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Abstract

Context: In software engineering, taking a good election between recursion and iteration
is essential because their efficiency and maintenance are different. In fact, developers often
need to transform iteration into recursion (e.g., in debugging, to decompose the call graph
into iterations); thus, it is quite surprising that there does not exist a public transformation
from loops to recursion that can be used in industrial projects (i.e., it is automatic, it handles
all kinds of loops, it considers exceptions, etc.).

Objective: This article describes an industrial algorithm implemented as a Java library
able to automatically transform iterative loops into equivalent recursive methods. The
transformation is described for the programming language Java, but it is general enough as
to be adapted to many other languages that allow iteration and recursion.

Method: We describe the changes needed to transform loops of types while/do/for/foreach
into recursion. We provide a transformation schema for each kind of loop.

Results: Our algorithm is the first public transformation that can be used in industrial
projects and faces the whole Java language (i.e., it is fully automatic, it handles all kinds of
loops, it considers exceptions, it treats the control statements break and continue, it handles
loop labels, it is able to transform any number of nested loops, etc.). This is particularly
interesting because some of these features are missing in all previous work, probably, due to
the complexity that their mixture introduce in the transformation.

Conclusion: Developers should use a methodology when transforming code, specifically
when transforming loops into recursion. This article provides guidelines and algorithms that
allow them to face different problems such as exception handling. The implementation has
been made publicly available as open source.
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1. Introduction

Iteration and recursion are two different ways to reach the same objective. In some
paradigms, such as the functional or logic, iteration does not even exist. In other paradigms,
e.g., the imperative or the object-oriented paradigm, the programmer can decide which of
them to use. However, they are not totally equivalent, and sometimes it is desirable to use
recursion, while other times iteration is preferable. In particular, one of the most important
differences is the performance achieved by both of them. In general, compilers have produced
more efficient code for iteration, and this is the reason why several transformations from
recursion to iteration exist (see, e.g., [12, 15, 17]). Recursion in contrast is known to be more
intuitive, reusable and debuggable. Another advantage of recursion shows up in presence
of hierarchized memories. In fact, other researchers have obtained both theoretical and
experimental results showing significant performance benefits of recursive algorithms on both
uniprocessor hierarchies and on shared-memory systems [20]. In particular, Gustavson and
Elmroth [4, 10] have demonstrated significant performance benefits from recursive versions
of Cholesky and QR factorization, and Gaussian elimination with pivoting.

Recently, a new technique for algorithmic debugging [14] revealed that transforming all
iterative loops into recursive methods before starting the debugging session can improve the
interaction between the debugger and the programmer, and it can also reduce the granularity
of the errors found. In particular, algorithmic debuggers only report buggy methods. Thus,
a bug inside a loop is reported as a bug in the whole method that contains the loop, which is
sometimes too imprecise. Transforming a loop into a recursive method allows the debugger
to identify the recursive method (and thus the loop) as buggy. Hence, we wanted to imple-
ment this transformation and integrate it in the Declarative Debugger for Java (DDJ), but,
surprisingly, we did not find any available transformation from iterative loops into recursive
methods for Java (neither for any other object-oriented language). Therefore, we had to
implement it by ourselves and decided to automatize and generalize the transformation to
make it publicly available. From the best of our knowledge this is the first transformation
for all kinds of iterative loops. Moreover, our transformation handles exceptions and accepts
the use of any number of break and continue statements (with or without labels).

One important property of our transformation is that it always produces tail recursive
methods [3]. This means that they can be compiled to efficient code because the compiler
only needs to keep two activation records in the stack to execute the whole loop [1, 11].
Another important property is that each iteration is always represented with one recursive
call. This means that a loop that performs 100 iterations is transformed into a recursive
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method that performs 100 recursive calls. This equivalence between iterations and recursive
calls is very important for some applications such as debugging, and it produces code that
is more maintainable.

The objective of this article is twofold. On the one hand, it is a description of a transfor-
mation explained in such a way that one can study the transformation of a specific construct
(e.g., exceptions) without the need to see how other constructs such as the statement return
are transformed. This decomposition of the transformation into independent parts can be
very useful for academic purposes. In particular, the paper describes the transformation
step by step using different sections to explain the treatment of advanced features such as
exception handling and the use of labels. Because we are not aware of any other publicly
available description, some parts can help students and beginner programmers to completely
understand and exercise the relation between iteration and recursion, while other more ad-
vanced parts can be useful for the implementors of the transformation. On the other hand,
the proposed transformation has been implemented as a publicly available library. From
the best of our knowledge, this is the first automatic transformation for an object-oriented
language that is complete (i.e., it accepts the whole language).

Example 1.1. Transforming loops to recursion is necessary in many situations (e.g., com-
pilation to functional or logic languages, algorithmic debugging, program understanding,
memory hierarchies optimization, etc.). However, the transformation of a loop into an
equivalent recursive method is not trivial at all in the general case. For this reason, there
exist previous ad-hoc implementations that cannot accept the whole language, or that are
even buggy. For instance, the transformation proposed in [7] does not accept exceptions and
it crashes in situations like the following:

for (int i = 0; i < 10; i++)

for (int j = 0; j < 10; j++)

break;

due to a bug in the implementation. Consider the Java code in Algorithm 1 that is not
particularly complicated, but shows some of the difficulties that can appear during a trans-
formation.
This algorithm contains two nested loops ( while and for). Therefore, it would be normally
translated to recursion using three methods, one for the original method example, one for
the outer loop loop1, and one for the inner loop loop2. However, the use of exceptions and
statements such as break and continue poses restrictions on the implementation of these
methods. For instance, observe in line 11 that the control can pass from one loop to the
other due to the use of the label loop1. This forces the programmer to implement some
mechanism to record the values of all variables shared by both loops and pass the control
from one loop to the other when this point is reached. Note also that this change in the
control could affect several levels (e.g., if a break is used in a deeper loop). In addition, the
use of exceptions imposes additional difficulties. Observe for instance that the inner loop
throws an exception Exception1 in line 10. This exception could inherit from IOException
and thus it should be captured in method loop2 and passed in some way to method loop1 that
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Algorithm 1 Iterative loop with exceptions

1: public int example(int x) throws IOException {
2: loop1:
3: while (x < 10) {
4: try {
5: x = 42 / x;
6: } catch (Exception e) { break loop1; }
7: loop2:
8: for (int i = 1; i < x; i++)
9: if (x % i > 0);

10: throw new Exception1();
11: else continue loop1;
12: }
13: return x;
14: }

in turn should decide if it catches the exception or passes it to method example that would
throw it. From the best of our knowledge, this example cannot be translated to recursion by
any of the already existing transformations.

In the rest of the paper we describe our transformation for all kinds of loops in Java (i.e.,
while/do/for/foreach). The transformation of each particular kind of loop is explained with
an example. We start with an illustrative example that provides the reader with a general
view of how the transformation works.

Example 1.2. Consider the Java code in Algorithm 2 that computes the square root of the
input argument.

Algorithm 2 Sqrt (iterative version)

1: public double sqrt(double x) {
2: if (x < 0)
3: return Double.NaN;
4: double b = x;
5: while (Math.abs(b * b - x) > 1e-12)
6: b = ((x / b) + b) / 2;
7: return b;
8: }

This algorithm implements a while-loop where each iteration obtains a more accurate approx-
imation of the square root of variable x. The transformed code is depicted in Algorithm 3
that implements the same functionality but replacing the while-loop with a new recursive
method sqrt loop.

4



Algorithm 3 Sqrt (recursive version)

1: public double sqrt(double x) {
2: if (x < 0)
3: return Double.NaN;
4: double b = x;
5: if (Math.abs(b * b - x) > 1e-12)
6: b = this.sqrt loop(x, b);
7: return b;
8: }
9: private double sqrt loop(double x, double b) {

10: b = ((x / b) + b) / 2;
11: if (Math.abs(b * b - x) > 1e-12)
12: return this.sqrt loop(x, b);
13: return b;
14: }

Essentially, the transformation performs two steps:

1. Substitute the original loop by new code (lines 5-6 in Algorithm 3).

2. Create a new recursive method (lines 9-14 in Algorithm 3).

In Algorithm 3, the new code in method sqrt includes a call (line 6) to the recursive
method sqrt loop that implements the loop (lines 9-14). This new recursive method contains
the body of the original loop (line 10). Therefore, each time the method is invoked, an
iteration of the loop is performed. The rest of the code added during the transformation
(lines 5, 11-13) is the code needed to simulate the same effects of a while-loop. Therefore,
this is the only code that we should change to adapt the transformation to the other kinds
of loops (do/for/foreach).

