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Abstract

Context: The generation of dynamic test sequences from a formal specification, complementing traditional
testing methods in order to find errors in the source code.
Objective: In this paper we extend one specific combinatorial test approach, the Classification Tree Method
(CTM), with transition information to generate test sequences. Although we use CTM, this extension is
also possible for any combinatorial testing method.
Method: The generation of minimal test sequences that fulfill the demanded coverage criteria is an NP-hard
problem. Therefore, search-based approaches are required to find such (near) optimal test sequences.
Results: The experimental analysis compares the search-based technique with a greedy algorithm on a set
of 12 hierarchical concurrent models of programs extracted from the literature. Our proposed search-based
approaches (GTSG and ACOts) are able to generate test sequences by finding the shortest valid path to
achieve full class (state) and transition coverage.
Conclusion: The extended classification tree is useful for generating of test sequences. Moreover, the
experimental analysis reveals that our search-based approaches are better than the greedy deterministic
approach, especially in the most complex instances. All presented algorithms are actually integrated into a
professional tool for functional testing.

Keywords: Functional Testing, Classification Tree Method, Test Sequence Generation, Search Based
Software Engineering, Genetic Algorithm, Ant Colony Optimization

1. Introduction

Software testing is a very important phase in the software development life cycle the goal of which is
to ensure a certain level of software quality. The high economic impact of an inadequate software testing
infrastructure was detailed in a survey [1]. In addition, it is estimated that half the time spent on software
project development and more than half its cost, is devoted to testing the product [10]. The automation
of test generation could reduce the cost of the whole project, this explains why both the software industry
and academia are interested in automatic tools for testing. As the generation of adequate tests implies
a big computational effort, search-based approaches are required to deal with this problem. Nowadays,
automatic software testing is one of the most studied topics in the field of Search-Based Software Engineering
(SBSE) [16, 27].

Evolutionary Algorithms (EAs) have been the most popular search-based algorithms for generating test
cases [27]. In fact, the term evolutionary testing is used to refer to this approach. In the paradigm of
structural testing a lot of research has been carried out using EAs, but the use of search-based techniques in
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functional testing is less frequent [36], the main cause being the implicit nature of the specification, which
is generally written in natural language.

Traditionally, the challenge has been to generate test suites to completely test the software. Complete
testing is not feasible for arbitrarily large projects [21], so a good subset of all possible test cases has to be
selected. Combinatorial Interaction Testing (CIT) [7] tries to address this problem. CIT approaches attempt
to find a minimal test suite which fulfills the desired coverage. Generally, this task consists of generating,
at least, all possible combinations of the parameters’ values (this task is NP-hard [37]). The strength of the
testing approach, t-strength, depends on the number (t) of parameters involved in the combinations (i.e.,
t=2 for pairs, t=3 for triples, etc.). Although combinatorial testing has been widely studied, we still find
two main issues that have not been addressed by the traditional generation of test suites: the dependencies
between individual test cases and the state of the software under test (SUT).

Sometimes software is required to be in a particular state to test a given functionality. This is the case
of most programs. Indeed, in very large software systems, the cost incurred to place the system in a certain
state can be an issue. For example, testing the anti-lock braking system (ABS) of a car requires that the car
reaches a certain speed before the system can be tested. So it makes sense to consider the generation of test
sequences that allow us to test a particular functionality (acceleration of the car) while we change the state
of the SUT (considering the dependency rules in the test cases) to test the next functionality (ABS). The
implicit cost savings of using this technique is the reason why the generation of test sequences is relevant
and deserves more research effort.

One CIT approach, the Classification Tree Method (CTM) [13] for functional testing, is used for test
planning and test design. This method allows a systematic specification of the system under test and its
corresponding test cases can be created automatically using CIT. Here, we extend the classification tree
method with transition information in order to be able to find the shortest test sequences.

We present a couple of metaheuristic approaches for computing optimal test sequences automatically.
They are able to find near optimal solutions using a reasonable amount of resources [5]. We have compared
the behaviour of two metaheuristic techniques with an existing greedy algorithm [22]. The first proposed
approach is a Genetic Algorithm (GA) called Genetic Test Sequence Generator (GTSG). We have improved
a GTSG with the addition of a Memory Operator (MemO), which is based on the operator proposed by
Alba et al. [3]. It is used to reduce the amount of resources needed to compute a solution.

The other proposed algorithm is an Ant Colony Optimization (ACO) [9]. Specifically, we propose a new
technique based on an ACO algorithm that is able to deal with large construction graphs. It is able to find
near-optimal solutions in separated areas of the search space for the Test Sequence Generation Problem
(TSGP). It is called ACO for test sequence generation (ACOts). Both proposed metaheuristic approaches
are used in our approach to generate test sequences to obtain full class and transition coverage of 12 different
programs extracted from the literature. The main contributions of our approach are:

• We extend CTM in order to automatically generate test sequences. We formally define the extended
classification tree method. Other combinatorial testing methods could be extended in the same way.
The definition of an extended CTM could be done by a professional tool called CTE XL (see Figure 3).

• We present an evolutionary test sequence generator for the CTM using a GA with a memory operator
(MemO). In addition, we propose a new technique based on ACO (ACOts). These approaches can
compute test sequences for full class and transition coverage without having to know the length of the
sequences in advance.

• We perform an experimental analysis using 12 software models and comparing three different tech-
niques.

The remainder of the paper is organized as follows. In Section 2 we present the background to the
Classification Tree Method: how it is designed, how we have extended it and what is the adequacy criterion,
and we briefly describe the CTE professional tool. Section 3 describes the Test Sequence Generation Problem
and, then, it defines an extension of the classification tree in order to deal with test sequences. Section 4
presents our GTSG, ACOts, and outlines a deterministic greedy algorithm re-implemented for comparison
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purposes. Section 5 is devoted to presenting the benchmark of programs and analyzing the results of the
three approaches. Section 7 surveys related work. Finally, in Section 8 some conclusions and future work
are outlined.

2. The Classification Tree Method

The Classification Tree Method [13] is intended for systematic and traceable test case identification for
functional testing over all testing levels (for example, component test or system test). It is based on the
category partition method [31], which divides a test domain into disjoint classes representing important
aspects of the test object. These classes can be seen as the states of the SUT. Applying the classification
tree method involves two steps: designing the classification tree and defining test cases. In addition, the
extension of the classification tree method and the coverage criteria are also described in this section.

2.1. Design of the Classification Tree

The classification tree is based on the functional specification of the test object. For each aspect of
interest (called classification), the input domain is divided into disjoint subsets (called classes). Figure 1
illustrates the concept of classification tree with a simple example for a video game. Two aspects of interest
(Game and Pause) have been identified for the system under test. The classifications are refined into classes
which represent the partitioning of the concrete input values. These partitions can also be further refined
by introducing new low-level classifications and classes. In our example the refinement aspect Playing is
identified for the class runningGame and it is divided into a further two classes startup, and controlling.

Figure 1: Example of classification tree: video game classification tree.

Given the classification tree, test cases can be defined by combining classes from different classifications.
Since classifications only contain disjoint values, test cases cannot contain several classes of one classification.
A test case for the running example is:

Game:runningGame(Playing :startup), Pause:running

in which class running is selected from classification Pause and runningGame is selected from Game. Since
class runningGame has an inner classification, Playing, we have to select a class from it, this class is startup
in our case.

A test sequence is an ordered list of test cases or test steps which could be sequentially visited with the
aim of completely testing the functionality of the whole system.

