
Information and Software Technology 56 (2014) 749–762
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
Model-based testing of global properties on large-scale distributed
systems
http://dx.doi.org/10.1016/j.infsof.2014.02.002
0950-5849/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +33 299847291.
E-mail addresses: gerson.sunye@univ-nantes.fr (G. Sunyé), eduardo@inf.ufpr.br

(E.C. de Almeida), yves.letraon@uni.lu (Y. Le Traon), bbaudry@irisa.fr (B. Baudry),
jezequel@irisa.fr (J.-M. Jézéquel).

1 Supported by the Fonds National de la Recherche, Luxembourg, TOOM Project
Grant: C12/IS/4011170.
Gerson Sunyé a,⇑, Eduardo Cunha de Almeida b,1, Yves Le Traon c,1, Benoit Baudry d, Jean-Marc Jézéquel d

a Lina - Université de Nantes, 2 rue de la Houssinière, BP 92208 44322, Nantes Cedex 03, France
b Departamento de Informática, Rua Cel. Francisco H. dos Santos, 100 Centro Politécnico, Jardim das Américas - Curitiba - PR, Caixa Postal: 19081, CEP 81531-980, Brazil
c Faculty of Science, Technology and Communication, 6, rue Coudenhove-Kalergi, L-1359 Luxembourg-Kirchberg, Luxembourg
d IRISA Rennes, Campus universitaire de Beaulieu, 263 Avenue du Général Leclerc - CS 74205, 35042 RENNES Cedex, France
a r t i c l e i n f o

Article history:
Received 22 August 2013
Received in revised form 4 February 2014
Accepted 5 February 2014
Available online 14 February 2014

Keywords:
Software testing
Distributed software
Model-based testing
a b s t r a c t

Context: Large-scale distributed systems are becoming commonplace with the large popularity of peer-
to-peer and cloud computing. The increasing importance of these systems contrasts with the lack of inte-
grated solutions to build trustworthy software. A key concern of any large-scale distributed system is the
validation of global properties, which cannot be evaluated on a single node. Thus, it is necessary to gather
data from distributed nodes and to aggregate these data into a global view. This turns out to be very
challenging because of the system’s dynamism that imposes very frequent changes in local values that
affect global properties. This implies that the global view has to be frequently updated to ensure an
accurate validation of global properties.
Objective: In this paper, we present a model-based approach to define a dynamic oracle for checking
global properties. Our objective is to abstract relevant aspects of such systems into models. These models
are updated at runtime, by monitoring the corresponding distributed system.
Method: We conduce real-scale experimental validation to evaluate the ability of our approach to check
global properties. In this validation, we apply our approach to test two open-source implementations of
distributed hash tables. The experiments are deployed on two clusters of 32 nodes.
Results: The experiments reveal an important defect on one implementation and show clear performance
differences between the two implementations. The defect would not be detected without a global view of
the system.
Conclusion: Testing global properties on distributed software consists of gathering data from different
nodes and building a global view of the system, where properties are validated. This process requires a
distributed test architecture and tools for representing and validating global properties. Model-based
techniques are an expressive mean for building oracles that validate global properties on distributed
systems.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Large-scale distributed systems are becoming commonplace
with the increasing popularity of peer-to-peer (P2P) or cloud
computing. For instance, the Gnutella [1] P2P system shares peta-
bytes of data among millions of users. Data intensive applications,
based on Google’s MapReduce [2], process several petabytes of
data every day, on large clusters of commodity machines, in a
way that is also resilient to machine failures.

The high popularity of these systems contrasts with the lack of
integrated test solutions to ensure their general quality under
normal and abnormal conditions. A main reason is the complexity
of reproducing a real world environment together with a non-
intrusive test environment. This is because the scale of the system
affects several test components, such as: test controllability [3],
fault-injection [4], logging facilities, and oracle calculation, among
others. In the precise case of the oracle, the validation of global
properties becomes a major problem, as they depend on values
that are spread throughout the system.

This problem is faced when testing, for instance, the global
correctness of the routing algorithm of a P2P system. In these

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2014.02.002&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2014.02.002
mailto:gerson.sunye@univ-nantes.fr
mailto:eduardo@inf.ufpr.br
mailto:yves.letraon@uni.lu
mailto:bbaudry@irisa.fr
mailto:jezequel@irisa.fr
http://dx.doi.org/10.1016/j.infsof.2014.02.002
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof
https://www.researchgate.net/publication/220851866_MapReduce_Simplified_Data_Processing_on_Large_Clusters?el=1_x_8&enrichId=rgreq-84a99796-f3e3-4a6d-ab09-1fe8c5b5170c&enrichSource=Y292ZXJQYWdlOzI2MDIxMjU2NTtBUzoxNjIyNDc2OTk2MDc1NTJAMTQxNTY5NDI3NDYwMw==
https://www.researchgate.net/publication/221047074_Efficient_Distributed_Test_Architectures_for_Large-Scale_Systems?el=1_x_8&enrichId=rgreq-84a99796-f3e3-4a6d-ab09-1fe8c5b5170c&enrichSource=Y292ZXJQYWdlOzI2MDIxMjU2NTtBUzoxNjIyNDc2OTk2MDc1NTJAMTQxNTY5NDI3NDYwMw==
https://www.researchgate.net/publication/266444973_PREFAIL_Programmable_and_Efficient_Failure_Testing_Framework?el=1_x_8&enrichId=rgreq-84a99796-f3e3-4a6d-ab09-1fe8c5b5170c&enrichSource=Y292ZXJQYWdlOzI2MDIxMjU2NTtBUzoxNjIyNDc2OTk2MDc1NTJAMTQxNTY5NDI3NDYwMw==
https://www.researchgate.net/publication/244444879_The_Gnutella_protocol_specification_v0?el=1_x_8&enrichId=rgreq-84a99796-f3e3-4a6d-ab09-1fe8c5b5170c&enrichSource=Y292ZXJQYWdlOzI2MDIxMjU2NTtBUzoxNjIyNDc2OTk2MDc1NTJAMTQxNTY5NDI3NDYwMw==

750 G. Sunyé et al. / Information and Software Technology 56 (2014) 749–762
systems, efficient message routing depends on the correct state of
local routing tables, which must be maintained frequently, accord-
ing to the dynamic state of the system: arbitrary network latencies,
node failures, and churn. Hence, the actual content of a routing
table is nondeterministic and highly dynamic, making it non-
obvious to tell whether it is correct at any given point in time.
The global correctness of the routing algorithm depends on the
(volatile) content of the routing tables in each local node that is
very hard to aggregate into a global view in a timely and scalable
way. Furthermore, the correctness of the global view can only be
verified at given states: it may be invalid right after churn, but
must be valid after a certain delay in a stable state.

A typical approach for testing such a feature in a distributed
system consists of a centralized controller and several testers, each
one controlling a single port or node interface [5]. The tester is the
application that runs in the same logical devices as system nodes,
and controls their execution and their volatility, making them
leave and join the system at any time, according to the needs of
a test. The controller sends the test inputs, controls the synchroni-
zation of the test case execution and receives the outputs (or local
verdicts) from each tester [6]. However, building a global verdict
from the information gathered locally can be a very difficult prob-
lem. For instance, in a system where each node maintains a set of
references to its physically closest neighbors (e.g., Pastry [7]), the
only way to validate the correct construction of the system would
be to first gather information from all nodes, then calculate the dis-
tance between them, and finally check if the contents of the refer-
ence set are actually the closest neighbors. A similar problem arises
when verifying load balance on MapReduce systems, which dis-
tribute their load burden across their nodes, including storage,
query processing, and computations. To verify their algorithm of
load-balancing, one must gather information from all nodes, which
can be a large amount of data, and check for system usage informa-
tion (e.g., partitioning of datasets).

In this paper, we present an approach leveraging the idea of
model at runtime [8] to provide a dynamically built oracle for
testing properties in large-scale distributed systems. This approach
focuses on global, liveness, observable and controllable properties.
Fig. 1. The Skype network outage. (Images by Phil Wolff. Available und
More precisely, it focuses on a particular class of properties that
cannot be calculated by a single node or by a portion of the system;
that are eventually true; that are observable from the system inter-
face; and that respond to external events. We propose to efficiently
keep updating a global model of the system during its execution.
This model is then instantiated and evolved at runtime, by moni-
toring the corresponding distributed system, and serve as oracle
for distributed tests. On the implementation side, we show that
standard Model-Driven Engineering (MDE) technology such as Ker-
meta [9] can be used to easily implement the oracle part of such
model-based distributed tests. We use this approach to test
topology-related properties on two open-source, structured P2P
systems. This approach extends our previous work [6,10], where
we presented a methodology and an architecture to test local prop-
erties of large-scale distributed systems, which can be verified
locally to each node. The addition of a global model and an efficient
update mechanism allows also to test global properties.

The rest of the paper is organized as follows. The next section
presents a real world motivation case. Section 3 introduces some
fundamental concepts in large-scale distributed systems and some
global topology properties these systems must satisfy. Section 4
presents our approach to represent and check these properties,
as well as our architecture for testing distributed systems.
Section 5, describes our validation through implementation and
experimentation on two open-source systems. Section 6 discusses
related work. Section 7 concludes.

2. Motivating case: The 2010 Skype outage

On December 22nd 2010, the Skype network suffered a critical
failure that lasted approximately 24 h from December 22nd,
16:00 GMT to December 23rd, 16:00 GMT. The failure concerned
more than 23,000,000 of online users [11]. Fig. 1 illustrates the
outage. When the number of online users was almost reaching
its highest point, it suddenly started to drop. In almost 1 h, there
were less than 1 million online users.

