
Please do not remove this page

Enhancing mirror adaptive random testing
through dynamic partitioning
Huang, Rubing; Liu, Huai; Xie, Xiaodong; Chen, Jinfu
https://researchrepository.rmit.edu.au/esploro/outputs/journalArticle/Enhancing-mirror-adaptive-random-testing-through/9921862679701341/filesAn
dLinks?index=0

Huang, R., Liu, H., Xie, X., & Chen, J. (2015). Enhancing mirror adaptive random testing through dynamic
partitioning. Information and Software Technology, 67, 13–29.
https://doi.org/10.1016/j.infsof.2015.06.003

Published Version: https://doi.org/10.1016/j.infsof.2015.06.003

Document Version: Accepted Manuscript

Downloaded On 2024/04/24 01:09:27 +1000
© 2015 Elsevier B.V. All rights reserved.
Repository homepage: https://researchrepository.rmit.edu.au

Please do not remove this page

https://researchrepository.rmit.edu.au/esploro/outputs/journalArticle/Enhancing-mirror-adaptive-random-testing-through/9921862679701341/filesAndLinks?index=0
https://researchrepository.rmit.edu.au/esploro/outputs/journalArticle/Enhancing-mirror-adaptive-random-testing-through/9921862679701341
http://doi.org/doi:https://doi.org/10.1016/j.infsof.2015.06.003
https://researchrepository.rmit.edu.au

Thank

Citatio

See th

Version

Copyri

Link to

you for do

on:

is record i

n:

ght Statem

o Published

wnloading

in the RMI

ment: ©

d Version:

 this docum

IT Researc

ment from

ch Reposit

the RMIT R

ory at:

Research RRepository

PLEASE DO NOT REMOVE THIS PAGE

Huang, R, Liu, H, Xie, X and Chen, J 2015, 'Enhancing mirror adaptive random testing
through dynamic partitioning', Information and Software Technology, vol. 67, pp. 13-29.

https://researchbank.rmit.edu.au/view/rmit:32103

Accepted Manuscript

2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.infsof.2015.06.003

http://researchbank.rmit.edu.au/

Enhancing Mirror Adaptive Random Testing through Dynamic Partitioning

Rubing Huanga, Huai Liub,∗, Xiaodong Xiec, Jinfu Chena

aSchool of Computer Science and Telecommunication Engineering, Jiangsu University, Zhenjiang 212013 Jiangsu, China
bAustralia-India Research Centre for Automation Software Engineering, RMIT University, Melbourne 3001 VIC, Australia

cSchool of Computer Science and Technology, Huaqiao University, Xiamen 361021 Fujian, China

Abstract

Context: Adaptive random testing (ART), originally proposed as an enhancement of random testing, is often criticized for the
high computation overhead of many ART algorithms. Mirror ART (MART) is a novel approach that can be generally applied to
improve the efficiency of various ART algorithms based on the combination of “divide-and-conquer” and “heuristic” strategies.

Objective: The computation overhead of the existing MART methods is actually on the same order of magnitude as that of the
original ART algorithms. In this paper, we aim to further decrease the order of computation overhead for MART.

Method: We conjecture that the mirroring scheme in MART should be dynamic instead of static to deliver a higher efficiency.
We thus propose a new approach, namely dynamic mirror ART (DMART), which incrementally partitions the input domain and
adopts new mirror functions.

Results: Our simulations demonstrate that the new DMART approach delivers comparable failure-detection effectiveness as the
original MART and ART algorithms while having much lower computation overhead. The experimental studies further show that
the new approach also delivers a better and more reliable performance on programs with failure-unrelated parameters.

Conclusion: In general, DMART is much more cost-effective than MART. Since its mirroring scheme is independent of concrete
ART algorithms, DMART can be generally applied to improve the cost-effectiveness of various ART algorithms.

Keywords: software testing; random testing; adaptive random testing; mirror adaptive random testing