The rest of the paper is organized as follows. Section 2 discusses some related approaches.
In Section 3 we introduce our transformations for each particular kind of loop and provide
detailed examples and explanations. In Section 4 we extend our algorithms with a special
treatment for break and continue statements. Section 5 presents the transformation in
presence of exceptions and errors (try, catch, throw and the hierarchy of objects that inherit
from Throwable). Section 6 presents the transformation in presence of recursion and the
statements return and goto. Section 7 presents the implementation of the technique, some
optimizations that can be applied to the general transformation, and an empirical evaluation
with a benchmarks suite. Section 8 concludes. Finally, Appendix A provides a proof of
correctness of the transformation.

2. Related work

The theoretical relation between iteration and recursion has been studied for decades in
different paradigms, with regard to types, with regard to procedures, from a mathematical
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point of view, from an algorithmic point of view, etc. There is a big amount of work that
studies this theoretical relation (see, e.g., [6, 9]).

On the practical side, there exist many different approaches to transform recursive func-
tions into loops (see, e.g., [12, 15, 17]). This has been in fact a hot area of research related
to compilers optimization and tuning. Contrarily, there are very few approaches devoted
to transform loops into equivalent recursive functions. However, recursion provides impor-
tant advantages in debugging [14], theorem proving [16], verification [18] and termination
analysis [5].

For instance, algorithmic debugging is a debugging technique that asks the programmer
about the validity of method executions, i.e., an algorithmic debugger can ask the question:
object.method(40,2)=42?. If the answer is yes, then the debugger knows that this par-
ticular execution of the method was correct. If the answer is no, then the debugger knows
that method method or one of the methods invoked during the execution of method is buggy
(and it continues asking questions in that direction to find the bug). The final output of the
debugger is always a buggy method. This is often very imprecise and forces the programmer
to inspect the whole method to find the bug. If we are able to transform all loops into re-
cursive methods, this means that algorithmic debuggers are able to detect bugs inside loops,
and report a particular loop as buggy. For this reason, the debugger DDJ implements our
transformation from loops to recursion since version 2.6.

In some articles, some transformations are proposed or mentioned for particular kinds of
loops. For instance, in [5] a transformation for while-loops is used to detect the termination
conditions of the transformed recursive functions. Unfortunately, the other kinds of loops
are ignored, but they provide a treatment for the break statement (however they do not
allow the use of labels, which is what introduces the complexity in the transformation).

In [20], authors argue that recursive functions are more efficient than loops in some
architectures. In particular, they want to measure the performance benefits of recursive
algorithms on multi-level memory hierarchies and on shared memory systems. For that,
they define a transformation for do-loops (very similar to the Java’s for -loop).1 The use of
break and continue is not accepted by the transformation.

Myreen and Gordon describe a theorem prover in [18]. In their examples, they include
an ad-hoc transformation of a while-loop to an equivalent recursive function. This is done
because the recursive function facilitates the verification condition generation and avoids
the inclusion of assertions in the source code.

We have not been able to find a description of how to transform some specific loops such
as foreach-loop. Moreover, the program transformations that appear in the literature are just
mentioned or based on ad-hoc examples; and we are not aware of any transformation that
accepts break/continue statements with labels. The use of exceptions has been also ignored
in previous implementations. From the best of our knowledge no systematic transformation
has been described in the literature yet, thus, researchers and programmers are condemned
to reinvent the wheel once and again.

1The syntax of their do-loops is “do k = 1, N” meaning that N iterations must be done with k taking
values from 1 to N.
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The lack of a systematic program transformation is a source of inefficient implemen-
tations. This happens for instance when transforming loops into functions that are not
tail-recursive [20] or in implementations that only work for a reduced subset of the lan-
guages and produce buggy transformed code in presence of not treated commands such as
throws, try-catch, break or continue [7].

In this work, we also describe our implementation that is the first to accept the whole
Java language; and it allows us (in the particular case) to automatically transform a given
loop into a set of equivalent recursive methods, or (in the general case) to input a program
and output an equivalent program where all loops have been automatically transformed into
recursion. This library has been already incorporated in the Declarative Debugger for Java
(DDJ) [13].

Even though we present a transformation for Java, it could be easily adapted to many
other languages. The only important restriction is that goto statements are not treated (we
discuss their use in Section 6). Moreover, our transformation uses some features of Java:

• it uses blocks to define scopes. Those languages where blocks cannot be defined, or
where the scope is not limited by the use of blocks should use fresh variable names in
the generated code to avoid variable clashes between the variables of the transformation
and the variables of the rest of the program.

• it assumes that, by default, arguments are passed by value. In those languages where
the default argument passing mechanism is different, the transformation can be sim-
plified. For instance, with call by value, exceptions need a special treatment described
in Section 5. With call by reference, this special treatment can be omitted.

3. Transforming loops into recursive methods

Our program transformations are summarized in Table 1. This table has a different row
for each kind of loop. For each loop, we have two columns. One for the iterative version of
the loop, and one for the transformed recursive version. Observe that the code is presented
in an abstract way, so that it is formed by a parameterized skeleton of the code that can be
instantiated with any particular loop of each kind.

In the recursive version, the code inside the ellipses is code inserted by the programmer
(it comes from the iterative version). The rest of the code is automatically generated by
the transformation. Here, result and loop are fresh names (not present in the iterative
version) for a variable and a method respectively; type is a data type that corresponds to
the data type declared by the user (it is associated to a variable already declared in the
iterative version). The code inside the squares has the following meaning:

1 contains the sequence formed by all variables declared in Code1 (and in ini in for -loops)
that are used in Code2 and cond (and in upd in for -loops).

1’ contains the previous sequence but including types (because it is used as the parameters
of the method, and the previous sequence is used as the arguments of the call to the
method).

7



Table 1: Loops transformation taxonomy
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2 contains for each object in the array result (which contains the same variables as 1

and 1’ ), a casting of the object to assign the corresponding type. For instance, if the
array contains two variables [x,y] whose types are respectively double and int; then
2 contains:
x = (Double) result[0];

y = (Integer) result[1];

Observe that, even though these steps are based on Java, the same steps (with small
modifications) can be used to transform loops in many other imperative or object-oriented
languages. The code in Table 1 is generic. In some specific cases, this code can be optimized.
For instance, observe that the recursive method always returns an array of objects (return
new Object[] {...}) with all variables that changed in the loop. This array is unnecessary
and inefficient if the recursive method only needs to return one variable (or if it does not
need to return any variable). Therefore, the creation of the array should be replaced by
a single variable or null (i.e., return null). In the rest of the paper, we always apply
optimizations when possible, so that the code does not perform any unnecessary operations.
This allows us to present a generic transformation as the one in Table 1, and also to provide
specific efficient transformations for each kind of loop. The optimizations are not needed
to understand the transformation, but they should be considered when implementing it.
Therefore, we will explain the optimizations in detail in the implementation section. In the
rest of this section we explain the transformation of all kinds of loop. The four kinds of
loops (while/do/for/foreach) present in the Java language behave nearly in the same way.
Therefore, the modifications needed to transform each kind of loop into a recursive method
are very similar. We start by describing the transformation for while-loops, and then we
describe the variations needed to adapt the transformation for do/for/foreach-loops.

3.1. Transformation of while-loops

In Table 2 we show a general overview of the steps needed to transform a Java iterative
while-loop into an equivalent recursive method. Each step is described in the following.

3.1.1. Substitute the loop by a call to the recursive method

The first step is to remove the original loop and substitute it with a call to the new
recursive method. We can see this substitution in Figure 1(b). Observe that some parts
of the transformation have been labeled to ease later references to the code. The tasks
performed during the substitution are explained in the following:

• Perform the first iteration
In the while-loop, first of all we check whether the loop condition holds. If it does
not hold, then the loop is not executed. Otherwise, the first iteration is performed by
calling the recursive method with the variables used inside the loop as arguments of
the method call. Hence, we need an analysis to know what variables are used inside
the loop. The recursive method is in charge of executing as many iterations of the
loop as needed.
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(a) Original method (b) Transformed method

(c) Recursive method

Figure 1: while-loop transformation

Step Correspondence with Figure 1

Figure 1(b)
1) Substitute the loop by a call to the recursive method Caller
1.1) If the loop condition is satisfied Loop condition
1.1.1) Perform the first iteration First iteration
1.2) Catch the variables modified during the recursion Modified variables
1.3) Update the modified variables Updated variables

Figure 1(c)
2) Create the recursive method Recursive method
2.1) Define the method’s parameters Parameters
2.2) Define the code of the recursive method
2.2.1) Include the code of the original loop Loop code
2.2.2) If the loop condition is satisfied Loop condition
2.2.2.1) Perform the next iteration Next iteration
2.2.3) Otherwise return the modified variables Modified variables

Table 2: Steps of the while-loop transformation

• Catch the variables modified during the recursion
The variables modified during the recursion cannot be automatically updated in Java
because all parameters are passed by value. Therefore, if we modify an argument inside
a method we are only modifying a copy of the original variable. This also happens with
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objects. Hence, in order to output those modified variables that are needed outside
the loop, we use an array of objects. Because the modified variables can be of any
data type2, we use an array of objects of class Object.