Skype is a successful example of combing modern distributed
architectures to implement a popular, reliable, portable, and
er Creative Commons Attribution-Share Alike 2.0 Generic License.)

https://www.researchgate.net/publication/221542152_A_Framework_for_Testing_Peer-to-Peer_Systems?el=1_x_8&enrichId=rgreq-84a99796-f3e3-4a6d-ab09-1fe8c5b5170c&enrichSource=Y292ZXJQYWdlOzI2MDIxMjU2NTtBUzoxNjIyNDc2OTk2MDc1NTJAMTQxNTY5NDI3NDYwMw==
https://www.researchgate.net/publication/221542152_A_Framework_for_Testing_Peer-to-Peer_Systems?el=1_x_8&enrichId=rgreq-84a99796-f3e3-4a6d-ab09-1fe8c5b5170c&enrichSource=Y292ZXJQYWdlOzI2MDIxMjU2NTtBUzoxNjIyNDc2OTk2MDc1NTJAMTQxNTY5NDI3NDYwMw==
https://www.researchgate.net/publication/221047003_Architectures_for_Testing_Distributed_Systems?el=1_x_8&enrichId=rgreq-84a99796-f3e3-4a6d-ab09-1fe8c5b5170c&enrichSource=Y292ZXJQYWdlOzI2MDIxMjU2NTtBUzoxNjIyNDc2OTk2MDc1NTJAMTQxNTY5NDI3NDYwMw==
https://www.researchgate.net/publication/221461142_Pastry_Scalable_Decentralized_Object_Location_and_Routing_for_Large-Scale_Peer-to-Peer_Systems?el=1_x_8&enrichId=rgreq-84a99796-f3e3-4a6d-ab09-1fe8c5b5170c&enrichSource=Y292ZXJQYWdlOzI2MDIxMjU2NTtBUzoxNjIyNDc2OTk2MDc1NTJAMTQxNTY5NDI3NDYwMw==
https://www.researchgate.net/publication/226478596_Testing_Peer-to-Peer_Systems?el=1_x_8&enrichId=rgreq-84a99796-f3e3-4a6d-ab09-1fe8c5b5170c&enrichSource=Y292ZXJQYWdlOzI2MDIxMjU2NTtBUzoxNjIyNDc2OTk2MDc1NTJAMTQxNTY5NDI3NDYwMw==
https://www.researchgate.net/publication/43406880_Models_at_Runtime_to_Support_Dynamic_Adaptation?el=1_x_8&enrichId=rgreq-84a99796-f3e3-4a6d-ab09-1fe8c5b5170c&enrichSource=Y292ZXJQYWdlOzI2MDIxMjU2NTtBUzoxNjIyNDc2OTk2MDc1NTJAMTQxNTY5NDI3NDYwMw==

G. Sunyé et al. / Information and Software Technology 56 (2014) 749–762 751
interoperable software. Indeed, Skype architecture is a harmonic
combination of different paradigms, merging centralized, peer-to-
peer, and cluster architectures. A centralized login server handles
all the network connections and a Distributed Hash Table (DHT)
stores user information. Communications between nodes are done
through a point-to-point connection, and clusters, which act as a
private cloud, provide some services such as group chat or offline
messaging.

The outage commenced on December 22nd, when a cluster of
support servers responsible for offline instant messaging became
overloaded. Because of this overload, some Skype clients received
delayed responses from the overloaded servers. Clients using a spe-
cific version of Skype for Windows (5.0.0152) did not process prop-
erly these delayed responses and crashed.

Users running other versions were not affected by this initial
problem. Nevertheless, around 50% of all Skype users globally were
running the 5.0.0.152 version of Skype for Windows and the
crashes caused approximately 40% of those clients to fail. Among
these clients, there were 25% to 30% of the publicly available
super-nodes.

Super-nodes are nodes with extra behavior: they help common
nodes to join the network and store some user information on the
DHT. When users noticed that their clients crashed, they simply
relaunched their software. The problem is that super-nodes do
not start as super-nodes, they start as common nodes and become
super-nodes, if they have enough resources and are stable for a
while. As the former super-nodes restarted as common nodes
and tried to join the system, some of the remaining super-nodes
received a traffic one hundred times greater than normal. Since
Skype super-nodes are deployed on client machines, they have a
built-in mechanism that avoids having a huge overload in the host
machine, halting the super-node when a given threshold is
reached. Thus, all super-nodes that reached the threshold left the
system, surcharging the remaining super-nodes and driving the
whole system into an unavoidable cascade of shutdowns. Fig. 2
illustrates the fall of the super-nodes. From December 22nd at
20:46 until December 23rd 2:16 GMT, 98% of the Skype network
super-nodes were offline.

To recover the network, the engineering team added hundreds
of new Skype nodes that act as dedicated super-nodes, which
should have provided enough capacity to allow the network to
bootstrap. However, only a small portion of users (15–20%) were
Fig. 2. The fall of the supernodes (Images by Phil Wolff. Available unde
‘‘healing’’. The team introduced then several thousands of super-
nodes, using the resources that support the Group Video Calling.
These new super-nodes and the nightfall helped the network to
heal. During the night, the full recovery was beginning. On
December 23rd at 16:00 GMT, clients could connect normally to
the network. When common nodes start becoming super-nodes,
engineering could start removing the dedicated ones.

This is the second major Skype outage; the first one dates back
to 2007. When analyzing the causes of this outage, we notice two
distinct faults:

1. The misinterpretation of server messages that were delayed
causing nodes to crash.

2. The incapacity of super-nodes to treat a large number of join
requests, which also prevents the system to bootstrap a large
number of nodes at the same time.

A conformance testing approach could catch the first fault, if
combined with fault injection (to simulate message delays). A un-
ique test driver could individually test endpoints and reproduce
the fault. Nevertheless, finding the correct sequence of messages
that can drive the node into a faulty state is a complex task. Indeed,
the Windows software that crashed was subject to extensive inter-
nal testing and months of beta testing with hundreds of thousands
of users, without revealing this fault.

The second fault is more complex, because its reproduction is
more challenging. A single test driver cannot generate sufficient
load to crash a super-node. Here, a different approach is needed,
either using several distributed test drivers or reproducing a real-
scale scenario. Contrary to the first fault, the sequence of steps that
expose this fault is rather simple, either creating a large system
instantaneously or disconnecting super-nodes from a stable
system. In both cases, a global model of the topology is necessary
to identify the nodes that should be disconnected and to verify that
the system is sound.

3. Background

Cloud computing offers a highly-scalable environment that runs
any kind of system. For instance, large-scale systems with central-
ized components, such as: GoogleFS (with master nodes), and
MapReduce (with job trackers); or decentralized large-scale
r Creative Commons Attribution-Share Alike 2.0 Generic License.)

1

6

0

3

3
1

node

6

intstart

4 [4,0]
[2,4]2
[1,2]1

3
3

node

6

intstart

5 [5,1]
[3,5]3
[2,3]2

6
6

node

0

intstart

7 [7,3]
[5,7]5
[4,5]4

6
6

node

0

intstart

2 [2,6]
[0,2]0
[7,0]7

Fig. 3. Chord routing.

752 G. Sunyé et al. / Information and Software Technology 56 (2014) 749–762
systems that fall under the P2P definition, such as Distributed Hash
Tables (DHT). The development of these systems is raising new
requirements and issues, other than those already tackled during
the development of traditional distributed systems:

Large-scale Large-scale distributed systems are expected to
connect a large number of nodes (from thousands up to several
millions).
Dynamicity Resources may be dynamically added to or
removed from the system. This concerns physical nodes, as well
as software services.
Heterogeneity of resources The nodes that compose the sys-
tem are disparate: smartphones, laptops, clusters, supercom-
puters, etc.
Diversity of purposes These systems are used on different
domains, from data sharing to massive processing applications.
Stateless protocols Nodes may receive events defined in their
interfaces in any order and at any moment. In essence, commu-
nication consist of independent requests-responses pairs.
Symmetry Several nodes play identical roles, ensuring reliabil-
ity (there is no single point of failure) and load balance (load is
distributed symmetrically across nodes).
Elasticity The system scales out and in quickly, adapting itself
to load.

3.1. Routing tables

In a large-scale distributed system, nodes have a partial view of
the system, i.e., their routing tables keep only a subset of other
node addresses. The choice to build the routing table is then crucial
for the performance of the whole system. There are as many
routing algorithms as there are different systems. In some data
sharing systems (e.g., Gnutella, Kazaa), the routing table is built
randomly, each node keeps a set of nodes that represent some
interest. In structured systems, the routing table is built systemat-
ically, each node keeps a set of nodes with the specific ID that are
needed for efficient routing.

Currently, there are two major ways to maintain the routing
table: actively and lazily. In the former, each node periodically
pings all its neighbors and drops the unavailable nodes (e.g., Chord
[12]). In the latter, extra status information is added to messages
exchanges and the unavailability of a node is only noticed when
one of its neighbors does not answer a given query. Some systems
(e.g., Bamboo [13], Pastry [7]) use both approaches to maintain
their routing tables.

In Pastry, the routing table is divided into three parts. The first
one, named leaf set contains all nodes having numerically close
node ID (i.e., ID that share the same prefix). The second one, the
actual routing table, contains nodes with different prefixes (at least
one node for each element of the prefix domain). The third one, the
neighborhood set, contains the physically closest nodes, indepen-
dently from their ID. Pastry uses both, lazy and active approaches
to update the routing table. While the leaf and the neighborhood
sets are maintained actively, the actual routing table is only
updated when a node communicates with its neighbors.

In Chord, each node maintains a routing table with at most m
entries, where 2m is the maximum size of the system. The ith entry
in the table at node n contains the identity of the node, s, that
succeeds n by at least 2i�1 on the identifier circle, i.e.,
s ¼ successorðnþ 2i�1Þ where 1 6 i 6 m. When the ID is not taken,
the entry is the node with the following ID. Chord uses an active
approach to update its routing table, periodically running a process
called ‘‘stabilization’’.

For instance, in a Chord system with m ¼ 3 (Fig. 3), containing
nodes n0;n1;n3, and n6, the routing table of n0 stores the addresses
nodes n1;n3 and n6. When a new node n4 joins the system, then n0
will update its routing table and replace the address of n6 with n4.
The routing tables of both systems, Pastry and Chord, are the
subject of the experiments presented in Section 5.

3.2. Properties

As any other distributed system, large-scale ones must satisfy
the properties of safety and liveness [14]. Safety properties are
predicates that should always be true, ensuring that the system
never reaches an unacceptable state. For instance, a Chord routing
table must never have a null entry: in a system composed of only
one node, all entries in the routing table must point to the node
itself.