1. Introduction1

Software testing has been widely acknowledged as a main-2

stream technique for assessing and improving software qual-3

ity. One basic approach to testing is to randomly generate test4

cases from the set of all possible program inputs (namely the5

input domain). Though very simple, random testing (RT) is6

still considered as one of the state-of-the-art testing techniques,7

along with other more complicated and systematic testing meth-8

ods [1, 2]. RT may be the unique testing method that can be9

used for both operational testing (where the software reliability10

is estimated) and debug testing (where software failures are ac-11

tively detected with the purpose of removing relevant bugs) [3].12

Despite the controversies in the effectiveness of RT as a debug13

testing method [4], it has been popularly used to test various14

systems, such as UNIX utility programs [5], Windows NT ap-15

plications [6], Java Just-In-Time compilers [7], embedded soft-16

ware systems [8], SQL database systems [9].17

Besides the applications of RT into different domains, much18

research has been conducted on how to improve its effective-19

ness in detecting failures. Adaptive random testing (ART) [10]20

is one major approach to enhancing RT. The basic idea of ART21

was motivated by the common observation made by researchers22

∗Corresponding author
Email addresses: rbhuang@ujs.edu.cn (Rubing Huang),

huai.liu@rmit.edu.au (Huai Liu), xiaodongxie@hqu.edu.cn
(Xiaodong Xie), jinfuchen@ujs.edu.cn (Jinfu Chen)

