
Operationalised Product Quality Models and Assessment:
The Quamoco Approach

Stefan Wagnera,∗, Andreas Goebb, Lars Heinemannb, Michael Kläsc, Constanza Lampasonac, Klaus
Lochmannd, Alois Mayre, Reinhold Plösche, Andreas Seidlf, Jonathan Streitg, Adam Trendowiczc

aInstitute of Software Technology, University of Stuttgart, Stuttgart, Germany
bCQSE GmbH, Garching, Germany

cFraunhofer Institute for Experimental Software Engineering IESE, Kaiserslautern, Germany
dInstitut für Informatik, Technische Universität München, Garching, Germany

eDepartment of Business Informatics, Johannes Kepler University Linz, Linz, Austria
fBMW AG, Munich, Germany

gitestra GmbH, Munich, Germany

Abstract

Context: Software quality models provide either abstract quality characteristics or concrete quality
measurements; there is no seamless integration of these two aspects. Quality assessment approaches are,
hence, also very specific or remain abstract. Reasons for this include the complexity of quality and the
various quality profiles in different domains which make it difficult to build operationalised quality models.

Objective: In the project Quamoco, we developed a comprehensive approach aimed at closing this gap.
Method: The project combined constructive research, which involved a broad range of quality experts

from academia and industry in workshops, sprint work and reviews, with empirical studies. All deliverables
within the project were peer-reviewed by two project members from a different area. Most deliverables were
developed in two or three iterations and underwent an evaluation.

Results: We contribute a comprehensive quality modelling and assessment approach: (1) A meta
quality model defines the structure of operationalised quality models. It includes the concept of a product
factor, which bridges the gap between concrete measurements and abstract quality aspects, and allows
modularisation to create modules for specific domains. (2) A largely technology-independent base quality
model reduces the effort and complexity of building quality models for specific domains. For Java and
C# systems, we refined it with about 300 concrete product factors and 500 measures. (3) A concrete and
comprehensive quality assessment approach makes use of the concepts in the meta-model. (4) An empirical
evaluation of the above results using real-world software systems showed: (a) The assessment results using
the base model largely match the expectations of experts for the corresponding systems. (b) The approach
and models are well understood by practitioners and considered to be both consistent and well suited for
getting an overall view on the quality of a software product. The validity of the base quality model could
not be shown conclusively, however. (5) The extensive, open-source tool support is in a mature state. (6)
The model for embedded software systems is a proof-of-concept for domain-specific quality models.

Conclusion: We provide a broad basis for the development and application of quality models in indus-
trial practice as well as a basis for further extension, validation and comparison with other approaches in
research.

Keywords: Quality Model, Product Quality, Quality Assessment

∗Corresponding author
Email address: stefan.wagner@informatik.uni-stuttgart.de (Stefan Wagner)

Preprint submitted to Information and Software Technology November 29, 2016

ar
X

iv
:1

61
1.

09
23

0v
1

 [
cs

.S
E

]
 2

8
N

ov
 2

01
6

1. Introduction

Despite great efforts in both research and practice, software quality continues to be controversial and
insufficiently understood, and the quality of software products is often unsatisfactory. The economic impact
is enormous and includes not only spectacular failures of software [49] but also increased maintenance
costs [39], high resource consumption, long test cycles, and waiting times for users.

1.1. Quality Models – Benefits and Shortcomings

Software quality models tackle the issues described above by providing a systematic approach for mod-
elling quality requirements, analysing and monitoring quality, and directing quality improvement measures
[21]. They thus allow ensuring quality early in the development process.

In practice, however, a gap remains between the abstract quality characteristics described in quality
models such as the current standard ISO/IEC 25010 [36] and concrete measurements and assessments [77, 1].
The quality models describe and structure general concepts that can be used to characterise software quality.
Most of them, however, cannot be used for real-world quality assessment or improvement [1]. Concrete
measurements, on the contrary, often lack the connection to higher-level quality goals. Thus, they make
it difficult to explain the importance of quality problems to developers or sponsors and to quantify the
potential of quality improvements.

A similar gap also exists for quality assessment methods. Effective quality management requires not
only a definition of quality but also a method for assessing the overall quality of a software product based
on measured properties. Existing quality models either lack assessment support completely or provide
procedures that are too abstract to be operational (e. g. ISO/IEC 25040 [37]). As a consequence, quality
assessment is inhibited and likely to produce inconsistent and misleading results.

Finally, the contents of many existing quality models (including quality metrics or evaluation formulas)
are invariable. Software quality, however, is not the same in all contexts. It depends on the domain, on
the technology used and on project constraints. Most quality engineers want to adapt and customise their
quality models [77].

1.2. Research Objective

Our aim was to develop and validate operationalised quality models for software together with a quality
assessment method and tool support to provide the missing connections between generic descriptions of
software quality characteristics and specific software analysis and measurement approaches. As a single
operationalised quality model that fits all peculiarities of every software domain would be extremely large
and expensive to develop, we also set the goal of enabling modularised quality models with a widely applicable
base model and various specific extensions. This also constrained the types of analyses and measurements
to include: We included static analyses and manual reviews, because they are least dependent on the
system context. In contrast, dynamic testing of a system would require specific test cases and execution
environments. Furthermore, we focused on product quality and, hence, product aspects influencing quality,
instead of on process or people aspects. While we consider the latter aspects important as well, we expected
the product aspects to be easier and more direct to measure.

To achieve these goals, software quality experts from both academia and industry in Germany joined
forces within the Quamoco research project. The project consortium consisted of Technische Universität
München, SAP AG, Siemens, Capgemini, Fraunhofer IESE, and itestra. In total, these partners spent 558
person-months on the project.

1.3. Contribution

This article is an extension of an earlier one [75] and provides six major contributions overall: First, we
developed a meta-model for software quality models. It provides the structure for the full spectrum from
organising quality-related concepts to defining operational means for assessing their fulfilment in a specific
environment including their modularisation. Second, the base quality model instantiates the meta-model
and captures knowledge on how to conduct a basic quality assessment for different kinds of software. It

2

serves as the basis for more specific quality models. We elaborated the base model in depth for the languages
Java and C#.

Third, we contribute a clearly defined quality assessment method that is integrated with the meta-
model. Fourth, we performed several validations of the base model with real software systems that showed
the understandability of the model and the correspondence of the assessment results with expert opinions.
Fifth, we developed extensive tool support for building and adapting operationalised quality models as well
as for performing quality assessments. Sixth and last, we contribute a domain-specific quality model as
an extension to the base model, which shows the usefulness of the modularisation and separation between
base model and specific extensions. Preliminary versions of the meta-model, the base model, the quality
assessment and the empirical analysis were partly described in the earlier conference paper [75].

1.4. Terms and Definitions

Here, we introduce the terms used most frequently in this article. Quality characteristic refers to the con-
cept as used in ISO/IEC 9126 and ISO/IEC 25010 to decompose software quality, e. g. into maintainability
or reliability. Quality characteristics can hence be thought of as “-ilities”. A quality aspect is more generally
an area of interest that contributes to the quality of a software product for a certain stakeholder. In particu-
lar, we consider ISO/IEC’s quality characteristics as quality aspects but also allow for other decompositions
of software quality to get increased precision and expressiveness within a quality model. We use one such
alternative decomposition in the Quamoco base quality model. Quality aspects are typically not measurable
or observable directly. While they describe quality on a rather abstract level, product factors are observable
properties of certain entities within a software product. Product factors as well as their relationships to
quality aspects are discussed in detail in Section 3.2. Finally, a quality requirement is a stakeholder’s stated
desire to have a certain quality aspect or product factor fulfilled by a product.

1.5. Outline

The remainder of this article is structured as follows: Section 2 presents an overview of both related work
and our own previous work in the research area of quality modelling and assessment. In Section 3, we discuss
usage scenarios for quality models, introduce general concepts, and present our meta quality model. We
instantiate this meta-model in Section 4 and present our base quality model for software products written in
Java or C#. We describe our approach for assessing software quality with this model in Section 5. Section 6
describes the tool support for the application of the approach in practice. In Section 7, we describe the
empirical evaluation we performed to validate the proposed model and tools. Section 8 presents one domain-
specific quality model, which extends the base model for the specifics of embedded systems. Finally, Section 9
concludes the article and outlines future work.

2. Related Work

Quality models have been a research topic for several decades and a large number of quality models
have been proposed [45]. We describe the predominant hierarchical models, important proposals for richer
models, quality measurement approaches and tools, and a summary of our own preliminary work.

2.1. Hierarchical Models

The first published quality models for software date back to the late 1970s, when Boehm et al. [13] as
well as McCall, Richards and Walter [57] described quality characteristics and their decomposition. The two
approaches are similar and use a hierarchical decomposition of the concept quality into quality characteristics
such as maintainability or reliability. Several variations of these models have appeared over time. One of
the more popular ones is the FURPS model [29], which decomposes quality into functionality, usability,
reliability, performance, and supportability.

This kind of quality model became the basis for the international standard ISO/IEC 9126 [38] in 1991.
It defines a standard decomposition into quality characteristics and suggests a small number of metrics for
measuring them. These metrics do not cover all aspects of quality, however. Hence, the standard does by

3

no means completely operationalise quality. The successor to ISO/IEC 9126, ISO/IEC 25010 [36], changes
a few classifications but keeps the general hierarchical decomposition.

In several proposals, researchers have used metrics to directly measure quality characteristics from or
similar to ISO/IEC 9126. Franch and Carvallo [27] adapt the ISO/IEC quality model and assign metrics to
measure them for selecting software packages. They stress that they need to be able to explicitly describe
“relationships between quality entities”. Van Zeist and Hendriks [71] also extend the ISO/IEC model and
attach measures such as average learning time. Samoladas et al. [65] use several of the quality characteristics
of ISO/IEC 9126 and extend and adapt them to open source software. They use the quality characteristics
to aggregate measurements to an ordinal scale. All these approaches reveal that it is necessary to extend
and adapt the ISO/IEC standard. They also show the difficulty in measuring abstract quality characteristics
directly.

Various critics (e. g. [23, 1]) point out that the decomposition principles used for quality characteristics
are often ambiguous. Furthermore, the resulting quality characteristics are mostly not specific enough to be
measurable directly. Although the recently published successor ISO/IEC 25010 has several improvements,
including a measurement reference model in ISO/IEC 25020, the overall criticism is still valid because
detailed measures are still missing. Moreover, a survey done by us [77, 78] shows that fewer than 28% of
the companies use these standard models and 71% of them have developed their own variants. Hence, there
is a need for customisation.

2.2. Richer Models

Starting in the 1990s, researchers have been proposing more elaborate ways of decomposing quality
characteristics and thereby have built richer quality models. Dromey [25] distinguishes between product
components, which exhibit quality carrying properties, and externally visible quality attributes.

Bansiya and Davis [7] build on Dromey’s model and propose QMOOD, a quality model for object-
oriented designs. They describe several metrics for the design of components to measure what they call
design properties. These properties have an influence on quality attributes. They also mention tool support
and describe validations similar to ours (Section 7).

Bakota et al. [6] emphasise the probabilistic nature of their quality model and quality assessments. They
introduce virtual quality attributes, which are similar to product factors in our quality model (cf. Section 3).
The quality model uses only nine low-level measures, which are evaluated and aggregated to probability
distributions. Our experience has been that practitioners have difficulties interpreting such distributions.

Kitchenham et al. [42] acknowledge the need for an explicit meta-model to describe the increasingly
complex structures of quality models. They also propose a “build your own” method for quality models
with their Squid approach.

All richer models show that the complex concept of quality needs more structure in quality models than
abstract quality characteristics and metrics. They have, however, not established a corresponding quality
assessment method, tool support and a general base quality model, which are necessary for comprehensively
measuring and assessing quality.

2.3. Quality Measurement and Tool Support

Although not embedded in an operationalised quality model, a large number of tools for quality analysis
are available. Examples include bug pattern identification (e. g. FindBugs1, PMD2, Gendarme3, or PC-
Lint4), coding convention checkers (e. g. Checkstyle5), clone detection, and architecture analysis. These
tools focus on specific aspects of software quality and fail to provide comprehensive quality assessments.
Moreover, there are no explicit and systematic links to a quality model.

1http://findbugs.sf.net
2http://pmd.sf.net
3http://www.mono-project.com/Gendarme
4http://www.gimpel.com/html/pcl.htm
5http://checkstyle.sf.net

4

http://findbugs.sf.net
http://pmd.sf.net
http://www.mono-project.com/Gendarme
http://www.gimpel.com/html/pcl.htm
http://checkstyle.sf.net

Dashboards can use the measurement data of these tools as input (e. g. SonarQube6 or XRadar7) to
provide a visual overview of the quality measurements taken from a software system. Nevertheless, they
lack an explicit and well-founded connection between the metrics used and particular quality aspects. Hence,
explanations of the impacts of defects on software quality and rationales for the used metrics are missing.

Experimental research tools (e. g. [53, 66]) take first steps towards integrating a quality model and an
assessment toolkit. A more comprehensive approach is taken by the research project Squale [60, 61] which
was carried out at the same time [11] as our project. Squale provides an explicit quality model based on [48]
for describing a hierarchical decomposition of the ISO/IEC 9126 quality characteristics. Hence, it follows and
extends the FCM model [57] by introducing an intermediate level of so-called practices which link measures
with criteria and hence with quality factors. The model contains formulas for evaluating the associated
metric values as well as weighting the sets of practices and criteria for the respective higher-ranked criteria
and factors. For this, Squale provides tool support for evaluating software products and visualising the
results. A shortcoming of Squale is that its quality model does not explicitly consider Dromey’s product
components to which the quality issues could be related. These technical details regarding quality issues at
the level of product components make the quality model more useful in practice as this allows for focused
drilldowns of quality issues. Squale also lacks support for modularisation as well as for managing multiple
quality models or multiple hierarchies of quality characteristics.

The CAST Application Intelligence Platform8 is a proprietary system that focuses on automatically
determining technical debt based on the risk of quality deficiencies of business applications. Thus, it measures
quality on a technical level and evaluates the risks of vulnerabilities. To do so, it is based on a simple model
that pools measures into severity classes and does not allow comprehensive quality analysis. Users of CAST
are provided with a dashboard to monitor quality deficiencies and resulting risks.

However, these tools and approaches do, to a certain extent, follow the same idea of an integrated quality
model and its assessment as we do in this article. Regarding the quality models, the main difference is that
we use a product model for structuring the (technical) product factors in the Quamoco quality models.
Furthermore, Quamoco offers modularisation and an editor for creating, adjusting, and managing quality
models for various application domains in contrast to fixed, predefined models. The Quamoco tool chain
allows for flexible configuration and integration of measurement tools and even manually collected data
without any changes in the source code of the tool chain.

2.4. Preliminary Work

In prior work, we investigated different ways of describing quality and classifying metrics, e. g. activity-
based quality models [23] and technical issue classifications [63]. Based on the findings, we developed
a meta-model for quality models and evaluated its expressiveness [46]. We experimented with different
approaches for quality assessments and tool support [62, 73, 68, 44, 51]. Based on the experience gained,
we developed a comprehensive tool chain for quality modelling and assessment [19].

We published a shorter, preliminary version of this article [75] which focuses on the base model and on
a limited set of validations. We added more detailed descriptions, explanations and illustrations in various
parts of the paper to make the work easier to understand. In particular, we added a detailed description of
the approach we used for developing the base quality model. In addition, we added new contributions with
the description of domain-specific quality models, model adaptation, tool support and additional empirical
validations.