Liveness properties are predicates that should eventually be
true. For instance, in Chord, the routing table of a node is valid until
another node has joined the system. At this precise state, table
entries are and will remain invalid during a stabilization time, i.e.,
the time necessary to detect the presence of a new node and the
consequent routing table update. In real life execution, with
frequent churn, these properties may never be established.

We list below several topology-related liveness properties,
which are tested in Section 5.

Definition 1. Let S be a large-scale distributed system, NodesS the
nodes composing this system and N the size of the system in terms
of number of nodes.
Definition 2. The topology of S can be represented by a directed
graph, where each node n 2 Nodes is a vertex and every entry in
its routing table is an edge to a neighbor.

The first property, which is common to all systems, is the
connectivity of the system.

Property 1 (Connectivity). S is a strongly connected graph.

The second property, which is common to several DHT
algorithms [15] (e.g., Pastry, Tapestry, Chord, Kademlia), concerns
the diameter of the system, which should be OðlogNÞ. It is impor-
tant to note that this property is too lazy for Oð1Þ DHTs [16] and
should be strengthened.

Property 2 (Diameter). The maximum eccentricity over all vertices of
S is OðlogNÞ.

https://www.researchgate.net/publication/220851866_MapReduce_Simplified_Data_Processing_on_Large_Clusters?el=1_x_8&enrichId=rgreq-84a99796-f3e3-4a6d-ab09-1fe8c5b5170c&enrichSource=Y292ZXJQYWdlOzI2MDIxMjU2NTtBUzoxNjIyNDc2OTk2MDc1NTJAMTQxNTY5NDI3NDYwMw==
https://www.researchgate.net/publication/224355207_UnoHop_Efficient_Distributed_Hash_Table_with_O1_Lookup_Performance?el=1_x_8&enrichId=rgreq-84a99796-f3e3-4a6d-ab09-1fe8c5b5170c&enrichSource=Y292ZXJQYWdlOzI2MDIxMjU2NTtBUzoxNjIyNDc2OTk2MDc1NTJAMTQxNTY5NDI3NDYwMw==
https://www.researchgate.net/publication/2272446_Safety_and_Liveness_Properties_A_Survey?el=1_x_8&enrichId=rgreq-84a99796-f3e3-4a6d-ab09-1fe8c5b5170c&enrichSource=Y292ZXJQYWdlOzI2MDIxMjU2NTtBUzoxNjIyNDc2OTk2MDc1NTJAMTQxNTY5NDI3NDYwMw==
https://www.researchgate.net/publication/221461142_Pastry_Scalable_Decentralized_Object_Location_and_Routing_for_Large-Scale_Peer-to-Peer_Systems?el=1_x_8&enrichId=rgreq-84a99796-f3e3-4a6d-ab09-1fe8c5b5170c&enrichSource=Y292ZXJQYWdlOzI2MDIxMjU2NTtBUzoxNjIyNDc2OTk2MDc1NTJAMTQxNTY5NDI3NDYwMw==
https://www.researchgate.net/publication/221461142_Pastry_Scalable_Decentralized_Object_Location_and_Routing_for_Large-Scale_Peer-to-Peer_Systems?el=1_x_8&enrichId=rgreq-84a99796-f3e3-4a6d-ab09-1fe8c5b5170c&enrichSource=Y292ZXJQYWdlOzI2MDIxMjU2NTtBUzoxNjIyNDc2OTk2MDc1NTJAMTQxNTY5NDI3NDYwMw==
https://www.researchgate.net/publication/3235854_On_the_Fundamental_Tradeoffs_Between_Routing_Table_Size_and_Network_Diameter_in_Peer-to-Peer_Networks?el=1_x_8&enrichId=rgreq-84a99796-f3e3-4a6d-ab09-1fe8c5b5170c&enrichSource=Y292ZXJQYWdlOzI2MDIxMjU2NTtBUzoxNjIyNDc2OTk2MDc1NTJAMTQxNTY5NDI3NDYwMw==
https://www.researchgate.net/publication/234820075_OpenDHT_a_public_DHT_service_and_its_uses?el=1_x_8&enrichId=rgreq-84a99796-f3e3-4a6d-ab09-1fe8c5b5170c&enrichSource=Y292ZXJQYWdlOzI2MDIxMjU2NTtBUzoxNjIyNDc2OTk2MDc1NTJAMTQxNTY5NDI3NDYwMw==
https://www.researchgate.net/publication/221164091_Chord_a_scalable_peer-to-peer_lookup_service_for_internet_applications_ACM_SIGCOMM_San_Deigo_USA?el=1_x_8&enrichId=rgreq-84a99796-f3e3-4a6d-ab09-1fe8c5b5170c&enrichSource=Y292ZXJQYWdlOzI2MDIxMjU2NTtBUzoxNjIyNDc2OTk2MDc1NTJAMTQxNTY5NDI3NDYwMw==

G. Sunyé et al. / Information and Software Technology 56 (2014) 749–762 753
While these two first properties are rather simple to verify, if
one has a centralized model of the topology, they are essential to
test. If they are not respected, the accuracy of the tests presented
in Sections 5.4, 5.5 and 5.6, which verify the correct update of
the routing table upon churn, would be compromised. Functional
tests, such as the correctness of message routing and of data
insertion, would not be reliable. The third property concerns the
self-organization of DHTs.

Property 3 (Self-organization). When a node joins (or leaves) the
system, the total cost to update the routing tables, in terms of the
number of messages exchanged, is Oððlog NÞ2Þ messages.

The fourth property is the ability to handle churn and remain
working properly. Some routing algorithms are liable to fractionate
the structure upon churn preventing fractions to send messages to
one another. Some solutions are provided to merge fractions [17],
but not all the implementations do that.

Property 4 (Self-healing). S remains strongly connected upon churn.

The properties defined above are related to the topology of
peer-to-peer systems. There are two additional properties that
are not related to the topology of the system and therefore valida-
tion is left for future work, but yet need a global view of the system
to be verified: load balance and elasticity. Load balancing is the
ability to distribute the workload across the nodes of the system
for scalability. For instance, MapReduce, distributed database man-
agement systems, and P2P systems distribute their load burden
across their nodes. In the particular case of P2P, load balance
may rely on consistent hashing algorithms (for structured systems)
or on satisfaction load balance algorithms. A possible approach to
verify the Load Balancing property is to gather information from
all the nodes of the system, which can be a large amount of data,
and then check the consumption of computing resources.

The elasticity property is the ability of a system to add or re-
move resources at a fine grain and with a small lead time [18].
Elasticity is ensured either manually or automatically, through
the interaction with the infrastructure provider of a cloud system.
A possible approach to verify this property is to vary the load of the
system and observe the system behavior. While the load varies, we
expect the allocation, or decommissioning of failed or surplus
nodes.

Unstructured systems, which rely on gossiping protocols are
also an interesting class of system for testing global properties,
other than the Connectivity presented above. Some examples of
these properties are [19]: the efficiency of message propagation,
message coverage, message delay, degree distribution (number of
neighbors by node), clustering coefficient and the reliability under
churn. However, the verification of these properties is part of
future work.

3.3. Kermeta

Kermeta is a MDE workbench for building rich development
environments around meta-models using an aspect-oriented para-
digm [20,21]. It has been designed to easily extend meta-models
with many different concerns (such as syntactic correctness
including context information, execution information, model
transformations, tracing information, and connection to concrete
syntax) expressed in heterogeneous languages. A meta-language
such as the Meta Object Facility (MOF) standard [22] indeed
already supports an object-oriented definition of meta-models in
terms of packages, classes, properties, and operation signatures.
However, MOF does not include concepts for the definition of
constraints or operational semantics (MOF only contains
operations signatures). Kermeta can thus be seen as an extension
of MOF with a language for specifying constraints and operation
bodies at the meta-model level.

The action language of Kermeta is especially designed to
process models. It is imperative and includes classical control
structures such as blocks, conditional and loops. It implements
traditional object-oriented mechanisms for multiple inheritance
and behavior redefinition with a late binding semantics. It is
statically typed, with generics and provides reflection as well as
an exception handling mechanism.

In addition to object-oriented structures, the MOF contains
model-specific constructions such as containment and associations
between classes. These elements require a specific semantics of the
action languages in order to maintain their integrity. For instance,
the assignment of a property must handle the other end of the
association if the property is part of an association and the object
containers if the property is a composition.

Kermeta expressions are a superset of the Object Constraint
Language (OCL) ones and have a close syntax. In particular, they in-
clude operations similar to OCL iterators on collections such as
each, collect, select or detect. The standard framework of Kermeta
also includes all the operations defined in the OCL standard frame-
work. This alignment between Kermeta and OCL allows OCL
constraints to be directly imported and evaluated in Kermeta.
Classes define invariants and operations define pre- and post-
conditions. The Kermeta virtual machine has a specific execution
mode, which monitors these contracts and reports any violation.

3.4. Models at runtime

Models at runtime [23] are formal representations of the sys-
tem which support computer-based processing, unlike most mod-
els commonly used in analysis and design. As stated by Bran Selic:

This enables formal coupling between models and the systems
they represent, similar to the relationship that exists between a
program written in a high-level programming language and its
machine code counterpart (pp. 26).

In our case, we use models at runtime as a ‘‘live’’ oracle within a
test architecture to check properties during the execution of a test
sequence. Since we are not able to directly observe the current
state of the distributed system, we take snapshots of its nodes peri-
odically, aggregate the information and update the model. Since
we focus on liveness properties, we do not need to analyze all
states of the system but only given states, after exercising the
software interface of one or more nodes.

4. Testing global liveness properties

In this section, we present our approach for testing global live-
ness properties on large-scale distributed systems. After describing
briefly the test architecture, we present our test approach, intro-
duce test cases, explain their implementation, and discuss the
limits of the approach.

We consider a test case as a pair hTS;Oi, where TS is a test se-
quence, i.e., a sequence of steps that drives the System Under Test
(SUT) into a given state, and O is the oracle, which reads the output
generated by the SUT and provides a verdict.