2.2. Extensions of the Classification Tree

The Classification Tree defined in the previous section can be used to design test cases in isolation.
However, the test object can have operations related to transitions between classes in the classification tree
and executing these transitions is the only way we can reach a given state (test case) of the object. Let us
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take our video game example and let us imagine that we need to execute some code when the user changes
the state of the object from starting game to running game. These operations can be modeled by extending
the classification tree method with transitions between classes (see Figure 2). In a real-world example, these
transitions come from the semantics of the software object. We also assume that each classification has a
default class that we highlight in the graphical representation by underlining the class. This extension of the
classification tree can be seen as a hierarchical concurrent state machine (HCSM) or statechart [15] where
classes match states, and classifications match orthogonal regions.

Figure 2: Video game ECTM example.

When the transition information is available we are also interested in covering all the possible transitions
in the system. In this case, sequences of test cases play a main role rather than the isolated test cases.
In effect, an isolated test case does not describe which transitions were executed to get that test case and,
thus, does not determine the transitions executed. For this reason, our goal in this work is to provide test
suites composed of sequences of test cases that cover not only all the possible classes in the classification
tree but also all the transitions using the minimal number of total test cases. We will give more details of
the extended classification tree method (ECTM) in Section 3 and we will provide a formal definition and
semantics in Appendix A.

2.3. Coverage Criteria

In this paper we have chosen two coverage criteria: class and transition coverage. The class coverage
criterion consists of covering all the classes of the classification tree with the generated test suite. The
transition coverage requires covering all the transitions available between the classes of the ECTM. In
our running example of Figure 2, we have to cover eight classes for total class coverage (VideoGame,
startingGame, runningGame, startup, controlling, gameOver, running, and paused), and five transitions to
obtain full transition coverage ({startingGame → runningGame, startup → controlling, controlling →
gameOver, running → paused, paused → running})).

Similarly to the conventional test data generation, t-way sequences introduced by Kuhn et al. [23] can
be mapped onto our coverage criteria: t-wise coverage for both classes and transitions. The 1 -way sequence
coverage of Kuhn et al. corresponds to 1 -wise (or minimal) class coverage here. Each class is supposed
to be contained at least once in the resulting test suite (or result set as Kuhn et al. call it). The 2 -way
sequence coverage of Kuhn et al. corresponds to our 1 -wise (or minimal) transition coverage. All valid
transitions between classes are supposed to be contained at least once in the result set. In conventional test
case generation with the classification tree method, there is no coverage criterion for transitions. Higher
t-way (with t > 2) sequence coverage has not yet been included and requires further work.

2.4. Classification Tree Editor

The Classification Tree Editor [24] is a software tool supporting the classification tree method (Figure 3).
It incorporates classification tree elements. Current versions of the CTE XL (professional) support auto-
mated test case generation and user-defined dependency rules; the valid transitions among classes could be
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defined by the user. However, the test sequence generation cannot be done automatically. In this paper we
are going to deal with the automatic generation of test sequences. In the following section we describe the
test sequence problem and we define how we interpret the extended classification tree.

Figure 3: CTE XL Professional Tool

3. Test Sequence Generation Problem

The problem of generating test sequences has received little attention in the existing literature, much less
than the traditional generation of test data. As far as we know, this paper is the first in which the CTM has
been extended to compute test sequences for functional testing. In addition to the constraints defined by the
classification-classes hierarchy, in the Test Sequence Generation Problem (TSGP) we take dependency rules
into account. These are constraints between single test steps i.e., restrictions on the transitions between
classes. Within each test sequence, dependency rules must not be violated.

Dealing with dependency rules is important since the testing of several states could be combined, resulting
in shorter test sequences. In this way, we need fewer resources to test all functionality.

For example, testing a car at high speed implies using the accelerator pedal, but it is not possible to
use the brake at the same time, so after it is necessary to test the brake . We could plan a sequence of test
cases to check several functionalities instead of one. We could reduce the cost by testing the functionalities
in a sequence. Since it would be more costly to test one functionality, then putting the system into an
initial state to test the next functionality, than testing all the functionalities sequentially. In addition, it is
desirable that the set of generated test sequences as a whole fulfills predefined coverage levels. So, it could
be useful to generate a test suite with test sequences covering all possible classes or transitions between
classes of the classification tree.

Our approach for test sequence generation is based on an idea proposed by Conrad [8], who suggests
the interpretation of classification trees as parallel FSMs. However, we need to extend Conrad’s approach
to interpret refined classes of the classification tree. This concept is similar to the refinements of states in
UML statecharts. Our approach can be seen as a statechart, because we have concurrent states and we
have added hierarchies to the model. An example of a statechart can be seen in Figure B.7, where we show
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the model of the Citizen watch by Harel [15]. Later, in the experimental section, we analyze this model in
detail. We now describe in plain text the Test Sequence Generation Problem.

One test case for an ECTM is a set of classes that fulfills some rules. In particular, it is not possible to
have two classes that belong to the same classification and if a refined class is in the test case then there
must be one class for each classification in which the parent class is refined. In addition, if a class is in the
test case, all the ascendant classes in the ECTM must be also included in the test case. For example, the set
Q = {startingGame, running} is a test case, but the set Q = {runningGame} is not a test case because
there is no class of the Pause and Playing classifications.

We can transit from one test case to another one by taking one of the transitions between classes.
The test case we reach excludes the source class of the transition and includes the destination class of the
transition. In order to fulfill the rules described for the test cases, some classes in the starting test case could
also go out of the set and additional classes could enter the new test case. For example, if we take transition
startingGame→ runningGame from test case Q1 = {startingGame, running} in our video game example,
we reach the test case Q2 = {runningGame, startup, running}. We observe that class startingGame was
removed from Q1 and class runningGame was added to Q2, but we also need to add class startup because
runningGame is a refined class. A test sequence is a list of test cases in which all except the first one are
obtained by applying a transition from the previous one. A sequence of length three for our running example
could be composed of test cases (Q1 = {startingGame, running}, Q2 = {runningGame, startup, running}
and Q3 = {runningGame, startup, paused}).

If two different transitions can be used to transit in a given state and they affect different sets of classes
it is possible to group them and consider one single step transition with the joint effect of both. In our
example the transitions startingGame → runningGame and running → paused affect different sets of
states since they belong to sibling classifications. Then, we can compose the transitions and build the test
sequence of length two (Q1,Q3). This sequence covers the same transitions as the sequence (Q1, Q2, Q3).

Given a test sequence we define the class coverage as the number of classes appearing in the test cases of
the sequence divided by the total number of classes in the ECTM. We define the transition coverage as the
number of transitions covered by the sequence divided by the total number of transitions. The problem we
are interested in solving consists in finding a set of test sequences such that the coverage (class or transition,
one each time) is maximized. For a more precise and formal definition of the concepts presented in this
section the reader should refer to Appendix A.

4. Nature Inspired Algorithm for Test Sequence Generation Problem

In this section we describe three different approaches used to solve the TSGP. We first introduce an
evolutionary approach, a Genetic Algorithm. Second, we describe our algorithmic proposal based on ACO
for dealing with the TSGP. Finally, we briefly describe a state of the art technique from the literature for
comparison purposes. We would like to highlight that the size of the test cases that compose a test sequence
can vary from one to another. This fact is due to the hierarchical structure of the model. One class could
be refined in several sub-classes, then the length of the test cases would be different. Consequently, we have
to deal with the dynamic size of test cases in the ECTM.

4.1. Genetic Test Sequence Generator

The Genetic Test Sequence Generator (GTSG) constructs an entire test suite taking into account the
dependencies between test data in the generation of the sequence. GTSG is an algorithm that evolves a
population of solutions in each iteration until a given coverage criterion is fulfilled. The algorithm tries to
find the tests that maximize the coverage, then it sequentially adds them to the solution (test sequence).

