
1

Achievement of Minimized Combinatorial Test Suite for Configuration-

Aware Software Functional Testing Using the Cuckoo Search

Algorithm

*Bestoun S. Ahmed: Corresponding Author

Software Engineering Department, Engineering College, Salahaddin University-Hawler (SUH), 44002, Erbil –

Kurdistan Region, Iraq

e-mail: bestoon82@gmail.com

Taib Sh. Abdulsamad

Statistic & Computer Department, College Of Commerce, University of sulaimani

Zanko Street, Sulaimania, Kurdistan Region

e-mail:Taib.shamsadin@yahoo.com

Moayad Y. Potrus

Software Engineering Department, Engineering College, Salahaddin University-Hawler (SUH), 44002, Erbil –

Kurdistan Region, Iraq

e-mail: moayad_75@yahoo.com

Abstract
Context: Software has become an innovative solution nowadays for many applications and methods in

science and engineering. Ensuring the quality and correctness of software is challenging because each

program has different configurations and input domains. To ensure the quality of software, all possible

configurations and input combinations need to be evaluated against their expected outputs. However, this

exhaustive test is impractical because of time and resource constraints due to the large domain of input and

configurations. Thus, different sampling techniques have been used to sample these input domains and

configurations.

Objective: Combinatorial testing can be used to effectively detect faults in software-under-test. This

technique uses combinatorial optimization concepts to systematically minimize the number of test cases by

considering the combinations of inputs. This paper proposes a new strategy to generate combinatorial test

suite by using cuckoo search concepts.

Method: Cuckoo Search is used in the design and implementation of a strategy to construct optimized

combinatorial sets. The strategy consists of different algorithms for construction. These algorithms are

combined to serve the Cuckoo Search.

Results: The efficiency and performance of the new technique were proven through different experiment

sets. The effectiveness of the strategy is assessed by applying the generated test suites on a real-world case

study for the purpose of functional testing.

Conclusion: Results show that the generated test suites can detect faults effectively. In addition, the

strategy also opens a new direction for the application of Cuckoo Search in the context of software

engineering.

Keywords: Combinatorial testing; Search-based software testing; Cuckoo Search; Test case design

techniques; covering array; Test Generation Tools, mutation testing.

1. Introduction

Testing is the process of evaluating the functionality of a system to identify any gaps, errors, missing

requirements, and other features. This process ensures the sound operation of software[1]. In general,

testing is mainly classified as either functional and structural [2, 3]. The former method is referred to as

“black box testing,” and the latter is called “white box testing” [2-4].

In functional testing, the tester ignores the internal structure of the system-under-test and focuses only

on the inputs and expected outputs. The technique serves the overall functionality validation of the system,

thereby identifying both valid and invalid inputs from the customer’s point of view. Structural testing is

mailto:bestoon82@gmail.com

2

used to detect logical errors in software [3]. The tester needs to gather information on the internal structure

of the system-under-test and to use information with regard to the data structures and algorithms

surrounded by the code [5].

Unlike in structural testing, creating a data set (i.e., test data generation) is an important task in

functional testing because of the lack of information about the internal design. Previous studies have

reported many test data generation methods. In general, these methods use the available information in

software requirement specifications, which provide knowledge about input requirements. The tester

considers all possible input domains when selecting test cases for the software-under-test. However,

considering all inputs is impossible in many practical applications because of time and resource

constraints. Hence, the role of test design techniques is highly important.

A test design technique is used to systematically select test cases through a specific sampling

mechanism. This procedure optimizes the number of test cases to obtain an optimum test suite, thereby

eliminating the time and cost of the testing phase in software development. Different studies proposed

various functional test design techniques, such as equivalence class partitioning, boundary value analysis,

and cause and effect analysis via decision tables [3, 6]. In general, the tester aims to use more than one

testing method because different faults may be detected when different testing methods are used. However,

with the vast growth and development of software systems and their configurations, the probability of the

occurrence of faults has increased because of the combinations of these configurations, particularly for

highly configurable software systems. Traditional test design techniques are useful for fault discovery and

prevention. However, such techniques cannot detect faults that are caused by the combinations of input

components and configurations [7]. Considering all configuration combinations leads to exhaustive testing,

which is impossible because of time and resource constraints [2, 8, 9].

Strategies have been developed in the last 20 years to solve the above problem. Among these strategies,

combinatorial testing strategies are the most effective in designing test cases for this problem. These

strategies facilitate search and generate a set of tests, thereby forming a complete test suite that covers the

required combinations in accordance with the strength or degree of combination. This degree starts from

two (i.e., d=2, where d is the degree of combinations).

Considering all combinations in a minimized test suite is a hard computational optimization problem

[2, 10-12], because searching for the optimal set is an NP-hard problem [2, 11-15]. Hence, searching for an

optimum set of test cases can be a difficult task, and finding a unified strategy that generates optimum

results is challenging. Three approaches, namely, computational algorithms, mathematical construction,

and nature-inspired metaheuristic algorithms, can be used to solve this problem efficiently and find a near-

optimal solution [16].

Using nature-inspired metaheuristic algorithms can generate more efficient results than other

approaches [17, 18]. This approach is more flexible than others because it can construct combinatorial sets

with different input factors and levels. Hence, its outcome is more applicable because most real-world

systems have different input factors and levels. Techniques that have been used to construct combinatorial

sets include simulated annealing (SA) [7], tabu search (TS) [19], genetic algorithm (GA) [20], ant colony

algorithm (ACA) [20, 21], and particle swarm optimization (PSO) [22, 23].

SA generates promising results in cases with small parameters and values as well as a small

combination degree. However, it could not exceed certain parameters and values, and is unable to obtain

results for combination degrees greater than three [20, 24]. PSO can compete with other strategies in most

cases even when the combination degree exceeds three [25, 26]. However, PSO suffers from the effect of

parameter tuning on its performance and from problems with local minima. Recent studies have discovered

new nature-inspired metaheuristic algorithms that can produce better results than the traditional PSO

algorithm for different applications.

Cuckoo Search (CS) [27] is one of the novel nature-inspired algorithms that have been proposed

recently to solve complex optimization problems. CS can be used to efficiently solve global optimization

problems [28] as well as NP-hard problems that cannot be solved by exact solution methods [29]. The

most powerful feature of CS is its use of Lévy flights to update the search space for generating new

candidate solutions. This mechanism allows the candidate solutions to be modified by applying many

small changes during the iteration of the algorithm. This in turn makes a compromised relationship

between exploration and exploitation which enhance the search capability [30]. To this end, recent studies

3

proved that CS is potentially far more efficient than GA and PSO [31]. Such feature have motivated the

use of CS to solve different kinds engineering problems such as scheduling problems [32], distribution

networks [33], thermodynamics [34], and steel frame design [35].

The current paper presents the design and implementation of a strategy to construct optimized

combinatorial sets using CS. Besides the Lévy flights, another advantage of CS over other counterpart

nature-inspired algorithms such as PSO and GA, is that it does not have many parameters for tuning.

Evidences showed that the generated results were independent of the value of the tuning parameters [27,

31].

The rest of the paper is organized as follows: Section 2 presents the mathematical notations,

definitions, and theories behind the combinatorial testing. Section 3 illustrates a practical model of the

problem using a real-world case study. Section 4 summarizes recent related works and reviews in the

existing literature. Section 5 discusses the methodology of the research and implementation. The section

reviews CS in detail and discusses the design and implementation of the strategy. In addition, it shows how

the combinations are generated and describes in detail the algorithms that are used within the proposed

strategy. Section 6 contains the evaluation results on the efficiency, performance, and effectiveness of CS.

Section 7 presents threats to validity for the experiments and the case study. Finally, Section 8 concludes

the paper.

2. Covering array mathematical preliminaries and notations

One future move toward combinatorial testing involves the use of a sampling strategy derived from a

mathematical object called covering array (CA) [36]. In combinatorial testing, CA can be simply

demonstrated by a table with rows and columns that contain the designed test cases; each row is a test case,

and each column is an input factor for the software-under-test.

This mathematical object originates essentially from another object called orthogonal array (OA) [12].

An orthogonal array OAλ(N; d, k, v) is an N × k array in which for every N × d sub-array, each d -tuple

occurs exactly λ times, where λ = N/vd. In this equation, d is the combination strength; k is the number of

factors (k ≥ d), and v is the number of symbols or levels associated with each factor. To consider all

combinations, each d-tuple must occur at least once in the final test suite [37]. When each d-tuple occurs

exactly one time, then λ=1, and it can be excluded from the mathematical notation, i.e., OA (N; d, k, v). As

an example, the orthogonal array OA(9; 2, 4, 3) that contains three levels of value (v), with a combination

degree (d) of two, and four factors (k) can be generated by nine rows. Figure 1(a) illustrates the

arrangement of this array.

OA (9; 2, 4, 3)

CA (9; 2, 4, 3)

MCA (9; 2, 4, 32 22)

k1 k2 k3 k4 k1 k2 k3 k4 k1 k2 k3 k4

1 1 1 1 1 3 3 3 2 1 1 2

2 2 2 1 3 2 3 1 2 2 2 1

3 3 3 1 1 1 2 1 3 3 2 2

1 2 3 2 1 2 1 2 1 3 1 1

2 3 1 2 3 1 1 3 1 1 2 1

3 1 2 2 2 1 3 2 1 2 1 2

1 3 2 3 3 3 2 2 3 2 1 1

2 1 3 3 2 3 1 1 3 1 1 1

3 2 1 3 2 2 2 3 2 3 1 2

(a) (b) (c)

Figure 1. Examples illustrating OA, CA, and MCA

However, the application of OA is limited by its requirement for uniform factors and levels; thus, this

array is suitable for small test suites only [38, 39]. To address this limitation, the CA has been introduced

to complement OA.