4.1. Architecture

The test architecture has two main components, the tester and
the controller. The controller executes global test sequences and
dispatches test steps through the distributed testers. It uses
synchronization messages to ensure that a test step is completely

https://www.researchgate.net/publication/4066251_Canon_in_G_Major_Designing_DHTs_with_Hierarchical_Structure?el=1_x_8&enrichId=rgreq-84a99796-f3e3-4a6d-ab09-1fe8c5b5170c&enrichSource=Y292ZXJQYWdlOzI2MDIxMjU2NTtBUzoxNjIyNDc2OTk2MDc1NTJAMTQxNTY5NDI3NDYwMw==
https://www.researchgate.net/publication/220422375_A_View_of_Cloud_Computing?el=1_x_8&enrichId=rgreq-84a99796-f3e3-4a6d-ab09-1fe8c5b5170c&enrichSource=Y292ZXJQYWdlOzI2MDIxMjU2NTtBUzoxNjIyNDc2OTk2MDc1NTJAMTQxNTY5NDI3NDYwMw==
https://www.researchgate.net/publication/220868288_Weaving_Executability_into_Object-Oriented_Meta-languages?el=1_x_8&enrichId=rgreq-84a99796-f3e3-4a6d-ab09-1fe8c5b5170c&enrichSource=Y292ZXJQYWdlOzI2MDIxMjU2NTtBUzoxNjIyNDc2OTk2MDc1NTJAMTQxNTY5NDI3NDYwMw==
https://www.researchgate.net/publication/220624106_Formal_Analysis_Techniques_for_Gossiping_Protocols?el=1_x_8&enrichId=rgreq-84a99796-f3e3-4a6d-ab09-1fe8c5b5170c&enrichSource=Y292ZXJQYWdlOzI2MDIxMjU2NTtBUzoxNjIyNDc2OTk2MDc1NTJAMTQxNTY5NDI3NDYwMw==
https://www.researchgate.net/publication/42782223_Model_Driven_Design_and_Aspect_Weaving?el=1_x_8&enrichId=rgreq-84a99796-f3e3-4a6d-ab09-1fe8c5b5170c&enrichSource=Y292ZXJQYWdlOzI2MDIxMjU2NTtBUzoxNjIyNDc2OTk2MDc1NTJAMTQxNTY5NDI3NDYwMw==

TC

HT HT

HT HTHT HT

LT LTLT LT LT

Model at
Runtime

Update Request
Routing Table Entries
Leaf Tester
Hybrid Tester
Test Controller

LT
HT
TC

Fig. 5. Test architecture topology.

754 G. Sunyé et al. / Information and Software Technology 56 (2014) 749–762
finished by all testers before starting the next one. Synchronization
messages are issued by testers and report the end of execution of a
test step, as well as the execution delay and the potential detected
execution errors. The test sequence specifies the test execution
flow and is deployed on the test controller.

Testers execute test steps and control the volatility of nodes,
one tester per node. They only interact with the software interface
of the SUT, not with the network. Testers do not interfere in the
communication among the nodes of the SUT. The individual con-
trol of nodes allows the architecture to simulate complex topology
failures, as the failure of Skype super-nodes presented in Section 2,
or a similar outage, where node failures caused cascading
problems, as it happened to Gmail [24] in February 2009.

The interaction between testers and system nodes is ensured
through the use of adapters. Adapters expose the interface of
nodes, defining which test steps can be remotely called in the glo-
bal test case, similarly to TTCN-3 adapters [25]. As in TTCN-3-based
tools, the adaptation cannot be generated automatically and must
be hard-coded.

The UML deployment diagram presented in Fig. 4 illustrates the
deployment of the framework: each tester runs on a logical node
(the same as the node it controls) and is connected to a test con-
troller. Testers are independent from the node interface. The inter-
action between testers and nodes is ensured by adapters, which are
loaded dynamically by testers during deployment.

To ensure the scalability of the framework when testing large-
scale systems, testers are organized in a tree topology (Fig. 5). In
this topology, synchronization messages navigate through the tree,
reducing the load of the test controller (TC). Hybrid testers (HT)
can aggregate synchronization messages coming from their chil-
dren and send only one message to their parents. Leaf testers
(LT) differ from HT, since they do not have children and do not
aggregate messages. Log messages are also aggregated, since the
nodes of the SUT tend to generate similar log messages. Message
aggregation is ensured by specific functions that are associated
to message types. For instance, when a tester receives log
messages from its children, the associated function compares log
messages and creates pairs containing one log message and a set
of testers. Then, the set of pairs is sent to the tester’s parent.

Experiments presented in a previous work [3] show that this
topology has a better performance in experiments with more than
1000 nodes.

4.2. Testing approach

There are two major approaches for verifying global properties
of a distributed system. The first one is to keep the output data
locally in each node during the test execution and to perform a
post-mortem analysis. This approach is less intrusive since less test
data is exchanged during the execution. The second one, which we
have adopted, is to perform a live analysis of the outputs. While
this approach is more intrusive, since the exchange of test data
may perturb the network performance, it is also more flexible. It
allows tests to adapt themselves according to the output. This is
1 *
Test

Controller

Test Case

Oracle

Fig. 4. Test architecture – UM
particularly valuable when verifying liveness properties and the
duration of the verification is nondeterministic.

The rationale is to gather the output data on a single node, build
a centralized model of the system and verify global liveness prop-
erties on this model. Once a property is verified the execution can
be stopped. An important issue of this approach is finding an
update frequency that is adapted to the property verification.
4.3. Global model and property specification

As stated in Section 3.2, several distributed hash tables share
common properties. However, the diversity of routing and updat-
ing algorithms complicates the writing of tests to verify these
properties through different implementations. The complexity
can be reduced if the oracle is specified on a more abstract level,
allowing tests to ignore implementation details such as the nature
of identifiers, the data structure used to store the routing table, and
method signatures.

Fig. 6 presents a model of the topology of distributed systems.
The model is simple, yet sufficient to verify the properties pre-
sented in Section 3.2. The classes System and Node are connected
by two disjoint associations, available (the nodes that joined the
SUT) and unavailable (the nodes that left the SUT). Each node
has a set of neighbors. The model also contains invariants that
prevent nodes from been available and unavailable at the same
time and from being part of its own neighborhood.

The System class contains two operations, diameter () and
groups (), which calculate the diameter of a graph and the number
of independent graphs, respectively. This model usually must be
modified for testing a specific system or different properties. For
instance, if one wants to test a load-balancing property, mentioned
in Section 3.2, several new attributes (e.g., CPU load, memory
usage, etc.) would be needed and the current associations would
be useless.

Once the model and its invariants are done, the problem is to
create and update a model instance during the execution. The
SUT
Node

Tester

Adapter

L deployment diagram.

https://www.researchgate.net/publication/221047074_Efficient_Distributed_Test_Architectures_for_Large-Scale_Systems?el=1_x_8&enrichId=rgreq-84a99796-f3e3-4a6d-ab09-1fe8c5b5170c&enrichSource=Y292ZXJQYWdlOzI2MDIxMjU2NTtBUzoxNjIyNDc2OTk2MDc1NTJAMTQxNTY5NDI3NDYwMw==

id
join()
leave()

Node
*

1

neighbors
diameter() : Integer
groups() : Integer

System available*
unavailable*

Fig. 6. UML class diagram describing system properties.

Listing 2. Connectivity invariant.

Listing 3. All paths operation.

Listing 4. Diameter invariant.

G. Sunyé et al. / Information and Software Technology 56 (2014) 749–762 755
Oracle component, which is deployed along with the test controller
(Fig. 4), updates and validates the global model. Thus, test
sequences can directly access the global model. When a test
sequence asks a tester to create a node, it also creates a new
instance of Node and links it to the only instance of System

through the unavailable association in the global model.
With this model, we can use OCL to specify the strong connec-

tivity property in Listings 1 and 2.
The scalability property is specified in Listings 3 and 4. The first

specifies an operation that returns all possible paths between two
nodes and the second ensures that for each node of the system,
there is a path to all other nodes in at most log2ðN Þ steps, where
N is the size of the system.

The model also contains operations allowing the individual
control of nodes. The goal is to allow the creation of test scenarios,
besides the dynamic oracle. These operations must be glued to the
SUT through adapters.

4.4. Implementation

In the current version [26], the test architecture is implemented
in Java (version 1.5), global test sequences and adapters are imple-
mented as Java methods. Meta-information about test steps (e.g.,
the subset of testers that should execute a step, timeout, etc.) are
described as Java annotations. Listings 5 and 6 present examples
of a node adapter and a test sequence, respectively.

Besides exposing nodes’ interfaces, adapters also describe a
method for updating the global model. When a tester receives an
update request, it queries the node it controls, computes the
differences with the previously sent information and sends these
differences to the test controller.

We use Kermeta (version 1.4) to implement the oracle part of
the test, i.e., the runtime model and the verification methods: con-
nectivity () and diameter (). Since Kermeta is interoperable with
Java (it compiles to Java bytecode), its integration with the test
controller is flawless. The former is implemented using a depth-
first search algorithm and the latter is implemented using the
Floyd–Warshall algorithm [27] for the ‘‘all pairs shortest-path
problem’’ (see its implementation in Appendix A).

4.5. Discussion

When we started the development of our experiments, we in-
tended to use OCL to implement the oracle. Indeed, the declarative
nature of OCL simplifies the specification of global properties.
However, our first attempts to evaluate OCL expressions on models
with several hundreds of nodes showed poor performance, which
lead us to use an imperative language instead.

In our approach, we separate the oracle, test sequences, and
node adapters, allowing these three parts to evolve independently.
Listing 1. All neighbors operation.
Adapters depend strongly on system node interface and must be
rewritten when testing different systems. Different test sequences
and oracles that test the same system share the same adapters.
Test sequences and oracles depend on adapters, and can be reused
for testing different systems, if adapters provide the same inter-
face. As the global model evolves, allowing the representation of
new information and hence the verification of additional proper-
ties, testers must collect more information. This implies changes
in the adapter, which performs additional queries on the SUT,
and also in the message aggregation function. The latter is only
needed if the information can be combined and reduced.