from different areas: The failure-causing inputs (i.e., program23

inputs that can reveal failures) tend to be clustered into con-24

tiguous failure regions [11–14]. Given that the failure regions25

are contiguous, the non-failure regions should also be contigu-26

ous. In other words, adjacent program inputs show a certain de-27

gree of similarity in failure-revealing behaviors. According to28

this intuition, Chen et al. [10] conjectured that test cases should29

be evenly spread across the whole input domain for achieving30

high failure-detection effectiveness, and proposed ART to im-31

plement the notion of “even spread”. Since the inception of32

ART, many ART algorithms have been proposed, such as fixed-33

sized-candidate-set ART (FSCS-ART) [10], lattice-based ART34

(LART) [15], and restricted random testing (RRT) [16]. ART35

has also been applied to test various programs [17–19].36

Previous studies [10, 15–19] have shown that ART can use37

fewer test cases than RT to detect the first software failure.38

However, the high computation overhead of many ART algo-39

rithms brings severe criticism and limits ART’s adoption in40

practice [20]. In order to improve the testing efficiency of ART,41

many overhead reduction strategies have been proposed [21–42

26]. Among these strategies, a well-studied testing method is43

mirror adaptive random testing (MART) [21], which is a novel44

approach based on the combination of “divide-and-conquer”45

and “heuristic” strategies. MART first divides the whole in-46

put domain into equal-sized disjoint subdomains. Then, one47

subdomain is chosen as the source domain while others as the48

mirror domains. MART generates test cases in the source do-49

Preprint submitted to Information and Software Technology June 3, 2015

main according to one existing ART algorithm, and then maps1

each test case from the source domain into the so-called mir-2

ror test cases in the mirror domains. As shown in previous3

studies [21, 27], MART can reduce computation overhead of4

the original ART algorithms while maintaining similar failure-5

detection effectiveness.6

However, the computation overhead of the existing MART7

methods actually has the same order of magnitude as that of8

the original ART algorithms. For example, one ART algorithm,9

FSCS-ART, has the computation overhead of O(n2) for gener-10

ating n test cases. According to previous investigations [21],11

the MART based on the original FSCS-ART algorithm requires12

about O(n2/m2) time to generate n test cases, where m is the13

number of subdomains. In other words, the computation over-14

head of MART based on FSCS-ART is also in the quadratic15

order.16

In this paper, we propose an enhanced MART method,17

namely dynamic mirror adaptive random testing (DMART),18

which divides the input domain incrementally along the test-19

ing process. The simulation results indicate that compared with20

original MART and ART algorithms, DMART requires much21

less computation overhead while delivering comparable failure-22

detection effectiveness. Our empirical studies further show that23

the new method also has a better and more reliable perfor-24

mance than original MART algorithms on real-life programs25

especially when there exist some input parameters that are not26

related to failures.27

The paper is organized as follows. Section 2 introduces28

some background information of ART and MART. Section 329

discusses drawbacks of MART, and then proposes our new30

DMART method. Section 4 reports our experimental stud-31

ies, which examine the computational overhead and failure-32

detection effectiveness of the new approach. The experimental33

results are given in Section 5. Section 6 discusses the threats34

to validity of our study. Section 7 presents some related work.35

Section 8 summarizes the paper.36

2. Background37

2.1. Adaptive Random Testing38

Similar to RT, adaptive random testing (ART) [10] also ran-39

domly generates program inputs from the input domain. How-40

ever, ART makes use of additional criteria to choose inputs41

as test cases in order to evenly spread test cases over the in-42

put domain. There are many criteria to guide the selection of43

test cases, one criterion of which is by distance. Fixed-sized-44

candidate-set ART (FSCS-ART) [10] is one typical algorithm45

of ART by distance. FSCS-ART uses two test case sets, the46

executed set denoted by E and the candidate set denoted by47

C = {c1, c2, · · · , ck}. E contains all test cases which were al-48

ready executed without revealing any failure; while C contains49

k randomly generated inputs, where k is assigned by testers be-50

fore testing and keeps unchanged throughout the testing pro-51

cess. An input in C will be chosen as the next test case in E if52

it has the longest distance to its nearest neighbor in E.53

Previous simulations and empirical studies [10, 15, 16] have54

demonstrated that the failure-detection effectiveness of ART is55

(a) 2 × 1 (b) 1 × 2 (c) 2 × 2

Fig. 1: Some simple ways of mirror partitioning

better than that of RT in terms of detecting the first software fail-56

ure using fewer test cases. However, there exists a criticism [20]57

of ART due to the high computation overhead of many ART58

algorithms. For example, FSCS-ART requires O(n2) time to59

generate n test cases.60

2.2. Mirror Adaptive Random Testing61

As discussed before, many ART algorithms may face the62

criticism of high computation overhead. To improve the ef-63

ficiency of ART, Chen et al. [21] proposed a novel over-64

head reduction strategy, namely mirror adaptive random testing65

(MART), which could be generally applied to many existing66

ART algorithms.67

Before testing, MART first divides the input domain into68

some disjoint and equal-size subdomains, and then assigns one69

subdomain as the source domain while others as the mirror do-70

mains. After that, MART applies original ART algorithm in71

the source domain to generate a test case tc (namely source test72

case). Then, MART uses a function to map tc from the source73

domain into all mirror domains, to construct other test cases74

(namely mirror test cases).75

According to previous studies [21, 27], there are three major76