In presence of call-by-reference, this step should be omitted.

• Update the modified variables
After the execution of the loop, the modified variables are returned inside an Object
array. Each variable in this array must be cast to its respective type before being
assigned to the corresponding variable declared before the loop.

In presence of call-by-reference, this step should be omitted.

3.1.2. Create the recursive method

Once we have substituted the loop, we create a new method that implements the loop
in a recursive way. This recursive method is shown in Figure 1(c).

The code of the recursive method is explained in the following:

• Define the method’s parameters
There are variables declared inside a method but declared outside the loop and used
by this loop. When the loop is transformed into a recursive method, these variables
are not accessible from inside the recursive method. Therefore, they must be passed
as arguments in the calls to it. Hence, the parameters of the recursive method are
the intersection between the variables declared before the loop and the variables used
inside it.

• Define the code of the recursive method
Each iteration of the original iterative loop is emulated with a call to the new recursive
method. Therefore in the code of the recursive method we have to execute the current
iteration and control whether the next iteration must be executed or not.

– Include the code of the original loop
When the recursive method is invoked it means that we want to execute one
iteration of the loop. Therefore, we place the original code of the loop at the
beginning of the recursive method. This code is supposed to update the variables
that control the loop condition. Otherwise, the original loop is in fact an infinite
loop and the recursive method created will be invoked infinitely.

– Perform the next iteration
Once the iteration is executed, we check the loop condition again to know whether
another iteration must still be executed. In such a case, we perform the next
iteration with the same arguments. Note that the values of the arguments can
be modified during the execution of the iteration, therefore, each iteration has

2In the case that the returned values are primitive types, then they are naturally encapsulated by the
compiler in their associated primitive wrapper classes.

11



different arguments values, but the names and the number of arguments remain
always the same.

– Otherwise return the modified variables
If the loop condition does not hold, the loop ends and thus we must finish the
sequence of recursive method calls and return to the original method in order to
continue executing the rest of the code. Because the arguments have been updated
in each recursive call, at this point we have the last values of the variables involved
in the loop. Hence these variables must be returned in order to update them in
the original method. Observe that these variables are passed from iteration to
iteration during the execution of the recursive method until it is finally returned
to the recursive method caller.

In presence of call-by-reference, this step should be omitted.

Figure 2 shows an example of transformation of a while-loop.

(a) Original method (b) Transformed method

(c) Recursive method

Figure 2: while-loop transformation

3.2. Transformation of do-loops

do-loops behave exactly in the same way as while-loops except in one detail: The first
iteration of the do-loop is always performed. In Figure 3 we can see an example of a do-loop.

This code obtains the square root value of variable x as the code in Algorithm 2. The
difference is that, if variable x is either 0 or 1, then the method directly returns variable x,
otherwise the loop is performed in order to calculate the square root. In order to transform
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Figure 3: do-loop

the do-loop into a recursive method, we can follow the same steps used in Table 2 with only
one change: in step 1.1 the loop condition is not evaluated; instead, we only need to add
a new code block to ensure that those variables created during the transformation are not
available outside the transformed code.

Figure 4 illustrates the only change needed to transform the do-loop into a recursive
method. Observe that in this example there is no need to introduce a new block, because
the transformed code does not create new variables, but in the general case the block could
be needed.

(a) Recursive method caller (b) Recursive method

Figure 4: do-loop transformation

• Add a new code block
Observe in Table 1, in column Caller, that, contrarily to while-loops, do-loops need to
introduce a new block (i.e., a new scope). The reason is that there could exist variables
with the same name as the variables created during the transformation (e.g., result).
Hence, the new block avoids variable clashes and limits the scope of the variables
created by the transformation.

3.3. Transformation of for-loops

One of the most frequently used loops in Java is the for -loop. This loop behaves exactly
in the same way as the while-loop except in one detail: for -loops provide the programmer
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with a mechanism to declare, initialize and update variables that will be accessible inside
the loop.

In Figure 5(a) we can see an example of a for -loop. This code obtains the square root
value of variable x exactly as the code in Algorithm 2, but it also prints the approximation
obtained in every iteration. We can see in Figure 5(b) and 5(c) the additional changes
needed to transform the for -loop into a recursive method.

(a) For loop

(b) Recursive method caller (c) Recursive method

Figure 5: for-loop transformation

As shown in Figure 5, in order to transform the for -loop into a recursive method, we can
follow the same steps used in Table 2, but we have to make three changes:

• Add a new code block
Exactly in the same way and with the same purpose as in do-loops.

• Add the declarations/initializations at the beginning of the block
In the original method, those variables created during the declaration and initialization
of the loop are only available inside it (and not in the code that follows the loop). We
must ensure that these variables keep the same scope in the transformed code. This
can be easily achieved with the new block. In the transformed code, those variables
are declared and initialized at the beginning of the new block, and they are passed as
arguments to the recursive method in every iteration to make them accessible inside
it.
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• Add the updates between the loop code and the loop condition
In for -loops there exists the possibility of executing code between iterations. This
code is usually a collection of updates of the variables declared at the beginning of the
loop (e.g., in Figure 5(a) this code is iter++). However, this code could be formed by
a series of expressions separated by commas that could include method invocations,
assignments, etc. Because this update code is always executed before the condition of
the loop, it must be placed in the recursive method between the loop code and the loop
condition.

3.4. Transformation of foreach-loops

foreach-loops are specially useful to traverse collections of elements. In particular, this
kind of loops traverses a given collection and it executes a block of code for each element.
The transformation of a foreach-loop into a recursive method is different depending on the
kind of collection that is traversed. In Java we can use foreach-loops either with arrays or
iterable objects. We explain each transformation separately.

3.4.1. foreach-loop used to traverse arrays

An array is a composite data structure where elements have been sequentialized, and
thus, they can be traversed linearly. We can see an example of a foreach-loop that traverses
an array in Algorithm 4.

Algorithm 4 foreach-loop that traverses an array (iterative version)

1: public void foreachArray() {
2: double[] numbers = new double[] { 4.0, 9.0 };
3: for (double number : numbers) {
4: double sqrt = this.sqrt(number);
5: System.out.println(“sqrt(” + number + “) = ” + sqrt);
6: }
7: }

This code computes and prints the square root of all elements in the array [4.0, 9.0].
Each individual square root is computed with Algorithm 2. The foreach-loop traverses
the array sequentially starting in position numbers[0] until the last element in the array.
The transformation of this loop into an equivalent recursive method is very similar to the
transformation of a for -loop. However there are differences. For instance, foreach-loops
lack of a counter. This can be observed in Figure 6 that implements a recursive method
equivalent to the loop in Algorithm 4.

In Figure 6 we can see the symmetry with respect to the for -loop transformation. The
only difference is the creation of a fresh variable that is passed as argument in the recursive
method calls (in the example this variable is called index ). This variable is used for:

• Controlling whether there are more elements to be treated
A foreach-loop is only executed if the array contains elements. Therefore we need a
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(a) Recursive method caller

(b) Recursive method

Figure 6: foreach-loop transformation (Array version)

loop condition in the recursive method caller and another in the recursive method to
know when there are no more elements in the array and thus finish the traversal. The
later is controlled with a variable (index in the example) acting as a counter.

• Obtaining the next element to be treated
During each iteration of the foreach-loop a variable called number is instantiated with
one element of the array (line 3 of Algorithm 4). In the transformation this behavior
is emulated by declaring and initializing this variable at the beginning of the recursive
method. It is initialized to the corresponding element of the array by using variable
index.

3.4.2. foreach-loop used to traverse iterable objects

A foreach-loop can be used to traverse objects that implement the interface Iterable.
Algorithm 5 shows an example of a foreach-loop using one of these objects.