4

CA is another mathematical notation that is more flexible for representing large test suites with

different parameters and values. In general, CA uses the mathematical expression CAλ (N; d, k, v) [1]. A

covering array CAλ(N; d, k, v) is an N × k array over {0, . . . , v − 1} such that every B ∈({0,...,k−1}d
d

)is λ-

covered such that every N×d sub-array contains all ordered subsets from v values of size d at least λ times

[40]. To consider all combinations, d-tuples must occur at least once. As such, we consider the value of

λ=1, which is often omitted. Hence, the notation becomes CA(N; d, k, v) [41]. We say that the array has

size N, combination degree d, k factors, v levels, and index λ. Given d, k, v, and λ, we denote the smallest

N for which a CAλ(N; t, k, v) exists as CANλ(d, k, g). A CAλ(N ; d, k, v) with N = CANλ(d, k, v) is optimal

as shown in Eq.1 [42]. Figure 1(b) shows a CA with N = 9,k = 4,v = 3, and d = 2.

𝐶𝐴𝑁 (𝑑, 𝑘, 𝑣) = 𝑚𝑖𝑛{𝑁: ∋ 𝐶𝐴 (𝑁, 𝑑, 𝑘, 𝑣)}(1)

CA is suitable when the number of levels v is the same for each factor in the array. When factors have

different numbers of levels, mixed covering array (MCA) is used. MCA is notated as MCA (N, d, k, (v1, v2,

v3, …,vk)). MCA is an N ×k array on v levels and k factors, where the rows of each N ×d sub-array cover all

d-tuples of values from the d columns at least once [8].For additional flexibility in the notation, the array

can be presented by MCA (N;d, vk))and can be used for a fixed-level CA, such as CA (N;d, vk) [14]. Figure

1(c) shows an MCA with size 9 that has four factors; two of these factors each have three levels, and the

other two factors each have two levels, and each of these levels have two values.

3. Real-world problem model

Mozilla Firefox is a practical example that illustrates and models the concepts of combinatorial

testing. Mozilla Firefox is a well-known Web browser that has many options and configurations that the

user can control without difficulty because of its graphical user interface (GUI). Figure 2 shows a subset

configuration of Mozilla Firefox, when many options of the scheme are combined to create a specific

configuration. Configurations exist under various forms that enable them to be controlled in different

ways, such as by clicking on the box or checking or unchecking an option. Users can change the

configurations by clicking commands while operating Mozilla Firefox. Figure 2 shows a dialog box that

contains six different configurations(i.e., warning when closing multiple tabs and warning when opening

these tabs makes the browser operates lowly), with each configuration having two possible values (i.e.,

check and uncheck).The user can change the configuration based on the requirements.

Figure 2. Subset configuration of Mozilla Firefox.

5

Testing the program by applying a set of designed test cases may reveal a set of different faults.

However, evidence shows that applying the same set of test cases but with different configurations may

lead to different faults [43, 44], which in turn leads us to consider different configurations for the same

software-under-test. In addition, evidence shows that considering the interaction between the

configurations (i.e., combination of configurations) will also detect new faults [26].

We need to consider that all the configurations must contain all possible combinations to test the

software shown in Figure 2. Thus, the software has 26 configurations, that is, 64 test cases. Xiao Qu called

this collection of all possible combinations of configurations configuration definition layer (CDL)

[43].Thus, a specific system that contains different configurations must be tested against its CDL, which

leads to a configuration-aware testing process. Figure 3 shows this process.

Figure 3. Relationship between test cases and configurations in configuration-aware testing

Ideally, each test case must be run against each configuration of the system. However, for large

configurable software systems, considering all configurations is practically impossible because of time and

resource constraints. For example, the command language interpreter of the Linux operating system (Bash)

has approximately 7.6× 1023 possible configurations [44]. Reducing these configurations will dramatically

minimize the time and cost of the testing process.

A sampling technique is needed to minimize these configurations systematically. Different sampling

techniques are proposed in the literature (see [18, 45]). Among those techniques, combinatorial

optimization effectively minimizes the number of configurations to be considered based on the

combination degree. Combinatorial optimization can also be used to minimize the number of test cases.

The final test suite can be represented mathematically by CA notation. The example in Figure 2 has six

factors, each of which has two configurations. Considering combination degree d=2, the configuration set

can be minimized to six configurations, that is, CA (6;2,6,2), by covering all the combinations of two

configurations. However, CA (13;3,6,2), CA (26;4,6,2), and CA (33;5,6,2) represent configuration sets for

combination degrees of 3, 4, and 5, respectively. Thus, instead of selecting all the combinations

exhaustively, equivalence sets could lead to improved results with minimized time and cost.

4. Review of the literature and related works

As mentioned previously, generating a CA is an NP-hard problem .Thus, better methods have been

sought. From the literature and other evidence, the generation methods have been confined to four main

directions, namely, random method, mathematic method, greedy algorithm, and heuristic search algorithm

[18].

Random methods are akin to ad hoc generation methods. In most cases, random methods work

through a mechanism of random selection of a row of CA and by verifying whether it covers most of the

6

combinations. The method continues to iterate until all the combinations are covered. This method is often

used to show the effectiveness of other generation algorithms or to compare its fault detection abilities

with other proposed methods [46, 47]. Although it obtains better results in some cases, random generation

methods usually fail to achieve substantial results.[48].

The problem of CA generation has also been solved with extensions of OA construction that involve

mathematical functions, regardless of the functions used for construction. Other mathematical methods use

a recursive construction approach by building larger CAs from smaller CAs [41, 49]. Specifically, different

tools use mathematical methods for construction, such as Combinatorial Test Services[50] and TConfig

[51]. Although mathematical methods can effectively generate small-sized CAs, they fail to generate CAs

for large parameters and values, particularly when the values are unequal among the parameters (i.e.,

MCA). These drawbacks limit its application for different cases of CA construction. However, the

mathematical approach has the advantage of lightweight computation, which means it has a relatively fast

generation time. In addition, the mathematical approach can produce optimal CAs for some special cases

[40, 52, 53].

 In addition to the aforementioned approaches, greedy algorithms and mathematical search methods

solve the problem of CA generation computationally. Greedy algorithms are used to cover many

uncovered combinations in each row of the CA. In this study, the CA rows are generated by using either of

two methods, namely, one-row-at-a-time or one-parameter-at-a-time [18]. In the one-row-at-a-time

method, the CA is constructed row by row. When a row is added, this row should essentially cover all d-

tuples as much as possible. The construction process will stop when all d-tuples are covered successfully.

The automatic efficient test generator (AETG) [54] is probably the first strategy that adopt this method of

generation. The AETG strategy selects greedily one test case among several candidate test cases for each

cycle. This algorithm serves as a base for a number of variations that have been developed later for AETG

such as mAETG_SAT [7] and mAETG [24]. In addition to AETG, more work has been conducted on

developing different algorithms and tools, such as the algorithm used for pairwise generation in the CATS

tool [55], the greedy algorithms used in the Pairwise Independent Combinatorial Testing (PICT) tool [56],

and the density-based greedy algorithm [57]. Most recently, pseudo-Boolean optimization is used with an

AETG-like algorithm to generate efficient test suites [58]. Here, the strategy tries to do not reach

maximum coverage of the d-tuples by the test cases. Instead, it tries to reach a balance point for the

coverage ratio between [0.8, 0.9].

The one-parameter-at-a-time method attempts to construct rows of the generated CA by adding one

parameter to each row each time and verifying the coverage of d-tuples periodically. Based on the

coverage, parameters are added to the rows horizontally and vertically using heuristics until the CA is

completed. The in-parameter-order (IPO) algorithm [10] was the pioneering implementation of this

method. This strategy was further developed to produce variations of the IPO algorithm, such as IPOG

[59], IPOG-D [14], IPOG-F [60], and IPO-s [61].

Heuristic search and artificial intelligence (AI)-based techniques have been applied effectively for CA

construction. In general, these techniques start with a random set of solutions. Then, a transformation

mechanism is applied to this set such that it is transferred to a new set in which its solutions are more

efficient for d-tuple coverage. For each iteration, the transformation equations essentially create a more

efficient set. Despite detailed variations in the heuristic search techniques, they essentially differ in

transformation functions and mechanisms. Here, techniques, such as SA [7], TS[19], GA[20], ACA[20,

21], and PSO[22, 23], were used effectively for CA construction.

From a practical point of view, most of the time, the input factors of the real world applications suffer

from the intertwined dependencies among each other which can potentially lead to problem in executing

the test cases and may lead to failure due to improper execution [62]. Here, some of the parameters

combinations are considered as impossible combination. Hence, they are considered as constraints in

which they must be part of the final test suite. To this end, some of the recent strategies and tools start to

support this issue such as mAETG, mAETG_SAT, IPOG, IPOG-D, SA, PICT, and TVG. However,

strategies like GA, ACA, and PSO) generally do not show any evidence to support constraints. Recently,

Garvin, B., et at. improve the SA algorithm to support constrained interaction testing [63]. To add the

support for constraints, it is required to remove those combinations from the d-tuples list and add them

directly to the final test suite.

7

Evidence showed that the computational methods (i.e., greedy and heuristic search algorithms)

generate better results in terms of size. However, the computational methods may require more

computational time than mathematical and random methods. In addition, the computational approach is

more flexible than the other approaches as it can construct CAs with different parameters and values. Thus,

the outcome of computational methods is more applicable because most real-world systems have different

parameters and values rather than equal parameter values. Nonetheless, mathematical methods are useful

for generating the optimal construction of CA in cases with few parameters and values, and a low degree

of combination. As a result, computational methods are more applicable and more realistic, although they

may not consistently produce the optimal CA.