In Algorithm 1 we show the main loop of our GTSG. As input parameters, the algorithm needs the
ECTM model, the algorithm parameters such as population size (GTSG.popSize), mutation probability
(GTSG.Pm), and the coverage criterion used (criterion). To start, the test suite is initialized with an empty
list (line 2) and the coverage set (Coverage) is initialized with all classes or transitions depending on the
criterion selected. In line 4, the set init is initialized with the initial test case Qini (for a definition of
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Qini see Appendix A). In each iteration of the external loop, also called optimization step, (lines 5-22) the
algorithm creates a random initial population of individuals (line 7). The first time the loop is entered it sets
the initial test case of the sequence, in the subsequent iterations the initial test case is the last one stored
in the Memory Operator, which we describe in Section 4.1.1. Then, the GTSG enters an inner loop which
applies the traditional steps of a generational evolutionary algorithm without recombination (lines 8-18).
That is, some individuals (solutions) are selected from the population P (t), they are mutated and evaluated,
and they are finally inserted in the offspring population A.

Algorithm 1 Pseudocode of GTSG.

1: proc Input:(ECTM, GTSG, criterion) // Inputs for ‘GTSG’
2: TS ← ∅ // Empty the test suite list
3: Coverage ← initialize(criterion) // Initialize the coverage structure with classes or transitions
4: init← {Qini} // Initial classes are the first test case of the sequence
5: while not empty(Coverage) do
6: t← 0
7: P (t)← create population(init) // P = population
8: while evals < totalEvals do
9: A ← ∅ // A = auxiliary population

10: for i = 1 to (GTSG.popSize/2) do
11: parents← selection(P (t))
12: offspring ← mutation(GTSG.Pm, parents)
13: evaluate fitness(offspring)
14: insert(offspring , A)
15: end for
16: P (t+ 1)← replace(A,P (t))
17: t← t+ 1
18: end while //internal loop
19: TS ← addToList(best sequence(P (t)))
20: Coverage← remove(best sequence(P (t)))
21: init←MemoryOperator(best sequence(P (t)))
22: end while //optimization step
23: end proc

In this particular algorithm the representation of a solution sol (test sequence) is a vector of integers
of length l. We determine the length of the chromosome as a parameter of the memory operator (see next
subsection).

sol = [I1, I2, I3, ..., Il].

The outgoing transitions from a class of the current test case can be enumerated, thus each number (Ii)
can be seen as the next transition chosen from the actual class to the next one.

The evaluation of a solution is done by sequentially taking every single transition (class to class) of the
solution and generating a sequence of test data with a particular coverage. The evaluation function selects
one leaf class (from left to right) and one gene in the solution is consumed to select the next transition ti.
Then, ti is added to the set of selected transitions, T ′. In order to transit from one test case to another, the
evaluation function consumes, at most, as many genes as the number of leaf classes present in the source test
case. We may need to consume a variable number of integer numbers of the solution to transit to the next
test case. It depends on the source test case. We use the following expression to select the next transition:

ti = Ii mod |Transitions(c)|. (1)

where Ii is the i−th component of the Solution and Transitions(c) is the list of possible outgoing transitions
from class c.
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For example, if the evaluation function is considering class ci and that class has 4 outgoing transitions,
we consume the next gene (integer), e.g. 6, in the solution to determine the next transition. In this example,
we take the second possible transition (ti = 6 mod 4 = 2).

The fitness value of a solution is the class or transition coverage, Equations (A.3) and (A.4), obtained by
the solution when all genes have been consumed in the evaluation. In this algorithm we wish to maximize
the fitness function given by Equation (A.3) for Class Coverage and Equation (A.4) for Transition Coverage.

The objective of the selection operator is to select several individuals from the population to which the
other operators will be applied. The recombination operator is not used because the exchange of genes
between two individuals could generate sequences of meaningless transitions. Since we interpret each gene
in the chromosome as the transition to take from among all those possible, the interpretation of each number
depends on the previously consumed numbers. Let us explain this issue in detail.

Let I1 = {1, 1, 1, 2, 1, 1} and I2 = {1, 2, 1, 2, 1, 2} be two individuals, and let us assume that after the
application of the one-point crossover to them we obtain I ′1 = {1, 1, 1, 2, 1, 2} and I ′2 = {1, 2, 1, 2, 1, 1}. The
four first test cases in the sequences of I1 and I ′1 are the same, since they have in common the first three
transitions. Solutions I2 and I ′2 also share the first four test cases. However, the fourth test case in I2 is
different from the fourth test case in I1 (and I ′1). As a consequence, the last test cases of the sequence
represented by I ′1 have nothing to do with the last test cases in I2. Said in another way, the three last
transitions, 2, 1, and 2, of I2 have a completely different meaning when they appear in I ′1 because they are
applied to a different test case. If these transitions in I2 were appropriate because they traversed uncovered
transitions and states, in I ′1 could not be the case. This fact is contrary to the philosophy behind the
recombination operator, which tries to combine together features of the parent solutions. In summary, the
natural recombination operator using this representation is quite disruptive and for this reason we don’t use
it.

Regarding the mutation operator, it iterates over all the components in the solution vector uniformly
changing their value by ±1. It linearly increases the probability to mutate a component in order to give
a low probability to the first components of the chromosome, and a larger probability to the genes at the
end of the chromosome. We aim to maintain the first part of the individual with fewer changes because a
change in a gene could affect the rest of the sequence. We increase the probability from pm1 to pm2. So
here, pm1 = 0.05 and pm2 = 0.25.

In line 16, the best individuals of P (t) and A are kept for the next generation P (t+1). The internal loop
is executed until a maximum number of evaluations is reached. Then, the best individual (partial sequence)
found is added to the test suite list (line 19) and the Coverage set is updated by removing the classes or
transitions which are going to be covered by the new best partial sequence. (line 20). Then, the MemO
stores the last test case of the best sequence to be the initial test case for the next generation (line 21).
Finally, the external loop starts again with a new population until there is no class or transition left in the
Coverage set or the algorithm reach a predefined number of evaluations.

4.1.1. Memory Operator

In the aforementioned GTSG, as the population evolves, the first transitions in the individual tend to
stabilize, but the algorithm still has to evaluate them at each generation. We propose saving the resulting
stable first transitions in a memory slot to use them as the starting point for following optimization steps.

We use the memory operator (MemO) to allow the algorithm to search in stages. This operator was first
proposed by Alba et al. [3] in the context of software verification. The algorithm can optimize the whole
sequence of numbers (transitions) in stages, step by step, at the same time saving the memory required
to evaluate complete individuals. Instead, we only have to evaluate a shorter sequence in each individual
evaluation. This operator is based on the so-called missionary technique used in [2] for reaching deep graph
regions in an ACO.

The advantages are obvious: less memory and time are required to evaluate an individual, and thus
the path can maintain a constant growth without requiring more time and memory. There are, of course,
disadvantages. In particular, part of the search space is discarded and that part might in fact contain a
good solution, but this is common in any non-exhaustive search algorithm.
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We use the memory operator as follows: the GTSG is executed using a relatively small chromosome
length (in this approach we use a chromosome length of 20 integers). After a predetermined number of
evaluations (100, 000), the memory operator selects the best individual and stores its transitions to use them
as the starting points for the next optimization steps. The MemO could store more than one individual as
the starting point for the next generation, but in accordance with previous experimentation performed in
the early stages of this paper and the small population we used, the best choice is to select only the best
individual. All the other transitions are removed from the memory.