Algorithm 5 foreach-loop used to traverse an iterable object (iterative version)

1: public void foreachIterable() {
2: List<Double> numbers = Arrays.asList(4.0, 9.0);
3: for (double number : numbers) {
4: double sqrt = this.sqrt(number);
5: System.out.println(“sqrt(” + number + “) = ” + sqrt);
6: }
7: }
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(a) Recursive method caller

(b) Recursive method

Figure 7: foreach-loop transformation (Iterable version)

This code behaves exactly in the same way as Algorithm 4 but using an iterable object
instead of an array (numbers is an iterable object because it is an instance of class List
that in turn implements the interface Iterable). The interface Iterable only has one method,
called iterator, that returns an object that implements the Iterator interface. With regard to
the interface Iterator, it forces the programmer to implement the next, hasNext and remove
methods; and these methods allow the programmer to freely implement how the collection is
traversed (e.g., the order, whether repetitions are taken into account or not, etc.). Therefore,
the transformed code should use these methods to traverse the collection. We can see in
Figure 7 a recursive method equivalent to Algorithm 5.

Observe that the transformed code in Figure 7 is very similar to the one in Figure 6. The
only difference is the use of an iterator variable (instead of an integer variable) that controls
the element of the collection to be treated. Note that method next of variable iterator allows
us to know what is the next element to be treated, and method hasNext tell us whether
there exist more elements to be processed yet.

4. Treatment of break and continue statements

The control statements break and continue can change the normal control flow of a
loop. These commands can also be used in combination with a parameter that speci-
fies the specific loop that should be continued or broken. We can illustrate their use
with a Java program extracted from http://docs.oracle.com/javase/tutorial/java/

nutsandbolts/branch.html and shown in Algorithm 6. This program takes two strings
and decides whether the second is a substring of the first.
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Algorithm 6 Use of the statement continue with a label

1: public void substr() {
2: String searchMe = “Look for a substring in me”;
3: String substring = “sub”;
4: int max = searchMe.length() - substring.length();
5: boolean foundIt = false;
6: test:
7: for (int i = 0; i <= max; i++) {
8: int n = substring.length(), j = i, k = 0;
9: while (n-- != 0)

10: if (searchMe.charAt(j++) != substring.charAt(k++))
11: continue test;
12: foundIt = true;
13: break test;
14: }
15: System.out.println(foundIt ? “Found it” : “Didn’t find it”);
16: }

In the example, the statement continue test (line 11) is used to continue the search in
the next substring of the searchMe variable. Since it contains the label test, it affects the
for -loop (labeled with “test”) instead of the while-loop (as it would happen if continue was
unlabeled).

Table 3 presents a schema that summarizes the additional treatments that are necessary
in presence of break and continue statements. We have not found any public report for any
language that describes how to transform these statements. This table is general enough as
to be able to work with any number of combined (possibly nested) loops and break/continue
statements with or without labels. The table includes the case where break/continue are
included inside a nested loop (loop2 ). Note however that there could be other loops in
the different codes inside the ellipses. In such a case, the treatment would be extended
exactly in the same way as it is described in the table for the case of two nested loops. Note
also that loop1 and loop2 could be any kind of loop (while/do/for/foreach), and thus the
transformation should proceed in each kind as stated in Table 1. Essentially, right column
in Table 3 performs the following steps:

• In the output of all recursive methods (i.e., in the fresh variable result), we always
return in the first position (result[0]) an array of strings. This array of strings (referred
to with the fresh variable control) contains two flags to indicate to the outer recursive
methods (representing the outer loops) whether a break or continue statement that
must be processed has been executed in the inner recursive methods (representing the
inner loops). In the case that none of them were executed, or if they do not have a
label associated, then control is null. The flags of control are the following:

– statement : indicates whether a break or continue have been executed.
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– label : indicates the label associated with statement.

• After a call to a recursive method, the transformed code examines the output and
depending on the values in the flags it behaves differently:

– if control is null, then no break/continue statement has been executed or it has
been already processed by the inner recursive methods. Hence, the execution
proceeds normally. Otherwise, if the statement inside the control is break or
continue, then

– if the label of the current loop is different from the label returned, this means
that a break/continue statement has been executed but it affects another outer
loop. Therefore, we exit this method (without further executing anything else)
and continue with the outer method. In this case, we have to output control to
indicate the external methods that one of them should be broken or continued.

– if the label of the current loop is equal to the label returned, and statement
is equal to break, we exit this method and set control to null so that external
methods proceed normally.

– if the label of the current loop is equal to the label returned, and statement is
equal to continue, this method ends its current iteration and continues with the
next by performing a recursive call.

We can see the behavior of this table in a concrete example. Algorithm 7 implements a
recursive method equivalent to Algorithm 6. This example is specially interesting because it
combines the transformation of two nested loops (a for -loop and a while-loop) together with
the use of a break and a continue statements that use a label of the same loop where they
are declared (the break statement) and a label of an outer loop (the continue statement).

In this example, loop1 and loop2 correspond to for - and while-loops respectively. We can
observe the analogy with the treatment described in Table 3. In particular, in Algorithm 6,
inside the for -loop, the break statement (line 13) refers to this loop (due to the label test).
Hence, in Algorithm 7 we substitute it by a return statement that just ends the execution
of the loop (line 25). Contrarily, inside the while-loop, the continue statement (line 11)
refers to the outer loop (due again to the label test). Therefore, we substitute it by a return
statement where we set the control flags to their corresponding values (line 29).

5. Handling exceptions

Exceptions interrupt the normal execution of a program. They can be thrown due to
two reasons: explicitly thrown by the programmer (using the command throw) or implicitly
thrown by executing an instruction (e.g., a division by zero, opening a file that does not
exist, etc.). When an exception is thrown, there must exist a part of the code that catches
this exception and handles it by executing some subroutines. Therefore, all methods in a
program (and the methods generated by our transformation in particular) must decide what
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Table 3: Schema showing the transformation of break and continue statements

exceptions are caught by them, and thus throw the other exceptions to the caller of the
method.

Table 4 presents a schema that summarizes the additional treatment necessary to handle
exceptions. In the left column we have a method with two nested loops and four different
exceptions that are thrown inside the inner loop. Exception1 is caught inside the inner loop
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Algorithm 7 Transformation of a continue with label
1: public void substr() {
2: String searchMe = “Look for a substring in me”;
3: String substring = “sub”;
4: int max = searchMe.length() - substring.length();
5: boolean foundIt = false;
6: {
7: int i = 0;
8: if (i <= max)
9: foundIt = substr test(searchMe, substring, max, foundIt, i);

10: }
11: System.out.println(foundIt ? “Found it” : “Didn’t find it”);
12: }
13: private boolean substr test(String searchMe, String substring, int max, boolean foundIt, int i) {
14: int n = substring.length(), j = i, k = 0;
15: if (n-- != 0) {
16: String[] control = substr test loop(searchMe, substring, n, j, k);
17: if (control != null) {
18: i++;
19: if (i <= max)
20: return substr test(searchMe, substring, max, foundIt, i);
21: return foundIt;
22: }
23: }
24: foundIt = true;
25: return foundIt;
26: }
27: private String[] substr test loop(String searchMe, String substring, int n, int j, int k) {
28: if (searchMe.charAt(j++) != substring.charAt(k++))
29: return new String[] { “continue”, “test” };
30: if (n-- != 0)
31: return substr test loop(searchMe, substring, n, j, k);
32: return null;
33: }

(loop2 ); Exception2 is caught inside the outer loop (loop1 ); Exception3 is caught outside
both loops but inside the method; and IOException, which could be thrown due to the
statement file.read(), is thrown out of the method.

The right column shows the transformed code. The transformation uses the same mech-
anism used for break and continue. In each method that represents a loop, it uses array
result to output the exceptions that have occurred inside the method and must be caught by
other method (i.e., the caller or any other previous one). Observe the transformed code for
the inner loop (method loop2 ). This method catches all exceptions that were already caught
by the original loop (i.e., catch (Exception1 e)). The other exceptions should be caught out
of the method (i.e., Exception2, Exception3 and IOException). Therefore, method loop2
includes a try-catch that surrounds all statements. This try-catch catches any possible
throwable exception because it catches a generic object Throwable. This is necessary to be
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Table 4: Handling exceptions

able to catch all exceptions thrown by the programmer, and also those that can be thrown
by the system. When an exception is caught, it is returned to the caller method inside an
array called control with a flag “throw” to indicate that an exception that must be handled
is being returned.

In the outer loop (method loop1 ), after the call to loop2, we check whether variable
control is null. This is the way to know if the method should proceed normally, or it
should handle the exception. Whenever control != null, it checks whether the exception is
Exception2. In such a case, the exception is thrown, caught and handled by this method.
Otherwise, it is thrown again to the caller of this method. This process is repeated inside
each transformed method that represents a loop. Note in the example that the exception
IOException is not handled by any method, and thus, it will be thrown by the initial method
exactly as it happens in the original code.