As mentioned previously, different metaheuristic and AI-based strategies are proposed in the

literature. Given an NP-hard problem, deriving a strategy that can generate optimal test cases for all

parameters and values is practically impossible. To this end, researchers have attempted to construct better

CAs in terms of size for most cases and to overcome the drawbacks of each method. In the case of small

parameters and values, as well as a small combination degree d, SA usually generates promising results

most of the time. However, SA is less effective when d>3. GA, ACA, and TS have also been applied in

previous studies for generation [19, 20].By contrast, PSO can compete with other strategies when d>3 [25,

26]. However, PSO suffers from problems, such as parameter tuning, sticking in the local minima, and

premature convergence of swarm problems which affect its optimization capability.

Particularly, these strategies suffer from heavy computation and inaccurate results for combinatorial

test suite generation. For example, GA suffers from the crossover and mutation processes, which lead to

heavy computation, ACA suffers from different problems when the number of ants increases, and TS

suffers from the update mechanism of the tabu list sets. In addition, these strategies often impose a trade-

off between reliability and speed of computation[34]. Today, no metaheuristic strategy can generate

optimized results for all configurations, thereby implying that the investigation of new and efficient

strategies with the help of metaheuristics is still an active research topic.

Cuckoo search (CS) has recently been found to be effective in solving engineering and optimization

applications, with promising results. The convergence characteristics and results of CS are better than

those of other metaheuristic optimization methods [28, 64]. In the literature, no studies have applied this

promising method to generate combinatorial test suites. Thus, in this paper, we attempt to modify and

apply the relative strengths of CS to this important part of software testing.

5. Cuckoo Search for Combinatorial Testing

Generating effective test cases and configurations is the most challenging task. As mentioned

previously, testing the application exhaustively (i.e., test every possible event) is impossible most of the

time because of time and resource constrains. Thus, an optimization strategy is needed to optimize and

generate an optimized test suite that has the effectiveness of exhaustive testing. In this study, we use CS to

search for test cases that cover all possible combinations at least once.

In this section, we provide the necessary details for the developed strategy. Section 5.1 presents the

necessary background and illustrates the essential details of CS and its mechanism. Section 5.2 presents the

details of the “all-combination-list generation” algorithm. Then, Section 5.3 presents the CS used for

combinatorial testing and its optimization process and implementation.

5.1. Cuckoo Search (CS)

CS is a new metaheuristic search algorithm that was developed by Yang and Deb [27]. CS is inspired

by the behavior of a fascinating bird called the cuckoo. The aggressive reproduction strategy of this bird

inspired the researchers to study and investigate the opportunity to use its behavior within an optimization

mechanism. Cuckoos lay their eggs in communal nests, although they may remove the eggs of another bird

to increase the hatching probability of their own eggs. If the host bird discovers the eggs of the cuckoo,

8

then it may throw the eggs away from the nest or may completely abandon the nest. The physiology and

behavior of the cuckoo have the capability to mimic the appearance of the egg of the host.

The rules of the CS are as follows: (1) Each cuckoo selects a nest randomly to lay one egg in it, in

which the egg represents a solution in a set of solutions.(2) Part of the nest contains the best solutions

(eggs) that will survive to the next generation.(3) The probability of the host bird finding the alien egg in a

fixed number of nests is pa ∈ [0,1][65]. If the host bird discovers the alien egg with this probability, then

the bird will either discard the egg or abandon the nest to build a new one. Thus, we assumed that a part of

pa with n nest is replaced by new nests. Figure 4 shows the pseudocode and steps of the algorithm.

[66]

Figure 4. Pseudo code of Cuckoo Search [27]

Lévy flight is used in the cuckoo algorithm to conduct local and global searches [67]. Here, Lévy flight

serves as an update mechanism to update and modify the initial random search space. This update

mechanism allows the algorithm to generate new candidate solutions by applying small changes during the

iteration which behave like a step toward the best solution [30]. The rule of Lévy flight is used successfully

in stochastic simulations of different applications, such as biology and physics. Lévy flight is a random

path of walking that takes a sequence of jumps, which are selected from a probability function. A step can

be represented by the following equation for the solution x(t+1) of cuckoo i:

𝑥𝑖
𝑡+1 = 𝑥𝑖

(𝑡)
+ 𝛼 ⊕ Lévy (𝜆) (2)

where 𝛼 the size of each step in which 𝛼 > 0 and depends on the optimization problem scale. The product

⊕ is the entrywise multiplication, and Lévy (𝜆) is the Lévy distribution. The algorithm continues to move

the eggs to another position if the objective function found better positions.

Another advantage of CS over other counterpart stochastic optimization algorithms, such as PSO and

GA, is that it does not have many parameters for tuning. The only parameter for tuning is pa. Yang and

Deb [27, 31] obtained evidence from the literature and showed that the generated results were independent

of the value of this parameter and can be fit to a proposed value pa=0.25.

9

5.2. The d-tuples list generation algorithm

Generating the d-tuples list is essential to calculate the fitness function Fi= f(xi). The d-tuples list

contains all possibilities of combinations between input factors k. As an example, we consider a system

with three input factors (k1k2k3), each factor having three levels (v1 v2 v3). For exhaustive testing, when the

combination degree d=3 (i.e., d=k), (3×3×3) combinations result in 9 combinations. However, as

mentioned previously, exhaustive testing is impossible. Thus, lower combination degrees are considered to

minimize the test cases. For example, when d=2, the combinations are (k1k2), (k1k3), and (k2k3). In turn,

these combinations are converted to the all-combination-list, which contains (3×3) + (3×3) + (3×3) = 27

combinations with d=2. Then, this list will be covered row by row during the optimization process.

Generation this list is difficult because of its tightness with the combination degree. Thus, the generation of

the list starts by considering the number of factors and then calculating the binary equivalence numbers of

(2k−1). This algorithm is implemented in the “Generate Binary Digits” function, as shown in Figure 5.

Figure 5. Main window of the implemented strategy

The algorithm starts by inputting binary digits from 0 to (2k− 1) in a list. For example, when k=3, then

the list contains (000) to (111). A filtering mechanism is combined with the algorithm to filter the number

of (1’s) in each number from the list depending on the combination degree. For example, when d=2, then

the binary numbers after filtering are [(011), (101), (110)], which are equivalent to [(k2k3), (k1k3), (k1k2),],

which, in turn, serves as a master algorithm for generating combinations of input factors for all degrees.

The progress and output of this algorithm can be noted clearly in the output screen of the strategy shown in

Figure 6.

10

Figure 6. Strategy in progress when each algorithm is executed and the final optimized set is generated.

When the combinations of factors are identified, the values of the corresponding factor are matched.

This algorithm is implemented in the “Generate-Combinations” function, as shown in Figures 5 and 6.

When a factor is missed in the combination (i.e., its corresponding binary value is 0), its corresponding

value will be “don't care” because we do not need its value for that specific combination (in this study, −1

is used as an indication only). Upon completion of this algorithm, all the combinations are stored in a list

to be used for calculating the fitness function of the CS. The output list of this algorithm can be noted

clearly in the output screen of the strategy shown in Figure 6.

An algorithm is used to assess the search process for the combinations efficiently. In this study, the

rows in the d-tuples list are stored in groups. Each group is assigned an index number that indicates its

position in the list. The groups are selected based on the combination of factors. For example, in the

aforementioned sample, the combination (k2k3) is stored in the index from (0 to 8) because it has nine rows

of combinations. Thus, the next group is stored in the index from (9 to 17).

5.3. Optimization process with Cuckoo Search

When the d-tuples list is generated, then CS starts. In this study, the CS algorithm is modified to solve

the current problem. The fitness function is used to derive the better solution among a set of solutions. In

this study, a row with higher fitness weight is defined as a row that can cover a higher number of rows in

the d-tuples list. Figure 7 shows the pseudocode of combinatorial test suite generation in which the CS is

modified for this purpose.

11

Figure 7. Pseudocode of combinatorial test case generation with CS

As shown in Figure 7, the strategy starts by considering the input configuration. Then, the d-tuples list

is generated. CS starts by initializing a random population that contains a number of nests. Given that the

number of levels for each input factor is a discrete number, the initialized population is discrete, not an

open interval. Thus, the population is initialized with a fixed interval between 0 and vi. In this study, a

system has different factors in which a test case is a composite of more than two factors that form a row in

the final test suite. As a result of such an arrangement, each test case is treated as a vector xi that has

dimensions equal to the number of input factors of the system. In addition, the levels for each input factor

are basically an integer value. As a result, each dimension in the vector-initialized population must be an

integer value.

Although the initial population is initialized in a discrete interval, the algorithm can produce out-of-

the-bound levels for the input factors. Thus, the vector must be restricted with lower and upper bounds.

The rationale behind this restriction is that the cuckoo lays its eggs in the nests that are recognized by its

eyes.