3. Quality Model Concepts

The first challenge in addressing the gap between abstract quality characteristics and concrete assess-
ments is to formalise the structure for operationalised quality models in a suitable meta quality model.

6http://www.sonarsqube.org
7http://xradar.sf.net
8http://www.castsoftware.com

5

http://www.sonarsqube.org
http://xradar.sf.net
http://www.castsoftware.com

After describing how we use quality models, we will explain each of the concepts briefly and describe which
problems they solve. Finally, we will combine the concepts into a meta-model to show the complete pic-
ture. These concepts and the meta-model were developed in three iterations spanning three years with
corresponding evaluations [46] (see also Section 4.1).

3.1. Usage of Quality Models

Most commonly, we find quality models reduced to mere reference taxonomies or implicitly implemented
in tools. As explicit and living artefacts, however, they can capture general knowledge about software
quality, accumulate knowledge from their application in projects, and allow quality engineers to define a
common understanding of quality in a specific context [54, 23, 31, 52].

We aim to use this knowledge as the basis for quality control. In the quality control loop [20], the quality
model is the central element for identifying quality requirements, planning quality assurance activities,
assessing the fulfilment of quality requirements, and reworking the software product based on the assessment
results. The quality model is useful for defining what quality aspects are relevant, how we can measure
them and how we can interpret the measurement data to understand the actual quality of a specific software
product. This single source of quality information helps to avoid redundancies and inconsistencies which
are typical for quality specifications and guidelines.

The quality model defines preferences regarding quality which we need to tailor to the product to be
developed in that it specifies relevant quality aspects (not relevant ones are not included in the model) and
the level of their relevance (reflected by the importance weights associated with the quality aspects).

In this article, we will focus on the usage of quality models for quality assessment purposes. In this
scenario, a software product is measured according to the quality metrics defined in the quality model,
and the measurement data are interpreted according to the utility functions defined in the model and then
aggregated along the model’s structure to derive utilities for individual quality aspects and for product’s
overall quality. Finally, the aggregated utilities are mapped onto more intuitive quality assessments, for
instance ordinal-scale school grades. Please refer to Section 5.1 for a detailed description of the quality
assessment method and an example of its usage.

Quality assessments may be used in a summative or in a formative way. Using the assessment results in
a summative way allows quality engineers to assess a software product’s quality at specific quality gates and
to initiate appropriate quality improvements. The assessment results of a product can be interpreted on its
own but also serve as input for a trend analysis, or they can be compared with those of other products in a
benchmarking setting. Furthermore, the results can be used in a formative way to spot software defects in
the source code. Additionally, applying continuous quality assessments using a quality model may improve
the quality awareness of practitioners as they learn from the quality knowledge contained in the quality
model.

3.2. General Concepts

The previous work of all Quamoco partners on quality models, our joint discussions, and experiences
with earlier versions of the meta-model led us to the basic concept of a factor. A factor expresses a property
of an entity, which is similar to what Dromey [25] calls quality carrying properties of product components.
We use entities to describe the things that are important for quality and properties for the attributes of the
things we are interested in. Because the concept of a factor is general, we can use it on different levels of
abstraction. As we focus on product quality and aspects of the product that are relevant for it, the entity
will always be a part of the software product. For example, we have concrete factors such as cohesion of
classes as well as abstract factors such as portability of the product. The factor concept as such would be
generic enough to cover process or people aspects as well, but these are beyond the scope of the work in this
article.

To clearly describe product quality from an abstract level down to concrete measurements, we dif-
ferentiate between the two factor types quality aspects and product factors which represent two levels of
abstraction. Both can be refined into sub-aspects and sub-factors, respectively, as illustrated in Figure 1.
Quality aspects express abstract quality goals, for example the quality characteristics (or quality attributes)

6

of ISO/IEC 25010 which always have the complete product as their entity because they describe the whole
product. For example, valid quality aspects are maintainability of the product, analysability of the product
or reliability of the product.

Product factors, in contrast, are attributes of parts of the product. We require the leaf product factors
to be concrete enough to be measured. Examples are duplication of source code part, which we measure
with clone coverage9, or detail complexity of method measured by length and nesting depth. This separation
of quality aspects and product factors helps us to bridge the gap between abstract notions of quality and
concrete implementations. In addition, separating the entities from their properties addresses the problem
of the difficulty of decomposing quality attributes. Product factors can easily be decomposed regarding
either their property or their entity. For example, the entity class, representing a part of an object-oriented
program, can be decomposed straightforwardly into the entities attribute and method. Hence, we can exactly
model for what a property holds.

���	�������	

��������

������	 ���	��

��������������

������

�

� ������

������

������ ������

��������

���	�����	�

�

�

�

�

������

���
	��

��
��	����

�	�������

	
�� ��

Figure 1: The Quality Model Concepts

Moreover, the concepts allow us to model several different hierarchies of quality aspects to express
divergent views on quality. Quality has so many different facets that a single hierarchy is not able to express
all of them. Even in the recent ISO/IEC 25010, there are two quality hierarchies: product quality and
quality in use. We can model both as quality aspect hierarchies. Other types of quality aspects are also
possible. We found that this gives us the flexibility to build quality models tailored, for example for different
stakeholders. In principle, the concept also allows us to have different product factor hierarchies or more
levels of abstraction. In our experiences building quality models, however, we found these two levels to be
often sufficient, given the expressiveness gained from clearly separating entities and properties.

To close the gap between abstract quality aspects and measurable properties of a product, we need to
put the two factor types into relation. Product factors can have impacts on quality aspects. This is similar
to variation factors, which have impacts on quality factors in GQM abstraction sheets [70]. An impact is
either positive or negative and describes how the degree of presence or absence of a product factor impacts
a quality aspect. This gives us a complete chain from measured product factors to impacted quality aspects
and vice versa. Not all product factors in our models have impacts because we sometimes use them only for
structuring purposes. Yet, all product factors that we want to have included in assessments need to have at
least one impact on a quality aspect.

Those product factors need to be concrete enough to be measured. Hence, we also have the concept of
measures for product factors. A measure is a concrete description of how a specific product factor should

9Clone coverage is the probability that a randomly chosen line of code is duplicated.

7

be quantified for a specific context. For example, this could be the number of deviations from the rule for
Java that strings should not be compared using the “==” operator or clone coverage as mentioned earlier.
A product factor can have more than one measure if we need multiple measures to cover its concept.

Moreover, we separate the measures from their instruments. Instruments describe a concrete implemen-
tation of a measure. In the example of the string comparison, an instrument is the corresponding rule as
implemented in the static analysis tool FindBugs. This gives us additional flexibility to collect data for
measures either manually or with different tools in different contexts.

Having these relationships with measures and instruments, it is straightforward to assign evaluations to
product factors and quality aspects to form a quality assessment. The evaluations aggregate the measurement
results (provided by the instruments) for product factors and the evaluation results of impacting product
factors for quality aspects. The intuition is that the evaluations hold some kind of formula to calculate these
aggregations. We will describe a comprehensive quality assessment method showing concrete evaluations in
Section 5.

Moreover, we can go the other way round. We can pick quality aspects, for example, ISO/IEC 25010
quality characteristics, which we consider important and costly for a specific software system, and trace what
product factors affect them and what measures quantify them (cf. [73]). This allows us to put emphasis on
the product factors with the largest impact on these quality aspects. It also gives us the basis for specifying
quality requirements for which we developed an explicit quality requirements method [64, 50].

Building quality models with all these element types results in large models with hundreds of model
elements. Not all elements are important in each context and it is impractical to build a single quality
model that contains all measures for all relevant technologies. Therefore, we introduced a modularisation
concept which allows us to split the quality model into modules. For example, in the concrete models
described in this article, there is the root module containing general quality aspect hierarchies as well as
basic product factors and measures. We add additional modules for specific technologies and paradigms,
such as object orientation, programming languages, such as C#, and domains, such as embedded systems.
This gives us a flexible way to build large and concrete quality models that fit together, meaning they are
based on the same properties and entities.

Modularisation enables us to choose appropriate modules and extend the quality model with additional
modules for a given context. To adapt the quality model for a specific company or project, however, this
is still too coarse-grained. Hence, we also developed an explicit adaptation method, which guides a quality
manager in choosing relevant quality aspects, product factors and measures for a particular project (see
Section 6.2).

3.3. Meta-Model

We precisely specified the general concepts described so far in a meta-model. The core elements of the
meta-model are depicted as an (abstracted) UML class diagram in Figure 2. Please note that we left out
a lot of details such as the IDs, names and descriptions of each element to make it more comprehensible.
A detailed description of the meta-model is available as a technical report [76]. The central element of the
meta-model is the Factor with its specialisations Quality Aspect and Product Factor. Both can be refined
and, hence, produce separate directed acyclic graphs. An Impact can only exist between a Product Factor
and a Quality Aspect. This represents our main relationship between factors and allows us to specify the
core quality concepts.

A Factor always has an associated Entity, which can be in an is-a as well as a part-of hierarchy. The
property of an Entity that the Factor describes is expressed in the Factor ’s name. Each Factor may also
have an associated Evaluation. It specifies how to evaluate the Factor. For that, we can use the evaluation
results from sub-factors or – in the case of a Product Factor – the values of associated Measures. To keep
the UML class diagram readable, we omit these relationships there. A Measure can be associated with more
than one Product Factor and has potentially several Instruments that allow us to collect a value for the
Measure in different contexts, e. g. with a manual inspection or a static analysis tool.

We modelled this meta-model with all details as an EMF10 model which then served as the basis for the

10Eclipse Modeling Framework, http://emf.eclipse.org/

8

http://emf.eclipse.org/

Entity
Product
Factor

Quality
Aspect

Impact

part-of
refines

is-a
Measure

Factor

refines

Evaluation

Instrument

uses

refinesquantifies

Figure 2: The Meta Quality Model (Excerpt)

quality model editor (see Section 6).

4. Base Model

The base quality model’s main objective is to be an operationalised quality model that can be used
directly to assess a wide range of software products and can also be extended for specific contexts with
little effort. To reach this goal, the Quamoco project partners conducted several workshops and sprints to
collaboratively transfer their knowledge and experience into the structure described in Section 3.

The resulting quality model represents our consolidated view on the basics of the quality of software
source code and is, in principle, applicable to any kind of software. It details quality down to measures and
instruments for the assessment of Java and C# systems and, hence, enables comprehensive, tool-supported
quality assessment without requiring large adaptation or configuration effort.

4.1. Development of the Base Model

The development of the base model was a joint effort of all project partners in Quamoco. Overall, at
least 23 people from industry and academia were involved in building the base model. We worked on it (and
its underlying meta-model) throughout all three years of the project. This long time span led to changes
and adaptations of the development approach over time. As the development of the model is crucial for
judging how much it can be trusted, we describe the development approach and how we executed it.

4.1.1. Approach

Our general approach to developing the base model was to combine top-down and bottom-up modelling.
This means that we started from general quality aspects and added product factors and measures that are
important for these quality aspects based on our experiences or existing studies. Moreover, we also evaluated
existing measures, mostly from static analysis tools, investigated their intention and selectively built suitable
product factors and impacts on quality aspects. We believe both directions are necessary. Modelling bottom-
up is attractive because we know we have measures, most of them automatically collectable, for the product
factors we are building. Yet, to come to a comprehensive assessment of quality aspects, we need to identify
which product factors and measures are missing. Therefore, the combination of top-down and bottom-up
modelling supports the comprehensiveness of the model.

Because we knew that we had to learn while building the base model, we introduced three large, year-
long iterations. Our aim was to have one base model after each iteration that we could further discuss and
validate. This included a round of feedback from the whole consortium in each iteration, meaning we gave
a base model to people not working on it directly for discussion. In addition, each iteration ended with
detailed reviews by two reviewers from the consortium who were not directly involved in the base model

9

development. Both the feedback rounds and the reviews ensured that all experiences of the project members
were captured.

The central means for developing the base model and assuring its quality were regular workshops. We
used workshops to work on the meta-model as well as on the base model. We conducted workshops at least
at each status meeting (every two to three months) and added additional workshops as needed. Over time,
we used various elicitation and analysis techniques, such as prototyping, design sketching or pair modelling.
A special kind of workshop were tutorial days aimed at introducing all members of the consortium to the
current state of the base model. This also helped us to integrate the experience of all project members.

As we learned that it is easy to build a quality model that cannot be used in a quality assessment, we
introduced the concept of nightly quality analysis. This means that we executed a quality assessment every
night on a set of open source projects using the current state of the base model. Hence, similar to continuous
integration, we found problems in the quality model quickly.

Furthermore, we explicitly validated the results of each iteration. We developed four validation concepts
to investigate the structure and contents of the base model as shown in Table 1. We wanted to understand
the suitability of the structure, how much the base model assessment results differ between systems, how
well the results fit to expert opinions, and how well practitioners understand and accept the base model
and its results. Each of the validations for every iteration were also reviewed by two reviewers not directly
involved in the validations. The final validations are described in Section 7.

In iteration 1, most of the development of the base model was done by five people from one partner
organisation. The difficult consolidation and the discussions at the workshops led us to change that approach.
We realised that we needed to integrate all partners and set aside dedicated time slots for working on the
base model. Therefore, we introduced the concept of sprints. Each sprint was two weeks long and included
four to eight people from two to three partners. We started with two days of joint modelling in one location.
Afterwards all participants worked independently on the base model and synchronised their work in daily
conference calls. In iteration 2, the sprints were aimed at exploring different areas of what to include in the
base model. In iteration 3, we aimed at consolidating and completing the base model.

4.1.2. Execution

In this section, we describe the execution of the approach to building the base model structured along
the iterations. We show an overview of the activities of all three iterations in Table 2. We omitted the
feedback rounds in the table because we performed one in each iteration to discuss the current status of the
base model.

This section and particularly the six steps described below report on the third iteration in more detail
because it had the largest influence on the final contents of the base model. The main work finalising the
base model was done by nine people during a period of three months in which we held approx. three meetings
or conference calls a week, each lasting about two hours. All in all, this sums up to approx. 80 hours of joint
discussions.

1. Selection of Tools: In the consortium we decided to finalise the base model for the programming
languages Java and C#. We chose to use freely available tools as a basis for the measures to facilitate
the application of the base model. Thus, we selected the commonly used tools FindBugs and PMD
for Java and Gendarme for C#. Moreover, we included measures available in the quality assessment
framework ConQAT11. We captured the knowledge of our industry partners about important checks
in manual reviews as manual measures.

2. Distillation of Product Factors: We used a bottom-up approach to define product factors based on the
measures collected in step 1. We created an entity hierarchy containing concepts of object-oriented
programming languages, like classes, methods, or statements. Then we assigned each measure to a
product factor in a series of meetings. If no suitable product factor existed, a new one was created.
If no suitable entity existed, a new entity was also created. This process was guided by the goal of
obtaining a consistent and comprehensible base model. Hence, there were extensive discussions in

11http://www.conqat.org/

10

http://www.conqat.org/

Table 1: Validation Concepts for the Base Model

Meta-
model

suitability

We let experts transcribe (parts of) their existing, diverse quality models into the new
structure as given by our meta-model and fill out a questionnaire on how well the struc-
ture fits their model and needs. Although this does not validate the base model directly,
the underlying meta-model is a fundamental part in terms of the practicality of a quality
model. We already published the results of this validation in [46].