There is a detail in the transformed method that is important to remark and explain.
In Java there are two kinds of exceptions, named checked and unchecked. While checked
exceptions must be always explicitly caught or thrown, unchecked exceptions are implicitly
handled by the compiler (i.e., there is no need to include them in the throws statement).
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Moreover, all unchecked exceptions inherit from RuntimeException or Error. Therefore, in
the case that (i) an exception reaches the transformed method (thus, it was not handled
inside any loop), (ii) the exception is not handled by this method (it is not Exception3 ),
and also, (iii) it does not appear in the throws section (it is not IOException), then this
exception is necessarily an unchecked exception and must be thrown as such. To allow
the compiler to catch an unchecked exception (e.g., NullPointerException in file.read() if
file is null), the transformation must use a casting before throwing it (in the figure, throw
(RuntimeException) throwable and throw (Error) throwable). This ensures that all checked
and unchecked exceptions are caught.

6. Treatment of recursion and the statements return and goto

In this section we explain what happens when the loop contains recursive calls, and
how to treat commands return and goto. We start explaining how to transform loops with
recursive calls. Roughly, recursion does not need special treatment. Recursive calls are
treated as any other statement in the loop, as it is shown in the programs in Table 5. In the

Table 5: Treatment of a recursive method

iterative version of the loop we have three recursive calls (numbered 1, 2 and 3). Recursive
calls 1 and 3 are outside the loop. They both are executed only once before and after
the loop respectively in the original code. Analogously, they are executed before and after
the transformed code associated with the loop. Therefore, trivially, they do not affect the
transformation and remain unchanged. Contrarily, recursive call 2 is done inside the loop
and, thus, it will be executed in every iteration of the loop. The transformed code places
the recursive call inside the new recursive method generated (loop). Each activation of this
method corresponds to one iteration of the original loop. Note that the recursive call to
function is treated as any other statement. If it produces a change in the state of the loop
(like, e.g., an assignment), it will affect the rest of the code in the same way in both the
original and the transformed code.

The transformation of return statements is very similar to the one for break statements.
Both statements force the control to stop the execution, leave the current loop, and continue
the execution in another point of the code. We illustrate the transformation of return with
Table 6. The code in Table 6 shows a return inside a nested loop. Therefore, it forces the
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Table 6: Treatment of return statements

execution to leave both loops and exit method function. Observe that the transformed
code is completely analogous to the one for break statements. The transformation converts
the return in rhombus 0 to the return in rhombus 3. Observe that we use a flag with the
string "return" to indicate the outer loops that a return statement was executed. Then,
all other methods check the flag and propagate the return statement (rhombus 2) until it
reaches the original method (the caller). The caller removes the flag and returns the same
value as in the original loop (rhombus 1).

Our transformation does not consider the use of goto statements. Note that, even though
goto is a reserved word in Java, it is not used as a language construct, and thus, in practice,
Java does not have goto.3 If we had a goto statement inside a transformed loop, three
situations would be possible: the goto statement points to a label inside (1) the same loop;
(2) an inner loop; or (3) an outer loop. In the first case the goto statement can remain
unchanged in the transformed code, and the transformation will perfectly work. Cases 2
and 3 are not handled by our transformation. However, in the third case, there can exist
an equivalence between a goto statement and a labeled break/continue statement. In such
cases the transformation of the goto statement would correspond to the transformation of a
labeled break/continue statement.

7. Implementation as a Java library, optimizations and empirical evaluation

All the transformations described in this paper have been implemented as a Java library
called loops2recursion. This library consists of approximately 3,000 lines of Java code, and
it is publicly available at:

http://www.dsic.upv.es/~jsilva/loops2recursion/

3The goto command was included in the list of Java’s reserved words because, if it was added to the
language later on, existing code that used the word goto as an identifier (variable name, method name, etc.)
would break. But because goto is a keyword, such code will not even compile in the present, and it remains
possible to make it actually do something later on, without breaking existing code.
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The library contains the implementation of all the individual algorithms needed to transform
each kind of Java loop, and it also contains generic code able to parse a whole Java file or
project. Roughly, it parses the source code and it automatically detects and transforms all
loops in the program.

The transformation can be used, e.g., as follows:

import loops2recursion;

(...)

FileTransformer ft = new FileTransformer(sourceFile, targetFile);

ft.openFile();

ft.showCode();

ft.loops2recursion();

ft.showCode();

ft.saveFile();

Observe that an object of type FileTransformer is created to transform a file. Then,
we can invoke several methods provided by the library to manipulate this object. In the
example, we first open the source file (openFile), next we show in the screen the code in the
source file (showCode), then we perform the transformation (loops2recursion) and show
the transformed code (showCode). Finally, we save the transformed code in the target file
(saveFile).

7.1. Optimizations

The code in Table 1 is generic. In some specific cases, this code can be optimized. The
following optimizations are not needed to understand the transformation, but they should
be considered when implementing it (all of them are implemented by loops2recursion):

1. Do not update unmodified variables.
If the loop does not modify a variable (e.g., it is only read), then do not return this
variable in the recursive method. We can see an example in Algorithm 3 where variable
x is not modified during the execution of method sqrt loop and thus we do not return
it (line 13).

2. Variable uniformity.
If all variables returned in the recursive method are of the same type, then the returned
array should be of that type (e.g., int[]). We can see an example in Algorithm 7
where the method substr test loop returns an array of strings (line 27).

3. Avoid returning an array when possible.
When the transformed method only returns a single variable, then the array is unnec-
essary and only the variable should be returned. We can see an example in Algorithm 3
where we only return variable b (line 13).

4. Throw the exceptions (do not catch them) if there are no variables that
should be updated.
In the generated code, exceptions are handled to update the variables when returning
from the recursive method. If there are no variables to update, then it is not necessary
to catch the exceptions.
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5. Avoid the external block when possible.
The transformation generates an external block to avoid that variables declared inside
the generated code exist after it. If there are no declared variables, then the block
is unnecessary. We can see an example in Algorithm 3 where variable result is not
necessary because we can directly assign the return value to variable b (line 6).

6. Remove unreachable code.
The transformation can generare unreachable code when the last statement of the loop
is a break/continue/return/throw. In that case, the code generated after this sentence
is unreachable and can be removed. We can see an example in Algorithm 7 where
method sqrt test is the transformation of a for -loop. In this example the transforma-
tion would normally insert the code to execute the next iteration at the end of the
method, but since the last statement of the loop is a break, then this code would be
unreachable and it has been removed (line 25).

7. Remove the treatment for exceptions and break/continue/return when it
is unnecessary.
The code generated to treat exceptions should be generated only in the case that an ex-
ception can occur. The same happens with the code generated for break/continue/return.
We can see an example in Algorithm 7 where method substr test directly performs the
next iteration after checking that control != null (lines 18-21). The transformation
can take this decision by analyzing method substr test loop where control != null can
only occur when the continue statement has been executed.

7.2. Empirical evaluation

We conducted several experiments to empirically evaluate both the transformation and
the transformed code using the library loops2recursion. These experiments provide a precise
and quantitative idea of the performance of the transformation.

For the evaluation, we selected a set of benchmarks from the Java Grande bench-
marks suite [2]. A Java Grande application is one that uses large amounts of process-
ing, I/O, network bandwidth, or memory. They include not only applications in sci-
ence and engineering but also, for example, corporate databases and financial simulations.
Specific information about the benchmarks including the source code can be found at:
http://www2.epcc.ed.ac.uk/computing/research_activities/java_grande/index_1.html.

We designed the experiment from a set of 14 Java Grande benchmarks. Firstly, we
automatically transformed the loops2recursion library by self-application (i.e., all loops were
translated to recursive methods). Then, we transformed the 14 benchmarks with the two
versions of the library (the original, and the transformed one) and executed all of them
several times to compare the results. Effectively, all transformed benchmarks were equivalent
to their original versions.

