBoundsException ExtIndexOutOfBoundsException(..) 43, 49 

 

 

Figure 13. Result on the 2-fault versions of jtopas 0.4. 
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Using code examining effort as a metric in the 
experiment may cause threats to the construct validity of 
the results. This has also been reported in previous projects 
[41][44][45]. However, we are not aware of other popular 
metrics for evaluating the fault localization effectiveness. 

To evaluate our methodology, we compare the effec-
tiveness of a base technique on a given faulty version with 
the effectiveness of a corresponding technique synthesized 
using our framework. Such a comparison may not be 
proper in the following cases: (i) A faulty statement is 
executed in all failed runs but in very limited number of 
(or even no) passed runs. Many techniques such as 
Tarantula are optimal in locating such a fault, by assigning 
it a very high suspiciousness score (e.g., close to 1) and 
needs very low code examination effort (e.g., close to 0%) 
to locate it. In such a case, there is nearly no space for 
enhancement and the effectiveness of our methodology 
can hardly be shown. (ii) The faulty statement is in a basic 
block that is always executed (such as in the main entry), 
and none of the techniques can effectively locate it. In 
such a case, the effectiveness of our methodology cannot 
be easily observed. Including these problematic faulty 
versions as experiment subjects may have unexpected 
impacts on the empirical results and draw divergent 
conclusions. For example, one particular fault in the 
program jtopas 0.6 cannot be located until 100% of the 
code has been examined. As a result, Figures 9 and 10 in 
Section 4.2.4 show that KBC length has positive impacts 
on the fault localization effectiveness of the synthesized 
XMinusFKBC techniques. Their observed trends are not 
consistent with those of the other programs. We have 
discussed this issue in detail in Section 4.2.4. 

5.2 Internal validity 
Soot 2.3.0 is based on Java 1.5 or higher, but some of 

our subject programs were originally based on Java 1.4. 
We need to modify these subjects so that they are compati-
ble to Java 1.5 or higher. For example, enum can be used 
as a program variable in Java 1.4 but is a keyword in Java 
1.5. We have carefully reviewed the conversion. 

We use Soot to insert probes into the Java bytecode. 
Soot gives a good solution for specific Java features such 
as exception handling. Previous work [17][40] has investi-
gated this topic, as exception information in run time 
contains plenty of error information, thus providing good 
support to fault localization. In this paper, we consider 
exception handling in programs as normal control flow 
because Soot can transform a Java program into Jimple 
code and still maintain the exception handling structures. 
Hence, if faults are located in these “catch” blocks, the 
approach in this paper can still find them. 

We have carefully assured that our tool in the experi-
ment is reliable. 

5.3 External validity 
Using other programs and faulty versions in the experi-

ment may produce different results. 
The strategy we used to construct a KBC is only one 

possible solution among many. Other strategies are also 

feasible. We briefly discuss some possible extensions of 
our work. The first strategy is to identify blocks containing 
predicates that are as long as possible. This strategy is 
close to the full path tracking idea used in HOLMES [12]. 
Such a strategy, however, requires a search of the longest 
path from a graph, which takes more than O(n) time. A 
second strategy is to identify blocks containing predicates 
and use a random sub-path of blocks to construct a chain. 
Yet another strategy is to identify sub-paths of blocks 
within certain lengths and split a long chain into several 
shorter ones. An optimal length of a block chain is hard to 
determine. Moreover, one limitation of the last two 
strategies is that they may link irrelevant blocks together. 

Another important prospect is that KBC can be applied 
to any program entity level. In computing, compilers 
usually decompose programs into basic blocks as the first 
step in the analysis process. Other languages can also have 
streamline representations like Jimple for Java. We believe 
that applying KBC helps locate faults in these programs, 
but more experiments are needed to confirm it. 