4.1.2. Parameter Settings

A possible threat to internal validity is that we have experimented with only one set of algorithms’
parameters. Nevertheless, we have performed a previous experiment in order to select the best parameters
for the GTSG algorithm. We have tried all combinations of values shown in Table 1. The parameters used
in the final experimentation are the ones highlighted in bold in Table 1.

Table 1: Parameters setting for GTSG. The parameter’s values used in the experimentation are highlighted
in bold.

Parameter Value
Population Size 4, 8, 10
Crossover No, Yes (1.0 , 0.9, 0.8)
Mutation Prob. 0.05, 0.1, 0.2, Dynamic (0.05-0.25)
Memory Operator No , Yes
Memory Slots 1, 2, 5
Chromosome length 10, 20, 50, 100

4.2. ACO Test Sequence

Our ACO Test Sequence (ACOts) algorithm is an adaptation of the ACOhg algorithm proposed by Alba
and Chicano [2] that can deal with the construction of huge graphs of unknown size. This new model was
proposed for applying an ACO-like algorithm to the problem of searching for counterexamples of safety
properties in very large concurrent models. We have adapted the algorithm with the intention of solving
the TSGP.

The ACO metaheuristic [9] is a global optimization algorithm inspired by the foraging behaviour of real
ants. The main idea consists of simulating the ants behaviour in a graph, called a construction graph, in order
to search for the shortest path from an initial set of nodes to the objective ones. The cooperation between
the different simulated ants is a key factor in the search which is performed indirectly by means of pheromone
trails, which is a model of the chemicals real ants use for their communication. The main procedures of an
ACO algorithm are the construction phase and the pheromone update. These two procedures are scheduled
during the execution of ACO until a given stopping criterion is fulfilled. In the construction phase, each
artificial ant follows a path in the construction graph. In the pheromone update, the pheromone trails of
the arcs are modified.

In short, two main differences between ACOts and the original ACO [9] model are as follows. First,
the traditional ACO searches for the shortest path from an initial set of nodes to the objective ones. Since
our objective in TSGP is to cover all classes or transitions, so we are also interested in visiting all classes
and using all possible transitions between the first test case and the final test case. Second, ACOts cannot
define final classes or test cases, the algorithm adds new test cases until the coverage criterion is fulfilled.
In Algorithm 2 we present the pseudocode of ACOts.

In what follows we describe the algorithm, but prior to that we clarify some issues related to the notation
used in Algorithm 2. In the pseudocode, the path traversed by the k-th artificial ant is denoted with ak.
We use |ak| to refer to the length of the path, the jth node of the path is denoted with akj , and ak∗ is the last
node of the path. Each node can be seen as a complete test case, the neighbours of a node are obtained by
applying one single transition to the actual test case. We use the operator + to refer to the concatenation
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Algorithm 2 Pseudocode of the ACOts algorithm.

1: proc Input:(ACOts) //Algorithm parameters in ‘ACOts’
2: init← {Qini}; // Initial classes are the first test case of the sequence
3: τ ← initialize pheromone();
4: step← 1;
5: while step ≤ maxsteps∧ not empty Coverage(criterion) do
6: for k = 1 to colsize do
7: ak ← ∅;
8: while |ak| ≤ λant ∧ T (ak∗)− ak 6= ∅ do
9: node← select successor(ak∗, T (ak∗), τ, η);

10: ak ← ak + node;
11: end while
12: end for
13: τ ← pheromone evaporation(τ, ρ);
14: τ ← pheromone update(τ, abest);
15: step← step+ 1;
16: end while
17: compactSolution(abest)
18: end proc

of two paths. The set init is initialized with the initial test case Qini (for a definition of Qini see Appendix
A).

The algorithm works as follows. First, the variables are initialized (lines 2-4). All the pheromone trails
are initialized with the same value: a random number between 0.1 and 10. In the init set, a starting path
with only the initial test case Qini is inserted (line 1). Therefore, all the ants begin the construction of their
path at Qini.

After the initialization, the algorithm enters a loop that is executed until a given maximum number of
steps have been performed or an ant reaches full coverage (line 5), depending on the coverage criterion. The
boolean “Coverage” function returns the structure of coverage (set of classes or transitions) depending on
the coverage criterion. For the construction of the path, the ants enter a loop (lines 8-11). In line 8, we
use the expression T (ak∗)− ak to refer to the elements of T (ak∗) that are not in the sequence ak. That is, in
that expression we interpret ak as a set of nodes. In the loop each ant k stochastically selects the next node
(line 9) according to the pheromone (τij) and the heuristic value (ηij) associated with each arc (i, j). In
particular, if the last node of the k-th ant path is i = ak∗, then the ant selects the next node j ∈ T (i). T (i)
contains all possible transitions from all the classes in the current test case. Formally: T (i) = T ∩ (i× C).
Then, the next node is selected with probability

pkij =
[τij ]

α[ηij ]
β∑

s∈T (i)[τis]
α[ηis]β

, for j ∈ T (i) , (2)

where α and β are two parameters of the algorithm determining the relative influence of the pheromone
trail and the heuristic value on the path construction, respectively (see Figure 4). According to the previous
expression, artificial ants prefer paths with a higher concentration of pheromone, like real ants in the real
world. When an ant has to select a node, the last node of the current ant path is expanded. Then the ant
selects one successor node and the remaining ones are removed from the memory. This way, the amount of
memory required in the path construction is small.

The heuristic function η depends on each arc of the construction graph and is defined in the context
of ACO algorithms. It is a non-negative function used by ACO algorithms for guiding the search. The
higher the value of ηij , the higher the probability of selecting arc (i, j) during the construction phase of the
ants. We use the same heuristic rate algorithm based on coverage of the greedy deterministic algorithm
(Section 4.3) that will be presented in the following section.

The whole construction phase is iterated until the ant reaches the maximum length λant, or it fulfills the
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Figure 4: An ant during the construction phase

coverage criterion. When all the ants have built their paths, a pheromone update phase is performed. First,
all the pheromone trails are reduced, simulating the real world evaporation of pheromone trails, according
to the expression τij ← (1− ρ)τij (line 19), where ρ is the pheromone evaporation rate and it holds that
0 < ρ ≤ 1. Then, the pheromone trails associated with the arcs traversed by the best-so-far ant (abest) are
increased (line 14) using the expression shown in Equation 3.

τij ← τij +
1

f(abest)
, ∀(i, j) ∈ abest (3)

where f(abest) is the percentage of coverage of the best-so-far ant.
This way, the best path found is awarded with an extra amount of pheromone and the ants will follow

that path with higher probability in the next step, as in the real world. Once the termination condition has
been fulfilled, the algorithm applies a compact function in order to minimize the steps of the abest, resulting
in the minimum number of different test cases. The compaction is as follows: since we only apply single
transitions between classes, we can apply several transitions at the same time provided that the source class
of the transitions is not the same or it is not an ascendant or descendant of the source class of any already
selected transition. Then, we compact some of the single transitions in a complete transition that save some
test cases in the resulting test suite. Continuing with the example shown in Figure 2, if the actual test
case is Q1 = {controlling, running}, the following selected transitions are controlling → gameOver and
running → paused. Then, we can compact the two transitions in a complete transition to obtain directly
Q2 = {gameOver, paused} in only one test step.

4.2.1. Parameter Settings

As in the case of CTSG, we did a previous experimental analysis to select the best parameters for ACOts.
We have tried all combinations of values shown in Table 2. The parameters used in the final experimentation
are the ones highlighted in bold in Table 1. The λant parameter is set to 400 in order to allow large enough
paths for finding the objective.