When the CS iterates, it uses Lévy flight to walk toward the optimum solution. Lévy flight is a walk

that uses random steps in which the length of each step is determined by Lévy distribution. The generation

of random steps in Lévy flight consists of two steps [68], namely, the generation of steps and the choice of

12

random direction. The generation of direction normally follows a uniform distribution. However, in the

literature, the generation of steps follows a few methods. In this study, we follow the Mantegna algorithm,

which is the most efficient and effective step generation method. Within this algorithm, a step length s can

be defined as follows:

𝒔 =
𝒖

|𝒗|
𝟏

𝜷⁄
… … … … … … … … … (3)

where u and v are derived from the normal distribution in which

𝒖 ~ 𝑵 (𝟎, 𝝈𝒖
𝟐) 𝒗 ~ 𝑵 (𝟎, 𝝈𝒖

𝟐) … … … … … … . (4)

𝝈𝒖 = {
𝚪(𝟏 + 𝛃) 𝐬𝐢𝐧 (

𝛑𝛃

𝟐
)

𝚪 [
𝟏+𝛃

𝟐
] 𝛃𝟐

𝛃−𝟏
𝟐

} 𝟏/𝜷 , 𝝈𝒗 = 1 … … … … … … … . (5)

Based on the aforementioned design constraints, the complete strategy steps, including the CS, are

summarized in Figure 7.

As mentioned previously, the strategy starts by considering the input configuration. Normally, the

input is a composite input with the factors, levels, and desired combination degree d. The combination

degree d>1 and is less than the number of input factors. Using the d-tuples generation algorithm described

previously, the d-tuples list is generated (Step 1). Then, the strategy uses the CS, which starts by

initializing a population with m nests, with each nest consisting of dimensional vectors equal to the number

of factors that have a number of levels (Step 2). From a practical point of view, each nest contains a

candidate test case for the final test suite. Then, the CS starts to assess each nest by evaluating coverage

capability of the d-tuples (Steps 3-5). This mechanism is used to assess the fitness function of the CS. The

fitness function f(xi) of the test case xi in this strategy is defined as:

𝑓(𝑥𝑖) = ∑ 𝑑𝑖

𝑖

𝑖∈𝑛𝑒𝑤 𝑑−𝑡𝑢𝑝𝑙𝑒(𝑥𝑖)

 … … … … … (6)

where d-tuples(xi) indicates new tuples that are not covered by the previous generated tests but covered by

the test xi. di denotes the strength of the interaction i. For example, when a nest can cover four d-tuples,

then its weight of coverage is 4. The strategy uses a special mechanism described previously (Section 5.2)

to determine the number of covered tuples and to verify the weight. Based on the results of coverage for all

nests, the strategy sorts the nests again in the search space based on the highest coverage (Step 10). The

lowest coverage in the search space will be abandoned. For the abandoned nests, a Lévy flight is conducted

to verify the availability of better coverage (Step 11). If better coverage is obtained for a specific nest, then

the nest is replaced by the current nest content (Steps 12-15). This process serves just like global search in

other optimization algorithms. Then, for all of the top nests after sorting, a Lévy flight is conducted to

search for the local best nests (Steps 17-19). If better coverage is obtained after the Lévy flight for a

specific nest, then the nest is replaced with the one that have better coverage (Steps 20-24). These steps

(Steps 9 to 26) in the CS will update the search space for each iteration.

Two stopping criteria are defined for the CS. First, if the nest reaches the maximum coverage, then the

loop will stop and the algorithm will add this test case to the final test suite and remove its related tuples in

the n-tuples list. Second, if the d-tuples list is empty, then no combinations are covered. If the iteration

reaches the final iteration, then the algorithm will select the best coverage nest to be added to the final test

suite (Step 27) and remove the related tuples in the n-tuples list (Step 28). Figure 8 shows a graphical

representation of the strategy to summarize the aforementioned steps for better understanding. The

sequence of running is show in red circle on the figure.

13

Figure 8. Graphical representation of CS strategy

The constructed final test suite can be noted clearly in Figure 6. This mechanism will continue as far as

n-tuples remain in the list. Figure 9 shows a running example to illustrate how the tuples are covered and

removed and how the final test suite is constructed.

Figure 9: Running example to show the construction of final test suite and the removal of d-tuples CA(N;2, 24).

14

6. Evaluation results and discussion

The evaluation phase for the proposed strategy is divided into the following three main sections: (1)

evaluation of the generation efficiency,(2) evaluation of the generation performance, and (3) evaluation of

the effectiveness of the generated test suite. Based on the literature [16, 26, 69], efficiency is evaluated

based on the size of the generated test suite, whereas performance is evaluated based on the time taken by

the strategy to generate a specific test suite. For these two evaluation phases, the strategy is compared with

other available strategies.

Some strategies are available publicly as tools to be downloaded and installed. Other strategies are

unavailable publicly, yet their evaluations are published for certain cases. We consider the performance

evaluation for strategies that are available for implementation within the same evaluation environment. By

contrast, for unavailable strategies, we consider the efficiency evaluation only. The rationale behind this

option is that the efficiency criterion is not affected by the research environment as the size of the CA is

not affected by computer speed. However, installing all the tools in the same environment is essential to

ensure a fair comparison of performance as the construction time is affected by the specifications of the

computer.

The effectiveness of the generated test suite is evaluated by adopting a case study on a reliable artifact

program to prove the applicability and correctness of the strategy for a real-world software testing

problem. Given that the generated test suite did not consider the internal structure of the artifact program,

the testing process represents a functional testing process that considers the program configuration.

The experimental environment consists of a desktop PC with Windows 7, 64-bit, 2.5 GHz, Intel Core

i5 CPU, and 6 GB of RAM. The algorithms are coded and implemented in C#.

6.1. Efficiency evaluation

The efficiency of the combinatorial test suite construction is measured by the size of the test suite

generated by the strategy. For strategies that depend on metaheuristic algorithms, a degree of randomness

is observed, especially when the strategy starts with a random solution. As a result, the produced results

are nondeterministic. For this reason, the published results in the literature were achieved by considering

the best achieved size of either 5 or 10 runs [21, 24, 63, 70]. In this study, each experiment is conducted 40

times, and the best and average sizes are reported for each test to account for the statistical significance and

to derive and report better representation of the performance.

The proposed strategy is compared with seven well-known strategies, namely, Jenny [71], TConfig

[72], PICT[73], TVG [74], IPOG [59], IPOG-D [14], and PSO [26]. Some tools, such as PICT and IPOG,

have options to make them behave randomly. However, the literature indicates that the deterministic

results are more efficient than the random results. Hence, the deterministic option is used within these

tools. Several experiments based on the experiments reported in the literature are established to determine

the competitiveness. Different CA configurations are achieved by varying the degree of combination (d),

number of components (k), and number of levels (v) to select and establish the experiments. These

configurations enable the observer to determine the efficiency and performance of the proposed strategy in

constructing different types of CA. Usually, the experiments are divided into two sets of experiments, as

follows: (1) The strategy is compared (in terms of generated size N) with the deterministic computational

strategies.(2) The strategy is compared (in terms of generated size N) with the published results of those

strategies depending on metaheuristic algorithms. Tables 2 to 12 show the comparative results of the

aforementioned cases. The best result for each configuration in each table is shown in bold numbers. Cells

marked NA (not available) indicate that the results are unavailable from the literature, and cells marked NS

(not supported) indicate that the strategy does not support the construction of that specific configuration. In

Table 2, the strategies AETG, mAETG, GA, SA, and ACA are not publically available for download.

Hence, the results are adopted from the experiments undertaken by [24] and [20]. For the rest of the tables,

the strategies are downloaded and executed within our environment. For fair comparison, Table 1 shows

the parameter tuning values of each meta-heuristic algorithm used in the comparison.

15

Table 1. Parameters used for the existing meta-heuristic algorithms

Table 2. Comparison with existing meta-heuristic algorithms for different configuration

Algorithm Parameter Values

GA [20]

Population size 25

Best cloned 1

Tournament selection 0.8

Random crossover 0.75

Gene mutation 0.03

Max stale period 3

Escape mutation 0.25

Iteration 1000

SA [75]

starting temperature 20

cooling schedule 0.9998

Iteration 1000

ACA [20]

Number of ants 20

Pheromone control 1.6

Heuristic control 0.2

Pheromone persistence 0.5

Initial pheromone 0.4

Pheromone amount 0.01

Elite ants 2

Max stale period 5

Iteration 1000

PSO [26]

Population size 80

Acceleration coefficients 1.375

Inertia weight 0.3

Iteration 100

CS

Population size 100

Probability pa 0.25

Iteration 100

k=10
 AETG [20] mAETG [24] GA [20] SA [20] ACA [20] PSO CS

 N N N N N N
Best.

N

Avg.

N

CA(N; 2, 34) 9 9 9 9 9 9 9 9.8

CA(N; 2, 313) 15 17 17 16 17 17 20 22.4

MCA(N; 2, 51 38 22) 19 20 15 15 16 21 21 22.6

MCA(N; 2, 61 51 46 38 23) 34 35 33 30 32 39 43 45.4

MCA(N; 2, 71 61 51 46 38 23) 45 44 42 42 42 48 51 52.4

CA(N; 3, 36) 47 38 33 33 33 42 43 44.8

CA(N; 3, 46) 105 77 64 64 64 102 105 108.2

CA(N; 3, 57) 229 218 218 201 218 229 233 236.2

CA(N; 3, 66) 343 330 331 300 330 338 350 360.4

MCA(N; 3, 101 62 43 31) NA 377 360 360 361 385 393 399.8

16

Table 3. Size of variable input configurations when 3 ≤ k ≤ 12, each having three levels and 2 ≤ d ≤ 6.