6. Further discussions 
6.1 Can we use other techniques? 
In this paper, we use Minus to reduce noise for selected 
fault-localization techniques. We do not limit the use of 
other CBFL techniques, as far as they use similarity 
coefficients and belong to the same family of technique. 
KBC is considered as a fault predicator based on coverage 
profiling. It can be used in many other techniques that 
make use of coverage information, such as HOLMES, CP, 
and CBI. For example, CP calculates the suspiciousness of 
edges and captures the propagation of infected states via 
edges. It is straightforward to assess the suspiciousness of 
KBCs and capture the propagation of infected states via 
different KBCs. HOLMES uses path as the unit to assess 
the fault relevance. Feng and Gupta [16] made use of 
Bayesian networks to facilitate fault localization and did 
not limit the use of different types of program elements. 
Jeffrey et al. proposed Value Replacement [18], which 
alters variable values in statements to look for candidates 
whose variable states can turn failed runs into passed runs. 
KBC, as a kind of program element, can be used to drive 
them. For example, we may alter variable values in KBCs 
to search for a suspicious KBC. 

In Table V, we list out how our framework synthesizes 
techniques for the 33 base techniques presented in [28]. 
Let us take the last one as example. For the technique 
Rogot2, the similarity coefficient is 

𝛼!"#"$% =
1
4

𝑎!"
𝑎!" + 𝑎!"

+
𝑎!"

𝑎!" + 𝑎!"
+

𝑎!"
𝑎!" + 𝑎!"

+
𝑎!"

𝑎!" + 𝑎!"
 

 
Accordingly, following our model, the noise coefficient is: 
 

𝛽!"#"$% =
1
4

𝑎!"
𝑎!" + 𝑎!"

+
𝑎!"

𝑎!" + 𝑎!"
+

𝑎!"
𝑎!" + 𝑎!"

+
𝑎!"

𝑎!" + 𝑎!"
 

 
As a result, RMinusFKBC uses the following coefficient: 
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Table V. The 33 statement-level fault-localization techniques and their noise coefficient formulas. 

 

Name Similarity coefficient of the base technique (α ) Noise coefficient for the synthesized technique (β ) 

Jaccard 
𝑎!"

𝑎!" + 𝑎!" + 𝑎!"
 

𝑎!"
𝑎!" + 𝑎!" + 𝑎!"

 

Anderberg 
𝑎!"

𝑎!" + 2(𝑎!" + 𝑎!")
 

𝑎!"
𝑎!" + 2(𝑎!" + 𝑎!")

 

Sørensen-Dice 
2𝑎!"

2𝑎!" + 𝑎!" + 𝑎!"
 

2𝑎!"
2𝑎!" + 𝑎!" + 𝑎!"

 

Dice 
2𝑎!"

𝑎!" + 𝑎!" + 𝑎!"
 

2𝑎!"
𝑎!" + 𝑎!" + 𝑎!"

 

Kulczynski1 
𝑎!"

𝑎!" + 𝑎!"
 

𝑎!"
𝑎!" + 𝑎!"

 

Kulczynski2 
1
2

𝑎!"
𝑎!" + 𝑎!"

+
𝑎!"

𝑎!" + 𝑎!"
 

1
2

𝑎!"
𝑎!" + 𝑎!"

+
𝑎!"

𝑎!" + 𝑎!"
 

Russell and 
Rao 

𝑎!"
𝑎!" + 𝑎!" + 𝑎!" + 𝑎!"

 
𝑎!"

𝑎!" + 𝑎!" + 𝑎!" + 𝑎!"
 

Hamann 
𝑎!" + 𝑎!" − 𝑎!" − 𝑎!"
𝑎!" + 𝑎!" + 𝑎!" + 𝑎!"

 
𝑎!" + 𝑎!" − 𝑎!" − 𝑎!"
𝑎!" + 𝑎!" + 𝑎!" + 𝑎!"

 

Simple 
Matching 

𝑎!" + 𝑎!"
𝑎!" + 𝑎!" + 𝑎!" + 𝑎!"

 
𝑎!" + 𝑎!"

𝑎!" + 𝑎!" + 𝑎!" + 𝑎!"
 

Soka 
2(𝑎!" + 𝑎!")

2(𝑎!"   +  𝑎!") + 𝑎!" + 𝑎!"
 