Degree of
differentia-

tion

A quality model that gives a very similar quality grade for all kinds of systems is not
helpful. Hence, we ran quality assessments on open source and industrial systems to
investigate to what degree the results differentiate the systems. We do not report detailed
results in this article. Yet, the experiences helped us in the development of the base
model by understanding what is important (Section 5.2). Furthermore, we shaped the
interpretation model of the quality assessment approach (Section 5.1.4) to support this
differentiation.

Criterion
validity

To understand whether our quality assessment results from the base model matched
independent assessments, we compared the assessment results based on the model with
the independent results for existing systems. First, in case we had a quality ranking of a
set of systems or sub-systems, we performed a quality assessment using the non-adapted
base model and compared the resulting quality ranking with the existing one. We did this
using expert opinions about open source and industrial systems (Section 7.1). Second,
in case we knew that during certain time periods, changes to a software had been done
specifically to improve its quality, we assessed the quality at several points in time using
the base model and expected to see an improvement in the quality grade as well. We
performed such a validation with one industrial system (Section 7.2).

Acceptance Because it is essential that practitioners understand the base model structure, its contents
and the assessment results, we conducted assessments of industrial systems and inspected
the results together with experts for the systems. We elicited the experts’ understanding
and acceptance of the base model and the result of the assessment conducted using the
base model with a questionnaire. We performed these validations for industrial systems
(Section 7.3).

11

Table 2: Activities for Developing the Base Model

It. Focus Meta-
model
workshops

Base
model
work-
shops

Sprints Validation Reviews

1 Structure
and meta-
model

8 5 – Meta-model suit-
ability
Degree of differenti-
ation
Criterion validity

4

2 Exploring
possible
contents

4 8 GUI and accessibility
C and maintenance
Structuredness and
portability
Performance and
efficiency

Meta-model suit-
ability
Degree of differenti-
ation
Criterion validity

4

3 Consolida-
tion and
completion

– 3 Factor consolidation
Automation and con-
sistency
Visualisation
Calibration and
weighting
Consolidation with
specific quality models

Criterion validity
Acceptance

4

the meetings, leading to previously defined product factors being changed. For instance, previously
defined product factors were split, merged, or renamed.

3. Defining the Impacts: After the product factors had been created in step 2, the impacts of each
product factor on a quality aspect were derived in workshops as in the earlier iterations. Each impact
was documented in the quality model with a justification how the product factor influences the quality
aspect.

4. Reviewing and Consolidating: In the next step, the model – now consisting of instruments/measures,
product factors, impacts, and quality aspects – was reviewed and consolidated. To validate the chain
from measures to product factors to impacts, the reviewers asked the following question for each
product factor: “Would the impacts assigned to a product factor be valid if they were directly assigned
to each measure of that factor?” Asking this question meant evaluating whether the chosen granularity
of the product factor was right. If this question could not be answered positively for a product factor,
it had to be split into two or more factors, or a measure had to be reassigned to another product
factor. In addition, we added the top-down view by asking ourselves whether the quality aspects
were appropriately covered by the impacting product factors and whether the product factors were
comprehensively measured by the assigned measures.

5. Deriving Evaluations: The creation of all model elements concerned with measurement and the eval-
uation of the measurement results is described in detail in Section 5.2.

6. Assessment of Coverage: To assess the completeness of the developed base model, we introduced an
attribute Coverage to measure the evaluations. For each measure evaluation, we manually assessed
to which extent the available measures covered the product factor. The values for coverage were
determined in workshops and added to the model.

12

4.2. Contents

The Quamoco base model – available together with tool support (see Section 6) and in a Web version12

– is a comprehensive selection of factors and measures relevant for software quality assessment. In total, it
comprises 92 entities and 284 factors. Since some factors are used for structuring purposes rather than for
quality assessment, only 233 factors have evaluations assigned to them. Of these, 201 factors define impacts
on other factors, leading to a total of 490 impacts. These numbers differ from the numbers in our previous
publication in [75] because the model was consolidated at the conclusion of the Quamoco project, which
took place after the publication of that paper. The relationship between ISO/IEC 25010 characteristics
and base model elements is presented in Table 3. Note that product factors can have impacts on multiple
quality aspects, and measures can contribute to multiple product factors, which is why the sum over a table
column can be greater than the total number of distinct elements of that type. Also, tool-based measures
may be implemented differently for C# than for Java, so there may be two tool-based instruments for the
same measure.

Table 3: ISO characteristics vs. base model elements

Product Tool-Based Manual
Factors Instruments Instruments

Maintainability 146 403 8
Functional Suitability 87 271 1
Reliability 69 218 0
Performance Efficiency 59 165 1
Security 17 52 0
Portability 11 20 0
Compatibility 0 0 0
Usability 0 0 0

Since the model provides operationalisation for different programming languages (cf. Section 4.3), it
contains considerably more measures than factors: In total, there are 194 measured factors and 526 measures
in the model. For these measures, the model contains 544 instruments, which are divided into 8 manual
ones and 536 that are provided by one of 12 different tools. The tools most relied upon are FindBugs (Java,
361 rules modelled) and Gendarme (C#, 146 rules). Other tools integrated into our model include PMD
and several clone detection, size, and comment analyses, which are part of ConQAT.

The validity of metrics for measuring and evaluating the presence or absence of quality characteristics
(e. g. maintainability) in a software product is well studied but controversial. While some studies (e. g.
[9], [14], [18]) conclude that software metrics could be used as indicators of quality, others (e.g., [2], [10], [67])
deny the validity of metrics. However, since we put the emphasis on rules of static analysis and adhering to
best practices, we ascribe less importance to the validity of other metrics for our models.

Rules of static code analysis can be used for ascertaining specific potential flaws within source code,
e. g. to detect bug patterns often observed [32] or to check for established best practices. Thus, associating
violations of both (due to such rules or best practices such as naming conventions) with factors can make
it easier to understand their impact. No empirical study known to us is currently available, however, that
provides statements about the validity of rule assignments to certain factors. In the specific quality model
for embedded software systems (see section 8) we evaluated whether the associated rules and best practices
are appropriate and sufficient for certain aspects.

In the following, we present example product factors including their respective measures and impacts
to illustrate the contents of the base model. An important design decision was to use the product quality
characteristics of ISO/IEC 25010 to describe quality aspects, because this is the best-known way of describing

12http://www.quamoco.de/

13

http://www.quamoco.de/

software quality. These characteristics all refer to the whole software product and are hence modelled in such
a way that each characteristic refines the factor quality with the entity product and each sub-characteristic
refines its respective characteristic.

4.2.1. Rules of Static Code Analysis Tools

As described above, the largest fraction of measures refers to static code analysis tools. One example is
the FindBugs rule FE TEST IF EQUAL TO NOT A NUMBER, which scans Java code for equality checks
of floating point values with the Double.NaN constant. The Java language semantics defines that nothing
ever equals NaN, not even NaN itself, so that (x == Double.NaN) is always false. To check whether a value
is not a number, the programmer has to call Double.isNaN(x). This rule is an instrument for the doomed
test for equality to NaN measure, which measures the product factor general expression applicability for
comparison expressions, along with several other measures. This product factor in turn impacts functional
correctness, because the developer intended to check a number for NaN but the actual code does not. It
furthermore impacts analysability, because understanding the intention of this construct demands additional
effort.

Using automatic source code analysis techniques for quality assessment implies the risk of false positives,
i. e. findings reported by the analysis tools that do not reflect actual problems in the source code. While false
positives have been reported to cause acceptance problems [12], providers of modern static analysis tools
continuously work on reducing the number of false positives produced by their tools (e. g. [4, 33]). Another
aspect is that the calibration (see Section 5.2) was performed in such a way that normalised measurement
results were transformed into utility values based on the value range they produce. This means that the
utility mapping functions already take false positives into account and therefore false positives will not
severely impact the assessment results.

In the Quamoco approach, we adapted the concept of utility value from Multi-Attribute Utility/Value
Theory (MAUT/MAVT) [72] where utility13 represents the strength of preference a decision maker has
among alternatives (in our case alternative software products) regarding a specific decision criterion (in our
case a quality aspect). Transformation between normalised measurement results and corresponding utility
values is performed with the help of utility functions. Utility maps measured, objective values of a quality
aspect onto corresponding utilities.

Additionally, measures that we knew had a comparatively high rate of false positives were assigned lower
weights during the modelling workshops (see Section 4.1).

4.2.2. Programming Best Practices

Rule-based code analysis tools cannot detect every kind of quality problem. Therefore, the base model
also contains product factors based on metrics and best practices. For example, identifiers have been found
to be essential for the understandability of source code. Whether identifiers are used in a concise and
consistent manner can only partly be assessed automatically [22]. Therefore, the product factor conformity
to naming convention for source code identifiers contains both automatic checks performed by several tools
and manual instruments for assessing whether identifiers are used in a consistent and meaningful way.

Another well-known property related to software quality is code cloning. Source code containing large
numbers of clones has been shown to be hard to understand and to maintain [41]. The concept of code
cloning is represented in the product factor duplication of source code, which has negative impacts on both
analysability and modifiability. It is measured by clone coverage as well as cloning overhead. Both these
measures have corresponding instruments for Java and C#, which are obtained by ConQAT’s clone detection
functionality.

13MAUT assumes that decision-making involves risk. For the sake of simplifying the initial quality assessment method, we
assume quality assessment to have a riskless character and use the multi-attribute value theory (MAVT). Yet, we will use the
term “utility” instead of “value” to avoid confusion between the meaning of the term “value” in the context of MAUT and its
common understanding in the software engineering and measurement domains.

14

Root

Object-orientedC GUI

C++ Java C#

Figure 3: Modules of the Base Model

4.2.3. Guidelines

To show that our concepts are not only applicable to static analysis of source code, we modelled a subset
of W3C’s Web Content Accessibility Guidelines (WCAG) 2.014, which is a guideline for making web content
accessible to people with disabilities. The WCAG differs from the examples described above in several
ways: Most of the contents are phrased as success criteria, outlining the best way to achieve accessibility
and providing technology-independent instructions to test them. In addition, the entities of interest are
UI components rather than source code elements. Due to the size of the guideline and the small fraction
represented in our model, we decided to separate this GUI module from the base model and provide it
separately as an example rather than a complete model.

4.3. Modular Structure

Modularisation is not only helpful by differentiating between the base model and specific models but
also within the base model itself. It allows us to separate more abstract, context-independent elements from
concrete, technology-specific elements. In Figure 3, the modules of the base model are depicted with black
lines, while experimental modules are depicted in grey. In the base model, the module root contains the
definitions of quality aspects as well as product factors that are independent of programming paradigms or
languages. For these product factors, the root module also contains evaluations as well as impacts on quality
aspects, ensuring a large amount of reusability across the other modules. We introduced our own module for
each programming language in the quality model. An intermediate module object-oriented defines common
concepts of object-oriented programming languages (Java, C#) such as classes or inheritance.

We also used the modularisation concept to integrate specific analysis tools for particular programming
languages. In the module object-oriented, we defined a large number of general measures without connections
to concrete tools (e. g., number of classes). The module for Java then defines a tool for measuring the
number of classes in Java systems. This way, we support separation between general concepts and specific
instruments.

The explicit definition of modules provides several benefits: First, it enables quality modellers to sepa-
rately and independently work on modules for different technologies and domains. Second, it allows us to
explicitly model the commonalities and differences between several programming languages. The module
object-oriented defines 64 common factors to be reused in the modules Java and C#, which add only 1 and
8 language-specific product factors, respectively.

Furthermore, modularisation made it possible to create other modules for conducting various experiments
without impairing the more stable contents of the base model. We created two modules for C and C++,
which are not mature yet. Furthermore, we tested the modelling of non-source code factors in the module
GUI for graphical user interfaces.

14 http://www.w3.org/TR/WCAG

15

http://www.w3.org/TR/WCAG

5. Quality Assessment Approach

A quality model specifies quality in terms of relevant properties of software artefacts and associated
measures. Yet, to support the assessment of product quality, the quality model needs to be associated with
an approach to synthesise and interpret the measurement data collected for the product. In this section,
we specify a quality assessment method applicable for Quamoco quality models. We assume for the method
that we have already adapted the quality model suitably for our context (see Section 6.2 for more detail on
adapting quality models).

5.1. Quality Assessment Method

In this section, we propose a systematic method for assessing the quality of software products. The
method relies on the requirements we identified in a systematic literature review and a small industrial
survey [69]. These requirements are briefly summarized in Table 4.

The quality assessment procedure comprises four basic steps: measurement, evaluation, aggregation,
and interpretation. Measurement consists of the collection of measurement data for the factors specified at
the lowest level of the quality model’s hierarchy according to the measures defined in the quality model.
Evaluation comprises the determination of factor utility values for individual factors based on the collected
measurement data. Aggregation comprises the synthesis of utilities obtained on individual factors into
the total utility of a product under assessment. Finally, interpretation is the translation of the relatively
abstract utility values into a quality assessment value that is intuitive for human decision makers. Before
a quality assessment can be executed, it first needs to be operationalised. The measurement step may
require defining additional measures to ensure that measurement data collected for the same measure across
different products are comparable. The evaluation step requires defining utility functions to model the
preferences of decision makers with respect to the measures defined for the factors. Aggregation requires
defining the aggregation operator to synthesise the utilities of the individual factors across the quality model
hierarchy into the total utility value. This includes assigning factors with numerical weights to reflect their
relative importance to a decision maker during the aggregation. Finally, interpretation requires defining an
interpretation model that will translate utility values into a quality assessment value that is intuitive for
a human decision maker. Users of the quality model and the quality assessment method can (and should)
perform operationalisation steps prior to quality assessment make the approach fit their specific context
(e. g. they should adjust utility functions and factor weighting to reflect their specific preference regarding
the importance of individual factors).

The Quamoco quality assessment method specifies both operationalisation of the quality model for the
purpose of assessment and the quality assessment procedure. Figure 4 shows the basic steps of the model’s
operationalisation (left side of the figure) and of the quality assessment procedure (right side of the figure)
mapped onto the related elements of the quality model. These basic steps and their outputs correspond to
the generic process of Multicriteria Decision Analysis (MCDA) (e. g. [24]).

In the remainder of this section, we will discuss the basic operationalisation and assessment steps and
illustrate them with an excerpt of the base model described in Section 4.2.1. Figure 5 presents the example
quality model with a summary of the assessment results.

5.1.1. Measurement

We start the operationalisation by normalising the measures associated with the product factors. Nor-
malisation is aimed at ensuring that the measurement data collected for the same measure are comparable
across different products. For this purpose, we define normalisation measures. It has to be noted that cross-
product comparability of the results may be negatively affected by the selected normalisation measure. For
instance, the measure LOC will have different effects for products using different programming languages.
Hence, we employ more abstract measures, such as number of classes, for normalising class-related measures,
where appropriate.

In the application, we collect values for the measures and normalisation measures using the associated
instruments, which can be manual or automatic. This step is well assisted by our tool support (Section 6.3)
by running automated analysers, transforming all values into a uniform format, and normalising them.

16

Table 4: Requirements regarding a quality assessment method (SQA)

R01. Supports group
decision-making and
multiple viewpoints

SQA should be transparent and understandable for the quality stakeholders.
If the assessment provided by the assessment method deviates from what is
expected by the quality stakeholders, then they should be able to easily identify
and understand the causes of the discrepancies.

R02. Comprehensible to
quality stakeholders

SQA should be transparent and understandable for the quality stakeholders.
If the assessment provided by the assessment method deviates from what is
expected by the quality stakeholders, then they should be able to easily identify
and understand the causes of the discrepancies.