v = 3

d=2

k
Jenny TConfig ITCH PICT TVG CTE-XL IPOG PSO CS

N N N N N N N N Best.N AVG.N

3 9 10 9 10 10 10 11 9 9 9.6

4 13 10 9 13 12 14 12 9 9 10.0

5 14 14 15 13 13 14 14 12 11 11.8

6 15 15 15 14 15 14 15 13 13 14.2

7 16 15 15 16 15 16 17 15 14 15.6

8 17 17 15 16 15 17 17 15 15 15.8

9 18 17 15 17 15 18 17 17 16 17.2

10 19 17 15 18 16 18 20 17 17 17.8

11 17 20 15 18 16 20 20 17 18 18.6

12 19 20 15 19 16 20 20 18 18 18.8

d=3

4 34 32 27 34 34 34 39 30 28 29.0

5 40 40 45 43 41 43 43 39 38 39.2

6 51 48 45 48 49 52 53 45 43 44.2

7 51 55 45 51 55 54 57 50 48 50.4

8 58 58 45 59 60 63 63 54 53 54.8

9 62 64 75 63 64 66 65 58 58 59.8

10 65 68 75 65 68 71 68 62 62 63.6

11 65 72 75 70 69 76 76 64 66 68.2

12 68 77 75 7 70 79 76 67 70 71.8

d=4

5 109 97 153 100 105 NA 115 96 94 95.8

6 140 141 153 142 139 NA 181 133 132 134.2

7 169 166 216 168 172 NA 185 155 154 156.8

8 187 190 216 189 192 NA 203 175 173 174.8

9 206 213 306 211 215 NA 238 195 195 197.8

10 221 235 336 231 233 NA 241 210 211 212.2

11 236 258 348 249 250 NA 272 222 229 231.0

12 252 272 372 269 268 NA 275 244 253 255.8

d=5

6 348 305 NA 310 321 NA 393 312 304 307.8

7 458 477 NA 452 462 NA 608 441 434 440.2

8 548 583 NA 555 562 NA 634 515 515 517.8

9 633 684 NA 637 660 NA 771 598 590 593.8

10 714 773 NA 735 750 NA 784 667 682 688.0

11 791 858 NA 822 833 NA 980 747 778 780.2

12 850 938 NA 900 824 NA 980 809 880

d=6

7 1087 921 NA 1015 1024 NA 1281 977 963 970.8

8 1466 1515 NA 1455 1484 NA 2098 1402 1401 1410.8

9 1840 1931 NA 1818 1849 NA 2160 1648 1689 1695.4

10 2160 NA NA 2165 2192 NA 2726 1980 2027 2035.4

11 2459 NA NA 2496 2533 NA 2739 2255 2298 2302.2

12 2757 NA NA 2815 2597 NA 3649 2528 2638 2640.6

17

Table 4. Size of variable input configurations when 2 ≤ v ≤ 5, each having seven factors and 2 ≤ d ≤ 6

Table 5. Size of variable input configurations when 2 ≤ v ≤ 6, each having ten factors and 2 ≤ d ≤ 6

k=7

d=2

v
Jenny TConfig ITCH PICT TVG CTE-XL IPOG PSO CS

N N N N N N N N Best.N AVG.N

2 8 7 6 7 7 8 8 6 6 6.8

3 16 15 15 16 15 16 17 15 15 16.2

4 28 28 28 27 27 30 28 26 25 26.4

5 37 40 45 40 42 42 42 37 37 38.6

d=3

2 14 16 13 15 15 15 19 13 12 13.8

3 51 55 45 51 55 54 57 50 49 51.6

4 124 112 112 124 134 135 208 116 117 118.4

5 236 239 225 241 260 265 275 225 223 225.4

d=4

2 31 36 40 32 31 NA 48 29 27 29.6

3 169 166 216 168 167 NA 185 155 155 156.8

4 517 568 704 529 559 NA 509 487 487 490.2

5 1248 1320 1750 1279 1385 NA 1349 1176 1171 1175.2

d=5

2 57 56 NA 57 59 NA 128 53 53 54.2

3 458 477 NA 452 464 NA 608 441 439 442.2

4 1938 1792 NA 1933 2010 NA 2560 1426 1845 1850.8

5 5895 NA NA 5814 6257 NA 8091 5474 5479 5485.2

d=6

2 87 64 NA 72 78 NA 64 64 66 67.2

3 1087 921 NA 1015 1016 NA 1281 977 973 978.4

4 6127 NA NA 5847 5978 NA 4096 5599 5610 5620.8

5 23492 NA NA 22502 23218 NA 28513 21595 21597 21610.8

k=10

d=4

v
Jenny TConfig ITCH PICT TVG IPOG PSO CS

N N N N N N N Best.N AVG.N

2 39 45 58 43 40 49 34 28 30.4

3 221 235 336 231 228 241 213 211 212.8

4 703 718 704 742 782 707 685 698 701.8

5 1719 1875 1750 1812 1917 1965 1716 1731 1740.2

6 3519 NA NA 3735 4195 3335 3880 3894 3902.6

18

Table 6. Size of variable input configurations when k=10, each having five levels when 2 ≤ d ≤ 6

k = 10

v=5

d
Jenny TConfig ITCH PICT TVG CTE-XL IPOG PSO CS

N N N N N N N N Best.N AVG.N

2 45 48 45 47 50 50 50 45 45 47.8

3 290 312 225 310 342 347 313 287 297 299.2

4 1719 1878 1750 1818 1971 NS 1965 1716 1731 1740.2

5 9437 NA NS 9706 NA NS 11009 9425 9616 9620.4

6 NA NA NS 47978 NA NS 57290 50350 50489 50503.6

Table 7. Size of variable input configurations when k=10, each having two levels when 2 ≤ d ≤ 6

Table 8. Size of variable input configurations when d=4, and 5 ≤ k ≤ 12 each having five levels

k=10

v=2

d
Jenny TConfig ITCH TVG IPOG PSO CS

N N N N N N Best.N AVG.N

2 10 9 6 10 10 8 8 9.0

3 18 20 18 17 19 17 16 17.4

4 39 45 58 41 49 37 36 38.2

5 37 95 NS 84 128 82 79 81.8

6 169 183 NS 168 352 158 157 160.2

v=5

d=4

k
Jenny TConfig ITCH PICT TVG IPOG PSO CS

N N N N N N N Best.N AVG.N

5 837 773 625 810 849 908 779 776 781.8

6 1074 1092 625 1072 1128 1239 1001 991 1002.4

7 1248 1320 1750 1279 1384 1349 1209 1200 1205.4

8 1424 1532 1750 1468 1595 1792 1417 1415 1420.6

9 1578 1724 1750 1643 1795 1793 1570 1562 1672.4

10 1791 1878 1750 1812 1971 1965 1716 1731 1740.2

11 1839 2038 1750 1957 2122 2091 1902 2062 2070.6

12 1964 NA 1750 2103 2268 2258 2015 2223 2230.8

19

Table 9. TCAS module (MCA (N; d, 27 32 41 102)

Table 2 shows the results of the comparison of the generated size for the test suites using our strategy

and its counterpart metaheuristic algorithms (i.e., SA, GA, ACA, and PSO). As mentioned previously,

these strategies are unavailable publicly. Thus, the results are directly compared with the results published

in [20] and [22]. In addition, the results of AETG and mAETG strategies are considered in the comparison

because the GA and ACA results are derived from them. The results of AETG and mAETG are adopted

from [24]. The comparison is fair because the size of the generated test suite is unaffected by the

specification and the environment of the implemented strategy.

The table shows the size of the smallest generated sizes for the combinatorial test suite when 2 ≤d ≤ 3.

Notably, SA generates better results for most configurations. GA, PSO, ACA, and CS generate comparable

results. However, in most cases, CS generates better results than PSO because of its optimization

capability. Notably, although SA generates better results, it fails to show any specific results beyond d>3.

In addition, published results for this strategy are lacking. In case of GA and ACA, the results are further

optimized by a compaction algorithm that attempts to merge the rows of the produced test suite to obtain

better optimized results. However, these results do not represent the actual efficiency of the algorithm. As

shown in the other tables, CS can generate results beyond t>3.

From the results shown in Tables 3 to 8 we observed that IPOG and IPOG-D perform well in all

configurations. For the TCAS system in Table 9, IPOG succeed to generate optimized results most of them

time. However, IPOG and IPOG-D fail to generate optimized results in most of the tables. Notably, IPOG

can achieve better results in case of mixed variables (i.e., when the levels of the input factors are unequal).

CTE-XL generates satisfactory results; however it is unable to generate competitive results in some cases.

In addition, CTE-XL is unable to generate results beyond d>3 as can be noted in Table 3.

Aside from CS, PSO generates better results for most configurations. Similarly, CS could achieve

better results for most configurations and could achieve better results compared with PSO. Notably, the

size of the CA depends on the values and degrees of combinations, which can be interpreted by the

equation of the growth of size that is published in the literature O(vtlog k) [59].

The results also showed that even when the CS could not generate a better size, it could be the second

best performing algorithm. As mentioned previously, deriving a strategy that can generate best results all

the time is practically impossible because of the NP-completeness of the problem itself. However, the best

strategy can be observed when it can generate small results for most cases.

6.2. Performance evaluation

In this section, we evaluate the performance of the strategy through the generation time. In addition,

we compare the performance of the proposed strategy with other publicly available strategies and tools.

The comparison considers only strategies that are publicly available for download and are implemented in

the same environment to ensure a fair comparison of generation time. The following strategies are

considered for implementation: Jenny, PICT, TConfig, ITCH, TVG, CTE-XL, IPOG-D, and IPOG. Three

sets of experiments are conducted. For each experiment, the best size is reported with its generation time

for deterministic strategies. In addition, the best and average times of generation are reported for strategies

that depend on some degree of randomness. Tables 10 to 12 show the experimental results.

k=12

d

Jenny TConfig ITCH TVG IPOG PSO CS

N N N N N N Best.N AVG.N

2 108 108 120 101 100 100 100 104.2

3 413 472 2388 434 400 400 410 415.2

4 1536 1548 1484 1599 1377 1520 1537 1540.0

5 4621 NS NS 4773 4283 4566 4566 4576.2

6 11625 NS NS NS 11939 11743 11431 11450.0

20

Table 10. Test sizes and execution times for seven input factors, each having three levels, when 2 ≤ d ≤ 6

Table 11. Test sizes and execution times for input configuration when 4≤k≤10, each factor having three levels with d=3

Table 12. Test sizes and execution times for input configuration when k=7, each factor having levels 2≤v≤6 with d=3

The results in Tables 10 to 12 show the time of test suite generation for a specific configuration along

with the size of the test suite. In addition, the best and average sizes for each case are reported because they

depend on the randomness of their algorithms up to certain level. Considering that the other strategies are

deterministic, only the best results are given. The best generation times are shown in shaded numbers and

the best sizes are shown in bold.