4.3. Greedy Deterministic Approach

This subsection describes an existing greedy deterministic approach, first introduced in [22] that will be
used here for validation of our results against a consolidated technique in this problem. This approach uses
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Table 2: Parameters setting for ACOts. The parameter’s values used in the experimentation are highlighted
in bold.

Parameter Value
α 1, 2, 5
β 1, 2, 5
ρ 0.1, 0.5, 0.9
maxsteps 10, 20, 50, 100
colSize 2, 5, 10

a multi-agent system with two kinds of agents to traverse the classification tree: the walker agent and the
coverage agent. Both agents will cooperatively traverse the ECTM.

4.3.1. Walker agents.

Travelling is done in such a way that only valid paths are taken and that all traversed paths together
result in the desired coverage. A full description of the algorithm has been given in [22], so we will only
outline it here.

For any classification in the classification tree, a walker agent is introduced at the initial class. The
initial test case is interpreted as a test step and taken into account for coverage calculation (e.g. class
coverage, transition coverage). All walker agents are then moved one after another. The path of movement
is calculated by coverage agents. When all agents have been considered once, the actual position of all
agents is again interpreted as a test step, and is taken into account for coverage calculation, then added to
the resulting test sequence. This is repeated until the desired coverage level has been reached. When there
are no more valid paths to take, walker agents are stuck. In this case, the whole ECTM is reset to its initial
state and a new, additional sequence is created. When the algorithm has finished a test suite with all test
steps is returned.

4.3.2. Coverage agents.

The Heuristic Rate algorithm is run by the aforementioned coverage agent. This agent guides the main
algorithm to achieve full class and/or transition coverage.

The Heuristic Rate algorithm is outlined in Algorithm 3. Its main goal is to rate the candidate transitions
or classes in order to decide which is going to add more coverage to the current solution. The heuristic
algorithm gets a candidate class or transition as input. For class coverage, self transitions are ignored and
then zero is returned. A self-transition does not increase class coverage because the origin and the end of the
transition is the same class. Otherwise, it then adds this candidate to a queue together with a weight factor,
with an initial weight factor of one. A weight factor is needed to give more weight to the closest uncovered
classes than those farthest away. The initial rating is set to zero. The candidate is added to the list of rated
items. Then, while the queue is not empty the algorithm polls (FIFO) the next class and weight factor from
the queue. If the polled node is the original candidate and if the rating is larger than zero, the algorithm
has found a loop path with new items. This loop path is weighed by adding the value of 100 to the rating
because we found a promising candidate. In this case or when the current item is on the list of rated items,
the while loop passes to its next cycle. Otherwise this node is added to the list of rated items. If the node
is on the list of target classes (it has not been used in any test step before), the algorithm adds 10 times the
weight factor to the result rating. Then, if there are outgoing transitions, child nodes or classifications, the
weight factor is multiplied with a punishment value. Target classes of outgoing transitions and child classes
are then added to the queue together with the new weight factor. When the queue is empty the rating is
returned.
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Algorithm 3 Pseudocode of the Heuristic Rate algorithm.

1: proc Input:candidate (Class or Transition)
2: if classcoverage && selfTransition then
3: return 0
4: end if
5: weight=1.0 ; rating=0
6: queue ← φ
7: queue += (candidate, weight)
8: while !queue.empty() do
9: (item, weight)= queue.poll()

10: if (item==candidate && rating> 0) then
11: rating+=100 ; continue
12: end if
13: if (ratedItems contains item) then
14: continue
15: end if
16: ratedItems+=item
17: if (targetNodes contains item) then
18: rating+=10*weight
19: end if
20: if (item has (outgoing transitions ‖ childnodes ‖ classifications)) then
21: weight= weight*0.95;
22: end if
23: for all (item has (outgoing transitions && childnodes && classifications) of item) do
24: queue+=(item, weight)
25: end for
26: end while
27: return rating
28: end proc

5. Experiments

This section describes the experiments performed on a benchmark of programs. In the first subsection we
present the benchmark of programs that we use in the experimental section. Then, in the second subsection
we analyze the results of the comparison between the algorithms.

5.1. Experimental Benchmark

For the experiments we use a benchmark with 12 different models of programs/artifacts. We use a
Keyboard instance [28], a Microwave [25], an Autoradio [18], and Harel’s Citizen watch [15] which is relevant
in the literature. From the IBM Rhapsody instances, we took the Coffee Machine, the Communication
example, the Elevator, and the Tetris game [20]. In Matlab Simulink Stateflow, we found Mealy Moore,
Fuel Control, Transmission, and Aircraft [26]. Even though the details of the case studies are given in
Table 3, we highlight here that most instances are hierarchical and concurrent. This means that we are
going to deal with test cases of different lengths. In other words, there are test cases of different lengths in
the same sequence.

In Table 3 the second and third columns list some statistics of the resulting artifacts. Both the number of
classes and number of transitions are given. The fourth and fifth column list the results for conventional test
case generation computed by the CTE tool with the greedy algorithm for minimal and complete combination.
Numbers indicate the size of the generated test suite.

5.2. Experimental Settings

ACOts and GTSG are non-deterministic algorithms, so we performed 30 independent runs per pro-
gram/coverage criterion for a meaningful statistical analysis. In order to check whether the differences
between the algorithms are statistically significant or just a matter of chance, we applied the Wilcoxon
rank-sum [32] test and highlight in the tables, the differences that are statistically significant. We set a
confidence level of 99.9% (p-value under 0.001) for the entire comparison (both metaheuristics acting on a
program/coverage). We have marked a result in dark grey when it is the best and in light grey when it is
the second best in performance. When the result of one algorithm is significantly better than the result of
another algorithm (typically the one whose results is farthest), we have added an asterisk. Two asterisks
are added if the algorithm is significantly better than the other two algorithms. In addition, with the aim of
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Table 3: General characteristics of the benchmark of programs.

Name C
la

ss
es

T
ra

n
si

ti
o
n
s

M
in

im
a
l

C
o
m

p
le

te

Keyboard [28] 5 8 2 4
Microwave [25] 19 23 7 56
Autoradio [18] 20 35 11 66
Citizen [15] 62 74 31 3121

Coffee Machine 21 28 9 81
Communication 10 12 7 7
Elevator 13 18 5 80
Tetris 11 18 10 10

Mealy Moore 5 11 5 5
Fuel Control 5 27 5 600
Transmission 7 12 4 12
Aircraft 24 20 5 625

properly interpreting the results of statistical tests, it is always advisable to report effect size measures. For
that purpose, we have also used the non-parametric effect size measure Â12 statistic proposed by Vargha
and Delaney [35]. Effect size provides information about the magnitude of an effect, which can be useful in
determining whether it is of practical significance or not.

All the executions were run in a cluster of 16 machines with Intel Core2 Quad processors Q9400 (4 cores
per processor) at 2.66 GHz and 4 GB memory running Ubuntu 12.04.1 LTS and managed by the HT Condor
7.8.4 cluster manager.

Let us explain the notation used in the table of results. A single number n indicates the size of the
unique test sequence: it is the number of generated test steps n needed for 100% coverage. In the case of the
metaheuristic algorithms, we provide the mean over the 30 executions. A number n followed by a percentage
value (p%) indicates the number of generated test steps n together with a coverage level p% below 100%.
When the number n is followed by another number (m), the first number n indicates the total number of
test steps while the second number m in parentheses indicates the number of sequences needed. We have
implemented a re-boot mechanism in all the algorithms in case they reach a class with no exit transition.