R03. Handles uncertain
information

SQA should be applicable to both certain and uncertain information. When
uncertain information is provided, the assessment method should also indicate
the uncertainty of the assessments it delivers.

R04. Correctly
comprehends the

preferences of the
stakeholders

SQA should assess the quality of a software product as it is perceived (and as
it would be assessed) by software decision makers whose quality requirements
this software product should satisfy.

R05. Copes with
incomplete information

SQA should be applicable for incomplete input. When applied to incomplete
information, the method should provide reasonable outcomes, probably within
a certain uncertainty range.

R06. Handles
interdependencies

between elements of the
quality model

SQA should handle potential interdependencies between quality attributes (i.e.,
elements of the underlying quality model). It other words, the quality assess-
ment should explicitly consider how the quality attributes interact with and
constrain each other, and how they affect the achievement of other quality
attributes.

R07. Combines
compensatory and
non-compensatory

approach

SQA should support assessment for both comparable and non-comparable qual-
ity attributes. For comparable quality attributes, the method should support
mutual compensation of their ”negative” and ”positive” values.

R08. Supported by an
automatic tool

SQA should be supported by an automatic software tool. Moreover, configuring
and operating the tool should not require much effort. After configuring, the
tool should allow fully automatic quality assessment.

R09. Allows for
incorporating subjective

expert evaluations

SQA should allow for manual assessment of the selected quality attributes
and for incorporating these intermediate assessments into the overall quality
assessment process.

R10. Supports
benchmarking

SQA should support comparing software products directly, using their quality
assessment results. For this purpose, quality assessment results need to be
comparable against each other for different software products, particularly for
different versions of the same product.

R11. Provides repeatable
results (assessments)

SQA should provide repeatable assessments when applied with the same set of
alternatives.

R12. Custom-tailorable SQA should allow for assessing quality regardless of the particular structure of
the quality problem and the context of the quality assessment. The structure
of a quality problem typically refers to the structure of the underlying quality
model (e.g., flat list of effort factors or hierarchical structure of aspects and
sub-aspects).

R13. Supports
hierarchical quality model

SQA should operate on a hierarchically structured quality model. In other
words, the method should be applicable to quality aspects that are organized
in a hierarchical structure.

R14. Scalable and
extensible

SQA should allow for assessing quality independent of the size and complexity
of the underlying quality model (the number of quality attributes and their
dependencies). In other words, the applicability of the method should not de-
pend on the size and complexity of the underlying quality assessment problem.
Moreover, the assessment method should also allow changing the size and com-
plexity of the underlying quality model, that is, it should not be fixed for a
specific quality model.

R15. Supports
intermediate assessments

SQA should allow for assessing quality at intermediate levels of the hierarchical
structure of the underlying quality model. In other words, it should be possible
to assess quality aspects at any level of the quality model hierarchy instead of
doing a single assessment for the root quality aspect.

17

Applica'on*

Pr
od

uc
t*

Fa
ct
or
s*

M
ea
su
re
s*

In
st
ru
5

m
en

ts
*

So8ware*Product*

Q
ua

lit
y*
As
pe

ct
s!

Quality*Model*Opera'onalisa'on*

Measure!M2! Measure!M3!Measure!M1!

Factor!F1.1! Factor!F1.2! F1.n!

Quality!Q!

Factor!F2!

…*

…*

Aggrega7on!
and!
Interpreta7on!

Evalua7on!

Measurement!

Defining!weights,!
aggrega7on!

operator,!and!
interpreta7on!

models!

Defining!
weights,!u7lity!
func7ons,!and!
interpreta7on!

models!

Defining!
measures!and!

weights!

wM4! wM5!

W1.1! W1.2! W1.n!

W1! W2!

Measure!M4! Measure!M5!

Factor!F1!

Figure 4: Overview of the Quality Assessment Approach

F1

Functional correctness

F1.1
General expression applicability

of comparison expressions

M5
Normalized M3

M4
Normalized M1

M1
#Doomed test for
equality to NaN

M4 = M1 / M2

= 2.17E-6

Java Platform, Version 6

Benchmark
Data

open-source
software
systems

min-max thresholds
for linear decreasing

utility functions

M1 = 6 M2 =
2,759,369

M2
#Lines of source

code

U(F1.1) = wM4 × U(M4) +
wM5 × U(M5)
= 0.85

M3
Floating point

equality

wM4 = 0.25 wM5 = 0.75

U(F1) = wF1.1 × U(F1.1) +
… + wF1.n × U(F1.n)

M5 = 9

M5 = M3 / M2

= 3.19E-6

Linear decreasing
utility function

max

1.0

0.0
min

…

Figure 5: Example Quality Assessment

18

Example. In the operationalisation step, we normalise the base measures which count the number of specific
rule violations. We normalise the base measures M1: Doomed test for equality to NaN and M3: Floating
point equality by the base measure M2: Lines of code into the derived measures M4 and M5, respectively.
Through normalisation, these measurements of M1 and M3 become comparable between software systems
of different sizes. For the source code of the Java platform, version 6, we obtain M1 = 6, M2 = 2, 759, 369,
and M3 = 9. Consequently M4 = 2.17× 10−6 and M5 = 3.26× 10−6.

5.1.2. Evaluation

In the operationalisation step, we specify the evaluations for factors (Section 3.3). We define a utility
function for each measure of a product factor at the lowest level of the quality model. These functions specify
the utility each measure has in the context of the product factor with which it is associated. To ensure
that the evaluation will be understandable, we use only simple linear increasing and decreasing functions
with two thresholds min and max, which determine when the factor is associated with the minimal (0) and
maximal utility (1).

Once we have decided on the type of function (decreasing or increasing), we determine the thresholds for
the function using a benchmarking approach. The basic principle of benchmarking is to collect a measure
for a (large) number of products (benchmarking base) and compare the measure’s value for the product
under assessment to these values. This allows us to decide if the product has better, equally good or worse
quality than other products. The details of how we determine the thresholds are described in the appendix.

During the application, we calculate the defined evaluations using the collected measurement data.
Hence, we evaluate the utility of all product factors at the lowest level of the quality model.

A common requirement not addressed by most existing quality assessment approaches is how to cope
with incomplete measurement data [16]. In case of incomplete inputs to the assessment, we assess quality
using best-case and worst-case values for the missing data and express the uncertainty using the resulting
range.

Example. To operationalise the evaluation step, we had to define utility functions for the measures M4 and
M5 which are directly connected to the factor F ((1.1). The higher the value of each of these measures and
the worse it is for software quality, the lower should be the associated utility. To reflect this, we selected
simple decreasing linear utility functions. We derived min and max thresholds for the utility functions
based on the benchmark measurement data from 120 open-source projects. The derived thresholds were
min(M4) = 0,max(M4) = 2.17 × 10−6 and min(M5) = 0,max(M5) = 3.26 × 10−6. (Figure 6) illustrates
the utility function for the measure M4.

The utility function can then be used for deriving the utilities with which the measures M4 and M5

contribute to the factor F1.1. We calculate U(M4) = 0.74 for measure M4 (see Fig. 6) and U(M5) == 0.89.

Linear decreasing
utility function

max = 8.50E-6

1.0

0.0

U
til

ity

Measure M4

min = 0.0

0.74

M4 = 2.17E-06

Figure 6: Linear Utility Function

5.1.3. Aggregation

During operationalisation, we assign numerical weights to the elements of the quality model, specifically
to all quality aspects and product factors, and additionally to the measures that are assigned to the product

19

factors defined at the lowest level of the quality model hierarchy. Numerical weights represent the relative
importance of the adjacent elements of the quality model to the decision makers.

We suggest forming relevance rankings based on available data or expert opinion. We can then use the
Rank-Order Centroid method [8] to automatically calculate the weights from the relevance ranking according
to the Swing approach [26].

During application, we use the weights in the bottom-up synthesis of factor utilities along the hierarchy
of the quality model. For this purpose, we need an appropriate aggregation operator. We use a weighted
sum operator as an easily understandable and relatively robust aggregation approach.

Example. In the operationalisation step the aggregation operator is selected and appropriate importance
weights are assigned to factors and quality aspects in the quality model. In our example, we used simple
weighted sum aggregation. Weights assigned to factors (and quality aspects) quantify how important the
factor is in the quality model relative to its sibling factors. That is, factors that have the same direct parent
in the quality model hierarchy. The importance of the i-th factor relative to its sibling factors is measured
as the cardinal weight wi such that: wi ∈ [0, 1] and the weight across all sibling factors (including the i-th
factor) sums up to 1. In our example M4 was rated as three times less important for F1.1: General expression
applicability of comparison expressions than the second measure M5. The calculated importance weights
are thus wM4

= 0.25 and wM5
= 0.75.

The aggregated utility of factor F1.1 is calculated as follows: U(F1.1) = wM4 ×U(M4) +wM5 ×U(M5) =
0.25 × 0.74 + 0.75 × 0.89 = 0.85. The same aggregation principle would be applied for higher levels of the
quality model, e. g. for F1: Functional correctness the aggregated utility would be U(F1) = w1.1×U(F1.1) +
... + w1.n × U(F1.n) = 0.02 × 0.85 + ... = 0.82. Yet, for the sake of simplicity, we limit our example to the
level of factor F1.1.

5.1.4. Interpretation

The activities described in the previous sections support the decision maker in interpreting a factor’s
utility, for example, if it is high or low. The objective of interpretation is to map the ratio-scale utility
onto a more intuitive scale, for instance onto an ordinal scale of school grades or traffic lights. During
operationalisation, we define the form of the interpretation model.

Figure 7 illustrates our proposed interpretation model for which we chose the metaphor of school grades.
The thresholds used in the model correspond to the coefficients used in German schools to convert students’
performance scores assigned for spelling tests. More than 10% incorrectly spelled words disqualify the test
with the worst grade of 6. We adopt this scale for the purpose of quality assessment by decreasing the
quality grades by one every 2% until the best possible grade of 1 is reached.

A
ss

es
sm

en
t

1

Evaluation (Utility)

2

4
5
6

3

Worst

Best

1.000.980.960.940.920.900.880.860.840.820.80

Figure 7: Interpretation Model

This step should be further supported by visualisations that prevents the assessor from getting lost in
the detailed quality model and its assessment results. For example, a sunburst diagram enables a focused
investigation across several hierarchy layers, or a Kiviat diagram helps to compare the results for different
systems or subsystems.

20

Example. In the operationalisation step, we select the interpretation model that will be used for converting
relatively incomprehensible utility values into a quality assessment understandable for human experts in
the specific context of quality assessment. In our example, we selected a German school grades model
which maps the percentage of task fulfilment ranging between 0% and 100% onto a 6-point grade scale.
The advantage of this model is that the source scale 0-100% corresponds to the utility scale 0-1 and school
grades are intuitive for every human expert (considering country-specific grading systems).

Following the interpretation model in school grades (Figure 7), a utility of 0.82 for F1.1: Functional
correctness gives a grade of 6 (worst).

5.2. Operationalisation of the Base Model

We performed the entire operationalisation of the assessment steps already for the base model; so it
is readily available for assessments. This was done as part of the base model development (Section 4.1).
The operationalisation may still need to be adapted for specific contexts but can provide a quick idea of a
system’s quality.

For the measurement step, two of our experts reviewed each measure to determine an appropriate
normalisation measure based on a defined set of rules.

In the evaluation step, we performed benchmarking on open source systems. We calibrated the C# part
of the base model with 23 open source systems, which we manually prepared for the quality assessment. For
the Java module of the base model, we used the repository SDS [5] as a benchmarking base.

According to [30], in an optimal benchmark base, not only the programming language is important for the
selection of proper benchmarking projects, but the size and application domain should also be considered.
The SDS repository contains about 18,000 open-source Java projects. These projects were mostly retrieved
from open-source databases such as Sourceforge via a web-crawling approach. In essence, this repository
contains mirrors of the version control repositories. Thus, these repositories usually contain not only the
most recent version of a software but also branches and tags.

For benchmarking, we prefer using only one version of each software project, and hence we decided to
use the most recent one. For finding the most recent one, we used a heuristic that is able to handle the most
commonly used directory structures for Java projects. If there is a directory called “trunk”, then this is used;
otherwise the root directory is used. The heuristic is also able to handle a directory structure where the root
directory contains multiple Java projects in single directories, each of them containing a directory named
“trunk”. Given that these are the most commonly used directory structures for Java projects, we conclude
that the heuristic should work in most cases. Moreover, we manually verified it for a dozen projects.

The SDS repository only contains the source code, but not the binaries. For certain quality measurements
(e. g. FindBugs), however, binaries compiled with the debug option of the Java compiler are needed. We
compiled all systems in a batch approach because the effort for manually configuring and compiling them
is prohibitive. The compilation of all systems took about 30 hours, executed in parallel on 12 PCs. Of all
available systems, about 6,000 were compiled successfully. Others could not be compiled because of missing
external libraries or because code needed to be generated during the build process.

To get a representative set of systems from the remaining 6,000 systems, we randomly selected systems
of different size classes. We know the distribution of systems in different size classes from [79] and selected
systems accordingly: 39 systems were larger than 100 kLoC, 42 systems were between 10 and 100 kLoC,
and 19 systems were between 5 and 10 kLoC. Since the SDS repository contained no systems larger than
250 kLoC, we included 10 systems of this size class that were available within the consortium. Most of the
used systems were open-source systems and, hence, might not be representative of commercial software. Yet,
we do not see any possibility to perform such an approach with commercial systems because we would not
be able to get a reasonable number. Furthermore, with open systems, the analysis can be easily repeated
and replicated.

We automatically calculated the thresholds for the linear distributions using the approach described in
the appendix. Finally, two of our experts reviewed these thresholds for each measure by benchmarking them
together with supporting descriptive statistics for plausibility.

21

In the aggregation step, we had to define weights. For the quality aspects, we extracted the relative
importance of the quality aspects from the results of a survey done by us [78] that had more than 100 re-
sponses. For example, functional suitability and reliability were considered very important, while portability
and accessibility were considered less important. For all other elements – i. e. measures assigned to product
factors and impacts targeting quality aspects – we used our regular workshops and sprints to determine
relevance rankings.

In the interpretation step, we used the model described above based on school grades. To investigate
the interpretation model’s discriminative power (IEEE 1061) for assessments with the base model, we also
exploited the results from these 120 systems. As we randomly selected systems from a large number of
systems, we expected wide differentiation in the quality assessment results. The interpretation model fulfilled
this expectation in that the results have a wide spread: The assessments distributed the sample systems
across the entire range of the interpretation scale (grades 1–6) with only few systems being assessed at the
extreme ends of the scale (very good or very bad) and a slight tendency towards good assessment results
(1: 9%, 2: 37%, 3: 31%, 4: 13%, 5: 6%, 6: 4%). The distribution of the results also fits well with the
typical distribution expected for German school tests and is therefore in concordance with the selected
interpretation metaphor.

6. Tool Support

We developed a comprehensive tool chain for the application of the Quamoco approach in software
projects. The tooling supports building and editing quality models, adapting a quality model to organisation-
or project-specific needs, assessing software systems according to a quality model, and, finally, visualising the
results of a quality assessment. The tool support presented here is available from the Quamoco website15.

6.1. Quality Model Editor

The quality model editor is built on the Eclipse Platform and the Eclipse Modeling Framework. It allows
editing quality models that conform to the Quamoco meta quality model. To support the modularisation
concept, each module of a quality model is stored in a separate file. The content of the model can be
navigated via different tree views, which allow form-based editing of the attributes of model elements.