In a second phase of the experiment, we evaluated the performance. We strictly followed
the methodology proposed in [8]. Each benchmark was repeatedly executed 1000 times in
100 different Java Virtual Machine (JVM) invocations (100.000 executions in total). To
ensure real independence, the first iteration was always discarded (to avoid influence of
dynamically loaded libraries persisting in physical memory, data persisting in the disk cache,
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Benchmark
Transf. Time (ms)

Loops
Loops Iterations

Open Process Save Executed Executed

loops2recursion 954 206 213 117 52580 153729
JGFArithBench 348 26 13 24 144 12590
JGFAssignBench 337 22 21 20 120 10389
JGFCastBench 161 16 6 8 48 4200
JGFCreateBench 337 27 17 34 520 44860
JGFExceptionBench 129 20 6 6 36 3148
JGFLoopBench 135 16 3 6 36 3159
JGFMathBench 419 45 33 60 360 31498
JGFMethodBench 212 20 9 16 96 8320
JGFCryptBench 146 20 8 10 277 4447
JGFFFTBench 158 17 8 14 4122 24570
JGFHeapSortBench 135 14 7 5 1502 12939
JGFSeriesBench 141 18 24 4 2005 1996013
JGFSORBench 155 21 4 7 10101 990102
JGFSparseMatmultBench 115 18 4 5 204 203200

Average 258,8 33,73 25,07 22,4 4810,07 233544,27

(a) Transformation performance

Benchmark Iterative ET (ms) Recursive ET (ms) Rec/Iter ET (%)

loops2recursion [7083,08 7195, 94 7308,81] [7023,41 7156, 43 7289,46] 99,45
JGFArithBench [144,72 144, 96 145,20] [167,49 167, 59 167,69] 115,61
JGFAssignBench [113,55 113, 98 114,41] [119,67 119, 83 119,99] 105,14
JGFCastBench [47,19 48, 57 49,95] [52,10 53, 89 55,68] 110,94
JGFCreateBench [13057,33 13155, 91 13254,49] [12422,11 12581, 79 12741,48] 95,64
JGFExceptionBench [819,71 824, 62 829,52] [9288,23 9292, 87 9297,51] 1126,93
JGFLoopBench [39,07 39, 96 40,84] [42,79 43, 70 44,61] 109,34
JGFMathBench [1616,55 1617, 75 1618,95] [985,08 986, 07 987,06] 60,95
JGFMethodBench [94,88 95, 23 95,58] [99,26 99, 38 99,49] 104,36
JGFCryptBench [281,63 285, 11 288,59] [287,46 291, 65 295,83] 102,29
JGFFFTBench [543,14 560, 15 577,15] [557,91 575, 31 592,72] 102,71
JGFHeapSortBench [405,34 414, 09 422,84] [406,91 414, 92 422,93] 100,20
JGFSeriesBench [44288,14 44363, 17 44438,21] [44033,69 44197, 43 44361,16] 99,63
JGFSORBench [7384,92 7426, 96 7469,01] [7466,40 7472, 71 7479,01] 100,62
JGFSparseMatmultBench [2149,15 2204, 96 2260,77] [2208,14 2273, 53 2338,92] 103,11

Average 5232,76 5715,14 169,13

(b) Transformed code performance: Execution time results

Benchmark Iterative LOT (ms) Recursive LOT (ms) Rec/Iter LOT (%)

loops2recursion [1728,64 1754, 99 1781,35] [1804,54 1840, 76 1876,98] 104,89
JGFArithBench [42,44 42, 52 42,60] [49,31 49, 37 49,42] 116,10
JGFAssignBench [35,49 35, 60 35,71] [38,87 38, 94 39,02] 109,38
JGFCastBench [14,45 14, 67 14,90] [17,11 17, 55 17,98] 119,57
JGFCreateBench [96,97 97, 42 97,87] [121,28 123, 59 125,90] 126,87
JGFExceptionBench [10,60 11, 29 11,97] [12,86 12, 90 12,95] 114,32
JGFLoopBench [11,28 11, 44 11,59] [13,00 13, 17 13,35] 115,19
JGFMathBench [171,27 171, 73 172,20] [124,68 125, 04 125,41] 72,81
JGFMethodBench [28,18 28, 29 28,40] [30,62 30, 67 30,72] 108,42
JGFCryptBench [14,66 15, 46 16,26] [16,94 17, 94 18,94] 116,06
JGFFFTBench [73,44 79, 44 85,44] [88,51 94, 96 101,41] 119,54
JGFHeapSortBench [45,78 48, 08 50,38] [48,33 50, 41 52,49] 104,84
JGFSeriesBench [3952,32 3965, 49 3978,66] [3985,82 4000, 19 4014,57] 100,88
JGFSORBench [1841,56 1852, 23 1862,91] [1943,41 1944, 21 1945,01] 104,97
JGFSparseMatmultBench [606,37 634, 00 661,62] [660,63 695, 42 730,22] 109,69

Average 584,18 603,68 109,57

(c) Transformed code performance: LOT results

Table 7: Benchmark results
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etc.). From the 999 remaining iterations we retained 50 measurements per JVM invocation
when steady-state performance was reached, i.e., once the coefficient of variation (CoV)4 of
the 50 iterations falls below a preset threshold of 0.01. Because 0,01 was difficult to reach
for some benchmarks, we took the minimum CoV of 50 iterations in a row somewhere in
between the window of 999 iterations. Then, for each JVM invocation, we computed the
sum of the 50 benchmark iterations under steady-state performance. This produced one
statistical value. With 100 JVM invocations, we obtained 100 statistical values. Finally,
we computed the 0.99 confidence interval across the computed values from the different 100
JVM invocations.

This process was repeated for the 30 benchmarks (14 iterative versions + 14 recursive
versions + 2 versions of loops2recursion). Iterative and recursive versions were executed
interlaced, so that the impact of any possible variability in the overall system performance
was minimized. This produced the set of measures that is shown in Table 7. Here, we
use the notation [a b c] that represents a symmetric 0.99 confidence interval between a and
c with center in b. Each column in the tables has the following meaning: Benchmark is
the name of the benchmark. Transf. Time is the total amount of milliseconds needed by
loops2recursion to produce the recursive version from the iterative version. Here, Open is the
time needed to open all files of the target project, Process is the time needed to transform
all loops in these files to recursion, and Save is the time needed to save all transformed
files. Loops is the number of different loops in the source code. Loops Executed is the
number of loops executed (possibly with repetitions, specially in the case of nested loops).
Iterations Executed is the number of loop iterations performed during the execution.
The execution time (ET) is measured in milliseconds and represents the execution time of
the whole benchmark. LOT stands for loop overhead time, it is measured in milliseconds,
and it represents the time used to execute all loops without considering the time used by
the body of the loops. That is, it just measures the time spent in a loop to control the own
loop. This was calculated by inserting the command System.nanotime(), which returns
the current time in nanoseconds, immediately before and after the loop, immediately after
entering the iteration, and immediately before leaving the iteration.

Example 7.1. Consider the following code that has been instrumented to measure its LOT:

t1=System.nanotime();

while (cond){
t2=System.nanotime();

body;

t3=System.nanotime();}
t4=System.nanotime();

If we assume that the loop performs 0 iterations, then LOT is t4-t1.
If we assume that the loop performs n > 0 iterations, then LOT is calculated as follows:

EntryTime = t2 - t1; PrepareNextIterationTime = t2 - t3; ExitTime = t4 - t3;

4CoV is defined as the standard deviation s divided by the mean x.
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LOT = EntryTime + ((n-1) * PrepareNextIterationTime) + ExitTime

Note that LOT is the appropriate measure to know what is the real speedup reached with the
transformation. ET is not a good indicator because it depends on the body of the loops, but
LOT is independent of the size and content of the loops.

For the recursive versions, LOT is calculated in a similar way. For instance, in the While-loop
row of Table 1:

• t1=System.nanotime(); is placed immediately after Code 1,

• t2=System.nanotime(); is placed immediately before Code 2,

• t3=System.nanotime(); is placed immediately after Code 2,

• t4=System.nanotime(); is placed immediately before Code 3.

Rec/Iter measures the speedup/slowdown of the transformed code with respect to the
original code. It is computed as 100×(Recursive time / Iterative time).

The results for LOT have been normalized in a chart shown in Figure 8(a). Thanks to the
confidence intervals computed for the iterative and recursive versions we can extract some
statistical conclusions. In 3 out of 15 experiments, the confidence intervals overlap, thus no
statistical conclusion can be extracted. In 12 out of 15 experiments confidence intervals are
disjoint. In 11 experiments, we can ensure with a confidence level of 99% that the recursive
version is less efficient than the iterative version of the loops. Finally, in 1 experiment we
can ensure with a confidence level of 99% that the recursive version is more efficient than
the iterative version. Looking at Table 7, we see that the differences have been quantified
and they are small (around 10%).