components of the mirroring scheme in MART, namely mirror77

partitioning, mirror function, and mirror selection order.78

2.2.1. Mirror partitioning79

Suppose that the dimension of the input domain is d ≥ 1.80

In MART, each coordinate of the input domain is divided into81

ui ≥ 1 (i = 1, 2, · · · , d) parts of the equal length. Totally, the82

input domain is partitioned into u1 × u2 × · · · × ud subdomains.83

Fig. 1 shows some simple ways of mirror partitioning that could84

be used for MART with the 2-dimensional input domain. Since85

the use of a large number of mirror domains “may introduce86

duplicated test case patterns” (i.e., the distribution of test cases87

is duplicated in each subdomain) that “may destroy the overall88

randomness of test case selection”, a small number of mirror89

domains would be more appropriate for MART [21]. In our90

experimental studies, therefore, we follow the practice adopted91

in previous studies [21] of choosing mirror partitioning with a92

small number of mirror domains for MART.93

2.2.2. Mirror function94

There exist two commonly used mirror functions in MART,95

namely Translate and Reflect. Fig. 2 illustrates these two mir-96

ror functions in the 2-dimensional input domain. Suppose that97

(0, 0) and (v1, v2) are the minimum and maximum coordinate98

2

values of the input domain, respectively. The mirror partition-1

ing is 2 × 1, where the shaded region D1 is the source domain,2

and D2 is the mirror domain. The Translate function will map3

a test case (x, y) in D1 into (x + v1
2 , y) in D2, while the Reflect4

function will map (x, y) in D1 into (v1 − x, y) in D2. Previ-5

ous simulation results have indicated that there is no significant6

performance difference between the Translate and Reflect mir-7

ror functions [21]. In this study, we use the Translate mirror8

function for MART.9

2.2.3. Mirror selection order10

For the mirror selection order, there exist three ways to11

guide the selection order of mirror domains [27]: (1) sequential12

order, i.e., mirror domains are chosen according to sequential-13

ordered sections in each dimension; (2) random order, i.e., mir-14

ror domains are selected randomly for generating the next test15

case; and (3) adaptive-random order, i.e., mirror domains are16

chosen in a adaptive random manner. As discussed in [27],17

when the number of mirror domains is small, the F-measure dif-18

ference among sequential, random, and adaptive-random orders19

is small as well. With the increase of the number of mirror do-20

mains, however, the sequential order generally performs worst;21

while adaptive-random order has slightly better F-measure per-22

formance but more time-consuming than random order. Since23

a small number of mirror domains will be used in our study,24

without loss of generality, we use the random order as the mir-25

ror selection order for MART in our experiments.26

3. Mirror Adaptive Random Testing with Dynamic Parti-27

tioning28

In this section, we first discuss some challenges testers29

are confronted with when using MART as the testing method.30

Then, we propose a new testing method, namely dynamic mir-31

ror adaptive random testing (DMART), which address these32

challenges.33

3.1. Outstanding issues of MART34

Previous simulation results have indicated that MART can35

achieve less computation overhead than original ART algo-36

rithms while maintaining the similar failure-detection effective-37

ness [21, 27]. Previous studies [21] have shown that when gen-38

erating n test cases, the time complexity of FSCS-ART is in39

D1 D2

(a) Translate

D1 D2

(b) Reflect

Fig. 2: Two simple mirror functions

D1 D2

t1 m1

(a) 2 × 1

D1

D2

t1

m2

(b) 1 × 2

Fig. 3: Another challenge of MART: Failure-unrelated parameter

O(n2); while MART using FSCS-ART algorithm requires the40

O(n2/m2) time, where m is the number of subdomains. How-41

ever, we can also observe that the computation overhead of42

MART actually has the same order of magnitude as that of the43

original ART algorithm. What is worse, as mentioned in Sec-44

tion 2.2, it is better to use a small number of mirror domains45

in order to avoid “duplicated test case patterns” [21]. Since the46

number of subdomains (m) should be constrained, the compu-47

tation overhead of MART cannot be significantly reduced.48

In addition, different mirroring schemes of MART has dif-49

ferent failure-detection capabilities, especially when part of in-50

put parameters of the program under test is not related to soft-51

ware failures. As illustrated in Fig. 3, in the 2-dimensional input52

domain ({(0, 0), (v1, v2)}), the failure (failure region is denoted53

by the grey rectangle) is only sensitive to the vertical coordi-54

nate. We denote the vertical coordinate as failure-related pa-55

rameter while the horizontal coordinate as failure-unrelated pa-56

rameter. Consider two ways of mirror partitioning 2×1 and 1×257

for MART. D1 is designated as the source domain while D2 as58

the mirror domain. Suppose that t1 = (x, y) is a source test case59

generated by ART in D1, the mirror test case m1 = (x+(v1/2), y)60

in Fig. 3(a) or m2 = (x, y − (v2/2)) in Fig. 3(b) is constructed61

by translating t1 from D1 to D2. Since the vertical coordinate62

is failure-related, the mirroring process in MART with 2 × 163

plays no role in revealing this failure; while MART with 1 × 264

could have higher chance to detect this failure. Unfortunately,65

prior to testing, it is impossible to know which parameters in66

the software under test are failure-related or failure-unrelated,67

so testers may face some difficulties to choose the suitable mir-68

roring scheme for MART.69

3.2. New Mirroring Scheme70

In this section, we will present a new mirroring scheme to71

address the outstanding issues of the original MART. Dynamic72

mirror partitioning will be used to reduce the computation over-73

head; while all-coordinated mirror function will be applied to74

improve the failure-detection effectiveness under the situation75

of failure-unrelated parameters.76

3.2.1. Dynamic Mirror Partitioning77

The current ways of mirror partitioning of MART are static,78