The high level of abstraction of model-based tools eases the
representation and the validation of global properties. These tools
ensure that the models representing the oracle data are sound
(with respect to their meta-model) during and after the execution
of test sequences. A possible limit of this kind of tools concerns the
size of the models: most model-based tools are based on the
Eclipse Modeling Framework (EMF), which is not adapted to deal
with large models [28].

Our approach focus on specific classes of properties: global,
liveness, observable, and controllable properties. It is not adapted
to verify local properties, which do not require a global view of
the system. It is not adapted to verify safety properties either, since
they require an analysis of all the historical states of the system.
Since we do not instrument the SUT, we cannot verify properties
that are not observable from the public interfaces of the system
and that do not respond to external events.

In the current implementation of the architecture, testers can
force nodes to end their execution either normally or abnormally.

https://www.researchgate.net/publication/220883826_PeerUnit_A_framework_for_testing_peer-to-peer_systems?el=1_x_8&enrichId=rgreq-84a99796-f3e3-4a6d-ab09-1fe8c5b5170c&enrichSource=Y292ZXJQYWdlOzI2MDIxMjU2NTtBUzoxNjIyNDc2OTk2MDc1NTJAMTQxNTY5NDI3NDYwMw==
https://www.researchgate.net/publication/256168895_Algorith_97_Shortest_Path?el=1_x_8&enrichId=rgreq-84a99796-f3e3-4a6d-ab09-1fe8c5b5170c&enrichSource=Y292ZXJQYWdlOzI2MDIxMjU2NTtBUzoxNjIyNDc2OTk2MDc1NTJAMTQxNTY5NDI3NDYwMw==

Listing 5. FreePastry node adapter (simplified).

Listing 6. Test case (simplified).

2 http://freepastry.rice.edu/FreePastry/.
3 http://open-chord.sourceforge.net/.

756 G. Sunyé et al. / Information and Software Technology 56 (2014) 749–762
This allows test sequence to inject ‘‘macro-level’’ faults and
implement scenarios that are not interested in the origins of a
failure. However, the architecture cannot inject specific faults,
e.g., disk, network, bugs. We intend to combine the architecture
with fault-injection tools [29] to overcome this limitation.

Another limitation of the current architecture concerns the
reproducibility of tests, i.e., it does not provide repeatable auto-
mated tests [30]. In our experiments, we relied on the Grid5000
infrastructure to ensure the use of the same environment for
different executions. The use of an automated staging system with
support to large-scale environments (e.g., Weevil [31] and Mulini
[32]) to deploy and execute tests can overcome this limitation.
5. Experimental validation

In this section, we present an experimental validation of our ap-
proach. Our objective is to validate the correct implementation and
the robustness of two popular open-source DHTs with respect to
the properties presented in Section 3.2: FreePastry2 and
OpenChord.3 FreePastry is a Java implementation of the Pastry algo-
rithm, developed by the Rice University. It has 540 classes and 89
interfaces, organized in 90 packages, for a total of 50,875 lines of
code. OpenChord is an implementation of the Chord algorithm,
developed by the Bamberg University. It has 96 classes and 11 inter-
faces, organized in 13 packages, for a total of 9245 lines of Java code.

These experiments complete our previous work [6,10], where
we used these same implementations to test the functionality of
their DHTs (data insertion and retrieval). These former experiments
showed us that while some properties could be verified locally (at
each node), some others could only be verified in a centralized man-
ner. For our experiments, we use an incremental test methodology
[6] that copes with both volatility and scalability aspects of large-
scale distributed systems. The main goal of this methodology is to
simplify diagnosis: tests sequences start with a small-scale system
and increases the number of nodes after each execution. Node
volatility is also introduced incrementally: the test sequence starts
with a stable system, then with a growing system, a shrinking

http://freepastry.rice.edu/FreePastry/
http://open-chord.sourceforge.net/

* neighbors {union}

id
join()
leave()

PastryNode

* leaves {subsets neighbors}

* routing {subsets neighbors}

* neighborhood {subsets neighbors}

id
join()
leave()

Nodeavailable*

Pastry
System

unavailable*
size : Integer

System

Chord
System

id
join()
leave()

ChordNode* routing {subsets neighbors}

* successors {subsets neighbors}

Fig. 7. UML class diagram representing chord and pastry properties.

G. Sunyé et al. / Information and Software Technology 56 (2014) 749–762 757
system, and finally with a complete volatile system. We organized
the experiments in the following test scenarios:

1. Bootstrapping: checks the ability of the SUT to build a con-
nected (Property 1) and efficient (Property 2) system.

2. Node isolation: checks the ability of a node to find new neigh-
bors, after the departure of all its neighbors (Properties 3 and 4).

3. Expanding system: checks the ability of nodes to update their
routing tables when new nodes join the system (Properties 3
and 4).

4. Shrinking system: checks the ability of nodes to update their
routing tables when nodes leave the system (Properties 3 and 4).

During the experiments, we used two clusters of 64 nodes run-
ning GNU/Linux.4 In the first cluster, each node has 2 Intel Xeon
2.33 GHz dual-core processors. In the second cluster, each node
has 2 AMD Opteron 248 2.2 GHz processors. Since we have full con-
trol over these clusters (nodes and network routers) during experi-
mentation, our experiments are reproducible. The implementation
and tests, produced for this paper and other P2P applications, are
available on our web page.5 We allocate the logical nodes equally
through the nodes in the clusters up to 8 logical per physical node.
In experiments with up to 64 logical nodes, we use only one cluster.
In all experiments reported in this paper, each logical node is config-
ured to run in its own Java VM. Execution configurations, including
network, disks, DNS server, node reservation and their usage, are en-
sured by the OAR2 software deployed on the Grid5000 architecture.6

5.1. Global model extension

Fig. 7 presents an extension of the topology model introduced in
Section 4.3. Here, the main superclasses System and Node have
both two subclasses, which are specific to Pastry and Chord. These
subclasses allow the specification of properties that only apply to
these systems. For instance, we can specify that the Chord ring,
built using the successors association, should only have one cycle.
We can also specify that the Pastry nodes, connected through the
neighborhood association are actually the physically closest
nodes. This model was used to implement the test sequence
presented in Section 5.

5.2. Adapter and test sequence implementation

The experiments use two adapters, one for each SUT, and three
test sequences, one for each test scenario. Listing 5 presents the
4 The clusters are part of the Grid5000 platform: http://www.grid5000.fr/.
5 Peerunit project, http://peerunit.gforge.inria.fr.
6 http://www.grid5000.fr/mediawiki/index.php/OAR2.
implementation of the FreePastry adapter. This adapter has five
test steps, i.e., methods decorated with the @TestStep annotation.
The testers use these test steps to start the bootstrap node, start a
node, update the global model and quit the system. For instance,
when a tester receives the message start, it instantiates a peer
and calls successively two methods: join () and createPast ().
The execution is bounded by a time constraint to last less than
10,000 ms, otherwise the tester aborts the execution and notifies
the controller. We developed a similar adapter for OpenChord.

Algorithm 1 presents an example of a global test sequence. It
specifies the test sequence presented in Section 5.3, which vali-
dates the bootstrapping process. The global test sequence creates
a system with N nodes, waits for system stabilization and then
verifies that all nodes belong to the same system (Property 1)
and that the diameter of the system is Oðlog N Þ (Property 2).
Different scenarios execute this test sequence, with N increasing
exponentially from 16 up to 256 nodes.

The global test sequence calls two operations, defined in the glo-
bal model: diameter () and groups (). They calculate the diameter
of a graph and the number of independent graphs, respectively. The
global test sequence interacts with the system nodes through the
use of two messages, start and bootstrap, defined by adapters.

Algorithm 1. Global test sequence: bootstrapping test

Listing 6 presents the Java implementation of the bootstrapping

process test. For the sake of simplicity, some parts of the code were
omitted. Calls to the execute () method actually calls test steps on
the testers side.

http://www.grid5000.fr/
http://peerunit.gforge.inria.fr
http://www.grid5000.fr/mediawiki/index.php/OAR2

Table 1
Bootstrapping test results.

Nodes FreePastry OpenChord

16 Pass Pass
32 Pass Pass
64 Pass Pass

128 Pass Pass
256 Fail Fail

 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000

N
um

be
r

of
 in

de
pe

nd
en

t s
ys

te
m

s

Time (seconds)

FreePastry
OpenChord

Fig. 8. Bootstrapping process (512 nodes).

758 G. Sunyé et al. / Information and Software Technology 56 (2014) 749–762
5.3. Bootstrapping

The first test concerns the bootstrapping process, or how a new
node joins the system. In some implementations, e.g., FreePastry,
OpenChord, Plan-X,7 when a node wants to join the system, it must
first contact a bootstrap node (i.e., bootstrapper), which will help it to
get an ID and contact the rest of the system. The bootstrapping is a
delicate process [33], especially when the whole system starts at
same time. For instance, after a global outage, Skype took almost
48 h to heal in August 2007 [34].

The first test sequence creates a system with N nodes, waits for
system stabilization and then verifies that all nodes belong to the
same system (Property 1) and that the diameter of the system is
OðlogNÞ (Property 2). Different scenarios execute this test
sequence, with N increasing exponentially (2n) from 16 up to 256
nodes.

Table 1 presents the results of the test sequence, which reveals
a fault in the FreePastry bootstrapping process. Indeed, from some
point between 128 and 255 nodes, the bootstrapper is unable to
treat simultaneous requests. It seems that when the bootstrapper
is overloaded by several parallel requests, it gives incorrect
responses and induces the nodes to create several small and inde-
pendent systems. This bug is particularly annoying when setting
up tests for large systems, but has a workaround. The bootstrapper
behaves correctly when the system is built up incrementally,
respecting a delay of 100 ms between bootstrap queries.8 The
result of this test helped the developers of FreePastry to repair the
bug and improve the robustness of the bootstrap process when
preparing the version 2.1.9

The results of the test sequence also reveal a fault in Open-
Chord, leading to the same error found in FreePastry: the creation
of several independent systems. However, in this case, the origin of
the error is different. Nodes take too much time (more than
15 min) to find their neighbors and create a single system.