5.3. Experimental Analysis

In this section, we analyze the behaviour of the proposed approaches with the aim of analyzing the
computed best solutions and highlighting the algorithm that behaves the best. The main results of the
executions of the algorithms for class coverage and transition coverage can be seen in Table 4 and Table 6,
respectively.

For class coverage, 100% coverage was reached for 11 out of 12 programs. Achieving full coverage is the
main objective for test case generation. The Aircraft program was the only one resulting in below 100%,
having an 86.2% coverage, as there are unreachable or orphaned classes in the model. In all 12 programs, the
highest possible class coverage was reached in a single test sequence, which is a desirable result. Regarding
class coverage, differences appear in four programs (Microwave, Autoradio, Citizen, and Tetris). The greedy
approach obtains better results in the Autoradio program, where the difference with GTSG is not significant.
For the other three programs the metaheuristic algorithms achieve total coverage using fewer test steps. For
instance, both metaheuristic algorithms reduced the test suite size by more than 20% for the Tetris program.

Let us analyze the Citizen program for class coverage. The analysis of this program is especially inter-
esting because this is the most complex program. Furthermore, the differences between the algorithms are
the largest. ACOts obtains the best results in this program. ACOts reduces the test suite size by more
than 23% with respect to the Greedy algorithm, moreover it is 9% better than GTSG. In addition, GTSG is
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Table 4: Results for test sequence generation for class coverage

Name GTSG ACOts Greedy
Keyboard [28] 2 2 2
Microwave [25] 8* 8* 9
Autoradio [18] 13.30* 14 13*
Citizen [15] 39.47* 36** 47
Coffee Machine 9 9 9
Communication 7 7 7
Elevator 6 6 6
Tetris 12* 12* 15
Mealy Moore 5 5 5
Fuel Control 5 5 5
Transmission 4 4 4
Aircraft 4 (86.2%) 4 (86.2%) 4 (86.2%)

15% better than the Greedy algorithm. The ACOts approach is more effective and accurate for the largest
model used in this study.

Table 5: Vargha and Delaney’s statistical test results (Â12) for class coverage. A represents algorithms in
rows and B represents algorithms in columns.

GTSG ACOts Greedy
GTSG - 0.5139 0.3889
ACOts 0.4861 - 0.4167
Greedy 0.6111 0.5833 -

In light of these results and with the intention of determining whether the results are of practical
significance or not, we analyze the Â12 statistic as follows: given a performance measure M , Â12 measures
the probability that running algorithm A yields higher M values than running another algorithm B. If these
two algorithms are equivalent, then Â12 = 0.5. If Â12 = 0.3 entails one would obtain higher values for
M with algorithm A, 30% of the times. In this regard, A represents algorithms in rows and B represents
algorithms in columns. In Table 5 we summarize the average of the Â12 statistic values for class coverage and
all programs. The differences between algorithms are not very large due to we have selected small, medium,
and large programs. Consequently, it is very difficult to obtain large differences in small and medium models.
Numerically, the results of the ACOts are going to be better than the ones provided by GTSG and Greedy
in 51.39% and 58.33% times, respectively. In addition, the results of GTSG are going to be better than the
Greedy ones in 61.11% times, which is a big difference.

For transition coverage (Table 6), only ACOts is able to obtain 100% coverage in all the programs. The
other two algorithms fail to obtain total coverage in the one program (Citizen). In 11 of the 12 programs,
the result only consisted of one test sequence, while in the Aircraft program two sequences were generated.
We have implemented a re-boot mechanism in all the algorithms in case they reach a class with no exit
transition, this is the reason why two sequences are needed to reach total coverage in the Aircraft program.
The differences appear in five programs (Autoradio, Citizen, Coffee, Communication, and Fuel Control). In
this case the Greedy algorithm is only better than the others in the Coffee Machine program, the Greedy
algorithm reduces the test suite size, in this program, in one test case compared to the metaheuristic
approaches. The existing differences are low in most cases except in the Citizen program where ACOts is
clearly the best. It is the only algorithm that always achieves 100% transition coverage for all the programs.
In the Citizen program the Greedy algorithm does not achieve full transition coverage while GTSG obtains
total coverage in most executions. ACOts is better than GTSG in coverage and test suite size. ACOts is
able to reduce the test suite size by 14.7% (with respect to GTSG).

Table 7 shows the Â12 statistical results for measuring the effect size for transition coverage. We have
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Table 6: Results for test sequence generation for transition coverage

Name GTSG ACOts Greedy
Keyboard [28] 5 5 5
Microwave [25] 17 17 17
Autoradio [18] 36.30 36 36
Citizen [15] 75.27* (99.9%) 64.17** 51 (92.7%)
Coffee Machine 19 19 18**
Communication 16* 16* 17
Elevator 9 9 9
Tetris 31 31 31
Mealy Moore 24 24 24
Fuel Control 11* 11* 12
Transmission 9 9 9
Aircraft 7 (2) 7 (2) 7 (2)

Table 7: Vargha and Delaney’s statistical test results (Â12) for transition coverage. A represents algorithms
in rows and B represents algorithms in columns.

GTSG ACOts Greedy
GTSG - 0.5125 0.4670
ACOts 0.4875 - 0.4545
Greedy 0.5329 0.5455 -

considered all programs, with the exception of the Citizen program where the results are not comparable.
This fact is because neither GTSG nor the Greedy algorithm are able to reach full transition coverage, so the
test suite is shorter but it is quite worse in quality (coverage). Although we have not included the Citizen
results, where the ACOts algorithm is clearly superior, ACOts is still better than GTSG and Greedy by
51.25% and 54.55%, respectively. Furthermore, GTSG obtains smaller test suites than Greedy by 53.29%.
Regarding the solution quality (coverage level), the metaheuristic approaches (ACOts and GTSG) seem to
be competitive. They are both capable of generating test sequences with maximum levels of coverage, and
obtain better results than the Greedy algorithm with a high probability.

5.4. Test Suite Coverage vs Test Suite Size

Another aspect that we must take into account is the increase in the test suite size with the coverage in
order to obtain total coverage. This behaviour requires a further analysis to evaluate the tradeoff between
coverage and test suite size because this is a key aspect when you are generating test suites [29]. We
illustrate this tradeoff for the Citizen program in Figure 5, and in Figure 6 for class and transition coverage.
In the figures, we show the deterministic solution of the Greedy algorithm and the median and interquartile
range of the 30 executions of the metaheuristic algorithms in order to capture the average behaviour of the
approaches. We would like to stress that this analysis is performed on the solutions, already computed.

Let us start with the analysis of the solution where we want to cover all the classes (class coverage) of
the Citizen program. In Figure 5 we show that the obtained coverage is similar for the first test steps. The
Greedy algorithm is slightly better with up to 54% coverage. Then, both metaheuristic algorithms continue
adding coverage with the same ratio in contrast with the Greedy algorithm, which is worse in the middle
stage of the sequence. GTSG obtains its maximum advantage when it achieves 80% coverage, while ACOts
only achieves 72% with the same test steps (24). When only a few classes remain unvisited, ACOts is able
to visit them in fewer test steps. Thus, it achieves full class coverage in only 36 test cases, three test cases
less than GTSG and 11 test cases less than the Greedy algorithm. ACOts obtains total coverage with only
64 test cases in median, meanwhile GTSG has achieved 94.12% and the Greedy algorithm has achieved only
89.04% coverage with the same number of test cases.
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Figure 5: Median solutions and interquartile range of ACOts, GTSG and Greedy algorithms for the Citizen
example for Class Coverage. Coverage versus number of test cases in the solution.