which indicates that the mirror partitioning of MART is fixed79

before testing and will not be changed during the whole testing1

3

(a) First partitioning (b) Second partitioning (c) Third partitioning

Fig. 4: An example of dynamic mirror partitioning

process [21, 27]. They are simple and easy to be implemented,2

but the number of test cases in the source domain increases as3

the number of generated test cases increases, and thus results in4

high computation overhead. In this study, we design a new way5

of mirror partitioning, namely dynamic mirror partitioning (ab-6

breviated as DMP), to reduce the high computation overhead.7

Consider the d-dimensional input domain D. DMP first bi-8

sects each dimension of D, i.e., D is partitioned into 2d subdo-9

mains D1,D2, · · · ,D2d , which satisfy the following properties:10

(1) D =
⋃2d

i=1 Di; (2) |Di| =
|D|
2d , where i, j = 1, 2, · · · , 2d and11

| · | denotes the size of a (sub)domain; and (3) Di
⋂

D j = ∅,12

where i, j = 1, 2, · · · , 2d and i , j. Once the number of test13

cases in each subdomain reaches the largest value, namely cut-14

off denoted by δ (which will be determined by testers before15

testing), DMP does the next partitioning by applying the above16

bisectional division process on each subdomain recursively. We17

further define a depth value µ to represent how many times such18

bisection process has been conducted. For a given value of µ,19

there will be a total of 2µ∗d subdomains for the d-dimensional20

input domain.21

Fig. 4 depicts an illustrative example of the DMP pro-22

cess with the 2-dimensional input domain. The first partition-23

ing divides the input domain into 21∗2 = 4 (where µ = 124

and d = 2) equal-sized subdomains (as shown in Fig. 4(a)),25

and the second partitioning divides each subdomain previously26

shown in Fig. 4(a) into four same-sized parts, so as to obtain27

22∗2 = 16 (µ = 2) subdomains (Fig. 4(b)). Similarly, as shown28

in Fig. 4(c), the third partitioning could partition the input do-29

main into 23∗2 = 64 (µ = 3) equal-sized subdomains.30

Compared with static mirror partitioning in previous31

MART [21, 27], the number of subdomains used in DMART32

is dynamically changed along the testing process. DMP intu-33

itively has at least two advantages:34

• In DMP, only up to δ (a constant) test cases can be gener-35

ated in each subdomain, which can help reduce the com-36

putation overhead as low as in the linear order. On the37

contrary, in previous MART, there is no such constant38

limitation on the number of test cases in each subdomain,39

and thus the computation overhead can be very high.40

• DMP has only one mirror partitioning scheme; in other41

words, unlike in previous MART, testers do not need to42

select the mirror partitioning scheme prior to testing.43

3.2.2. Assignment of source/mirror domains44

In previous MART, only one subdomain will be allocated45

as the source domain, while all other subdomains are the mir-46

ror domains. On the contrary, in our DMART approach, we47

need to assign half of the subdomains as the source domains,48

while the other half as the mirror domains. More specifically,49

among all 2d∗µ subdomains after each µth partitioning of DMP50

(µ = 1, 2, · · ·), there will be 2d∗(µ−1) pairs of the source/mirror51

domains. Suppose that the d-dimensional input domain is52

represented by D = {(u1, u2, · · · , ud), (v1, v2, · · · , vd)}, where53

ul < vl(l = 1, 2, · · · , d). We allocate the source/mirror domains54

through the following procedure.55

1. Randomly select a subdomain Di from all the subdo-56

mains that are neither source nor mirror domains, where57

the value range of Di is from (p1, p2, · · · , pd) to (p1 +58

r1, p2 + r2, · · · , pd + rd), where rl = (vl − ul)/µ and59

ul ≤ pl ≤ vl − rl (l = 1, 2, · · · , d).60

2. Assign Di as a source domain.61

3. Find a subdomain D j such that the value range of D j is62

from (q1, q2, · · · , qd) to (q1 + r1, q2 + r2, · · · , qd + rd), and63

each pair of pl and ql(l = 1, 2, · · · , d) satisfies the follow-64

ing equation:65

|pl − ql| =
vl − ul

2
. (1)

4. Assign D j as the mirror domain corresponding to Di.66

5. Repeat Steps 1-4 until every subdomain is either source67

or mirror domain.68

As an illustrative example, consider a two-dimensional in-69

put domain. Fig. 5 shows some examples of assigning the70

source/mirror domain. In Fig. 5(a), the DMP first divides the71

input domain into four equal-sized subdomains, D1, D2, D3,72

and D4, and then two mapping pairs of the source/mirror do-73

main are obtained, i.e., (D1,D4) and (D2,D3). Fig. 5(a) shows74

that D1 and D2 can be assigned as the source domains (marked75

by the shaded regions). It should be noted that D1 and D3 can76

also be the source domains. However, D1 and D4 cannot be77

designated as the source domains simultaneously, as shown in78

Fig. 5(b), because they satisfy Eq. (1) and thus should be a79

pair of source/mirror domains. Test cases can be generated in80

each source domain (D1 and D2 in Fig. 5(a)), and then mapped81

into each mirror domain (D4 and D3, respectively), as to be82

discussed in the next section. When δ test cases are generated83

from each subdomain, each Di will be further bisectionally di-84

vided into four equal-sized parts (i.e., the second partitioning85

of DMP), Di 1, Di 2, Di 3, and Di 4. According to above alloca-86

tion procedure, when Dl i is selected as a source domain, D(5−l) i87

will be its corresponding mirror domain, or vice versa, where88

i, l = 1, 2, 3, 4. Figs. 5(c) and 5(d) give two possible ways of89

assigning source and mirror domains, where the shaded regions90

denote source domains.91

As discussed before, DMART and the previous MART [21,92

27] differ in how source/mirror domains are allocated: DMART93

assigns half of subdomains as the source domains and the other94

half as the mirror domains, while MART only allocates one95

subdomain as the source domain and all the remaining subdo-96

mains as the mirror domains. Since an original ART algorithm97

4

D3

D4

D1_1 D1_3

D1_2 D1_4

D2_1 D2_3

D2_2 D2_4

D3_1

D3_2

D3_3

D3_4

D4_1

D4_2

D4_3

D4_4

D1

D2

(a) One possible source/mirror do-
main assignment after the 1st parti-
tioning of DMP