2(𝑎!" + 𝑎!")
2(𝑎!"   +  𝑎!") + 𝑎!" + 𝑎!"

 

M1 
𝑎!" + 𝑎!"
𝑎!" + 𝑎!"

 
𝑎!" + 𝑎!"
𝑎!" + 𝑎!"

 

M2 
𝑎!"

𝑎!" + 𝑎!" + 2(𝑎!" + 𝑎!")
 

𝑎!"
𝑎!" + 𝑎!" + 2(𝑎!" + 𝑎!")

 

Rogers & 
Tanimoto 

𝑎!" + 𝑎!"
𝑎!" + 𝑎!" + 2(𝑎!" + 𝑎!")

 
𝑎!" + 𝑎!"

𝑎!" + 𝑎!" + 2(𝑎!" + 𝑎!")
 

Goodman 
2𝑎!" − 𝑎!" − 𝑎!"
2𝑎!" + 𝑎!" + 𝑎!"

 
2𝑎!" − 𝑎!" − 𝑎!"
2𝑎!" + 𝑎!" + 𝑎!"

 

Hamming 𝑎!" + 𝑎!" 𝑎!" + 𝑎!" 

Euclid 𝑎!" + 𝑎!" 𝑎!" + 𝑎!" 
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Ochiai 
𝑎!"

𝑎!" + 𝑎!" (𝑎!" + 𝑎!")
 

𝑎!"

𝑎!" + 𝑎!" (𝑎!" + 𝑎!")
 

Overlap 
𝑎!"

𝑚𝑖𝑛  (𝑎!" , 𝑎!" , 𝑎!")
 

𝑎!"
𝑚𝑖𝑛  (𝑎!" , 𝑎!" , 𝑎!")

 

Tarantula 

𝑎!"
𝑎!" + 𝑎!"

𝑎!"
𝑎!" + 𝑎!"

+
𝑎!"

𝑎!" + 𝑎!"

 

𝑎!"
𝑎!" + 𝑎!"

𝑎!"
𝑎!" + 𝑎!"

+
𝑎!"

𝑎!" + 𝑎!"

 

Zoltar 
𝑎!"

𝑎!" + 𝑎!" + 𝑎!" +
10000𝑎!"𝑎!"

𝑎!"

 
𝑎!"

𝑎!" + 𝑎!" + 𝑎!" +
10000𝑎!"𝑎!"

𝑎!"

 

Ample 
𝑎!"

𝑎!" + 𝑎!"
−

𝑎!"
𝑎!" + 𝑎!"

 
𝑎!"

𝑎!" + 𝑎!"
−

𝑎!"
𝑎!" + 𝑎!"

 

Wong1 𝑎!"  𝑎!"  

Wong2 𝑎!" − 𝑎!" 𝑎!" − 𝑎!" 

Wong3 𝑎!" −   
𝑎!"                                                                                       if  𝑎!" ≤ 2
2 + 0.1 𝑎!" − 2               if  2 < 𝑎!" ≤ 10
2.8 + 0.001 𝑎!" − 10         if  𝑎!" > 10

 𝑎!" −   
𝑎!"                                                                                       if  𝑎!" ≤ 2
2 + 0.1 𝑎!" − 2               if  2 < 𝑎!" ≤ 10
2.8 + 0.001 𝑎!" − 10         if  𝑎!" > 10

 

Ochiai2 
𝑎!"𝑎!"

𝑎!" + 𝑎!" (𝑎!" + 𝑎!") 𝑎!" + 𝑎!" (𝑎!" + 𝑎!")
 

𝑎!"𝑎!"

𝑎!" + 𝑎!" (𝑎!" + 𝑎!") 𝑎!" + 𝑎!" (𝑎!! + 𝑎!")
 

Geometric 
Mean 

𝑎!"𝑎!" − 𝑎!"𝑎!"

𝑎!" + 𝑎!" (𝑎!" + 𝑎!") 𝑎!" + 𝑎!" (𝑎!" + 𝑎!")
 

𝑎!"𝑎!" − 𝑎!"𝑎!"