Validation during editing helps the modeller create models that adhere to meta-model constraints, consis-
tency rules, and modelling best practices. A simple validation rule checks for unreferenced model elements.
A more sophisticated rule ensures that for model elements referenced in other modules, an appropriate
requires dependency between the modules is defined. The editor employs the Eclipse marker mechanism
for displaying error and warning messages in a list and provides navigation to affected elements. The user
is further assisted by an online help feature that displays context-sensitive help content depending on the
current selection in the editor. The help texts explain the concepts of the meta quality model and contain
a guideline with best practices for quality modelling.

The editor also supports several steps of the assessment method (Section 5.1). All operationalisation
activities take place in the quality model editor, such as the definition of measures, utility functions or
weights. Furthermore, it allows running the assessment engine (Section 6.3) on a given quality model and
load the results for visualisation (Section 6.4).

6.2. Adaptation Support

Since quality depends on the context, e. g. the distinctive characteristics of a domain or technology, a
quality model needs to be adapted to its environment. The meta-model and the modularisation concept pro-
vide the necessary foundations separating contents for different contexts. To support efficient and consistent
adaptations beyond modules, we additionally provide an adaptation method [43] and tooling.

The adaptation approach provides a set of rules and automation based on the premise that all quality
models used and produced have their structure defined by the meta quality model. It can be used to

15http://www.quamoco.de/tools

22

http://www.quamoco.de/tools

adapt quality models at different abstraction levels (such as general-use models, organisation-level models,
or project-level models). The adaptation approach explicitly considers the goal and context of the model
used to perform initial adaptation; subsequently, adaptation tasks are generated to obtain a consistent and
complete model.

The steps for adapting a quality model are:

1. Define the goal of the resulting model based on the organisation/project context and its software
quality needs

2. Identify an existing quality model that best matches the target model’s goal defined in the previous
step

3. Perform automated pre-tailoring by eliminating all unneeded elements (all elements that do not satisfy
the model’s goal)

4. Adapt the model in an iterative manner until it satisfies the identified goal which implies adjusting
the remaining elements and, where needed, adding new elements to the model

The adaptation approach of Quamoco is implemented in a plugin for the model editor called the adap-
tation wizard, which consists of a series of dialogs that guide the user through the whole adaptation of a
quality model. The first step consists of specifying the goal of the model meaning the type of artefacts that
the model should be applied to, the perspective (e. g. management or customer), the quality focus (i. e. the
key quality aspects that should be addressed in the model) and its context (e. g. paradigm or programming
language).

Using this goal, the adaptation wizard searches the workspace for models that match the specified goal.
The goals of existing models are extracted from their content. For example, the existing factors are used for
matching the quality focus. The context is extracted from the modules and from text tags that can be given to
any of the elements. Text tags may include many different things describing the context, such as domain (e. g.
railway, medical devices, embedded systems, information systems), methodologies, practices, or technologies
supported (e. g. component-based software development, agile development, open source software, custom
development, C++, Java and automatic measurement tools). Text tags are assigned manually. Many
elements can be tagged simultaneously. Per default, the base model is available for adaptation. When
the base model is selected for adaptation, all its elements are automatically tagged in accordance with the
modules they belong to. Other general-use models, organisation-level models, or project-level models can
be added to the workspace by manually importing them using the structure provided by the meta-model.

The person performing the adaptation is guided by the tool in choosing the best matching model and
selecting relevant elements. Irrelevant elements are eliminated automatically. For example, if a product
factor is not selected as relevant, it is deleted, as are its impact-relationships to any quality aspect. The
wizard can be configured to execute the process top-down, beginning with the selection of factors or entities,
or bottom-up, beginning with the selection of measures.

Once irrelevant elements have been removed, the wizard uses the previous actions and the model’s goal to
generate a list of further adjustments needed to satisfy the model’s goal and scope. The required adjustments
are presented as a list of adaptation tasks, which includes reviewing, adding, and modifying specific model
elements (adaptation tasks view). These tasks need to be performed manually, as they involve some decision
making from the person performing the quality model adaptation. For example, if a measure is added, it
needs to be marked as a normalisation measure or a factor needs to be associated with it.

All changes are documented and shown in the adaptation history view, which also lists the justifications
for changes that are automatically generated and can be extended by the user. The adaptation history is
a good basis for reviewing and judging the modifications performed and can thus serve as input for future
quality model certification activities.

6.3. Quality Assessment Engine

The quality assessment engine automates the application activities of the assessment method (Sec-
tion 5.1). It is built on top of the quality assessment toolkit ConQAT which allows creating quality dash-
boards by integrating various quality metrics and state-of-the-art static code analysis tools.

23

The connection between quality modelling and assessment is achieved through the automated generation
of a ConQAT analysis configuration from a quality model. For the assessment of a software system, the
quality assessment engine is provided with the adapted quality model, the source code of the software system
to be assessed, the generated ConQAT configuration, and manual measurement results stored in an Excel
file. This allows extending the tooling with custom analyses needed for assessments based on extensions to
the base model.

For reasons of convenience, the editor supports direct execution of the assessment for the base model by
specifying the location of the software system to be analysed. The output of the quality assessment engine
has two formats. The first is an HTML report which allows inspecting the results of an assessment from
within a browser, thus not requiring the tooling and the quality model. The second output format is a result
data file, which can be imported into the editor for interactive inspection of the results. To detect decays
in quality as early as possible, the quality assessment engine can also be run in batch mode, which allows
us to include it into a continuous integration environment.

6.4. Visualisation

Once the result data file produced by the quality assessment engine has been imported into the quality
model editor, a number of visualisations support a detailed analysis of the assessment, for example, for
tracking quality issues from abstract quality aspects to concrete measures.

For example, a sunburst visualisation (Figure 8) of the results provides an overview of the assessed factors
and their impacts by showing the complete hierarchy of the model all at once. Each segment in the chart
corresponds to a factor in the quality model with the angle of a segment denoting the factor’s importance.
The hierarchy is given by the segment’s adjacent positioning from the centre outwards. The colour of a
segment visualises the assessment result for the assessed system. The colour range from green via yellow
to red indicates good, average, or bad results. To improve comprehensibility, it is possible to zoom into a
factor, which maximises the space occupied by that factor in the visualisation.

Figure 8: Sunburst Visualisation

A Kiviat diagram (Figure 9) offers an alternative high-level visualisation of the assessment results. It
specifically aims at supporting the comparison of quality assessments for multiple systems (or multiple

24

versions of the same system). The spokes in the diagram correspond to the top-level factors in the quality
model and the coloured data points correspond to the factor assessment results for the systems. This
visualisation allows quickly spotting those quality aspects where the assessed systems differ.

Figure 9: Kiviat Diagram

7. Empirical Validation

This section presents the empirical validation of the base model. We focus on the Java model because
only this model was thoroughly calibrated, as explained in Section 5.2. We consider the calibration of the
C# model as weak because we had only a dataset of 23 systems; thus, we exclude this part of the model
from the empirical validation.

In the following subsections, we investigate the Java base model and its quality assessments using three
research questions:
RQ 1: Does the base model provide valid assessment results regarding the quality of software systems?
RQ 2: Can the base model be used to detect quality improvements over time in a software system?
RQ 3: Is the approach of assessing quality using the base model accepted by practitioners?

Research questions RQ 1 and RQ 2 address the usefulness of the Quamoco approach from a technical
point of view: They check whether the Quamoco approach provides valid assessment results in the context of
typical application scenarios. RQ 3 focuses on the usefulness and applicability of the approach as perceived
by practitioners.

We limit the evaluation scope of RQ 1 and RQ 2 to overall quality assessment results. In practice, a
statement on overall quality is important, for example, to identify software products or releases with low
quality (cf. RQ1) or to get an early warning if the quality of a product in the company portfolio decreases.
It can also be used to control the success of quality improvement initiatives (cf. RQ2).

In each subsection, we first present the study goal and then the research design chosen for the study;
next, we describe the execution of the study and its results. Finally, each section closes with a discussion of
the results and the most relevant threats to validity. The raw data for all the validations are available upon
request. Where possible, we made it available in [74].

25

7.1. Comparison of Software Products

To answer RQ 1, we have to evaluate whether the base model provides valid assessment results, meaning
that the assessment results are in concordance with the results obtained by another independent and valid
approach for assessing product quality. Checking criterion validity is also a common approach in other sci-
entific disciplines (e.g., psychology) when introducing new measurement instruments to quantify an abstract
concept such as quality.

7.1.1. Design

To evaluate the validity of the quality assessments, we need an independently obtained criterion for
product quality that we can compare with our assessment results. Since no measurement data were available
that directly measure quality for a set of software products that we could assess using the base model, we
utilised expert-based quality judgments as the independent criterion.

For the comparison of different software products, we used the quality rating obtained in the Linzer
Software-Verkostung [30] for a set of five open source Java products. The Linzer Software-Verkostung was
directed and carried out by a member of the Quamoco team before the start of the Quamoco project. Due
to the involvement of a member of the Quamoco team, we had access to all detail data gathered during the
experiment. The rating in the Linzer Software-Verkostung is a ranking of the five Java systems based on a
combination of ratings provided independently by nine experienced Java experts.

For a serious evaluation of Java source code it is necessary for each expert to have not only experience
in software development or software quality management, but to also be familiar with the programming
language itself. During the selection process for the Verkostung, we paid attention to the experience,
background and environment of potential experts. Because each expert needs time to provide a reasonable
and independent quality evaluation for each software product, only five systems could be considered as data
points in the comparison. Although, from a scientific point of view, it would be preferable to have more
data points to increase the probability of obtaining statistically significant results, from a practical point of
view this could not be realised in the presented study. In the end, nine experts were accepted for the Linzer
Software-Verkostung. Each participant had at least seven years of experience in software development.

Evaluation criterion and hypotheses: To measure validity and ensure comparability with other studies,
we used the validity criteria proposed in the IEEE standard 1061 for validating software quality metrics. The
standard proposes a set of criteria, but most of them assume that the collected measures and the independent
criterion both use an interval or ratio scale; only one can also be applied to ordinal scale data. In our case,
the results of the base model assessments were provided as a value characterising the product quality between
grade 1 (best possible) and grade 6 (worst possible) on a ratio scale and the assessment results of the expert
judgements were provided on an ordinal scale as a ranking from best (rank 1) to worst (rank 5) product.
Consequently, we had to limit our investigation to the validity criterion consistency (cf. IEEE 1061) which
can be applied to ordinal-scale data. In our case, it characterises the concordance between the product
ranking based on the assessment results provided by our model and the ranking provided independently by
a group of experts. This means that we determined whether the base model could accurately rank the set
of assessed products/subsystems with respect to their quality (as perceived by experts) and is thus valide
regarding this external validity criterion.

Following the suggestion of IEEE 1061, we measured consistency by computing the Spearman’s rank
correlation coefficient (r) between both rankings where a high positive correlation means high consistency
between the two rankings. Since we wanted to check whether a potentially observed positive correlation was
just due to chance or was a result of using an appropriate quality model, we stated hypothesis H1A (and
the corresponding null hypothesis H10). We tested both with the confidence level 0.95 (α = 0.05):

H1A : There is a positive correlation between the ranking of the systems provided by the base model
(BM) and the ranking of the systems provided by the experts during the Linzer Software-Verkostung (LSV).

H1A : r(rankingBM, rankingLSV) > 0

i. e. H10 : r(rankingBM, rankingLSV) ≤ 0

26

7.1.2. Execution

We used the Java part of the base model to assess the quality of five open source products for which
independent expert-based assessment results of the Linzer Software-Verkostung were available: JabRef,
TV-Browser, RSSOwl, Log4j, and Checkstyle. In this context, it was necessary to collect the manual
measures defined in the base quality model for the selected open source products. We used the measurement
specifications provided by the base model and collected measurement data for all five products. The collected
measurement data was independently reviewed before assessing the products. We ordered the assessed
products by the results for their overall quality provided by the base model and compared them with the
ranking provided by the Linzer Software-Verkostung.

The nine experts of the Linzer Software-Verkostung were guided by a questionnaire that forced them to
concentrate on the quality attributes analysability, craftsmanship, reliability, and structuredness – thus a
combination of maintainability and reliability topics. Each of these quality attributes was explicitly defined
in the questionnaire. Additionally, we provided an ordinal scale for evaluation. For this ordinal scale, we
gave an explanation as to the conditions under which to use which rating.

7.1.3. Results

Table 5 shows the resulting grade and product ranking for the base model assessment as well as the
ranking from the Linzer Software-Verkostung. Although the base model did not provide exactly the same
ranking as the experts, the calculated Spearman’s rho correlation is r = 0.9, which is close to a perfect
correlation of 1. The reason is that the two systems with different ranking results have ranking results close
to each other – only their places are switched. Hypothesis H1A can also be accepted with a p-value of 0.05,
meaning that there is a significant positive correlation between the ranking provided by the base model and
the ranking provided by the Linzer Software-Verkostung.

Table 5: Comparison of the Base Model Assessment Results and the Results of the “Linzer Software-Verkostung”

Product LOC Grade BM Rank BM Rank LSV
Checkstyle 57,213 1.87 1 1
RSSOwl 82,258 3.14 2 3
Log4j 30,676 3.36 3 2
TV-Browser 125,874 4.02 4 4
JabRef 96,749 5.47 5 5

7.1.4. Interpretation

The assessments of the overall product quality for the five investigated systems turned out to be largely
consistent and thus valid when compared to an independent criterion for quality, in this case provided in the
form of an expert-based assessment. It is important to understand that the assessment results are based on
the overall calculated results for all measures and product factors. We did not explicitly test whether the
same results could be obtained with a smaller number of measures or product factors, as in our understanding
the factors and measures we consider in our quality model represent real quality requirements regardless of
the numerical impact on the evaluation results.

7.1.5. Threats to Validity

Conclusion Validity. The generalisability of our results is limited by the fact that the scope of the
empirical validation was limited to five medium-sized open source systems written in Java.

Internal Validity. We cannot fully guarantee that the criterion chosen for the validation, namely the
expert-based quality rating, adequately represents the quality of the products. Nevertheless, if we consider
the ranking of the projects by the experts and calculate Kendall’s W concordance coefficient, we get a
value of 0.6635, meaning that there is a strong concordance of the rankings of the individual experts with a

27

significance level of α = 0.01. We therefore can safely assume that the quality rating of the experts reflects
the common understanding of internal software quality.

Construct Validity. In the Linzer Software-Verkostung the experts were guided by a questionnaire that
contained the quality attributes to be considered in the expert-ranking. To reduce ambiguities or misunder-
standings, the quality attributes were explicitly defined.

External Validity. The experts of the Linzer Software-Verkostung were carefully selected, i.e. only experts
with significant experience (7+ years of development experience in industry) were part of the experimental
setting and therefore manifest a high level of quality awareness. The study was based on open-source software
and did not consider industrial strength software. This is a threat to validity as we know from other work [56]
that there are, for example, significant differences in internal software quality between safety-critical and
non-safety-critical software. We therefore cannot conclude whether our approach would also hold for safety
critical systems.

7.2. Sensing Quality Improvements

In a second study, we knew from the quality experts of the project that they had invested effort into
enhancing the maintainability of the system. In this study from the automation domain (steel production),
we analysed four versions of the Java software using our base model. The major goal was to validate
whether our base model would reflect the assumed quality improvements claimed by the quality managers
(RQ 2). Thus, the validation should also show to some extent whether our base model reflects the common
understanding of quality (in the context of maintenance) of experienced developers.