The results in Tables 10 and 12 indicate that the generation time increased exponentially with respect to

the values and the combination degrees. Notably, the computational strategies generate the test suites faster

than the metaheuristic strategies. However, the computational strategies fail to generate better results in

terms of size. In this comparison, CS can generate test suites with better performance than PSO. However,

IPOG-D can generate test suites with better performance than IPOG and Jenny. This delay in performance

is due to the iterative loop applied to achieve optimum fitness values. Despite this situation, IPOG and

Jenny can still generate test suites with asymptotic times. Notably, more weight is given to generating a

v=3

d

Jenny

N/Time

TConfig

N/Time

ITCH

N/Time

PICT

N/Time

TVG

N/Time

CTE-XL

N/Time

IPOG-D

N/Time

IPOG

N/Time

PSO

N/Time

CS

N/Time Avg/Time

2 16/0.37 15/029 15/17.5 16/0.62 15/0.22 16/0.26 18/0.19 17/0.443 15/0.21 14/1.68 15.2/1.88

k=7 3 51/0.57 55/1.86 45/37.85 51/0.98 55/0.57 54/2.55 63/0.36 57/0.614 50/4.21 50/0.133 52.4/0.18

4 169/0.62 166/18.5 216/42.62 168/1.46 167/0.82 NS NS 185/1.357 155/11.32 156/3.30 157.2/12.50

5 458/1.91 477/198.52 NS 452/2.27 464/4.602 NS 735/0.86 608/2.264 441/41.05 440/13.43 439.2/15.40

 6 1087/2.58 921/1157.8 NS 1015/11.524 1016/11.524 NS 1548/1.18 1281/3.97 977/105.59 963/20.41 970.2/22.40

v=3

k

Jenny

N/Time

TConfig

N/Time

ITCH

N/Time

PICT

N/Time

TVG

N/Time

CTE-XL

N/Time

IPOG-D

N/Time

IPOG

N/Time

PSO

N/Time

CS

N/Time avg/Time

4 34/0.08 32/0.17 27/32.16 34/0.14 34/0.17 34/0.75 27/0.04 39/0.27 27/0.17 29/0.15 29.4/0.20

d=3 5 40/0.12 40/0.25 45/37.42 43/0.45 41/0.21 43/1.44 49/0.12 43/0.34 39/1.739 39/0.13 39.4/0.20

6 51/0.47 48/0.67 45/37.62 48/0.83 49/0.48 52/1.96 49/0.12 53/0.58 45/2.25 45/0.39 46.2/0.55

7 51/0.57 55/1.86 45/37.85 51/0.98 55/0.57 54/2.55 63/0.36 57/0.614 50/4.21 48/0.44 49.6/0.58

 8 58/0.73 58/2.48 45/38.37 59/1.3 60/1.251 63/2.85 63/0.49 63/0.98 54/7.15 55/2.21 55.2/2.45

 9 62/0.82 64/3.32 75/52.4 63/2.76 64/1.1812 66/4.65 71/0.111 65/1.36 58/9.03 60/2.39 60.8/3.25

 10 65/1.16 68/6.71 75/52.67 65/2.94 68/2.414 71/5.9 71/0.111 68/1.92 62/13.27 64/3.15 66.2/4.10

k=7

v

Jenny

N/Time

TConfig

N/Time

ITCH

N/Time

PICT

N/Time

TVG

N/Time

CTE-XL

N/Time

IPOG-D

N/Time

IPOG

N/Time

PSO

N/Time

CS

N/Time avg/Time

2 14/0.18 16/0.68 13/25.6 15/0.37 15/0.22 15/0.32 14/0.15 19/0.93 13/0.32 12/6.50 13.8/7.80

d=3 3 51/0.57 55/1.86 45/37.85 51/0.98 55/0.57 54/2.55 63/0.36 57/0.614 50/4.21 50/0.44 51.2/0.85

4 124/1.31 112/4.72 112/93.4 124/1.06 134/0.95 136/5.7 112/0.43 208/0.97 116/21.34 118/1.49 118.8/1.85

5 236/2.43 239/17.53 225/114.5 241/1.9 260/2.15 267/20.5 292/0.95 275/2.175 225/35.6 233/5.52 235.2/6.25

 6 400/3.85 423/84.58 1177/585.7 413/3.74 464/4.458 467/55.6 532/1.23 455/3.514 425/183.56 403/12.59 410.2/14.50

21

smaller size for the test suites than the generation time. These rules can change depending on the type of

the application.

6.3. Effectiveness evaluation through an empirical case study

An artifact program is selected as the object of the empirical case study. The program is used to

evaluate the personal information of new applicants for officer positions. The program consists of various

GUI components that represent personal information and criteria to convert them to a weighted number.

Each criterion has an effect on the final result, which decides the rank and monthly wage of the officer.

The final number is the resulting point. The program is selected because it has a nontrivial code base and

different configurations. Figure 10 shows the main window of the program.

Figure 10. Main window of the empirical study program

The program regards different configurations as input factors. Each input factor has different levels. For

example, the user can choose “No Degree,” “Primary,” “Secondary,” “Diploma,” “Bachelor,” “Master,”

and “Doctorate” levels for the “Degree” factor. Table 13 summarizes the factors and levels for the

program.

Table 13. Summary of the input factors and levels for the case study program
No. Factors Levels

1 Degree [No Degree, Primary, Secondary, Diploma, Bachelor, Master, Doctor]

2 children [non, 1, 2, 3, 4, More_than_4]

3 read [checked, unchecked]

4 write [checked, unchecked]

5 speak [checked, unchecked]

6 understand [checked, unchecked]

7 New graduate [checked, unchecked]

8 Experience [checked, unchecked]

9 English [checked, unchecked]

10 Disability [checked, unchecked]

11 Marital Status [Single, Married, Widow]

12 Resident [Local, outsider, Foreigner]

To this end, the input configuration of the program can be represented by one factor with sevenlevels, one

factor with six levels, eight factors with two levels each, and two factors with three levels each. Thus, this

input configuration can be notated in an MCA notation as MCA (N; d, 71 61 28 32). We need 96,768 test

cases to test the program with exhaustive configuration testing. In this study, a combinatorial test suite is

22

0

5

10

15

20

25

30

35

40

45

50

Failed to detect Mutation Failed Test due to Mutation

generated by considering the input configuration to minimize the number of test cases. Table 14 shows the

size of each test suite, considering the combination degree.

Table 14. Size of the test suite used for the case study

Comb. Degree (d) Test suite size

2 42

3 136

4 446

5 1205

6 2886

The program was injected with various types of mutations (faults). using MuClipse [76] to verify the

effectiveness of the proposed strategy. MuClipse is a mutation injection software that uses muJava as

mutation tool. MuClipse creates various types of faults within the original program to test the effectiveness

of the generated test suites in detecting these faults.

In general, mutation testing has two advantages on the test suites obtained from the strategy. The first

is that it verifies the contribution of different methods and variables defined in the class on the calculation

process within the class. The second is that it determines if any similar behavior or reaction exists between

the test cases. Deriving similar test cases and reducing the number of cases used for the final test suite are

important. The used mutation test was intended to verify and improve the test suite. This is done by

detecting and locating similar behavior in the resulted test suite obtained from the combinatorial test suite.

The verification step is carried out by capturing test cases with similar reflexes or behavior (fail or

pass) towards different mutation injected in the software. The operation includes two phases. First, is

grouping the tests which have the same number of failed and pass cases. Then, matching the reflex patterns

of the injected mutations for those similar test cases obtained from the first step. This step is very

important, because the combinatorial test suite cannot guarantee that the obtained test cases can have

different functional behavior despite having different values.

As shown in Table 14, when the combination degree is 2, 42 test cases were generated from the

optimization algorithm, which covers the entire code. muJava generated 278 mutation classes, which are

then reduced to 70 mutation classes as a result of similarity in the mutation concept that generates the same

effect. Figure 11 shows the reaction of these test cases to the 70 mutation classes.

Figure 11. Reaction of the test cases with the configuration for the number of mutations detected when

d=2.

23

The blue strips in Figure 11 represent the number of mutation classes that achieved a correct result. In

this case, the test case was not affected by the injected mutation because the mutation has no effect on the

class calculation and final result. By contrast, the red strips represent the number of failed test cases that

resulted from the effect of the injected mutation. In this case, the mutation has a direct effect on the

calculated result and thus achieved an incorrect result. In this study, when d=2, 12 faults were not detected

during the 42 tests.

The number of failed test cases with various mutation classes was used to determine the test cases that

have the same response. The cases that have the same number of failed tests were compared to detect any

behavior similarity toward the mutations. From the obtained results, test cases 22 and 29 exhibited the

same response for all mutation classes. As a result, test case 29 is an excess to the test cases and can be

deleted. Meanwhile, the remaining test cases responded differently to the mutation classes and are thus

retained.

When the combination degree is 2, 135 test cases are obtained from the program testing strategy.