𝑎!" + 𝑎!" (𝑎!" + 𝑎!") 𝑎!" + 𝑎!" (𝑎!" + 𝑎!")
 

Harmonic 
Mean 

𝑎!"𝑎!" − 𝑎!"𝑎!" 𝑎!" + 𝑎!" 𝑎!" + 𝑎!"   
   𝑎!" + 𝑎!" 𝑎!" + 𝑎!"    𝑎!" + 𝑎!"    𝑎!" + 𝑎!"

+
𝑎!"𝑎!" − 𝑎!"𝑎!! (𝑎!" + 𝑎!"   )(𝑎!" + 𝑎!")

𝑎!" + 𝑎!" 𝑎!" + 𝑎!"    𝑎!" + 𝑎!"    𝑎!" + 𝑎!"
 

𝑎!"𝑎!" − 𝑎!"𝑎!" 𝑎!" + 𝑎!" 𝑎!" + 𝑎!"   
   𝑎!" + 𝑎!" 𝑎!" + 𝑎!"    𝑎!" + 𝑎!"    𝑎!" + 𝑎!"

+
𝑎!"𝑎!" − 𝑎!"𝑎!" (𝑎!" + 𝑎!"   )(𝑎!" + 𝑎!")

𝑎!" + 𝑎!" 𝑎!" + 𝑎!"    𝑎!" + 𝑎!"    𝑎!" + 𝑎!"
 

Arithmetic 
Mean 

2𝑎!"   𝑎!" − 2𝑎!"   𝑎!"
(𝑎!"   + 𝑎!")(𝑎!" + 𝑎!"   ) + (𝑎!"   + 𝑎!"   )(𝑎!" + 𝑎!")

 
2𝑎!"   𝑎!" − 2𝑎!"   𝑎!"

(𝑎!"   + 𝑎!")(𝑎!" + 𝑎!"   ) + (𝑎!"   + 𝑎!"   )(𝑎!" + 𝑎!")
 

Cohen 
2𝑎!"   𝑎!" − 2𝑎!"   𝑎!"

(𝑎!"   + 𝑎!")(𝑎!" + 𝑎!"   ) + (𝑎!"   + 𝑎!"   )(𝑎!" + 𝑎!")
 

2𝑎!"   𝑎!" − 2𝑎!"   𝑎!"
(𝑎!"   + 𝑎!")(𝑎!" + 𝑎!"   ) + (𝑎!"   + 𝑎!"   )(𝑎!" + 𝑎!")

 

Scott 
4𝑎!"𝑎!" − 4𝑎!"𝑎!" − (𝑎!" − 𝑎!")!

(2𝑎!"   + 𝑎!"   + 𝑎!")(2𝑎!" + 𝑎!"   + 𝑎!")
 

4𝑎!"𝑎!" − 4𝑎!"𝑎!" − (𝑎!" − 𝑎!")!

(2𝑎!"   + 𝑎!"   + 𝑎!")(2𝑎!" + 𝑎!"   + 𝑎!")
 

Fleiss 
4𝑎!"𝑎!" − 4𝑎!"𝑎!" − (𝑎!" − 𝑎!")!

2𝑎!"   + 𝑎!"   + 𝑎!" + (2𝑎!" + 𝑎!"   + 𝑎!")
 

4𝑎!"𝑎!" − 4𝑎!"𝑎!" − (𝑎!" − 𝑎!")!

2𝑎!"   + 𝑎!"   + 𝑎!" + (2𝑎!" + 𝑎!"   + 𝑎!")
 

Rogot1 
1
2

𝑎!"
2𝑎!" + 𝑎!" + 𝑎!"

+
𝑎!"

2𝑎!" + 𝑎!" + 𝑎!"
 

1
2

𝑎!"
2𝑎!" + 𝑎!" + 𝑎!"

+
𝑎!"

2𝑎!" + 𝑎!" + 𝑎!"
 

Rogot2 
1
4

𝑎!"
𝑎!" + 𝑎!"

+
𝑎!"