7.2.1. Design

To carry out this study, we performed an ex-post analysis of several versions of a software product, where
the responsible technical product manager stated that the project team explicitly improved quality starting
right after the rollout of version 2.0.1. The quality improvements were not directed by static code analysis
tools at all but by the experience of the software developers.

7.2.2. Execution

We used the base model to assess the quality of four versions of the software product, including all four
versions between 2.0.1 and 2.2.1, in our analysis. We presented the results to the project team and asked
for their feedback by means of an interview. As the project team had no concerns about the results, further
investigations were not necessary.

7.2.3. Results

Table 6 shows the results of the assessment using the base model. The first column shows the version
number of the software, the second column shows the corresponding calculated quality grade.

Table 6: Quality Improvements in an Automation Software Project

Version Grade BM
2.0.1 3.63
2.0.2 3.42
2.1.0 3.27
2.2.1 3.17

The results show steady improvements (as expected) for versions 2.0.2, 2.1.0 and 2.2.1. Our assessments
reveal an improvement of 0.46 from version 2.0.1 to version 2.2.1.

28

7.2.4. Interpretation

The developers relied on their understanding of software quality during the improvement. As the assess-
ments using the base model also show an increase in quality, this is an indicator that the model reflects the
quality understanding of experienced software engineers.

7.2.5. Threats to Validity

Conclusion Validity. The generalisability of our results is limited by the fact that we only had one
project, where the improvements were carried out without the use of static code analysis tools but rather
relied on the experience of the developers.

Internal Validity. A possible internal threat would be that the improvement activities were influenced by
the base model or the findings of static analysis tools. We mitigated that risk by ensuring that the software
developers of the project were neither involved in the development of the base model nor did they use static
code analysis for their improvements.

Construct Validity. There is no threat to construct validity, as we analysed the project ex-post, i.e. there
was no relation between the improvement actions and our analysis.

External Validity. The external validity of the results is limited by the fact that we had only access to
one industry project where the software developers explicitly invested in quality without using static code
analysis tools.

7.3. Acceptance by Practitioners

In this third study, we aimed to investigate the acceptance of the base model by practitioners, investi-
gating perceived suitability and technology acceptance. We asked experts to assess a software system that
was part of their direct work environment using the base model and interviewed them subsequently about
their experience.

7.3.1. Design

We created a questionnaire for semi-structured interviews. To operationalise our study goal, we broke
down the concepts to be characterised into sub-concepts. Perceived suitability contains four sub-concepts:
Transparency of assessments is defined as the quality of the base model that enables the user to easily
understand an assessment. Comprehensibility of quality definition is defined as the quality of the base
model parts to be arranged logically and consistently. Consistency of results with own perception means
that when the model is applied for the same software products, the quality assessments using the base model
coincide with the assessments provided by experts. Finally, overall suitability judgment means that the base
model meets the requirements for measuring and assessing quality. Technology acceptance groups perceived
usefulness and perceived ease of use using a shortened version of the definition of Davis [17]. Comparison
with ISO/IEC groups the sub-concepts ease of adoption and definition of quality.

A detailed operationalisation is shown in Table 7. For closed questions, a 5-point rating scale was used:
-2: strongly disagree, -1: disagree, 0: neither agree nor disagree, 1: agree, and 2: strongly agree. After
answering each closed question, the experts could give additional comments to extend their answers.

For all variables, we had the following hypotheses: H0 : Median ≤ 0 and H1 : Median > 0. With this we
were able to test whether the experts significantly agreed with our statements.

7.3.2. Execution

We performed eight interviews. The participants had between 4 and 20 years of experience in software
development; only one of them explicitly mentioned having experience in quality management. We chose the
participants opportunistically based on personal contacts in the companies. Each interview was conducted
separately and independently from the other interviews following four steps: introduction and training,
quality model editor walk-through, evaluation result drill down, and closing.

During introduction and training (5–10 minutes), the interviewer briefly explained the Quamoco goals
and status, the expert introduced him-/herself and his/her role, and the interviewer recorded the experience

29

level. Then, the interviewer gave an overview of the interview process and an example of how the approach
and the tool work.

During the model editor walkthrough (10–15 minutes), the interviewer explained the model’s high-level
structure. Then the interviewer drilled down into examples and explained low-level elements.

The third part of the interviews consisted of asking the expert to assess, from his/her point of view,
a system that was part of his/her direct work environment. The interviewer presented the base model
assessment results of the system starting top-down with the overall quality result and drilling down into the
factors of special interest to the expert (25–30 minutes).

The closing (5 minutes) consisted of letting the expert answer the questions regarding technology accep-
tance and practicability in comparison to ISO/IEC and make additional comments. We chose the quality
model in ISO/IEC 25010 because it is based on the well-known 9126 and, therefore, provides us with a
comparatively solid comparison point. If we were unable to improve beyond the standard in some way, it
would not be advisable for practitioners to adopt our approach.

7.3.3. Results

The hypotheses were tested with one-sample Wilcoxon signed-ranks tests of location, with α = 0.05.
Table 7 shows the median, the test results16, and the median absolute deviation (MAD) as a measure of
variability in the provided answers.

Perceived suitability : H1 holds for all sub-aspects of transparency of assessments, i. e. assessments can
be easily understood. H1 holds for half of the sub-aspects of comprehensibility of the quality definition.
H1 does not hold for consistency with own perception; the assessments produced by the base model were
considered neither appropriate nor inappropriate. H1 holds for overall suitability, which means that the
approach was considered suitable for measuring and evaluating software quality.

Technology acceptance: There was significant agreement that the model is easy to use, but there was no
agreement about perceived usefulness.

Comparison with ISO/IEC : H1 holds for all sub-aspects; in this case the median is 2: the reviewers
strongly agreed that the base model could be adopted more easily for application in practice than ISO/IEC
9126/25000 and that the base model has a more transparent definition of quality than ISO/IEC 9126/25000.

Some interviewees gave additional comments, but we could not reasonably analyse them systematically,
as they were very few. Instead, we used them to augment the quantitative results. The participants men-
tioned that the trustworthiness of third-party measurement tools may be a problem as well as the language
independence of impacts, the precision of impact justifications, the subjectively determined rankings, the
understandability of the rankings, the justification of the rankings, and the difficulty to understand how the
calibration limits are obtained.

Favourable feedback included that the modelled relations are comprehensible and reasonable, that the
impact justifications are reasonable and are a good idea, that school grades obtained by comparison with
reference projects are a good idea, that the unification of different tools is good, and that using an ISO/IEC
view is a good thing for managers. Moreover, the participants considered the whole approach as the best
that can be done with static code analysis; as good for getting an overall view on the quality of a software
product; as consistent; as an approach that clarifies software metrics; and as a good starting point for people
who have not used ISO/IEC 9126/25000 before.

7.3.4. Interpretation

Overall, the interviewees followed our expectations and found the base model suitable, better in compar-
ison to ISO/IEC 25000 and acceptable for their work. A threat in building operationalised and, therefore,
large and detailed models with complex structures is that practitioners will not understand and accept them.
We could mostly show the contrary here.

The first exception is whether the assessment result is valid. Opinion were mostly undecided, meaning
that the experts were not sure about the validity. We assume this was most likely caused by the time

16Bold values are significant at 0.05.

30

Table 7: Results of Interviews (Closed Questions)

Items Median p MAD

Perceived suitability

Comprehensibility of quality definition
Q1: The number of impacts associated with the currently assessed
ISO/IEC 25000 factor is acceptable.

1 0.128 0.5

Q2: I agree with the justification of the relationship (impacts)
from product hierarchy factors into ISO/IEC 25000 factors.

1 0.017 0.0

Q3: The number of measures associated with the impact factors
of the currently assessed ISO/IEC 25000 factor is acceptable.

1 0.128 1.0

Q4: I agree that the measures actually measure the currently
assessed impact factors.

1 0.023 0.0

Transparency of assessments
Q5: The calculation steps that lead to an assessment are trans-
parent.

1 0.003 0.0

Q6: The assessment steps performed (e. g. aggregation, ranking)
are familiar.

1 0.017 0.0

Q7: I understand the assessment steps and could explain them to
someone else.

1 0.007 0.0

Consistency with own perception
Q8: I consider the assessment results provided by the base model
valid, according to my opinion about the quality of the product.

0 0.510 0.5

Overall suitability judgement
Q9: I think this approach is suitable for measuring and evaluating
software quality.

1 0.004 0.0

Comparison with ISO/IEC

Definition of quality
Q10: The base model has a more transparent definition of quality
than ISO/IEC 9126/25000.

2 0.012 0.0

Ease of adoption
Q11: The base model could more easily be adopted to be applied
in practice than ISO/IEC 9126/25000.

2 0.017 0.0

Technology acceptance

Perceived usefulness
Q12: Using the base model in my job would increase my produc-
tivity.

0 0.510 0.0

Perceived ease of use
Q13: I would find the base model easy to use. 1 0.018 0.5

31

constraints described in Section 7.3.2 and the fact that the base model was not adapted to the experts’
specific context. We have to investigate this further (e. g. by conducting a dedicated validity study offering
more time). Since the experts were undecided, we conclude that this does not invalidate the base model.
The second exception is that the interviewees were also undecided as to whether the base model would
increase their productivity. This also needs further investigation but could be explained by the fact that
most interviewees were developers who do not regularly perform quality assessments.

Regarding the number of elements in the base model (cf. Q1 and Q3), there was no broad consensus
either. This can directly be explained by the low number of participants and the high number of elements
in the quality model, combined with the uneven distribution of model elements across quality aspects (see
Table 3). The participants answered these questions after assessing different subsets of the base model,
so the answers have to be treated individually and an insignificant overall rating is not a threat to the
acceptance of the base model as such.

7.3.5. Threats to Validity

Conclusion Validity. Because of the low number of participants, the results have low statistical power.
Internal Validity. The interviews were carried out independently of each other in terms of time and

space. Nonetheless, we could not control interactions outside the interviews, with the potential consequence
that the participants might have known about the interview contents beforehand (Contamination). The
participants in the interviews came from industry; consequently, they represent practitioners. We cannot
claim that the sample is representative (Selection). The participants did not only specialise in selected
quality characteristics but also work as developers, which for some of them is the main role. This may be a
threat to validity because their daily tasks involve quality assessment only indirectly. The same applies to
the systems assessed, which were different for all participants according to their specific areas of expertise.

Construct Validity. Not all items used were validated. This may be a threat to validity because their
meaning may be misunderstood (Explication of constructs). To mitigate this threat, domain experts re-
viewed the operationalisation of the questionnaire. Not all concepts used were measured using multiple
items. This may be a threat to validity because some of them may have been measured only partially
(Mono-method bias).

External Validity. For the interviews, the base model was shown using the quality model editor, which is
not a tool used daily by the experts (Interaction of setting and item). To mitigate this threat, we asked the
participants whether they understood each of the views provided by the tool presented during the model
editor walkthrough. All participants understood the tool.

8. Specific Quality Model for Embedded Systems

One of the important properties of our meta-model (see Section 3.3) is the ability to extend the base
model to adapt it to the needs of more specific programming languages or systems. To show this we developed
a quality model for embedded systems (ESQM). In this section we present the content of the ESQM and
validate it to find out whether the assessment results are in concordance with the results obtained by another
independent approach (see Section 8.2). Furthermore we discuss (see Section 8.3) in more detail which parts
of the base model could be reused.

The specific quality model ESQM enhances the base model with factors that are specific for embedded
systems (details on the kind of extensions we made to the base model can be found in Section 8.3). In [55] we
published the systematic development approach for ESQM, which was driven by capturing the requirements
for embedded systems with a comprehensive literature analysis on commonly accepted guidelines and quality
standards for embedded and safety-critical systems. In this paper, we put emphasis on the developed model
and relate it to the base model to show that extending an existing model can help to ensure consistency and
reduce effort for model construction. These guidelines and standards are a good source for eliciting specific
embedded systems quality requirements as they directly provide (among other things) recommendations for
embedded systems code quality.

We examined the umbrella standard for functional safety, IEC 61508 Part 3 [34], the standard for med-
ical device software IEC 62304 [35], as well as the standard for railway applications EN 50128 [15]. These

32

�
�
#
�
�
�
�
�
�
	�

�
��
�
�
�	
��
�
�	
�
��

�
�
�
	�
��
��
�
�	
�

�

�

�+�'� *%��� �����

��� ��%�������������

�

������
 #

������
 #

��������� �(��	��������

�	�������

���������

.(�����������	�������

������

����������7������

8��	��������

�
��
�
�
�	
��
�
�	
�
��

�
�
�
��
��
�

�� ��� 9:. �� ��� :66�� ��� 9;. �

������

����������7������

8*

������� ���������

����������

7������ 8(((

����������7������

8������� *���

Figure 10: ESQM Model with Factors (Excerpt)

standards play a vital role for safety-critical (embedded) systems and have led to generic and program-
ming language independent requirements. Additionally, we considered the MISRA C:2004 [58], MISRA
C++:2008 [59] guidelines as well as the JSF AV C++ coding standards [40] for programming language-
specific requirements elicitation. Ultimately, a total of 60 requirements emerged from these sources. Addi-
tionally, we provide information on the iterative validation cycles of the model in [55]. In this section we
outline the resulting ESQM, sketch its validation, and investigate the model elements that are necessary in
addition to the base model.

8.1. Contents

The excerpt in Figure 10 provides an overview of the ESQM. The measures quantify the product factors,
which again refine other product factors or impact the requirements or the quality aspects. The model uses
the modularisation concept of the meta-model and distinguishes between a C module, which is the core
module, and a C++ module.

In total, we modelled 162 product factors on the leaf level of the product factor hierarchy with 336
measures. Besides systematically constructing product factors and operationalising them with measures,
we also defined the impacts of the product factors on the requirements (177 impact relations) and on the
ISO/IEC 25010 quality aspects (128 impact relations).

Furthermore, we also applied the assessment method defined in Section 5.1 and added evaluations for
the ISO/IEC 25010 quality aspects and for the identified requirements. For the ISO/IEC 25010 quality
aspects, aggregation functions are provided for all quality aspects, which allows us to calculate an overall
quality statement for an embedded software system.

For the calibration of the linear evaluation functions for the measures, we collected normalised measure-
ment data from 17 open source projects (8 written in C and 9 written in C++), identified potential outliers
in the data using box plots, and took the minimum and maximum of the non-outlier values as the thresholds
for the respective evaluation function.

8.2. Validation

We applied the validation concept criterion validity (see Table 1) to the ESQM as well to understand
whether the assessment results are in concordance with the results obtained by another independent approach
for assessing product quality. For this purpose, we compared the results of the automatic assessment for three

33

industrial software products with the judgement of one expert who knows these three products well from
a quality perspective. The expert is a senior engineer with more than 12 years of experience in embedded
software quality. Table 8 gives an overview of the results.

Table 8: Comparison of the Assessment Results and an Expert’s Opinion

Product Grade ESQM Grade Expert
A 1.2 1
C 1.8 3
B 3.1 5

The total result (using German school grades, where 1 is the best grade and 6 is the worst grade) shows
a clear order of the quality of the products, with product A being the best product, product C being second,
and product B being the worst product. The assessment method results of ESQM for these three products
are similar, i.e., the order of the products is the same as the expert’s opinion. To make the result clearer,
we calculated the grades with higher precision, i. e. with one decimal place.

The automatic assessment method calculates better grades, although it keeps the same order as the
expert. Reasons for this might be that the ESQM quality model focuses on quality requirements that are
directly related to the particularities of embedded systems and that the model does not consider more
general quality factors that are independent of a specific application domain. We assume that the expert
considered these more general aspects in his rating.