Figure 12 shows the reaction to the same 70 mutation classes used when the combination degree is 2.

Figure 12. Reaction of the test cases with the configuration for the number of mutations detected when d=3

As shown in Figure 12, the 136 test cases were applied to verify similarity in the same manner as in

the previous case. The test cases that have the same response to the mutation were deleted to further

optimize the final test suite. Notably, many tests could not detect many mutations at once. However, the

overall test cases successfully detected all the mutations, including the 12 faults that were not detected by

the test suite with a combination degree of 2. The higher combination degree (i.e., the test suites for d>3)

was also able to detect the faults. However, as far as all the faults that were detected by the test suite of

d=3, the results were not reported in this study to avoid redundancy.

7. Threats to validity

This study encountered different threats to validity, as in other studies. Considerable attention should

be focused on reducing these threats by designing and running different experiments. However, we need to

address the threats to validity. First, given the lack of results for the metaheuristic algorithms, we need to

conduct more experiments for further evaluation to determine the strengths and weaknesses of different

algorithms. Second, only one program is used for the case study. Although the program is an ideal artifact

for functional testing, more case studies and evidence can show the effectiveness of the strategy. In

addition, the faults that were injected in the current program could be detected when the test suite has a

combination degree that is equal to 3. However, other types of faults within the same case study can be

detected by a higher combination degree.

24

8. Conclusion

In this paper, we propose a strategy for combinatorial test suite generation using CS. The strategy is

applicable for functional testing activities in which the internal structure of the code is not considered. CS

has recently been proven to be an effective optimization algorithm for NP-complete problems. An

extensive evaluation with different benchmarks and experimental cases has been presented to determine

the strengths and weaknesses of the proposed strategy. The evaluation results showed that using the CS to

optimize the combinatorial test suites could generate better results most of the time compared with its

counterpart strategies. A real-world case study is used to evaluate the effectiveness of the test suite

generated by the strategy. The strategy proved its effectiveness in detecting faults in programs by using the

functional testing approach.

References

[1] R. N. Kacker, D. Richard Kuhn, Y. Lei, and J. F. Lawrence, "Combinatorial testing for software: An

adaptation of design of experiments," Measurement, vol. 46, pp. 3745-3752, 2013.

[2] W. Afzal, R. Torkar, and R. Feldt, "A systematic review of search-based testing for non-functional system

properties," Information and Software Technology, vol. 51, pp. 957-976, 2009.

[3] S. Nidhra and J. Dondeti, "Blackbox and whitebox testing techniques –a literature review," International

Journal of Embedded Systems and Applications (IJESA), vol. 2, 2012.

[4] S. Singh, A. Kaur, K. Sharma, and S. Srivastava, "Software testing strategies and current issues in embedded

software systems," International Journal of Scientific & Engineering Research vol. 4, 2013.

[5] L. Baresi and M. Pezzè, "An introduction to software testing," Electronic Notes in Theoretical Computer

Science, vol. 148, pp. 89-111, 2006.

[6] S. Singh, E. S. Singh, and M. Rakshit, "A review of various software testing techniques," International

Journal of Research in Engineering & Advanced Technology (IJREAT), vol. 1, Aug-Sept, 2013 2013.

[7] M. B. Cohen, M. B. Dwyer, and J. Shi, "Interaction testing of highly-configurable systems in the presence of

constraints," in International Symposium on Software Testing and Analysis, London, United Kingdom, 2007,

pp. 129-139.

[8] Q. Xiao, M. B. Cohen, and K. M. Woolf, "Combinatorial interaction regression testing: a study of test case

generation and prioritization," in Software Maintenance, 2007. ICSM 2007. IEEE International Conference

on, 2007, pp. 255-264.

[9] D. S. Hoskins, C. J. Colbourn, and D. C. Montgomery, "Software performance testing using covering arrays:

efficient screening designs with categorical factors," presented at the Proceedings of the 5th international

workshop on Software and performance, Palma, Illes Balears, Spain, 2005.

[10] L. Yu and K. C. Tai, "In-parameter-order: a test generation strategy for pairwise testing," in 3rd IEEE

International Symposium on High-Assurance Systems Engineering, Washington, DC , USA 1998, pp. 254-

261.

[11] C. Yilmaz, M. B. Cohen, and A. Porter, "Covering arrays for efficient fault characterization in complex

configuration spaces," presented at the ACM SIGSOFT Software Engineering Notes, 2004.

[12] V. Kuliamin and A. Petukhov, "A survey of methods for constructing covering arrays," Programming and

Computer Software, vol. 37, pp. 121-146, 2011.

[13] S. Maity, A. Nayak, M. Zaman, N. Bansal, and A. Srivastava, "An improved test generation algorithm for

pair-wise testing," International Symposium on Software Reliability Engineering (ISSRE), 2003.

[14] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence, "IPOG-IPOG-D: efficient test generation for

multi-way combinatorial testing," Software Testing, Verification & Reliability, vol. 18, pp. 125-148, 2008.

[15] A. Ouaarab, Belaid Ahiod, and X.-S. Yang, "Discrete cuckoo search algorithm for the travelling salesman

problem," Neural Computing and Applications, vol. 24, June 2014 2014.

[16] X. Yuan, M. B. Cohen, and A. M. Memon, "GUI interaction testing: incorporating event context," IEEE

Transactions on Software Engineering, vol. 37, pp. 559-574 2011.

[17] P. McMinn, "Search-based software test data generation: a survey: Research Articles," Softw. Test. Verif.

Reliab., vol. 14, pp. 105-156, 2004.

[18] C. Nie and H. Leung, "A survey of combinatorial testing," ACM Computing Surveys, vol. 43, pp. 1-29, 2011.

25

[19] K. J. Nurmela, "Upper bounds for covering arrays by tabu search," Discrete Applied Mathematics, vol. 138,

pp. 143-152, 2004.

[20] T. Shiba, T. Tsuchiya, and T. Kikuno, "Using artificial life techniques to generate test cases for

combinatorial testing," in 28th Annual International Computer Software and Applications Conference, Hong

Kong, 2004, pp. 72-77 vol.1.

[21] X. Chen, Q. Gu, A. Li, and D. Chen, "Variable strength interaction testing with an ant colony system

approach," in 16th Asia-Pacific Software Engineering Conference, Penang, Malaysia, 2009, pp. 160-167.

[22] B. S. Ahmed, K. Z. Zamli, and C. P. Lim, "Constructing a t-way interaction test suite using the particle

swarm optimization approach," International Journal of Innovative Computing, Information and Control

(IJICIC), vol. 8, pp. 431-452, 2012.

[23] B. S. Ahmed, M. A. Sahib, and M. Y. Potrus, "Generating combinatorial test cases using Simplified Swarm

Optimization (SSO) algorithm for automated GUI functional testing," Engineering Science and Technology,

an International Journal, vol. 17, pp. 218-226, 2014.

[24] M. B. Cohen, "Designing test suites for software interaction testing," Doctor of Philosophy PhD Thesis,

Department of Computer Science, University of Auckland, 2004.

[25] B. S. Ahmed and K. Z. Zamli, A Test Generation Strategy for Variable Strength and T-Way Testing, 1st ed.

OmniScriptum GmbH & Co. KG, Germany: Scholars' Press, 2014.

[26] B. S. Ahmed, K. Z. Zamli, and C. P. Lim, "Application of Particle Swarm Optimization to Uniform and

Variable Strength Covering Array Construction," Applied Soft Computing, vol. 12, pp. 1330–1347, 2012.

[27] X.-S. Yang and S. Deb, "Cuckoo search via L´evy flights," in Nature & Biologically Inspired Computing,

2009. NaBIC 2009. World Congress on, 2009, pp. 210-214.

[28] X.-S. Yang and S. Deb, "Cuckoo search: recent advances and applications," Neural Computing and

Applications, vol. 24, pp. 169-174, January 2014 2014.

[29] S. Dejam, M. Sadeghzadeh, and S. J. Mirabedini, "Combining cuckoo and tabu algorithms for solving

quadratic assignment problems," Journal of Academic and Applied Studies, vol. 2, pp. 1-8, 2012.

[30] S. Walton, O. Hassan, K. Morgan, and M. R. Brown, "A Review of the development and applications of the

cuckoo search algorithm," in Swarm Intelligence and Bio-Inspired Computation, X.-S. Y. C. X. H. G.

Karamanoglu, Ed., ed Oxford: Elsevier, 2013, pp. 257-271.

[31] X.-S. Yang and S. Deb, "Engineering optimisation by cuckoo search," International Journal of

Mathematical Modelling and Numerical Optimisation, vol. 1, pp. 330-343, 2010.

[32] A. Kumar and S. Chakarverty, "Design optimization for reliable embedded system using Cuckoo Search," in

3rd International Conference on Electronics Computer Technology (ICECT), 2011, pp. 264-268.

[33] Z. Moravej and A. Akhlaghi, "A novel approach based on cuckoo search for DG allocation in distribution

network," International Journal of Electrical Power & Energy Systems, vol. 44, pp. 672-679, 2013.

[34] V. Bhargava, S. E. K. Fateen, and A. Bonilla-Petriciolet, "Cuckoo Search: A new nature-inspired

optimization method for phase equilibrium calculations," Fluid Phase Equilibria, vol. 337, pp. 191-200,

2013.

[35] A. Kaveh and T. Bakhshpoori, "Optimum design of steel frames using Cuckoo Search algorithm with Lévy

flights," The Structural Design of Tall and Special Buildings, vol. 22, pp. 1023-1036, 2013.