Initially, this was the end of our experiments. But then, we also looked at the results
obtained for the ET. These results have been normalized in the chart shown in Figure 8(b).
This figure reveals something unexpected: Sometimes the recursive version of the bench-
marks is statistically (with 99% confidence level) more efficient than the iterative version.
One could think that this does not make sense, because all the code except LOT is exactly
the same in the iterative version and in the recursive version. But it is the same before com-
pilation. After compilation it is different due to the optimizations done by Java, which are
different in both versions due to the presence of the transformed code. In order to prove this
idea, we repeated all the experiments in interpreted-only mode using the ‘-Xint’ JVM op-
tion. This flag disables the just-in-time (JIT) compilation in the JVM so that all bytecodes
are executed by the interpreter. Disabling JIT compilation avoids many Java optimizations
performed on code that significantly speedup recursion. The results obtained for ET with
JIT compilation disabled are shown in Figure 8(c). The difference is clear. Without JIT
compilation, iteration is more efficient. With JIT compilation iteration and recursion are
similar, and sometimes recursion is even better (statistically). This confirms that in some
cases, the library can increase code efficiency. However, in Java, our transformation has
limited improvement due to the fact that the JVM does not support tail recursion optimiza-
tion. This raises the point whether targeting another language the transformed code would
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(a) LOT results

(b) ET results (c) ET results with -Xint flag enabled

Figure 8: Normalized (scaled over 100) charts

produce better results. This part seems to be certainly interesting and it could open a line
of research to decide in what cases the compiler should transform iterative loops to recursive
methods to produce more efficient code. We left this research for future work.

8. Conclusions

Before we started the implementation of our library, we thought that compiling loops
produces more efficient object code than compiling recursive methods. Therefore, we imple-
mented our library not for efficiency reasons, but to gain other advantages of recursion that
are useful in many situations such as, e.g., debugging, verification or memory hierarchies
optimization.
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The lack of an automatic transformation from loops to recursion is surprising, but
it is even more surprising that no public report exists that describes how to implement
this transformation. Hence, in this article we solve both problems. First, we describe
and exemplify the program transformation step by step. Each kind of Java loop, namely
while/do/for/foreach, has been described independently with a specific treatment for it that
is illustrated with an example of use. Moreover, we provide a complete treatment of ex-
ceptions, return, and break and continue statements that can be parameterized with labels.
Second, we present an implementation that is:

Complete. It accepts the whole Java language.

Efficient. Both the transformation and the generated code are scalable as demonstrated by
our empirical evaluation. The generated code implements all the optimizations and it
is tail-recursive. This property is missing in other implementations (e.g., [20]), and it
is important not only for the sake of efficiency. Concretely, an infinite loop can only
be translated to equivalent recursive methods if they are tail-recursive. Otherwise, the
transformed code would produce a stack memory overflow not occurring in the original
code.

Automatic. The transformation only needs to input a source program and it automatically
searches for the loops and transforms them.

Public. The implementation and the source code is open and free.

The transformation has been described in such a way that it can be easily adapted to
any other language where recursion and iteration exist.

After the empirical evaluation we discovered that the recursive version of a loop is some-
times more efficient than the original loop. This is something that must be further investi-
gated to know the causes, because we could produce a transformation that systematically
exploits opportunities to improve efficiency. For instance, if we determine that some kind of
loops are more efficient if they are implemented as recursion, then a compiler could decide
to transforms loops to recursion or vice-versa before compiling them. We left this study for
future work.
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Appendix A. Proof of correctness

In this section we provide a formal semantics-based specification of our transformation in
order to prove the correctness of the basic transformation (we skip exceptions and labels in
this section). For this, we provide a BNF syntax specification and an operational semantics
of Java. We consider the subset of Java that is needed to implement the transformation
(if-then-else, while, method calls, return, etc.), and we ignore the rest of syntax elements
for the sake of simplicity (they do not have any influence because any command inside the
body of the loop remains unchanged in the transformed code). Moreover, in this section, we
center the discussion on while-loops and prove properties for this kind of loop. The proof
for the other kinds of loops is omitted, but it would be in all cases analogous or slightly
incremental.

We start with a BNF syntax of Java:

P ::= M1, . . . ,Mn, Sp (program) Domains
x, y, z . . . ∈ V (variables)
a, b, c . . . ∈ C (constants)

M ::= m(x1, . . . , xn) { Sp; Sr } (method definition) where x1, . . . , xn ∈ V and
m is the name of the method

Sp ::= x := E (assignment)
| x := m(E0, . . . , En) (method invocation)
| if Eb then Sp (if-then)
| if Eb then Sp else Sp (if-then-else)
| while Eb do Sp (while)
| Sp; S′p (sequence)

Sr ::= return E (return)
E ::= Ea | Eb (expresion)
Ea ::= Ea + Ea | Ea − Ea | V (arithmetic expresion)
Eb ::= Eb != Eb | Eb == Eb | V (boolean expresion)
V ::= x | a (variables or constants)

A program is a set of method definitions and at least one initial statement (usually a method
invocation). Each method definition is composed of a set of statements followed by a return
statement. For simplicity, the arguments of a method invocation can only be expressions (not
statements). This is not a restriction, because any statement can be assigned to a variable
and then be passed as argument of the method invocation. However, this simplification
allows us to ease the semantics of method invocations and, thus, it increases readability.

In the following we consider two versions of the same program shown in Algorithms 8
and 9. We assume that in Algorithm 8 there exists a variable x already defined before the
loop and, for the sake of simplicity, it is the only variable modified inside S. Therefore,
Algorithm 9 is the recursive version of the while-loop in Algorithm 8 according to our
transformation, and hence, p0, . . . , pn represent all variables defined before the loop and
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used in S (the loop statements) and cond (the loop condition). In the case that more than
one variable are modified, then the output would be an array with all variables modified.
We avoid this case because it is not necessary for the proof.

Algorithm 8 While version
1: while cond do
2: S;

Algorithm 9 Recursive version
1: m(p0, . . . , pn) {
2: S;
3: if cond then
4: x := m(a0, . . . , an);
5: return x;
6: }
7: if cond then
8: x := m(a0, . . . , an);

In order to provide an operational semantics for this Java subset, which allows recursion,
we need a stack to push and pop different frames that represent individual method activa-
tions. Frames, f0, f1, . . . ∈ F, are sequences of pairs variable-value. States, s0, s1, . . . ∈ S,
are sequences of frames (S : F x . . . x F). We make the program explicitly accessible to
the semantics through the use of an environment, e ∈ E, represented with a sequence of
functions from method names M to pairs of parameters P and statements I (E : (M → (P
x I)) x . . . x (M → (P x I))). Our semantics is based on the Java semantics described
in [19] with some minor modifications. It uses a set of functions to update the state, the
environment, etc.

Function Updv is used to update a variable (var) in the current frame of the state (s)
with a value (value). The current frame in the state is always the last frame introduced (i.e.,
the last element in the sequence of frames that represent the state). We use the standard
notation f [var → value] to denote that variable var in frame f is updated to value value.

Updv(s, var → value) =

{
error if s = []
[f0, . . . , fn[var → value]] if s = [f0, . . . , fn]

Function Updr records the returned value (value) of the current frame of the state (s)
inside a fresh variable < of this frame, so that other frames can consult the value returned
by the current frame.

Updr(s, value) =

{
error if s = []
[f0, . . . , fn[< → value]] if s = [f0, . . . , fn]

Function Updvr is used to update a variable (var) in the penultimate frame of the state
(s) taking the value returned by the last frame in the state (which must be previously stored
in <). This happens when a method calls another method and the latter finishes returning a
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value. In this situation, the last frame in the state should be removed and the value returned
should be updated in the penultimate frame. We use the notation fn(<) to consult the value
of variable < in frame fn.

Updvr(s, var) =

{
error if s = [] or s = [f ]
[f0, . . . , fn−1[var → fn(<)], fn] if s = [f0, . . . , fn−1, fn]

Function Upde is used to update the environment (env) with a new method definition
(m → (P, I)). The environment is used in method invocations to know the method that
should be executed.

Upde(env, m→ (P, I)) = env[m→ (P, I)]

Function AddFrame adds a new frame to the state (s). This frame is a sequence of
mappings from parameters (p0, . . . , pn) to the evaluation of arguments (a0, . . . , an). To
evaluate an expression we use function Eval : a variable is consulted in the state, a constant
is just returned, and a mathematical or boolean expression is evaluated with the standard
semantics. We use this notation because the evaluation of expressions does not have influence
in our proofs, but it significantly reduces the size of derivations, thus, improving clarity of
presentation.

AddFrame(s, [p0, . . . , pn], [a0, . . . , an]) ={
[[p0 → Eval(a0), . . . , pn → Eval(an)]] if s = []
[f0, . . . , fm, [p0 → Eval(a0), . . . , pn → Eval(an)]] if s = [f0, . . . , fm]

Analogously, function RemFrame removes the last frame inserted into the state (s).