8.3. Comparison with Base Model

ESQM uses all concepts as defined in the meta-model and applied in the base model. In addition,
we found it straightforward to keep ESQM compatible with the base model’s properties and entities used.
Table 9 gives an overview of the number of properties and entities of the complete base model (i.e. Java and
C#) that we reused and changed in the ESQM.

Table 9: Reuse of Entities and Properties in ESQM

Elements ESQM Base Model
Entities 87 92

added 30 -
split 11 -
merged 17 -
removed 29 -
renamed 7 -

Properties 32 43
added 6 -
split 1 -
merged 4 -
removed 14 -
renamed 1 -

For the entities, considerable restructuring was necessary. We added a number of entities, as in C/C++
the declaration and definition of variables or methods has to be distinguished. Furthermore, C++ has some
specifics not available in other object-oriented programming languages, such as comma operators. We split
some entities, as the underlying measures sometimes provide more specific support for those specialised

34

entities (e. g. not only for literals in general but also for string literals and numeric literals). We removed
those entities that do not make sense for C/C++ (e. g. interfaces).

Table 9 shows, however, that many of the properties already defined in the base model could be reused.
Only minor changes were necessary (adding, splitting, merging, renaming) to model the properties that
are typical for embedded systems. We removed 14 properties from the base model. These were mainly
properties tied to entities that are specific for programming languages like Java and C# (e. g. interfaces) or
properties that are not related to source code.

9. Summary & Conclusions

A gap exists between abstract quality definitions provided in common quality taxonomies, such as
ISO/IEC 25010, abstract quality assessment procedures, such as ISO/IEC 25040, and concrete measure-
ments. Our overall aim is to close this gap with the help of operationalised quality models. Because of the
domain specificity of quality and the potential detailedness of such operationalised quality models, we also
aimed at developing modular and adaptable models. To conclude, we summarise our contributions, discuss
the lessons learnt and draw conclusions and give directions for future work.

9.1. Summary

We have shown six contributions for achieving our goal: (1) We developed an explicit meta-model that
allows us to specify operationalised quality models with the flexible but well-defined concepts of factors,
impacts between factors, measures for operationalising the factors, and modules. (2) Using this meta-model,
we built a broad, largely technology-independent base model, which we operationalised for the programming
languages Java and C#. The freely available and extendable base model captures the most important
statically measurable product factors and their impacts on product quality as defined in ISO/IEC 25010.
(3) We provided a quality assessment approach and a corresponding operationalisation of the base model,
which enables us to use it for transparent and repeatable quality assessments.

(4) We evaluated three aspects of the complete approach for Java in empirical studies. We found
that the assessments largely match expert opinion, especially for the maintainability part of the model.
Yet, the results are not completely conclusive. The model as well as the quality assessments were highly
understandable for practitioners and considered the best that can be done with static analysis. The opinions
on the validity of the assessments and on potentially improved productivity were inconclusive, however.

(5) We developed extensive, open-source tool support for building operationalised quality models as well
as performing the quality assessments including extensive visualisation capabilities. (6) In addition to the
base model, we described the specific quality model for the area of embedded software. It relies on the same
infrastructure as the base model and shows how the Quamoco approach can be used for a specific context.
Furthermore, it demonstrates the possibility of exploiting the base model to build specific models with less
effort than if starting from scratch.

9.2. Conclusions

Overall, we found that it is possible to bridge the gap between abstract quality characteristics and con-
crete measures by building detailed, operationalised quality models. It required great effort to create the
necessary foundations and then build such a detailed model. We are not sure to what extent such effort can
be expended in practical settings. Yet, we found in the empirical analyses that there is reasonable agree-
ment between expert opinion and model-based quality assessments as well as an increased understanding of
operationalised quality models by practitioners.

A measurement program using GQM would probably be able to come up with a similar quality model.
It took three years and about 23 people, however, to build the quality models and surrounding tools and
methods. most companies are probably not willing to spend this effort but would rather adapt an existing
quality model.

There is now a broad, freely available quality model based on an explicit meta-model capturing the
experience of several quality experts from industry and academia. It also contains complete tool support
from model creation to quality assessment.

35

For academia, this allows investigating the model in detail, working on different aspects of the model
that are still under-developed and empirically investigating and comparing the quality model with other
approaches. In that sense, the Quamoco base model can be used as a benchmark.

The base model itself is broad and covers most quality characteristics of ISO/IEC 25010 but with varying
degrees of depth. Maintainability, in particular, is well covered and seems to be assessable by static and
manual analyses. Other quality characteristics, such as reliability or security, are covered by static checks,
but we expect that dynamic analyses will be able to improve the assessments. The modelling of such aspects
can be done with the existing mechanisms, but the execution of quality assessment will be different as we
need a running system in a suitable environment.

In the follow-up of the project, the Quamoco meta-model and tooling were also shown to be ready for
industrial use: itestra GmbH deployed them successfully at a financial software provider with the purpose
of managing the quality and costs of all larger projects. Further commercial applications may follow. Key
features were the flexible modelling of quality characteristics, measures, aggregation and evaluation rules,
as well as the ability to deal with different technologies, such as Java, .NET, C++, and COBOL in a
similar, integrated way. We also transferred the approach successfully into practice in a project with several
SMEs [28]. In that project, however, we also found a partial mismatch between the analysis results of the
base model and the opinions of the experts. This suggests that the base model would need to be adapted
better to their environment.

We invested a lot of effort in creating a clear and efficient approach for building the quality model. On
the other hand, we learned a lot along the way. We found the issues in Table 10 to be the most important
lessons learned from the Quamoco project.

9.3. Future Work

By working on filling the gap in current quality models, we found several other directions for future work
that should be followed. First, the base model and its validation focus on a small number of paradigms and
technologies so far. To be truly broad, we need to take into account further contents for the base model.
Second, we are working on additional empirical studies to better understand the remaining weaknesses of
our approach to further improve it accordingly.

Third, we believe that the tool support is exceptional for a research prototype but not yet on the level
of a commercial or mature open source application. Thus, we will continue to work on the tools as an
open source project. Fourth, Mordal-Manet et al. [60] present an in-depth discussion of possibilities for
aggregating quality metrics. This should also be investigated in the context of Quamoco models and their
assessment method. Finally, the majority of the base model measures have static analysis instruments to
allow them to be collected with low effort. This will, however, limit the possibilities of assessing dynamic
aspects of the software. Hence, we are working on extensions to include testing and other dynamic analyses.

Acknowledgement

We are grateful to all members of the Quamoco project team as well as to all the participants of our
interviews and surveys. This work has been supported by the German Federal Ministry of Education and
Research (BMBF) under grant number 01IS08023.

References

[1] Hiyam Al-Kilidar, Karl Cox, and Barbara Kitchenham. The use and usefulness of the ISO/IEC 9126 quality standard. In
Proc. International Symposium on Empirical Software Engineering (ISESE’05), pages 7–16. IEEE, 2005.

[2] Mohammad Alshayeb and Wei Li. An empirical validation of object-oriented metrics in two different iterative software
processes. IEEE Transactions on Software Engineering, 29(11):1043–1049, 2003.

[3] Tiago L. Alves, José Pedro Correia, and Joost Visser. Benchmark-based aggregation of metrics to ratings. In Proc.
IWSM/Mensura 2011, pages 20–29. IEEE, 2011.

[4] Nathaniel Ayewah, William Pugh, J. David Morgenthaler, John Penix, and YuQian Zhou. Evaluating static analysis defect
warnings on production software. In Proc. 7th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software
Tools and Engineering (PASTE ’07), pages 1–8. ACM, 2007.

36

Table 10: Lessons Learned

Additional layer Our discussions and experiences led us to the decision to include – in contrast to most existing
quality models such as ISO/IEC 25010 or [65] – an additional layer, which we called product
factors, in the quality models to make it easier to relate measures and quality aspects to it.
We can confirm similar proposals made by Kitchenham et al. [42] or Dromey [25], because
this allows clear operationalisation of the model. The practices of Squale [61] go into a similar
direction but are less clearly defined.

Modularisation Modularisation proved to be a powerful concept in the models for handling different tech-
nologies and paradigms and their overlapping quality characteristics. Each module can place
special emphasis on its specifics and extend and use the elements of (other) existing modules.
Modularisation had not been used in quality models before.

Operationalisation Completely operationalising quality models using measures, instruments and evaluations is
an elaborate task. We spent many person-months on the model and were still only able to
cover a few quality aspects and technologies comprehensively. We found in our validations,
however, that the operationalisation makes the abstract quality attributes from ISO easier to
understand and explains software metrics for practitioners. It helps to bridge the identified
gap. Again, Squale [61] is most similar here. They report first results of their operationalised
quality model being well accepted by developers at Air France, but they did not perform a
thorough analysis. Hence, it remains unclear if the effort pays off in the end.

Rankings and
threshold

calibration

Determining good thresholds in the assessment is crucial but hard. The benchmarking ap-
proach helped us to put this on a more solid foundation, but it is an elaborate process and
a large number of available systems are required. Our calibration approach is similar to the
benchmarking in [3] which we can confirm as a useful means for determining thresholds. Nev-
ertheless, the participants of our study still found the threshold determination and calibration
hard to understand.

Static analysis
for quality
assessment

Static analysis is extremely handy for software analyses as it needs neither a specific context
nor test cases and a running system. Hence, we can easily and frequently run such analyses
on many systems. This advantage is also a disadvantage because we found that inherently
dynamic aspects, such as reliability or security, are difficult to capture statically. Nevertheless,
we saw mostly reasonable assessments in concordance with expert opinion.

Nightly quality
analysis

Introducing nightly quality analyses, similar to nightly builds for software, proved to be the
most important step on the way to an operationalised quality model. We ran the current
quality model every night on a wide range of systems to detect problems in the model and
tooling as soon as possible. To the best of our knowledge, such an approach has not been
used before.

Difficult
validation

Objective validation of the assessment results is hard because we usually do not have objective,
independent quality assessments to compare our results to. Our assessment results cannot be
compared with defect counts, and other general quality metrics are usually not available. This
leaves us with a low sample size so far. Bansiya and Davis [7], for example, used a similar
approach to validate their QMOOD model.

37

[5] Sushil Bajracharya, Joel Ossher, and Cristina Lopes. Sourcerer: An internet-scale software repository. In Proc. 2009
ICSE Workshop on Search-Driven Development–Users, Infrastructure, Tools and Evaluation, pages 1–4. IEEE, 2009.

[6] Tibor Bakota, Péter Hegedūs, Péter Körtvélyesi, Rudolf Ferenc, and Tibor Gyimóthy. A probabilistic software quality
model. In Proc. 27th IEEE International Conference on Software Maintenance, pages 243–252. IEEE, 2011.

[7] Jagdish Bansiya and Carl G. Davis. A hierarchical model for object-oriented design quality assessment. IEEE Transactions
on Software Engineering, 28(1):4 –17, 2002.

[8] F. Hutton Barron and Bruce E. Barrett. Decision quality using ranked attribute weights. Management Science,
42(11):1515–1523, 1996.

[9] Victor R Basili, Lionel Briand, and Walcelio L Melo. A validation of object-oriented design metrics as quality indicators.
IEEE Transactions on Software Engineering, 22(10):751–761, 1996.

[10] Saida Benlarbi, Khaled El Emam, Nishith Goel, and Shesh N Rai. Thresholds for object-oriented measures. In Proc. 11th
International Symposium on Software Reliability Engineering (ISSRE 2000), pages 24–38. IEEE, 2000.

[11] Alexandre Bergel, Simon Denier, Stéphane Ducasse, Jannik Laval, Fabrice Bellingard, Philippe Vaillergues, and Françoise
Balmas. SQUALE - Software QUALity Enhancement. In Proc. 13th European Conference on Software Maintenance and
Reengineering, pages 285–288. IEEE, 2009.

[12] Al Bessey, Dawson Engler, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles Henri-Gros, Asya
Kamsky, and Scott McPeak. A few billion lines of code later. Communications of the ACM, 53(2):66–75, 2010.

[13] Barry W. Boehm, John R. Brown, Hans Kaspar, Myron Lipow, Gordon J. Macleod, and Michael J. Merrit. Characteristics
of Software Quality. North-Holland, 1978.

[14] Lionel Briand, Jürgen Wüst, John W. Daly, and D. Victor Porter. Exploring the relationships between design measures
and software quality in object-oriented systems. Journal of Systems and Software, 51(3):245–273, 2000.

[15] CENELEC. EN 50128: Railway applications - Communications, signaling and processing systems - Software for System
Safety, 2001.

[16] Victor K.Y. Chan, W. Eric Wong, and T.F. Xie. Application of a statistical methodology to simplify software quality
metric models constructed using incomplete data samples. Proc. International Conference on Quality Software (QSIC’06),
pages 15–21, 2006.

[17] Davis Fred D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly,
13(3):319–340, 1989.

[18] Fatma Dandashi. A method for assessing the reusability of object-oriented code using a validated set of automated
measurements. In Proc. ACM Symposium on Applied Computing (SAC’02), pages 997–1003. ACM, 2002.

[19] Florian Deissenboeck, Lars Heinemann, Markus Herrmannsdoerfer, Klaus Lochmann, and Stefan Wagner. The Quamoco
tool chain for quality modeling and assessment. In Proc. 33rd International Conference on Software Engineering
(ICSE’11), pages 1007–1009. ACM, 2011.

[20] Florian Deissenboeck, Elmar Juergens, Benjamin Hummel, Stefan Wagner, Benedikt Mas y Parareda, and Markus Pizka.
Tool support for continuous quality control. IEEE Software, 25(5):60–67, 2008.

[21] Florian Deissenboeck, Elmar Juergens, Klaus Lochmann, and Stefan Wagner. Software quality models: Purposes, usage
scenarios and requirements. In Proc. ICSE Workshop on Software Quality, pages 9–14. IEEE, 2009.

[22] Florian Deissenboeck and Markus Pizka. Concise and consistent naming. Software Quality Journal, 14(3):261–282, 2006.
[23] Florian Deissenboeck, Stefan Wagner, Markus Pizka, Stefan Teuchert, and Jean-François Girard. An activity-based quality

model for maintainability. In Proc. IEEE International Conference on Software Maintenance (ICSM’07), pages 184–193.
IEEE, 2007.

[24] J. Dodgson, M. Spackman, A. Pearman, and L. Phillips. Multi-criteria analysis: A manual. Technical report, Department
of the Environment, Transport and the Regions, London, 2000.

[25] R. Geoff Dromey. A model for software product quality. IEEE Transactions on Software Engineering, 21(2):146–162,
1995.

[26] Wards Edwards and F. Hutton Barron. SMARTS and SMARTER: Improved simple methods for multiattribute utility
measurement. Organizational Behavior and Human Decision Processes, 60(3):306–325, 1994.

[27] Xavier Franch and Juan Pablo Carvallo. Using quality models in software package selection. IEEE Software, 20(1):34–41,
2003.

[28] Mario Gleirscher, Dmitriy Golubitskiy, Maximilian Irlbeck, and Stefan Wagner. Introduction of static quality analysis in
small- and medium-sized software enterprises: experiences from technology transfer. Software Quality Journal, 22(3):499–
542, 2014.

[29] Robert B. Grady and Deborah L. Caswell. Software Metrics: Establishing a Company-Wide Program. Prentice Hall,
1987.