In certain regions of the graph (Figure 5) we observe that the same coverage is repeated in consecutive
test steps. The reason is that not every class can be reached from any other class, but requires additional
traversal of other covered classes and, therefore, additional test steps. We see this behaviour, in particular,
in the solution of the Greedy algorithm for the class coverage. This implies that we are not adding any
coverage in these traversal test steps, so our algorithm should minimize them.

In Figure 6 we show the median transition coverage and the interquartile range of the proposed algorithms
achieved with each test case of all test sequences (average of 30 executions of non-deterministic algorithms).
In this case, GTSG is better at the beginning because it first explores an area with a higher density of
transitions (i.e., the algorithm does not have to visit an already visited node to reach a non-visited node).
Besides, the Greedy algorithm obtains better coverage using the same number of test cases from 12 test
cases onwards, but it is not able to achieve more than 92.7% coverage. Although the Greedy algorithm
has achieved 11.59% more coverage than GTSG and 10.14% more than ACOts with 51 test cases, both
metaheuristic algorithms are able to reach full coverage. In this case, ACOts is better because it achieves
full transition coverage in fewer test cases and it adds coverage in each test case, progressively. This great
effort in reducing traversal test steps makes the algorithm reasonably predictable. This behaviour is desirable
because the obtained coverage is proportional to the test cases needed to reach certain levels of coverage.

For the goal of test suite minimization we have tried to optimize the test suite sizes while still achieving
high levels of coverage. We have used GTSG and ACOts to search for the optimal solution but we need
to evaluate the minimal test suite size using an exact approach, allowing us to know if we have reach the
optimal one. Regarding computation times, we can say that the generation times for GTSG is less than
10 minutes in average, for ACOts is less than a minute in average, while the deterministic algorithm takes
around 10 seconds in average. If we take into account the performance and the quality of the obtained
results, it seems that ACOts is the best option, at least for the largest instances.
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Figure 6: Median solutions and interquartile range of ACOts, GTSG and Greedy algorithms for the Citizen
example for Transition Coverage. Coverage versus number of test cases in the solution.

6. Threats to Validity

A possible threat to internal validity is that we have not experimented with all possible configuration
settings for the algorithms’ parameters. However, these settings are in accordance with the common guide-
lines in the literature and our previous experience in testing problems. Parameter tuning can improve the
performance of the algorithms, although default parameters often provide reasonable results [4].

We ran our experiments on an industrial case study to seek the best solution to minimize test suites
for testing a product. To reduce external validity threats (i.e., our results might not be applicable to other
empirical studies), we have used 12 case studies. The most probable conclusion, is that validity threats in
experiments involving randomized algorithms, is due to random variations. To address this, we repeated the
experiments 30 times to reduce the possibility that the results were obtained by chance. Furthermore, to
determine the probability of yielding higher performance by different algorithms, we measured the effect size
using Â12 statistic proposed by Vargha and Delaney [35]. We chose the Â12 statistic as it is appropriate for
non-parametric effect size measure, which matches our situation. Meanwhile, we performed the Wilkoxon
test to determine the statistical significance of the results.

7. Related Work

It is not the first time that an ACO-like algorithm has been applied to a problem in the software
engineering domain. Several papers [14] have been published showing promising results using ACO-like
algorithms. These kinds of algorithms seem to be a good choice for dealing with test sequences.

Windish has applied search-based testing to Stateflow Statecharts [38]. In his work he dealt with hi-
erarchical structures such as subsystems in order to reduce the complexity of the model. In the approach
the optimization sequence consisted of only a small number of parameters to be used for the optimization
engine and to be transformed into a simulation sequence by interpolation. However, in our work we use more
complex instances of software objects like a microwave, a watch, a coffee machine, etc. The technique used
for test sequence generation in our work was introduced by Kuhn, Kacker and Lei: they generated event
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sequences for a given set of system events. Their approach is based on t-way sequences, which includes all
t-events being tested in every possible t-way order [23].

In [30] a messy genetic algorithm (GA) is used to generate transition tours through Simulink Stateflow
models. The authors identify two main challenges: trigger blocks containing timing constraints or counters
and cyclic paths which may require several traversals before triggering a transition. A further problem is
the a priori unknown length of the resulting tour. Stateflow models support hierarchies and concurrencies
which they directly use to avoid sequentialization and therefore do not suffer from state explosion. They
apply their approach to three well-known instances.

There has also been much work done on greedy algorithms for generating test data and test sequences. In
particular, Gargantini and Riccobene [11] discuss automatic test sequence generation and coverage criteria
for testing abstract state machines. Ural [34] describes four formal methods for generating test sequences
based on a finite-state machine (FSM) description. The question to be answered by these test sequences is
whether or not a given system implementation conforms to the FSM model of this system. Test sequences
consisting of inputs and their expected outputs are derived from the FSM model of the system, after which
the inputs can be fed into the real system’s implementation. Finally, the outputs of the model and the
implementation are compared.

Geist et al. [12] divide a test problem into aspects of interest to guide the search for test cases to
interesting parts of the system, using temporal logic and Binary Decision Diagrams (BDDs) instead of
traditional graph-algorithmic models. The target is transition coverage. All FSM transitions are stored in a
BDD for performance reasons. Test cases are generated per transition. New test cases are evaluated for all
included transitions and removed from the list of transitions to be covered. Their generation creates many
test sequences of medium length, so they propose, in future work, to create longer test sequences. Heimdahl
et al. [17] briefly survey a number of approaches in which test sequences are generated using model checking
techniques. The idea is to use the counter-example generation feature of model checkers to produce relevant
test sequences.

Techniques based on a formal specification of the software have also been studied. Burton et al. [6] present
an approach which uses formal specification from statecharts and a testing heuristic to automatically generate
test cases. For all transitions in the statechart a Z-representation is extracted. The Z-representation is then
used to create an internal representation. A test sequence is then created for each state of the internal
representation. There is no minimization of test sequences. To generate tests from Z specifications, the
disjunctive normal form (DNF) method can be used, although it is prone to state explosion. Hierons et
al. [19] propose the construction of a classification tree from the Z specification and use the resulting tree
for test generation. There are several suggestions for constraint learning and efficient tree construction,
although the main manual work of test case selection is left to the tester.

We have studied these previous techniques and we have tried to improve upon their weaknesses and
integrate their strengths, in our work.

8. Conclusions

In this paper we have extended one CIT approach, the Classification Tree Method by test sequence
generation. We have defined an entire model (ECTM) which both industry and academia could use to
completely describe all aspects needed to generate sequences of tests for testing a program. Its benefits are
clear, we can save costs and time executing all test steps sequentially because the previous test step puts
the software in the adequate state to test the next functionality.

We have presented two different metaheuristic approaches to optimize the automatic generation of test
sequences for the Classification Tree Method. The first is a GA with memory operator (GTSG), which is
able to preserve the memory required to evaluate individuals, while also allowing the algorithm to compute a
solution faster than without the operator. The second is an ACO algorithm, concretely, we propose ACOts,
a variation of the ACOhg implementation that is able to obtain good quality solutions, using little memory.

We have also compared our results with the ones of an existing greedy deterministic algorithm. We have
used the algorithms to find test sequences for 12 different programs extracted from the literature. After
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analyzing the solutions obtained by the three approaches, we can conclude that the metaheuristic approaches
are significantly better than the greedy deterministic approach for the largest model of program, specially
the ACOts algorithm. The Greedy algorithm is only better than GTSG and ACOts in, respectively, 1 and 2
out of 8 scenarios where statistical differences exist. GSTG is statistically better than the Greedy algorithm
in 4 out of 8 scenarios. Finally, ACOts is better than the Greedy algorithm in 6 out of 8 scenarios where
statistical differences exist. Therefore ACOts is the best algorithm in the comparison. It has a good tradeoff
between test suite size and coverage.