𝑎!" + 𝑎!"
+

𝑎!"
𝑎!" + 𝑎!"

+
𝑎!"

𝑎!" + 𝑎!"
  

1
4

𝑎!"
𝑎!" + 𝑎!"

+
𝑎!"

𝑎!" + 𝑎!"
+

𝑎!"
𝑎!" + 𝑎!"

+
𝑎!!

𝑎!" + 𝑎!"
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θ 𝑒𝑠!(𝑐!) =
1
4

𝑎!"
𝑎!" + 𝑎!"

+
𝑎!"

𝑎!" + 𝑎!"
+

𝑎!"
𝑎!" + 𝑎!"

+
𝑎!"

𝑎!" + 𝑎!"

−
1
4

𝑎!"
𝑎!" + 𝑎!"

+
𝑎!"

𝑎!" + 𝑎!"
+

𝑎!"
𝑎!" + 𝑎!"

+
𝑎!"

𝑎!" + 𝑎!"

 

 
Definitely, there are many approaches to fault locali-

zation and approaches to enhancing fault localization 
effectiveness that do not belong to the discussed problem 
settings. For example, Zhang et al. [43] shortened 
dynamic slices to enhance fault localization. We are also 
interested in the result of integrating these techniques with 
our methodology. For instance, when pruning slices with 
confidence, the suspiciousness region related to KBCs are 
also reduced. However, how to integrate with such tech-
niques is beyond the scope of this paper. 

6.2 Can KBC live without Jimple? 
Jimple is a powerful intermediate representation of 

Java programs. Programmers (including ourselves) use 
Jimple to easily instrument target programs, construct 
control flow graphs, and build KBCs. However, the main 
idea of KBC is independent with Jimple. 

For instance, let us focus on the motivating example in 
Figure 14, which shows a Java code excerpt. To construct 
KBC from such Java code, we traverse block by block 
starting from b1 to search for a chain of adjacent blocks 
that end with a branch statement (containing a Boolean 
expression). Because the last statement in b1 is a branch 
statement, we mark b1 and continue with the traversal of 
b2. We also mark b2 because its last statement is again a 
branch statement. We then visit b3, which does not end 
with a branch statement. Thus, we link up the marked 
blocks b1 and b2 to form a KBC. We then clear the marks 
and continue with the traversal of the next block b4. The 
traversal stops again since we encounter a block that ends 
with a non-branch statement. We continue from b5 and 
finally construct another KBC for b5. We therefore obtain 
two KBCs. The chains of Boolean expressions (in the 
branch statements) are c1 = 〈e1, e2〉 and c2 = 〈e'5〉. Note that 

we use e'5 to refer to the compound Boolean expression in 
statement s6 of the Java code in Figure 1. The generated 
KBC predicates and sub-paths are shown in Tables VI and 
VII. 

Basically, KBCs can be generated from any 
representation of a control flow graph for any program, 
because the algorithm in Section 3.2.1 does not limit the 
type of code from which the set of blocks are generated 
and inputted to the algorithm. 

6.3 Can the sub-paths generated from the KBC 
construction process be covered by a DC-, CC- 
or MC/DC-satisfied test suite? 
Sub-paths are generated during the KBC generation 

process. Let us explain how we generate legitimate 
sub-paths. We recall that we first divide the code into 
KBCs and then generate sub-paths for the predicates 
included in each KBC. In the former step, the generation of 
KBCs misses no predicate, because only blocks ending 
with non-branch statements are excluded. In the latter step, 
the generation of sub-paths from the KBC predicates is an 
evaluation sequence analysis [44] and no legitimate 
sub-path is missed. As a result, the proposed generation 
process will produce all the sub-paths, so that the genera-
tion can be regarded as a coverage criterion in terms of 
sub-paths. We next analyze the strengths of different 
coverage criteria, including decision coverage (DC), 
condition coverage (CC), modified condition/decision 
coverage (MC/DC), sub-path coverage, and path coverage. 