We use the global model to analyze the bootstrapping process,
presented in Fig. 8. After initializing all nodes and requesting them
to join the system, we take snapshots of the topology every 10 s.
While FreePastry nodes take less than 10 s to form a strongly
connected graph, OpenChord nodes are unable to do it in less than
10,000 s. After this period, there are still 4 independent systems
remaining. In both systems, once Property 1 was verified, Property
2 was also verified.

5.4. Node isolation

Once we were sure that both systems respect Properties 1 and 2
(or at least 256 nodes in the case of OpenChord), we could run
more elaborate tests. The second test sequence consists of two
parts. First, to isolate a random node from the system. Second, to
verify if such a node is able to correctly update its routing table
to reach out a living node within a time limit (Properties 3 and
4). The test sequence has four steps:
7 http://www.thomas.ambus.dk/plan-x/routing/.
8 https://trac.freepastry.org/wiki/Planetlab.
9 https://trac.freepastry.org/changeset/4176.
1. The system is created and a set of nodes joins the system.
2. All nodes send the contents or their routing table to the global

model.
3. All neighbors of a node n leave the system.
4. The routing table of n is periodically analyzed, until Property 4

(self-healing) is verified or a timeout is reached.

The routing table analysis happens as follows: the values from
the updated routing table are compared with the neighbors of n be-
fore the isolation. If the intersection of these two sets of IDs is empty,
then Property 4 is verified, the system is strongly connected again.

This test sequence is executed in only one test scenario, a sys-
tem of 64 nodes. Indeed, creating a system with less than 64 nodes
can lead the test to an inconclusive result because n may know all
the nodes which are removed in the third step. In a larger system,
the results should be similar since the size of the routing table
would be the same.

The test showed that both implementations were able to
correctly update their routing tables. OpenChord updated its rout-
ing table in about 4 s. This delay represents a unique execution of
the stabilization process (whose periodicity is set to 6 s).
FreePastry needed about 30 s to update its routing table and
become strongly connected again. The time was bigger than Open-
Chord’s due to the manner that the routing mechanism is updated.
In the first routing attempt, FreePastry always goes through the
leaf set, which is promptly updated due to its small number of en-
tries. Proving Properties 3 and 4 is expected to be fast through the
leaf set. However, in corner cases when the leaf set is not enough to
answer a request (e.g., due to the number of decommissioned
nodes in the isolation scenario), the other tables are used and the
lazy update approach works on (i.e., only updates any address
when asked).

5.5. Routing table update on an expanding system

The third test sequence checks the ability of a node to correctly
update its routing table when the system is in expansion. More
precisely, we verify that the nodes of a stable system take into ac-
count the new nodes that join their system. To do so, we use the
global model to analyze the routing table of each node that belongs
to a set of nodes N1 to verify if it is correctly updated within a time
limit, after the joining of a set of new nodes N2.

This test case has four steps.

1. The system is started and nodes that belong to N1 join the
system.

2. Wait until the SUT reaches a stable state (Properties 1 and 2).
3. The new nodes (N2) join the system and the global model is

updated.

http://www.thomas.ambus.dk/plan-x/routing/
http://https://trac.freepastry.org/wiki/Planetlab
http://https://trac.freepastry.org/changeset/4176

 0

 2

 4

 6

 8

 10

 12

 14

 16

 16 32 64 128 256 512 1024

tim
e

to
 u

pd
at

e
(s

ec
on

ds
)

network size (peers)

OpenChord
FreePastry

Fig. 9. Routing table update (expanding system).

G. Sunyé et al. / Information and Software Technology 56 (2014) 749–762 759
4. The strong connectivity of the system is verified: if all routing
tables are correctly updated, then Property 4 is verified.

This test sequence is executed on different scenarios, with
jN1j þ jN2j increasing exponentially (2n) from 64 up to 1024 nodes.10

In all executions, N1 and N2 have the same size. A maximum time is set
to limit the test execution. This time limit starts from 8 s (allowing
OpenChord to do at least one stabilization process) and increases in
quadratic-logarithmic scale (ðlognÞ

2), corresponding to Property 3.
Fig. 9 shows the average time for a node to update its routing

table and to get a pass verdict. In this scenario, FreePastry had a
similar result compared with the stabilization process of Open-
Chord. When a new node joins a FreePastry system, it needs to
communicate with all its neighbors inducing the update of their
routing tables. In OpenChord, the update takes a little longer due
to the time to stabilize.
 0

 50

 100

 150

 200

 250

 300

 350

 400

 16 32 64 128 256 512 1024

tim
e

to
 u

pd
at

e
(s

ec
on

ds
)

network size (peers)

OpenChord
FreePastry

Fig. 10. Routing table update (shrinking system).
5.6. Routing table update on a shrinking system

In this last test sequence, we verify that nodes that leave a
stable system are correctly removed from the routing tables of
the remaining nodes within a time limit. The test sequence is
composed of four steps.

1. The system is created and all nodes join the system.
2. Wait until Properties 1 and 2 are verified.
3. Half of the nodes leave the system and the global model is

updated.
4. Wait until strong connectivity of the system is verified again

(Property 4).

In this scenario, the size of the system and the time limit also
increase exponentially as described in Section 5.5. Fig. 10 shows
the minimum time necessary for a node to update its routing table
and get a pass verdict.

As expected, OpenChord shows a faster routing table updating
process than FreePastry due to its stabilization process. In fact, this
stabilization process showed that it can detect the departures
quickly and may be a better update approach compared with
FreePastry.
5.7. Discussion

While Properties 1, 2 and 4 may be verified using information
available at the SUT interface, the verification of Property 3 is more
complex. In order to measure the number of exchanged messages,
one must monitor the communication on all nodes of the SUT, filter
the messages that are not related to the self-organization and
verify that the number of messages exchanged corresponds to
Oððlog NÞ2Þ. In the tests presented above, we used a different
approach: we measure the time needed for self-healing in different
scales. If the time increases quadratic-logarithmically, we consider
that the property is respected. The tests also showed an error in the
bootstrapping process of OpenChord: the time needed to create a
valid system with more than 500 nodes is unsatisfactory, making
the implementation unusable.

A thorough analysis of the source code, the execution log and of
the resource usage revealed a design error. Indeed, when a join
request arrives at the bootstrapper node, it creates one thread to
process the request.11 Thus, when several requests arrive at the
same time, the node spends more time creating threads (and context
10 1024 nodes correspond to 8 nodes per machine in the clusters.
11 Classes SocketEndpoint and RequestHandler.
switching) than actually processing the requests. Applying the
Proactor design pattern [35] would fix this error.
6. Related work

In preliminary work [6,36], we presented a centralized test
architecture (i.e., central coordinator managing distributed testers)
for P2P systems. With this architecture, we can keep information
about running tests (e.g., routing table entries) in global variables
placed in the central component. Moreover, we investigated two
issues: (1) we demonstrated that volatility is a key-parameter
when testing a large-scale P2P system; and (2) we investigated
scalability issues of such architecture resulting from the cost of
coordination management of tests. During these investigations,
we executed several tests on different systems. These tests were
limited to oracles that used deterministic data and could be
decided locally at each tester. The model-based approach pre-
sented here, allows oracles to use global information; hence, allow-
ing us to write more elaborated tests to check global properties.

Liu et al. [37] propose an analogous approach. The authors
implemented a tool, WiDS Checker, which stores events from a
distributed application and uses these events to replay the execu-
tion of applications developed with WiDS. The replay uses only one
simulation process. During the replay, their tool checks for predi-
cate violations and, when a violation is caught, it can present the
trace that leads to the violation. Unlike our approach, they use a
pre-compiler to inject tracking code to the SUT and have access
to its internal properties (white-box testing). In our approach, we
do not instrument the code and only have access to public
properties (black-box testing). In WiDS, verifications are done
post-mortem and not at runtime.

760 G. Sunyé et al. / Information and Software Technology 56 (2014) 749–762
MaceODB [38] is to some extent, similar to WiDS Checker: it
injects tracking code to a domain-specific language, Mace. The
injected code is also used to check for liveness and safety proper-
ties, but at runtime. Unlike our approach, where properties are
written in Kermeta, MaceODB uses a declarative language to
specify properties. Thanks to this language the tool can decide
which node (or set of nodes) can check for a given property and
to optimize message exchange between nodes.

WiDS Checker and MaceODB are both close to our approach.
However, their goal is to help debugging of distributed systems
and not testing. They observe the execution of a SUT, in all its
states, but do not use test sequences to drive this SUT to given
states. As they do not implement a test architecture and their test
code runs in the same process as the SUT, they cannot execute
more complex test scenarios, involving synchronization, churn
simulation, or load and scale variation.

Common test architectures for distributed systems are gener-
ally based on centralized test controller. Ulrich et al. [5,39], for in-
stance, present a test architecture for distributed systems, called
Test and Monitoring Tool (TMT), which coordinates actions by syn-
chronization of events. This architecture uses a global tester and a
distributed tester. The global tester divides the test cases in small
parts called partial test cases (PTC). Each PTC is assigned to a
distributed tester and can be executed in parallel to another PTC
with respect to a function that controls mutual exclusivity. The
behavior of the distributed testers is controlled by a Test Coordina-
tion Procedure (TCP) which coordinates the PTCs execution by
synchronization events. By using synchronization events, the dis-
tributed testers do not need to control the execution of the entire
test case. Each tester runs independently its partial test case.
Another test architecture was presented by Walter et al. [40] for
conformance, interoperability, performance and real-time testing.
This architecture works as a toolbox of components (e.g., commu-
nication, test coordination, etc.) which can be combined to develop
a specific test architecture. The components can be also used to
simulate failures along the tests like network delay or noise. For
instance, it allows creating failures in the network to simulate
volatility. Because these architectures are tailored for small-scale
systems and rely on a centralized topology, they scale up linearly
and are not well-suited to large-scale systems.

Some test architectures are tailored for specific large-scale
systems, such as: MapReduce, Publish-subscribe systems (PSS)
and P2P@. The MRUnit [41] is a test framework for MapReduce sys-
tems. The framework provides a JUnit-like approach where devel-
opers write Java-based code to accelerate industry acceptance.
MRUnit mocks the MapReduce system to test individually and
locally the map and the reduce functions of a MapReduce job. In
comparison to our approach, MRUnit exclusively addresses func-
tional unit testing. It neither tests an entire MapReduce distributed
computation, nor provides test facilities to overcome volatility
issues that arise with a large number of machines.