RemFrame(s) =


error if s = []
[] if s = [f ]
[f0, . . . , fn] if s = [f0, . . . , fn, fn+1]

We are now in a position ready to introduce our Java operational semantics. Essentially,
the semantics is a big-step semantics composed of a set of rules of the form: p1...pn

env ` <st, s> ⇓ s′

that should be read as “The execution of statement st in state s under the environment env
can be reduced to state s′ provided that premises p1 . . . pn hold”. The rules of the semantics
are shown below.
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New method
env ′ = Upde(env, m0 → (P, I)) ∧ env ′ ` <m1 i, s> ⇓ s′

env ` <m0(P ){I} m1 i, s> ⇓ s′

Empty statement

env ` <
√
, s> ⇓ s

Asignment
s′ = Updv (s, x → Eval(op, s))

env ` <x:=op, s> ⇓ s′

Method invocation
(P, I) = env(m) ∧ s′ = AddFrame(s,P,A) ∧ env ` <I, s′> ⇓ s′′ ∧ s′′′ = Updvr (s′′,x) ∧ s′′′′ = RemFrame(s′′′)

env ` <x:=m(A), s> ⇓ s′′′′

If
env ` <if cond then i0 else

√
, s> ⇓ s′

env ` <if cond then i0, s> ⇓ s′

<cond, s> ⇒ true ∧ env ` <i0, s> ⇓ s′

env ` <if cond then i0 else i1, s> ⇓ s′

<cond, s> ⇒ false ∧ env ` <i1, s> ⇓ s′

env ` <if cond then i0 else i1, s> ⇓ s′

While
<cond, s> ⇒ false

env ` <while cond do i, s> ⇓ s

<cond, s> ⇒ true ∧ env ` <i, s> ⇓ s′ ∧ env ` <while cond do i, s′> ⇓ s′′

env ` <while cond do i, s> ⇓ s′′

Sequence
env ` <i0, s> ⇓ s′ ∧ env ` <i1, s′> ⇓ s′′

env ` <i0; i1, s> ⇓ s′′

Return
s′ = Updr (s, Eval(op, s))
env ` <return op, s> ⇓ s′

We can now prove our main result.

Theorem Appendix A.1 (Correctness). Algorithm 9 is semantically equivalent to Al-
gorithm 8.

Proof. We prove this claim by showing that the final state of Algorithm 8 is always the
same as the final state of Algorithm 9. The semantics of a program P is:
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S(P ) = s iff [] `< P, [] >⇓ s

Therefore, we say that two programs P1 and P2 are equivalent if they have the same
semantics:

S(P1) = S(P2) iff [] `< P1, [] >⇓ s1 ∧ [] `< P2, [] >⇓ s2 ∧ s1 = s2

For the sake of generality, in the following we consider that the loops can appear inside any
other code. Therefore, the environment and the state are not necessarily empty. Thus, we
will assume an initial environment env0 and an initial state s: env0 `< P, s >. We proof
this semantic equivalence analyzing two possible cases depending on whether the loop is
executed or not.

1) Zero iterations
This situation can only happen when the condition cond is not satisfied the first time it

is evaluated. Hence, we have the following semantics derivation for each program:

Iterative version

< cond, s > ⇒ false

env0 ` < while cond do S, s > ⇓ s

Recursive version

env = Upde(env0, m → (P, S; I))

< cond, s > ⇒ false env ` <
√
, s > ⇓ s

env ` < if cond then t else
√
, s > ⇓ s

env ` < if cond then t, s > ⇓ s

env0 ` < m(P ) { S; I } if cond then t, s > ⇓ s

Clearly, the state is never modified neither in the iterative version nor in the recursive ver-
sion. Therefore, both versions are semantically equivalent.

2) One or more iterations
This means that the condition cond is satisfied at least once. Let us consider that cond

is satisfied n times, producing n iterations. We proof that the final state of the program in
Algorithm 9 is equal to the final state of the program in Algorithm 8 by induction over the
number of iterations performed.

(Base Case) In the base case, only one iteration is executed. Hence, we have the following
derivations:

Iterative version

< cond, s > ⇒ true env0 ` < S, s > ⇓ s1

< cond, s > ⇒ false

env0 ` < while cond do S, s1 > ⇓ s1

env0 ` < while cond do S, s > ⇓ s1
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Recursive version

env ` < S, s1 > ⇓ s2

< cond, s2 > ⇒ false env ` <
√
, s2 > ⇓ s2

env ` < if cond then t else
√
, s2 > ⇓ s2

env ` < if cond then t, s2 > ⇓ s2

s3 = Updr (s
2, Eval(x, s2))

env ` < return x, s2 > ⇓ s3

env ` < if cond then t; return x, s2 > ⇓ s3

env ` < S; I, s1 > ⇓ s3

4

< cond, s > ⇒ true

(P, I) = env(m) s1 = AddFrame(s, P, [a0, . . . , an]) 4 s4 = Updvr (s
3, x) s5 = RemFrame(s4)

env ` < x := m(a0, . . . , an), s > ⇓ s5

env ` < if cond then t else
√
, s > ⇓ s5

env ` < if cond then t, s > ⇓ s5

We can assume that variable x has an initial value z0, which must be the same in both
versions of the algorithm. Then, states are modified during the iteration as follows:

Iterative version Recursive version
s = [f0]⇒ f0 = {x→ z0} s = [f0]⇒ f0 = {x→ z0}
s1 = [f0]⇒ f0 = {x→ z1} s1 = [f0, f1]⇒ f0 = {x→ z0} ∧ f1 = {x→ z0}

s2 = [f0, f1]⇒ f0 = {x→ z0} ∧ f1 = {x→ z1}
s3 = [f0, f1]⇒ f0 = {x→ z0} ∧ f1 = {x→ z1,< → z1}
s4 = [f0, f1]⇒ f0 = {x→ z1} ∧ f1 = {x→ z1,< → z1}
s5 = [f0]⇒ f0 = {x→ z1}

Clearly, with the same initial states, both algorithms produce the same final state.

(Induction Hypothesis) We assume as the induction hypothesis that executing i iterations
in both versions with an initial value z0 for x then, if the iterative version obtains a final
value zn for x then the recursive version correctly obtains and stores the same final value zn

for variable x in the top frame.

Iterative version Recursive version
s = [f0]⇒ f0 = {x→ z0} s = [f0]⇒ f0 = {x→ z0}
. . . . . .
s′ = [f0]⇒ f0 = {x→ zn} s′ = [f0]⇒ f0 = {x→ zn}

(Inductive Case) We now prove that executing i + 1 iterations in both versions with an
initial value z0 for x then, if the iterative version obtains a final value zn for x then the
recursive version correctly obtains and stores the same final value zn for variable x in the
top frame.

The derivation obtained for each version is the following:

Iterative version

< cond, s > ⇒ true env0 ` < S, s > ⇓ s1

Induction hypotesis

env0 ` < while cond do S, s1 > ⇓ s2

env0 ` < while cond do S, s > ⇓ s2
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Recursive version

env ` < S, s1 > ⇓ s2

Induction hypotesis

env ` < if cond then t, s2 > ⇓ s3

s4 = Updr (s
3, Eval(x, s3))

env ` < return x, s3 > ⇓ s4

env ` < if cond then t; return x, s2 > ⇓ s4

env ` < S; I, s1 > ⇓ s4

4

< cond, s > ⇒ true

(P, I) = env(m) s1 = AddFrame(s, P, [a0, . . . , an]) 4 s5 = Updvr (s
4, x) s6 = RemFrame(s5)

env ` < x := m(a0, . . . , an), s > ⇓ s6

env ` < if cond then t else
√
, s > ⇓ s6

env ` < if cond then t, s > ⇓ s6

Because both algorithms have the same initial value z0 for x then the states during the
iteration are modified as follows (the * state is obtained by the induction hypothesis):

Iterative version Recursive version
s = [f0]⇒ f0 = {x→ z0} s = [f0]⇒ f0 = {x→ z0}
s1 = [f0]⇒ f0 = {x→ z1} s1 = [f0, f1]⇒ f0 = {x→ z0} ∧ f1 = {x→ z0}
s2 = [f0]⇒ f0 = {x→ zn}∗ s2 = [f0, f1]⇒ f0 = {x→ z0} ∧ f1 = {x→ z1}

s3 = [f0, f1]⇒ f0 = {x→ z0} ∧ f1 = {x→ zn}∗
s4 = [f0, f1]⇒ f0 = {x→ z0} ∧ f1 = {x→ zn,< → zn}
s5 = [f0, f1]⇒ f0 = {x→ zn} ∧ f1 = {x→ zn,< → zn}
s6 = [f0]⇒ f0 = {x→ zn}

Hence, Algorithm 9 and Algorithm 8 obtain the same final state, and thus, they are
semantically equivalent. 2
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