[36] S. Fouch, M. B. Cohen, and A. Porter, "Towards incremental adaptive covering arrays," presented at the The

6th Joint Meeting on European software engineering conference and the ACM SIGSOFT symposium on the

foundations of software engineering: companion papers, Dubrovnik, Croatia, 2007.

[37] D. Hoskins, R. C. Turban, and C. J. Colbourn, "Experimental designs in software engineering: d-optimal

designs and covering arrays," in ACM Workshop on Interdisciplinary Software Engineering Research,

Newport Beach, CA, USA, 2004, pp. 55 - 66.

[38] B. Beizer, Software testing techniques (2nd ed.): Van Nostrand Reinhold Co., 1990.

[39] A. H. Ronneseth and C. J. Colbourn, "Merging covering arrays and compressing multiple sequence

alignments," Discrete Applied Mathematics, vol. 157, pp. 2177-2190, 2009.

[40] C. Yilmaz, S. Fouche, M. B. Cohen, A. Porter, G. Demiroz, and U. Koc, "Moving Forward with

Combinatorial Interaction Testing," Computer, vol. 47, pp. 37-45, 2014.

[41] A. Hartman and L. Raskin, "Problems and algorithms for covering arrays," Discrete Mathematics, vol. 284,

pp. 149-156, 2004.

[42] M. Chateauneuf and D. L. Kreher, "On the state of strength-three covering arrays," Journal of Combinatorial

Designs, vol. 10, pp. 217-238, 16 MAY 2002 2002.

[43] X. Qu, "Chapter 4 - Testing of configurable systems," in Advances in Computers. vol. 89, M. Atif, Ed., ed:

Elsevier, 2013, pp. 141-162.

26

[44] X. Qu, M. B. Cohen, and G. Rothermel, "Configuration-aware regression testing: an empirical study of

sampling and prioritization," in 2008 International Symposium on Software Testing and Analysis, Seattle,

WA, USA, 2008, pp. 75-86.

[45] A. Bertolino, "Software testing research: achievements, challenges, dreams," in Future of Software

Engineering Conference, Minneapolis, Minnesota, USA, 2007, pp. 85-103.

[46] P. J. Schroede, P. Bolaki, and V. Gopu, "Comparing the fault detection effectiveness of n-way and random

test suites," in Proceedings of the 2004 International Symposium on Empirical Software Engineering, ISESE

'04, 2004, pp. 49-59.

[47] D. R. Kuhn, R. Kacker, and Y. Lei, "Combinatorial and Random Testing Effectiveness for a Grid Computer

Simulator " National Institute of Standards and Technology NIST Technical Report2008.

[48] C. Nie, H. Wu, X. Niu, F.-C. Kuo, H. Leung, and C. J. Colbourn, "Combinatorial testing, random testing,

and adaptive random testing for detecting interaction triggered failures," Information and Software

Technology, vol. 62, pp. 198-213, 2015.

[49] N. Kobayashi, "Design and evaluation of automatic test generation strategies for functional testing of

software," Ph.D. thesis, Osaka University, Osaka, Japan, 2002.

[50] A. Hartman, Software and Hardware Testing Using Combinatorial Covering Suites vol. 34: Springer US,

2005.

[51] A. W. Williams and R. L. Probert, "A practical strategy for testing pair-wise coverage of network

interfaces," in 7th International Symposium on Software Reliability Engineering, White Plains, NY , USA

1996, p. 246.

[52] C. J. Colbourn, G. Kéri, P. P. R. Soriano, and J.-C. Schlage-Puchta, "Covering and radius-covering arrays:

Constructions and classification," Discrete Applied Mathematics, vol. 158, pp. 1158-1180, 2010.

[53] P. Danziger, E. Mendelsohn, L. Moura, and B. Stevens, "Covering arrays avoiding forbidden edges,"

Theoretical Computer Science vol. 410, pp. 5403-5414, 2009.

[54] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton, "The AETG system: an approach to testing

based on combinatorial design," IEEE Transactions on Software Engineering, vol. 23, pp. 437-444, 1997.

[55] G. Sherwood, "Effective testing of factor combinations," presented at the the 3rd International Conference

on Software Testing, Analysis, and Review(STAR94), Washington, DC, 1994.

[56] J. Czerwonka, "Pairwise testing in real world: practical extensions to test case generator," in 24th Pacific

Northwest Software Quality Conference, Portland, Oregon, USA, 2006, pp. 419-430.

[57] R. C. Bryce and C. J. Colbourn, "The density algorithm for pairwise interaction testing: Research Articles,"

Software Testing, Verification & Reliability, vol. 17, pp. 159-182, 2007.

[58] Z. Zhanga, J. Yan, Y. Zhao, and J. Zhang, "Generating combinatorial test suite using combinatorial

optimization," Journal of Systems and Software, vol. 98, pp. 191-207, 2014.

[59] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence, "IPOG: a general strategy for t-way software

testing," in 4th Annual IEEE International Conference and Workshops on the Engineering of Computer-

Based Systems, Tucson, Arizona, 2007, pp. 549-556.

[60] M. Forbes, J. Lawrence, Y. Lei, R. N. Kacker, and D. R. Kuhn, "Refining the in-parameter-order strategy for

constructing covering arrays," Journal of Research of the National Institute of Standards and Technology,

vol. 113, pp. 287-297, 2008.

[61] A. Calvagna and A. Gargantini, "IPO-s: incremental generation of combinatorial interaction test data based

on symmetries of covering arrays," in IEEE International Conference on Software Testing, Verification, and

Validation Workshops, Denver, Colorado, USA, 2009, pp. 10-18.

[62] K. Z. Zamli, M. F. J. Klaib, M. I. Younis, N. A. M. Isa, and R. Abdullah, "Design and implementation of a t-

way test data generation strategy with automated execution tool support," Information Sciences, vol. 181, pp.

1741-1758, 2011.

[63] B. Garvin, M. Cohen, and M. Dwyer, "Evaluating improvements to a meta-heuristic search for constrained

interaction testing," Empirical Software Engineering, vol. 16, pp. 61-102, 2011.

[64] S. Kamat and A. G. Karegowda, "A brief survey on cuckoo search applications," International Journal of

Innovative Research in Computer and Communication Engineering, vol. 2, May 2014 2014.

[65] X. Li and M. Yin, "Modified cuckoo search algorithm with self adaptive parameter method," Information

Sciences, vol. 298, pp. 80-97, 2015.

[66] I. Fister, D. Fister, and I. Fister, "A comprehensive review of cuckoo search: variants and hybrids,"

International Journal of Mathematical Modelling and Numerical Optimisation, vol. 4, pp. 387-409, 2013.

[67] T. T. Nguyen and D. N. Vo, "Modified cuckoo search algorithm for short-term hydrothermal scheduling,"

International Journal of Electrical Power & Energy Systems, vol. 65, pp. 271-281, 2015.

[68] X.-S. Yang, Nature-Inspired Metaheuristic Algorithms: Second Edition: Luniver Press, 2010.

27

[69] X. Yuan and A. M. Memon, "Generating Event Sequence-Based Test Cases Using GUI Runtime State

Feedback," IEEE Transactions on Software Engineering, vol. 36, pp. 81-95, 2010.

[70] Z. Wang, B. Xu, and C. Nie, "Greedy heuristic algorithms to generate variable strength combinatorial test

suite," in 8th International Conference on Quality Software, Oxford, UK, 2008, pp. 155-160.

[71] B. Jenkins. (2005 May). Jenny download web page. Available: http://burtleburtle.net/bob/math/jenny.html

[72] A. Williams. (2008, 1st July). TConfig download page. Available: http://www.site.uottawa.ca/~awilliam/

[73] J. Czerwonka. (2008, May). Pairwise independent combinatorial testing (PICT) download page. Available:

https://msdn.microsoft.com/en-us/library/windows/hardware/hh439673(v=vs.85).aspx

[74] j. Arshem. (2009, May). TVG download page. Available: http://sourceforge.net/projects/tvg

[75] M. B. Cohen, C. J. Colbourn, and A. C. H. Ling, "Augmenting simulated annealing to build interaction test

suites," presented at the Proceedings of the 14th International Symposium on Software Reliability

Engineering, 2003.

[76] MuClipse. (2015, January, 8). MuClipse develpment web page. Available: http://muclipse.sourceforge.net/

	Context: Software has become an innovative solution nowadays for many applications and methods in science and engineering. Ensuring the quality and correctness of software is challenging because each program has different configurations and input doma...
	Objective: Combinatorial testing can be used to effectively detect faults in software-under-test. This technique uses combinatorial optimization concepts to systematically minimize the number of test cases by considering the combinations of inputs. Th...
	Method: Cuckoo Search is used in the design and implementation of a strategy to construct optimized combinatorial sets. The strategy consists of different algorithms for construction. These algorithms are combined to serve the Cuckoo Search.
	Results: The efficiency and performance of the new technique were proven through different experiment sets. The effectiveness of the strategy is assessed by applying the generated test suites on a real-world case study for the purpose of functional t...
	Conclusion: Results show that the generated test suites can detect faults effectively. In addition, the strategy also opens a new direction for the application of Cuckoo Search in the context of software engineering.
	1. Introduction
	2. Covering array mathematical preliminaries and notations
	3. Real-world problem model
	4. Review of the literature and related works
	5. Cuckoo Search for Combinatorial Testing
	5.1. Cuckoo Search (CS)
	5.2. The d-tuples list generation algorithm
	5.3. Optimization process with Cuckoo Search
	6. Evaluation results and discussion
	6.1. Efficiency evaluation
	6.2. Performance evaluation
	6.3. Effectiveness evaluation through an empirical case study
	7. Threats to validity
	8. Conclusion
	References