Another large-scale testing approach is presented for PSS, that
are similar to P2P systems. Some model-checking tools are based
on this approach, such as Bogor [42] and Cadence SMV [43]. While
they consider the volatile nature of PSS, scalability is an open issue.
Along testing, nodes are simulated as threads and the size of the
SUT may be bounded by the testing machine resources. Therefore,
large-scale P2P systems cannot be fully tested since implementa-
tion flaws are strongly related to the system scale [6].

The Testing and Test Control Notation (TTCN-3) is a standard-
ized test scripting language that applies to different application
domains: telecommunications, protocols, aerospace, grid applica-
tion workflows [44], etc. Along with the test language, TTCN-3 also
provides a test execution architecture, based on the CTMF specifi-
cation [45]. Similarly to our approach, TTCN-3 separates test se-
quences from test adapters, which are specific to the SUT. In
comparison to our approach, adapters are language-independent
and support data coding and decoding. The test architecture uses
a centralized test controller and is not fully adapted for large-scale
systems.

Other approaches also provide a language to test large-scale
systems [46,47]. In fact, they differ from the TTCN-3 presenting a
declarative language. These languages are analogous to the Struc-
tured Query Language (SQL) widely used to query data base sys-
tems. Our approach could take benefit from these languages to
enhance testability of large-scale systems.

Network or overlay discrete-event simulation tools, such as
AgentJ [48], J-Sim [49], SimJava [50] or PeerSim [51], are an inter-
esting complementary approach to actual deployment. These tools
can execute thousands or even million of nodes on a single ma-
chine, simulating network communication, and multithreading.
Thus, simulation is more economic than actual deployment and
can be used before actual deployment to check the adequacy of test
cases [52]. Simulation can also be used to check global properties
in a simpler manner, since all nodes run in the same machine.
However, from a testing perspective, simulation tools have two
main issues. The first issue is that they often involve rewriting a
version of an application for simulation. The second is that there
is no real concurrence and faults related to concurrence or load
may not manifest themselves. For instance, we used PeerSim to
create an OpenChord DHT with 1000 nodes and checked for boot-
strap faults, similar to the ones described in Section 5.3. Contrarily
to its behavior during our experiments, OpenChord could create a
single system under simulation.

The Pigeon framework [53] is a network simulator, which
addresses both volatility and scalability issues to test massively
multiplayer online games (MMGs). The authors believe that the
performance of MMGs is the most crucial problem that should be
addressed since the network latency is affected by the frequent
propagation of updates during a game. To monitor the network,
Pigeon uses reflection and aspect-oriented programming to include
additional code to the SUT. While this framework is more adapted
to simulate the peculiarities of large-scale systems, it shares the
same two issues of other simulation tools.
7. Conclusion

In this paper, we presented a model-based approach for check-
ing global liveness properties that must be ensured by different
large-scale distributed systems. We claim that global properties
should be checked at runtime, at real scale, using non-invasive dis-
tributed testers, and that model-based testing is an expressive and
adaptable technique to specify and check the global liveness prop-
erties of a system.

In our approach, test sequences put the system into states
where such properties may be violated or lead to a degradation
of system performance and behavior, while models provide a high
abstraction level to represent a global view and the required prop-
erties of the SUT. Models are used as live oracles, which have a
view of the current state of the system and can detect property
violations.

Along with the approach, we presented a software test architec-
ture for executing test cases. This architecture ensures the correct
execution of test sequences, i.e., that each step of the sequence had
executed correctly by all concerned node, before executing the suc-
ceeding step. In this architecture, test sequences and node adapters
are written in Java, and the oracle is written in Kermeta, a dedi-
cated language for model transformation.

We illustrated this approach by testing the reliability of two
routing algorithms under churn. Results showed common flaws in
both routing strategies and clear differences. For instance,

G. Sunyé et al. / Information and Software Technology 56 (2014) 749–762 761
OpenChord could not build a single system (i.e., a strongly con-
nected graph) during real-scale experiments, revealing a defect that
would not have been detected without a global view of the system.

It is important to note that the approach is not limited to reliabil-
ity testing. It can also target other distributed software testing tech-
niques, such as system, load, and elasticity testing. Indeed, system
testing [10] and load testing [54] were the subject of previous expe-
riences. The approach is not limited to a specific class of distributed
system either, but to specific classes of properties. More precisely,
to properties that need a global view of the system to be checked,
and that are only observable at specific states of the system.

In our approach, we are only interested in the state of the sys-
tem at some specific points, reducing exchanged messages during a
test. This choice prevents us from checking safety properties; i.e.,
properties that should always be true. However, these properties
Listing 7. Floyd–Warshall algorithm
are typically local and could be checked using assertions. Since
we chose not to instrument the code of the SUT, we can access nei-
ther the internal states of a node nor some particular attributes,
such as exchanged messages raised during a given query.

In future work, going beyond the oracle issue, we will explore
model-based test scenario generation. Models at runtime and
search-based algorithms can help identifying and controlling the
nodes in a current topology for pushing routing algorithms into
their limits; for instance the isolation and rejoin of a node subset
from the remaining of the system to check the connectivity
property.

Appendix A. Listings

See Listing 7.
Implementation in Kermeta.

762 G. Sunyé et al. / Information and Software Technology 56 (2014) 749–762
References

[1] T. Klingberg, R. Manfredi, The Gnutella Protocol Specification v0.6, Tech. Rep.,
2002. <http://dss.clip2.com/GnutellaProtocol04.pdf>.

[2] J. Dean, S. Ghemawat, Map reduce: simplified data processing on large clusters,
in: OSDI, 2004, pp. 137–150.

[3] E. Almeida, J.E. Marynowski, G. Sunyé, Y. Le Traon, P. Valduriez, Efficient
distributed test architectures for large-scale systems, in: ICTSS 2010: 22nd IFIP
Int. Conf. on Testing Software and Systems, Natal, Brazil, November 2010.

[4] P. Joshi, H.S. Gunawi, K. Sen, Prefail: Programmable and Efficient Failure
Testing Framework, University of California at Berkeley, Tech. Rep. UCB/EECS-
2011-3, January 2011. <http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/
EECS-2011-3.html>.

[5] A. Ulrich, H. König, Architectures for testing distributed systems, in: IFIP TC6
12th IWTCS, 1999, pp. 93–108.

[6] E.C. de Almeida, G. Sunyé, Y.L. Traon, P. Valduriez, A Framework for Testing
Peer-to-Peer Systems, in: 19th ISSRE, IEEE Computer Society, Redmond,
Seattle, USA, 2008. 11–14 November.

[7] A. Rowstron, P. Druschel, Pastry: Scalable, decentralized object location and
routing for large-scale peer-to-peer systems, in: IFIP/ACM Middleware, 2001,
pp. 329–350.

[8] B. Morin, O. Barais, J.-M. Jézéquel, F. Fleurey, A. Solberg, Models at runtime to
support dynamic adaptation, IEEE Computer, pp. 46–53, October 2009. <http://
www.irisa.fr/triskell/publis/2009/Morin09f.pdf>.

[9] P.-A. Muller, F. Fleurey, J.-M. Jézéquel, Weaving executability into object-
oriented meta-languages, in: L.C. Briand, C. Williams (Eds.), MoDELS, ser.
Lecture Notes in Computer Science, vol. 3713, Springer, 2005, pp. 264–278.

[10] E.C. de Almeida, G. Sunyé, Y. Le Traon, P. Valduriez, Testing peer-to-peer
systems, Empirical Software Eng. 15 (2010) 346–379. 10.1007/s10664-009-
9124-x. <http://dx.doi.org/10.1007/s10664-009-9124-x>.

[11] L. Rabbe, CIO Update: Post-Mortem on the Skype Outage, 2010, December.
<http://blogs.skype.com/en/2010/12/cio_update.html>.

[12] I. Stoica, R. Morris, D.R. Karger, M.F. Kaashoek, H. Balakrishnan, Chord: A
scalable peer-to-peer lookup service for internet applications, in: SIGCOMM,
2001, pp. 149–160.

[13] S.C. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker, I. Stoica,
H. Yu, OpenDHT: a public DHT service and its uses, in: R. Guérin, R. Govindan,
G. Minshall (Eds.), SIGCOMM, ACM, 2005, pp. 73–84.

[14] E. Kindler, Safety and liveness properties: a survey, Bull. Eur. Assoc. Theor.
Comput. Sci. 53 (1994).

[15] J. Xu, A. Kumar, X. Yu, On the fundamental tradeoffs between routing table size
and network diameter in peer-to-peer networks, IEEE J. Sel. A. Commun. 22 (1)
(2006) 151–163. <http://dx.doi.org/10.1109/JSAC.2003.818805>.

[16] H.I. Sitepu, C. Machbub, A.Z.R. Langi, S.H. Supangkat, Unohop: efficient
distributed hash table with o(1) lookup performance, in: J.I. Agbinya, E.
Biermann, Y. Hamam, N. Ntlatlapa, K. Ferguson (Eds.), BroadCom, IEEE
Computer Society, 2008, pp. 76–81.

[17] P. Ganesan, P.K. Gummadi, H. Garcia-Molina, Canon in G major: designing
DHTs with hierarchical structure, in: ICDCS, IEEE Computer Society, 2004, pp.
263–272.

[18] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwinski, G. Lee, D.
Patterson, A. Rabkin, I. Stoica, M. Zaharia, A view of cloud computing,
Commun. ACM 53 (4) (2010) 50–58. <http://doi.acm.org/10.1145/
1721654.1721672>.

[19] R. Bakhshi, F. Bonnet, W. Fokkink, B.R. Haverkort, Formal analysis techniques
for gossiping protocols, Oper. Syst. Rev. 41 (5) (2007) 28–36.