[30] Harald Gruber, Reinhold Plösch, and Matthias Saft. On the validity of benchmarking for evaluating code quality. In
Proc. IWSM/MetriKon/Mensura 2010, 2010.

[31] Ilja Heitlager, Tobias Kuipers, and Joost Visser. A practical model for measuring maintainability. In Proc. 6th International
Conference on Quality of Information and Communications Technology (QUATIC’07), pages 30–39. IEEE, 2007.

[32] David Hovemeyer and William Pugh. Finding bugs is easy. ACM Sigplan Notices, 39(12):92, 2004.
[33] David Hovemeyer and William Pugh. Finding more null pointer bugs, but not too many. In Proc. 7th ACM SIGPLAN-

SIGSOFT Workshop on Program Analysis for Software Tools and Engineering (PASTE ’07), pages 9–14. ACM, 2007.
[34] IEC 61508. Functional safety of electrical/electronical/programmable electronic safety-related systems, 2010.
[35] IEC 62304. Medical device software – software life cycle processes, 2006.
[36] ISO/IEC 25010:2011. Systems and software engineering – systems and software quality requirements and evaluation

(SQuaRE) – system and software quality models, 2011.

38

[37] ISO/IEC 25040:2011. Systems and software engineering – systems and software quality requirements and evaluation
(SQuaRE) – evaluation process, 2011.

[38] ISO/IEC TR 9126-1:2001. Software engineering – product quality – part 1: Quality model, 2001.
[39] Capers Jones and Oliver Bonsignour. The Economics of Software Quality. Addison-Wesley, 2011.
[40] JSF. Joint Strike Fighter Air Vehicle C++ Coding Standards for the System Development and Demonstration Program,

2005.
[41] Elmar Juergens, Florian Deissenboeck, Benjamin Hummel, and Stefan Wagner. Do code clones matter? In Proc. 31st

International Conference on Software Engineering (ICSE’09), pages 485–495. IEEE, 2009.
[42] Barbara Kitchenham, Stephen G. Linkman, Alberto Pasquini, and Vincenzo Nanni. The SQUID approach to defining a

quality model. Software Quality Journal, 6(3):211–233, 1997.
[43] M. Kläs, C. Lampasona, and J. Münch. Adapting software quality models: Practical challenges, approach, and first

empirical results. In Proc. 37th Euromicro Conference on Software Engineering and Advanced Applications, pages 341–
348. IEEE, 2011.

[44] M. Kläs, H. Nakao, E. Elberzhager, and J. Muench. Support planning and controlling of early quality assurance by
combining expert judgment and defect data – a case study. Empirical Software Engineering Journal, 15(4):423–454, 2010.

[45] Michael Kläs, Jens Heidrich, Jürgen Münch, and Adam Trendowicz. CQML scheme: A classification scheme for comprehen-
sive quality model landscapes. In Proc. 35th Euromicro Conference on Software Engineering and Advanced Applications
(SEAA’09), pages 243–250. IEEE, 2009.

[46] Michael Kläs, Constanza Lampasona, Sabine Nunnenmacher, Stefan Wagner, Markus Herrmannsdörfer, and Klaus
Lochmann. How to evaluate meta-models for software quality? In Proc. IWSM/MetriKon/Mensura 2010, 2010.

[47] Michael Kläs, Klaus Lochmann, and Lars Heinemann. Evaluating a quality model for software product assessments - a
case study. In Tagungsband Software-Qualitätsmodellierung und -bewertung (SQMB ’11). TU München, 2011.

[48] Jannik Laval, Alexandre Bergel, and Stephane Ducasse. Assessing the quality of your software with MoQam. In 2nd
Workshop on FAMIX and Moose in Reengineering (FAMOOSr’08), 2008.

[49] Nancy G. Leveson. The role of software in spacecraft accidents. AIAA Journal of Spacecraft and Rockets, 41:564–575,
2004.

[50] Klaus Lochmann. Engineering quality requirements using quality models. In Proc. 15th IEEE International Conference
on Engineering of Complex Computer Systems (ICECCS’10), pages 245–246. IEEE, 2010.

[51] Klaus Lochmann and Lars Heinemann. Integrating quality models and static analysis for comprehensive quality assessment.
In Proc. 2nd International Workshop on Emerging Trends in Software Metrics (WETSoM’11), pages 5–11. ACM, 2011.

[52] Markus Luckey, Andrea Baumann, Daniel Méndez Fernández, and Stefan Wagner. Reusing security requirements using
an extend quality model. In Proc. 2010 ICSE Workshop on Software Engineering for Secure Systems (SESS’10), pages
1–7. ACM, 2010.

[53] Cristina Marinescu, Radu Marinescu, Retru Florin Mihancea, Daniel Ratiu, and Richard Wettel. iPlasma: An integrated
platform for quality assessment of object-oriented design. In Proc. 21st IEEE International Conference on Software
Maintenance, pages 77–80. IEEE, 2005.

[54] Radu Marinescu and Daniel Ratiu. Quantifying the quality of object-oriented design: The factor-strategy model. In
Proc. 11th Working Conference on Reverse Engineering (WCRE’04), pages 192–201. IEEE, 2004.

[55] Alois Mayr, Reinhold Plösch, Michael Kläs, Constanza Lampasona, and Matthias Saft. A comprehensive code-based
quality model for embedded systems. In Proc. 23th IEEE International Symposium on Software Reliability Engineering
(ISSRE’12), pages 281–290. IEEE, 2012.

[56] Alois Mayr, Reinhold Plösch, and Christian Körner. Objective safety compliance checks for source code. In Companion
Proceedings of 36th International Conference on Software Engineering (ICSE 2014), 2014.

[57] Jim A. McCall, Paul K. Richards, and Gene F. Walters. Factors in Software Quality. National Technical Information
Service, 1977.

[58] MISRA. MISRA-C 2004 Guidelines for the use of the C language in critical systems, 2004.
[59] MISRA. MISRA C++ 2008 guidelines for the use of the C++ language in critical systems, 2008.
[60] Karine Mordal, Nicolas Anquetil, Jannik Laval, Alexander Serebrenik, Bogdan Vasilescu, and Stéphane Ducasse. Software

quality metrics aggregation in industry. Journal of Software: Evolution and Process, 25(10):1117–1135, 2012.
[61] Karine Mordal-Manet, Françoise Balmas, Simon Denier, Stéphane Ducasse, Harald Wertz, Jannik Laval, Fabrice

Bellingard, and Philippe Vaillergues. The Squale model – a practice-based industrial quality model. In Proc. IEEE
International Conference on Software Maintenance (ICSM’09), pages 531–534. IEEE, 2009.

[62] Reinhold Plösch, Harald Gruber, A. Hentschel, Christian Körner, Gustav Pomberger, Stefan Schiffer, Matthias Saft, and
S. Storck. The EMISQ method and its tool support-expert-based evaluation of internal software quality. Innovations in
Systems and Software Engineering, 4(1):3–15, 2008.

[63] Reinhold Plösch, Harald Gruber, Christian Körner, Gustav Pomberger, and Stefan Schiffer. A proposal for a quality
model based on a technical topic classification. In Tagungsband des 2. Workshops zur Software-Qualitätsmodellierung und
-bewertung. TU München, 2009.

[64] Reinhold Plösch, Alois Mayr, and Christian Körner. Collecting quality requirements using quality models and goals.
In Proc. 2010 Seventh International Conference on the Quality of Information and Communications Technology
(QUATIC’10), pages 198–203. IEEE, 2010.

[65] Ioannis Samoladas, Georgios Gousios, Diomidis Spinellis, and Ioannis Stamelos. The SQO-OSS quality model: Measure-
ment based open source software evaluation. In Open Source Development, Communities and Quality. IFIP 20th World
Computer Congress, pages 237–248. Springer, 2008.

[66] Holger Schackmann, Martin Jansen, and Horst Lichter. Tool support for user-defined quality assessment models. In

39

Proc. MetriKon 2009, 2009.
[67] Raed Shatnawi. A quantitative investigation of the acceptable risk levels of object-oriented metrics in open-source systems.

IEEE Transactions on Software Engineering, 36(2):216–225, 2010.
[68] Adam Trendowicz, Michael Kläs, Constanza Lampasona, Juergen Muench, Christian Körner, and Saft Matthias. Model-

based product quality evaluation with multi-criteria decision analysis. In Proc. IWSM/MetriKon/Mensura 2010, 2010.
[69] Adam Trendowicz and Sylwia Kopczyńska. Adapting multi-criteria decision analysis for assessing the quality of software

products. Current approaches and future perspectives. In Advances in Computers, pages 153–226. Elsevier, 2014.
[70] Rini van Solingen and Egon Berghout. Goal/Question/Metric Method. McGraw-Hill Professional, 1999.
[71] R. H. J. van Zeist and P. R. H. Hendriks. Specifying software quality with the extended ISO model. Software Quality

Journal, 5(4):273–284, 1996.
[72] P. Vincke. Multicriteria Decision-Aid. Contemporary Evaluation Research. Wiley, 1992.
[73] Stefan Wagner. A Bayesian network approach to assess and predict software quality using activity-based quality models.

Information and Software Technology, 52(11):1230–1241, 2010.
[74] Stefan Wagner, Klaus Lochmann, Lars Heinemann, Michael Kläs, Constanza Lampasona, Adam Trendowicz, Reinhold

Plösch, Alois Mayr, Andreas Seidl, Andreas Goeb, and Jonathan Streit. Questionnaires and raw data for the paper “Op-
erationalised product quality models and assessment: The Quamoco approach”. http://dx.doi.org/10.5281/zenodo.13290.

[75] Stefan Wagner, Klaus Lochmann, Lars Heinemann, Michael Kläs, Adam Trendowicz, Reinhold Plösch, Andreas Seidl,
Andreas Goeb, and Jonathan Streit. The Quamoco product quality modelling and assessment approach. In Proc. 34th
International Conference on Software Engineering (ICSE’12), pages 1133–1142. IEEE, 2012.

[76] Stefan Wagner, Klaus Lochmann, Sebastian Winter, Florian Deissenboeck, Elmar Juergens, Markus Herrmannsdoerfer,
Lars Heinemann, Michael Kläs, Adam Tendowicz, Jens Heidrich, Reinhold Ploesch, Andreas Goeb, Christian Koerner,
Korbinian Schoder, Jonathan Streit, and Christian Schubert. The Quamoco quality meta-model. Technical Report
TUM-I1281, Technische Universität München, 2012.

[77] Stefan Wagner, Klaus Lochmann, Sebastian Winter, Andreas Goeb, and Michael Klaes. Quality models in practice:
A preliminary analysis. In Proc. 3rd International Symposium on Empirical Software Engineering and Measurement
(ESEM’09), pages 464–467. IEEE, 2009.

[78] Stefan Wagner, Klaus Lochmann, Sebastian Winter, Andreas Goeb, Michael Kläs, and Sabine Nunnenmacher. Software
quality in practice. survey results. Technical Report TUM-I129, Technische Universität München, 2012.

[79] Michael Wicks. A software engineering survey. Technical Report HW-MACS-TR-0036, Heriot-Watt University, 2005.

Appendix A. Benchmarking Approach

In this appendix, we describe the details of how to determine the thresholds min and max for the utility
functions in the assessment approach using benchmarking. We use Equation A.1, where si = S(Fx) is
the normalised measurement result for the baseline system i and Q1 and Q3 represent the 25% and 75%
percentiles; IQR = Q3−Q1 is the inter-quartile range.

IF |{si=1...n : si > 0}| < 5 THEN

min = 0,max = 0.00000001

ELSE

max = max

si : si ≤

Q3({si : si 6= 0})

+1.5× IQR({si})

 ,

min = min

si : si ≥

Q1({si : si 6= 0})

−1.5× IQR({si})

END

(A.1)

According to this formula, values above Q3 + 1.5 × IQR (and below Q1 − 1.5 × IQR) are considered
outliers. This equation takes into consideration typical distributions of measure values:

1. Figure A.11a shows the histogram of the measure bitwise add of signed value of 110 systems. This
measure is based on a rule-based static code analysis tool and normalised by LOC. We can see that all
but two systems had no violations of this rule and have a normalised value of 0. Such a distribution
frequently appears for rule-based measures. In this case, Equation A.1 realises a simple jump function
at 0.

40

http://dx.doi.org/10.5281/zenodo.13290

2. Figure A.11b shows the histogram of the measure clone coverage. This metric is not normalised
because it returns one value for the entire system, which is already “normalised” by definition. The
distribution of values is typical for “classical” software metrics. In this case, Equation A.1 uses the
minimum and maximum non-outlier values as thresholds, i. e. 0.0 and 0.57.

3. Figure A.11c shows the histogram of the measure missing JavaDoc comment. Although it is a rule-
based measure, its normalised values are more equally distributed than in (1). Thus, we used the
non-outlier values as thresholds. On the left side of the distribution, there are no outliers. On the
right side, all values above the dotted line in the figure are considered outliers.

F
re

qu
en

cy

0.00000 0.00005 0.00010 0.00015

0
20

40
60

80
10

0
12

0

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
8

16
24

32
40

F
re

qu
en

cy

0.0 0.5 1.0

0
4

8
12

16
20

(a) Bitwise Add of Signed Byte (b) Clone Coverage (c) Missing JavaDoc Comment

Figure A.11: Histograms for Three Measures (The values to the right of the dotted lines are considered outliers.)

The approach ensures that outliers in the measurement data do not lead to extreme min and max
thresholds which would lead to narrowly clustered evaluation results due to a stretched evaluation function
and, in consequence, to low entropy and lack of differentiation [47].

41

	1 Introduction
	1.1 Quality Models – Benefits and Shortcomings
	1.2 Research Objective
	1.3 Contribution
	1.4 Terms and Definitions
	1.5 Outline

	2 Related Work
	2.1 Hierarchical Models
	2.2 Richer Models
	2.3 Quality Measurement and Tool Support
	2.4 Preliminary Work

	3 Quality Model Concepts
	3.1 Usage of Quality Models
	3.2 General Concepts
	3.3 Meta-Model

	4 Base Model
	4.1 Development of the Base Model
	4.1.1 Approach
	4.1.2 Execution

	4.2 Contents
	4.2.1 Rules of Static Code Analysis Tools
	4.2.2 Programming Best Practices
	4.2.3 Guidelines

	4.3 Modular Structure

	5 Quality Assessment Approach
	5.1 Quality Assessment Method
	5.1.1 Measurement
	5.1.2 Evaluation
	5.1.3 Aggregation
	5.1.4 Interpretation

	5.2 Operationalisation of the Base Model

	6 Tool Support
	6.1 Quality Model Editor
	6.2 Adaptation Support
	6.3 Quality Assessment Engine
	6.4 Visualisation

	7 Empirical Validation
	7.1 Comparison of Software Products
	7.1.1 Design
	7.1.2 Execution
	7.1.3 Results
	7.1.4 Interpretation
	7.1.5 Threats to Validity

	7.2 Sensing Quality Improvements
	7.2.1 Design
	7.2.2 Execution
	7.2.3 Results
	7.2.4 Interpretation
	7.2.5 Threats to Validity

	7.3 Acceptance by Practitioners
	7.3.1 Design
	7.3.2 Execution
	7.3.3 Results
	7.3.4 Interpretation
	7.3.5 Threats to Validity

	8 Specific Quality Model for Embedded Systems
	8.1 Contents
	8.2 Validation
	8.3 Comparison with Base Model

	9 Summary & Conclusions
	9.1 Summary
	9.2 Conclusions
	9.3 Future Work

	Appendix A Benchmarking Approach