When applied to Java code, a sub-path can be related to 
predicates from multiple branch statements. (For instance, 
es2(c1) in the previous section is related to the predicates e1 
and e2 from statements s1 and s2, respectively.) As a result, 
the granularity of sub-paths is finer than the branches used 
in branch coverage analysis. We know that decision cover-
age can be subsumed by sub-path coverage. On the other 
hand, a sub-path may be related to predicates not from 
branch statements. (For example, es2(c1) in Section 7.2 is 
not related to the predicate e'5 from statements s5.) As a 
result, the granularity of sub-paths is coarser than the paths 
used in path coverage analysis. In fact, path coverage 
subsumes sub-path coverage. There is no direct relation 
between CC and sub-path coverage, or between MC/DC 
and sub-path coverage. This is because CC and MC/DC 
separately look into each individual compound Boolean 

 
b1:   if isAbsolute != 0 goto b5 
 

b2:   index = virtualinvoke path. ... 
if index != -1 goto b4 

 
b3:  return $r3 
 
b4:  index = index + 1 

device = virtualinvoke path. ... 
 
b5:  if isAbsolute || directory == null 

goto b7 
 
b6:  virtualinvoke directory. ... 

virtualinvoke directory. ... 
 

b7: 
 

Figure 14. Demonstration of constructing KBCs from Java code. 

Table VI. Sub-path for KBC in source code. 

Sub-paths for c1 = 〈e1, e2〉  
Evaluation 
result on e1 

Evaluation 
result on e2 

es1(c1): b1gb5 F ⊥ [44] 
es2(c1): b1gb2gb3 T T 
es3(c1): b1gb2gb4 T F 

 

Table VII. Sub-path for KBC in source code 

Sub-paths for c2 = 〈e'5〉  Evaluation result on e'5 
es1(c2): b5gb7 T 
es2(c2): b5gb6 F 
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expression and aim at covering different combinations of 
their condition values, whereas sub-path coverage (under 
the KBC construction process) investigates multiple Bool-
ean expressions to cover the combinations of their decision 
values. 

When applied to Jimple code, when Jimple predicates 
are mapped back to the original Java code for some reason, 
things can be a little complicated. A compound Boolean 
expression in Java code will always be broken down into 
multiple atomic Boolean expressions, so there is an M:1 
relationship in the mapping of Jimple predicates to Java 
predicates. According to the Jimple specification [32][33], 
multiple atomic Boolean expressions (broken down from a 
compound Boolean expression in Java code) will always 
form a sequence of blocks, all of which will end with a 
predicate statement. As a result, for each compound 
Boolean expression in Java code, the resultant multiple 
Jimple predicates will always belong to one KBC. Since 
sub-paths are generated by applying the short-circuit 
evaluation sequence analysis method [44] to KBC predi-
cates (which are atomic Boolean expressions broken down 
from a compound Boolean expression in Java), it has a full 
combination of condition values. In such case, sub-path 
coverage subsumes MC/DC coverage and CC coverage, 
and can generate a test suite covering subsets of a full 
combination of condition values. 

7. Related work 
Tarantula [22] uses the proportions of failed or passed 

executions to calculate the suspiciousness of every 
statement. Jones et al. [23] further use Tarantula to explore 
how to assist multiple developers to debug a program in 
parallel. CBI [24] uses predicates as fault indicators to 
locate faults. They rank the predicates P according to the 
probability that the program under study will fail when P 
is observed to be true. Arumuga Nainar et al. [5] use 
compound Boolean predicates based on CBI to locate 
faults. Zhang et al. [44] show experimentally that short- 
circuit rules in the evaluation of Boolean expressions may 
significantly affect the effectiveness of predicate- based 
techniques, and propose DES [44] accordingly. HOLMES 
[12] uses a full path as a fault predicator and proposes an 
iterative way to reduce the cost of profiling. Jiang and Su 
[19] propose another way to generate faulty control flow 
paths from bug predicators by using a depth-first search to 
greedily find paths that connect as many fault indicators as 
possible and reducing unlikely faulty paths to generate 
fault-related paths interactively. Zhang et al. [41] develop 
a CP approach that captures the propagation of infected 
program states through edges in a control flow graph. CP 
associates suspiciousness scores of control flow edges to 
suspiciousness scores of basic blocks to locate faults. 
Santelices et al. [31] investigate different program entities 
(such as statements, edges, and du-pairs). They show that 
integrated results of different entities may perform better 
than individual ones. 