[20] P.-A. Muller, F. Fleurey, J.-M. Jézéquel, Weaving executability into object-
oriented meta-languages, in: S.K.L. Briand (Ed.), Proceedings of MODELS/
UML’2005, ser. LNCS, vol. 3713, Springer, Montego Bay, Jamaica, 2005, pp.
264–278. <http://www.irisa.fr/triskell/publis/2005/Muller05a.pdf>.

[21] J.-M. Jézéquel, Model driven design and aspect weaving, J. Software Syst.
Model. (SoSyM) 7 (2) (2008) 209–218. <http://www.irisa.fr/triskell/publis/
2008/Jezequel08a.pdf>.

[22] OMG, MOF 2.0 core specification, OMG, Tech. Rep. formal/06-01-01, April
2006, OMG Available Specification. <http://www.omg.org/cgi-bin/doc?formal/
2006-01-01.

[23] G. Blair, N. Bencomo, R.B. France, Models@ run. time, Computer 42 (10) (2009)
22–27.

[24] A. Cruz, Update on Today’s Gmail Outage, 2009, February. <http://
gmailblog.blogspot.com/2009/02/update-on-todays-gmail-outage.html>.

[25] J. Grabowski, A. Wiles, C. Willcock, D. Hogrefe, On the design of the new testing
language TTCN-3, in: H. Ural, R.L. Probert, G. von Bochmann (Eds.), TestCom,
ser. IFIP Conference Proceedings, vol. 176, Kluwer, 2000, pp. 161–176.

[26] E.C. de Almeida, J.E. Marynowski, G. Sunyé, P. Valduriez, Peerunit: a framework
for testing peer-to-peer systems, in: C. Pecheur, J. Andrews, E.D. Nitto (Eds.),
ASE, ACM, 2010, pp. 169–170.
All in-text references underlined in blue are linked to publications on Re
[27] R.W. Floyd, Algorithm 97: shortest path, Commun. ACM 5 (1962) 345. <http://
doi.acm.org/10.1145/367766.368168>.

[28] F. Fouquet, G. Nain, B. Morin, E. Daubert, O. Barais, N. Plouzeau, J.-M. Jézéquel,
An eclipse modelling framework alternative to meet the models@runtime
requirements, in: R.B. France, J. Kazmeier, R. Breu, C. Atkinson (Eds.), MoDELS,
ser. Lecture Notes in Computer Science, vol. 7590, Springer, 2012, pp. 87–101.

[29] M.-C. Hsueh, T.K. Tsai, R.K. Iyer, Fault injection techniques and tools, IEEE
Comput. 30 (4) (1997) 75–82.

[30] R.V. Binder, Testing Object-Oriented Systems: Models, Patterns, and Tools,
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[31] Y. Wang, M.J. Rutherford, A. Carzaniga, A.L. Wolf, Automating experimentation
on distributed testbeds, in: D.F. Redmiles, T. Ellman, A. Zisman (Eds.), ASE,
ACM, 2005, pp. 164–173.

[32] G. Jung, C. Pu, G. Swint, Mulini: an automated staging framework for QoS of
distributed multi-tier applications, in: Proceedings of the 2007 Workshop on
Automating Service Quality: Held at the International Conference on
Automated Software Engineering (ASE), ser. WRASQ ’07, ACM, New York, NY,
USA, 2007, pp. 10–15. <http://doi.acm.org/10.1145/1314483.1314486>.

[33] M. Jelasity, A. Montresor, Ö. Babaoglu, The bootstrapping service, in: ICDCS
Workshops, IEEE Computer Society, 2006, p. 11.

[34] V. Arak, What happened on august 16, 2007, August. <http://
heartbeat.skype.com/2007/08/what_happened_on_august_16.html>.

[35] D.C. Schmidt, M. Stal, H. Rohnert, F. Buschmann, Pattern-Oriented Software
Architecture: Patterns for Concurrent and Networked Objects, second ed., John
Wiley & Sons, Inc., New York, NY, USA, 2000.

[36] E.C. de Almeida, G. Sunyé, Y.L. Traon, P. Valduriez, Testing peers volatility, in:
23nd IEEE/ACM ASE, September 15–19, L’Aquila, Italy, 2008.

[37] X. Liu, W. Lin, A. Pan, Z. Zhang, Wids checker: combating bugs in distributed
systems, Networked Syst. Des. Implementation (NSDI) (2007).

[38] D. Dao, J. Albrecht, C. Killian, A. Vahdat, Live debugging of distributed systems,
Compiler Construction (2009) 94–108.

[39] A. Petrenko, A. Ulrich, Verification and testing of concurrent systems with
action races, in: TestCom, August 29–September 1, Ottawa, Canada, 2000, pp.
261–280.

[40] T. Walter, I. Schieferdecker, J. Grabowski, Test architectures for distributed
systems – state of the art and beyond, 1998.

[41] (2010) MRUnit Project, <http://archive.cloudera.com/docs/mrunit>. <http://
archive.cloudera.com/docs/mrunit/index.html>.

[42] L. Baresi, C. Ghezzi, L. Mottola, On Accurate Automatic Verification of Publish-
Subscribe Architectures, in: 29th ICSE, IEEE Computer Society, Washington,
DC, USA, 2007, pp. 199–208.

[43] D. Garlan, S. Khersonsky, J.S. Kim, Model checking publish-subscribe systems,
in: 10th International SPIN Workshop, Springer, 2003, pp. 166–180.

[44] T. Rings, H. Neukirchen, J. Grabowski, Testing grid application workflows using
TTCN-3, in: ICST, IEEE Computer Society, 2008, pp. 210–219.

[45] I.I.S. 9646, Open systems interconnection conformance testing methodology
and framework, 1991.

[46] A. Wang, P. Basu, B.T. Loo, O. Sokolsky, Declarative network verification, in: A.
Gill, T. Swift (Eds.), PADL, ser. Lecture Notes in Computer Science, vol. 5418,
Springer, 2009, pp. 61–75.

[47] H.S. Gunawi, T. Do, P. Joshi, J.M. Hellerstein, A.C. Arpaci-Dusseau, R.H. Arpaci-
Dusseau, K. Sen, Towards automatically checking thousands of failures with
micro-specifications, University of California at Berkeley, Tech. Rep. UCB/EECS-
2010-98, 2010.

[48] I. Taylor, B. Adamson, I. Downard, J. Macker, AgentJ: Enabling java NS-2
simulations for large scale distributed multimedia applications, in: The 2nd
International Conference on Distributed Frameworks for Multimedia
Applications, 2006, May 2006, pp. 1 –7.

[49] J. Kacer, Discrete event simulations with J-Sim, in: J. Waldron, J.F. Power (Eds.),
PPPJ/IRE, ser. ACM International Conference Proceeding Series, vol. 25, ACM,
2002, pp. 13–18.

[50] W. Kreutzer, J. Hopkins, M. van Mierlo, Simjava – a framework for modeling
queueing networks in java, in: Proceedings of the 29th Conference on Winter
Simulation, ser. WSC ’97, IEEE Computer Society, Washington, DC, USA, 1997,
pp. 483–488. <http://dx.doi.org/10.1145/268437.268548>.

[51] A. Montresor, M. Jelasity, PeerSim: a scalable P2P simulator, in: Proc. of the 9th
Int. Conference on Peer-to-Peer (P2P’09), Seattle, WA, September 2009, pp. 99–
100.

[52] M.J. Rutherford, A. Carzaniga, A.L. Wolf, Evaluating test suites and adequacy
criteria using simulation-based models of distributed systems, IEEE Trans.
Software Eng. 34 (4) (2008) 452–470.

[53] Z. Zhou, H. Wang, J. Zhou, L. Tang, K. Li, W. Zheng, M. Fang, Pigeon: a
framework for testing peer-to-peer massively multiplayer online games over
heterogeneous network, in: 3rd CCNC, 2006, pp. 1028–1032.

[54] J.A. Meira, E.C. de Almeida, Y.L. Traon, G. Sunyé, Peer-to-peer load testing, in:
G. Antoniol, A. Bertolino, Y. Labiche (Eds.), ICST, IEEE, 2012, pp. 642–647.
searchGate, letting you access and read them immediately.

http://refhub.elsevier.com/S0950-5849(14)00036-6/h0110
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0110
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0110
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0110
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0115
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0115
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0115
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0115
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0115
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0115
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0120
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0120
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0120
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0125
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0125
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0125
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0125
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0125
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0125
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0130
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0130
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0135
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0135
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0135
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0140
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0140
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0140
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0140
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0140
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0140
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0140
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0140
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0140
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0140
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0145
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0145
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0145
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0145
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0150
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0150
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0150
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0150
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0155
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0155
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0170
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0170
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0175
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0175
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0175
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0175
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0175
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0175
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0175
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0180
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0180
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0180
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0180
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0180
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0180
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0180
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0185
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0185
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0190
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0190
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0190
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0190
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0190
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0190
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0190
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0190
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0190
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0195
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0195
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0200
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0200
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0200
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0205
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0205
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0205
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0205
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0205
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0205
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0205
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0210
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0210
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0210
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0210
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0210
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0210
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0215
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0215
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0215
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0220
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0220
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0220
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0220
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0225
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0225
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0230
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0230
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0235
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0235
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0235
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0235
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0240
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0240
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0240
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0245
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0245
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0245
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0250
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0250
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0250
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0250
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0250
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0250
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0255
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0255
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0255
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0255
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0255
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0255
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0265
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0265
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0265
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0270
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0270
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0270
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0270
http://refhub.elsevier.com/S0950-5849(14)00036-6/h0270

	Model-based testing of global properties on large-scale distributed systems
	1 Introduction
	2 Motivating case: The 2010 Skype outage
	3 Background
	3.1 Routing tables
	3.2 Properties
	3.3 Kermeta
	3.4 Models at runtime

	4 Testing global liveness properties
	4.1 Architecture
	4.2 Testing approach
	4.3 Global model and property specification
	4.4 Implementation
	4.5 Discussion

	5 Experimental validation
	5.1 Global model extension
	5.2 Adapter and test sequence implementation
	5.3 Bootstrapping
	5.4 Node isolation
	5.5 Routing table update on an expanding system
	5.6 Routing table update on a shrinking system
	5.7 Discussion

	6 Related work
	7 Conclusion
	Appendix A Listings
	References