Further research will focus on dealing with t-wise coverage criteria with higher t (with t ≥ 2) for
test sequences. In other words, we need efficient algorithms able to compute pairwise class or transition
coverage that might require an exponential growth of test sequences to fulfill a stricter coverage requirement.
The pairwise coverage will add more confidence to the testing phase. Moreover, we need to collect more
real scenarios for comparison purposes, this is absolutely necessary when you are adding functionality to
a professional tool such as CTE XL. Finally, although we have obtained great results with the ACOts
algorithm, we plan to propose a trajectory search-based algorithm such as Simulated Annealing that has
obtained great results in Combinatorial Testing (Covering Arrays [33]) and might suit this problem.
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Appendix A. Formal Definition of the Extended Classification Tree Method

In this section we formally define the extended model of the classification tree method in order to describe
all the aspects needed to generate sequences of tests for testing an artifact. The ECTM model can be totally
defined by a tuple of four elements:

ECTM = (C, V,w, T ), (A.1)

where C is the set of Classes, V is the set of Classifications, w is a word of the language L(G) generated by
the grammar G defined next and T is the set of allowed transitions between the classes T ⊆ C ×C. We will
use either the notation cs → cd or (cs, cd) to represent a transition between classes cs and cd. The grammar
G is defined as:

G = (N,Σ, P, S) (A.2)

where N is the set of nonterminal symbols: N = {Class, AtomicClass, RefinedClass, Classification}. Σ is
the set of terminal symbols: Σ = C ∪ V ∪ Punct, where Punct contains the squared brackets and comma.
P is the following set of production rules:
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S → Class

Class → AtomicClass|RefinedClass
AtomicClass → β ∀β ∈ C
RefinedClass → β [Classification (, Classification)∗] ∀β ∈ C
Classification → [α, γ, [Class (, Class)∗]] ∀α ∈ V,∀γ ∈ C

where γ in the last rule represent the initial (default) class of classification α. S is the axiom of the grammar.
The language L(G) generated by the grammar represent all the possible trees that can be build using the
same set of classes and classifications.

As an illustration, the ECTM model shown in Figure 2 can be defined by the following quadruple:

ECTMEx1 = ({V ideoGame, startingGame, runningGame, startup, controlling, gameOver, running, paused},
{Game, P laying, Pause},
w,

{startingGame→ runningGame, startup→ controlling, controlling → gameOver,

running → paused, paused→ running})

where the word w for this example is:

w:=VideoGame [

[Game, startingGame,

[startingGame,

runningGame [Playing, startup, [startup, controlling]],

gameOver]],

[Pause, running, [running, paused]]]

Let us define some relations between the elements e (classes and classifications) in the ECTM model.
An element ep is parent of ed, if ed belongs to one of the classifications or classes defined by ep. If ep is
parent of ed, then we say that ed is a child of ep. The ascendant relation is the transitive closure of the
parent relation and the descendant relation is the transitive closure of the children relation. In our example,
the class runningGame is the parent of the classification Playing and is also the ascendant of the classes
startup and controlling. On the other hand, Playing is child of runningGame, meanwhile, the three elements
(startup, controlling and Playing) are descendants of runningGame.

An element es is sibling of another element es′ if they have the same parent. For example the class
startingGame is sibling of runningGame and gameOver. In addition, the classification Game is sibling of
the classification Pause and vice versa. The initial class γ of a classification v is defined in the word w.
Finally, the root class is the first element that appears in w and it does not have a parent in the tree (it only
has descendants). From these relations we define all the related functions that, given an element, return a
set of elements: Parent(e), Ascendants(e), Children(e), Descendants(e), Siblings(e) and InitialClass(v).

The transition set in an ECTM model can contain any transition except those connecting classes of
sibling classifications. Formally, any ECTM model must fulfill:

∀v1, v2 ∈ V, v1 ∈ Siblings(v2) =⇒ ∀c1 ∈ Descendants(v1) ∩ C,∀c2 ∈ Descendants(v2) ∩ C, (c1, c2) /∈ T.

A valid test case for a particular ECTM model is a set of classes:

Q := {c1, c2, ..., cn}

where the classes ci must fulfill the following rules:

1. ∀c ∈ Q\root, Ascendants(c) ∩ C ∈ Q.
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2. ∀c ∈ Q,∀s ∈ Children(c),∃d ∈ Q, d ∈ Children(s).

3. ∀c, b ∈ Q, c 6= b =⇒ b /∈ Siblings(c).

Rule 1 says that if a class is in the test case then all the classes in which it is included (ascendant classes)
must also be in the test case. Rule 2 requires that all the classifications under a class that is in Q must have
a class in Q. Finally, Rule 3 prevents from having two classes of the same classification in the test case.

In order to build a sequence of test cases we must define how to navigate from a source test case Q1 to
a destination test case Q2. The initial test case in a sequence, Qini, is composed by the initial classes of the
children classifications under the root of the tree and all their ascendants. Given a transition t = (cs, cd) ∈ T ,
the general rule to transit from Q1 to Q2 is as follows. We must find the deepest common classification of cs
and cd, say va. If there exists another common classification, then that classification must be an ascendant
of the deepest one va. Once we have found va, we must remove from the source test case Q1 all the classes
under va, in other words, any class that is descendant of va. Next, we have to add cd and its ascendants
which are children of va, and add the initial classes of the classifications of these ascendants, except the
siblings of cd. If cd is a refined class, then the initial classes of all classifications of cd and their descendants
are also added in order to build a valid test case. Let us formally define all this procedure.

Let Q1 be the source test case, first we must remove from Q1 the descendants of va:

Q′ = Q1 −Descendants(va)

where {cs, cd} ⊆ Descendants(va) and does not exist vd ∈ Descendants(va) such that {cs, cd} ⊆ Descendants(vd).
Then, we must add some classes to Q′ in order to transit to the new test case Q2. In order to do this, let
us define the function Incomplete(Q) as follows:

Incomplete(Q) = {v ∈ V |Parent(v) ∈ Q ∧ ∀c′ ∈ Children(v), c′ /∈ Q}.

Then, we compute Q2 iteratively using the next pseudocode:

Q2 = Q′ ∪ (Ascendants(cd) ∩Descendants(va)) ∩ C
while Incomplete(Q2) 6= ∅ do
Q2 = Q2 ∪ InitialClass(Incomplete(Q2))

end while

We define a test sequence as a sequence of test cases TS = (Qi) with 1 ≤ i ≤ n, where the first test case
is the initial one, that is, Q1 = Qini. Given a test sequence, the class or transition coverage of the sequence
is defined as the ratio between the visited classes (or transitions) and all the classes (or transitions). We
formally define the coverage criteria used in this paper as follows:

ClassCoverage(sol) =

∣∣∣∣ n⋃
i=1

Qi

∣∣∣∣
|C|

(A.3)

TransitionCoverage(sol) =

∣∣∣∣n−1⋃
i=1

Transitions(Qi, Qi+1)

∣∣∣∣
|T |

(A.4)

where Transitions is defined as:

Transitions(Qi, Qi+1) = (Qi ×Qi+1) ∩ T

Given an ECTM model, the objective of the TSGP is the generation of a set of test sequences that
maximizes any of the coverage criterion (one each time) defined above (class or transition).

Appendix B. Citizen Watch Model
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