Yilmaz et al. [37] leverage time spectra as abstractions 
of program executions. They use them for functional 
correctness debugging by identifying program segments 

that take a “suspicious” amount of time to execute. Masri 
[26] uses information flow coverage to locate fault. The 
program nanoxml is also used in their experiment. 

Selecting a set of good test cases is also an important 
way to improve the effectiveness of fault localization. 
Baudry et al. [9] identify a property known as dynamic 
basic block to improve the accuracy of a diagnosis algo-
rithm. Cellier [11] combines association rules and formal 
concept analysis to figuring out whether a failure is due to 
one statement or multiple ones. Wong et al. [35] report 
that the first failed test case is more helpful than the 
remaining failed cases in fault localization, and this 
principle also applies to passed test cases. Park et al. [29] 
proposed a dynamic technique to rank the suspiciousness 
of data access patterns in multi-threaded concurrency 
programs. 

Passed runs may come with the risk of coincidental 
correctness. Researchers have proposed methodologies 
[7][8][27][41] to alleviate the risk. For example, Zhang et 
al. [41] investigate how to use only failed runs to locate 
faults in programs. They collect execution counts for basic 
blocks in failed runs and use trend estimation to assess the 
suspiciousness of such blocks. Their method can be used 
to assess the suspiciousness of sub-paths, which can be 
mapped back to the suspiciousness of statements to 
generate a ranked list of statements using the method 
introduced in Section 3.2.3. 

Abreu et al. [1] propose a new approach to locating 
faults in multi-fault programs. Park et al. [29] locate faults 
in concurrent programs. DiGiuseppe and Jones [13] also 
conduct an experiment and evaluate the single-fault man-
ner fault localization used in a multi-fault scenario. Artzi et 
al. [4] proposed an approach to automatically generating 
tests that expose failures, which also facilitate fault 
localization by alleviating the limitation of previous 
fault-localization techniques that a test suite must be 
available upfront. Zhang et al. [45] proposed non- 
parametric predicate-based statistical fault-localization 
framework, which also study its effectiveness on 
statement-level base techniques listed in [28]. Moreover, it 
also report experiments on predicate-based techniques and 
some other fault-localization techniques. 

8. Conclusion 
In this paper, we have researched on two main aspects 

of coverage-based fault-localization techniques, namely, 
program features and similarity coefficients, for exploring 
the improvement in this domain. We have proposed to use 
Key Block Chains (KBCs) as program features and a suspi-
ciousness estimation formula known as Minus. They form 
the core components of our novel noise-reduction fault- 
localization framework. For any given fault-localization 
technique, our framework synthesizes new fault- 
localization techniques by applying KBCs, the Minus con-
cept, or both. We have conducted a controlled experiment 
on five base techniques over five real-life medium-scaled 
programs to evaluate the effectiveness of the synthesized 
techniques produced by our framework. Empirical results 
have shown that the synthesized techniques could locate a 
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fault more effectively and efficiently than the base 
techniques. The experiment results have also shown that 
the synthesized techniques work better for more practical 
scenarios and programs of higher complexities. Further, 
the performance analyses show that the synthesized 
techniques are applicable in practice. All of these results 
have demonstrated that our framework can be useful, 
especially its promising prospect on improving many other 
techniques. 

Future work includes a thorough study on the 
extensibility of our framework to deal with other types of 
fault-localization techniques, as well as the noise reduction 
effects in concurrent programs using our methodology. We 
believe we have pointed out a key aspect — program 
complexity rather than simply program scale in terms of 
lines of code — that fault-localization techniques should 
consider. We will further explore along this direction in 
the future. There are also interesting studies focusing on 
visualization-aided fault localization, such as [27]. We are 
interested in the integration of our work with them. 
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