D3

D4

D1

D2

(b) An invalid source/mirror domain
assignment after the 1st partitioning of
DMP

D1_1 D1_3

D1_2 D1_4

D2_1 D2_3

D2_2 D2_4

D3_1

D3_2

D3_3

D3_4

D4_1

D4_2

D4_3

D4_4

(c) One possible source/mirror do-
main assignment after the 2nd parti-
tioning of DMP

D1_1 D1_3

D1_2 D1_4

D2_1 D2_3

D2_2 D2_4

D3_1

D3_2

D3_3

D3_4

D4_1

D4_2

D4_3

D4_4

(d) Another possible source/mirror
domain assignment after the end par-
titioning of DMP

Fig. 5: Illustration of assigning the source/mirror domain

is applied to generate test cases independently in each source1

domain, the test case patterns will be different for all the source2

domains in DMART, and each test case pattern will be dupli-3

cated at most once. In other words, the source/mirror domains4

allocation in DMART will also alleviate the problem of “dupli-5

cated test case patterns” in the previous MART studies [21].6

3.2.3. All-coordinated Mirror Function7

As discussed in Section 3.1, the mirror function in MART8

may generate some mirror test cases that have the same value as9

the source test case at one (or some) coordinate(s). In this sec-10

tion, we propose a new mirror function, namely all-coordinated11

mirror function (AMF), which generates mirror test cases that12

have different values from the source test cases at all coordi-13

nates.14

Similar to mirror functions in MART [21, 27], AMF also15

has two types: (1) All-coordinated Translate; and (2) All-16

coordinated Reflect. They have similar meanings to Translate17

and Reflect in MART, respectively. However, our proposed mir-18

ror functions translate (or reflect) source test cases into mirror19

test cases by linearly displacing each coordinate.20

Suppose that in the d-dimensional input domain D =21

{(u1, u2, · · · , ud), (v1, v2, · · · , vd)}, the source domain is repre-22

sented by Di = {(p1, p2, · · · , pd), (p1 + r1, p2 + r2, · · · , pd +23

rd)} and the corresponding mirror domain by D j =24

{(q1, q2, · · · , qd), (q1 + r1, q2 + r2, · · · , qd + rd)}. Let a source25

test case tx from Di be (x1, x2, · · · , xd), and its corresponding26

mirror test case my in D j be (y1, y2, · · · , yd). When using the27

All-coordinated Translate, tx and my should satisfy the follow-28

D3

D4

D1

D2

t1

m1

t2

m2

(a) All-coordinated Translate

D3

D4

D1

D2

t1

m'1

t2

m'2

(b) All-coordinated Reflect

Fig. 6: An example of two all-coordinated mirror functions

ing equation on each coordinate:29

|xl − yl| =
vl − ul

2
. (2)

When using the All-coordinated Reflect, tx and my should30

satisfy the following equation on each coordinate:31

xl + yl = vl + ul. (3)

Fig. 6 gives an example of these two types of AMF in32

the 2-dimensional input domain ({(0, 0), (v1, v2)}). In Fig. 6(a),33

the All-coordinated Translate directly translates source test34

case t1 = (x1, y1) in D1 into D4 to construct mirror test case35

m1 = (x1 + (v1/2), y1 − (v2/2)), and translates t2 = (x2, y2)36

in D2 into D3 for generating m2 = (x2 + (v1/2), y2 + (v2/2)).37

In Fig. 6(b), the All-coordinated Reflect directly reflects t1 to38

m′1 = (v1 − x1, v2 − y1) while t2 to m′2 = (v1 − x2, v2 − y2).39

Intuitively speaking, the All-coordinated Reflect may generate40

mirror test cases that are close to the corresponding source test41

cases (for example, as shown in Fig. 6(b), m2 is close to t2),42

while All-coordinated Translate does not have such a problem.43

In this paper, therefore, we use the All-coordinated Translate as44

the mirror function.45

As discussed in Section 3.1, in original MART, no mat-46

ter how many mirrors or mirror domains it has, the mirroring47

function cannot guarantee the diversity on all coordinates; in-48

stead, some test cases may have exactly the same values on cer-49

tain coordinates. On the contrary, since the mirror test case is50

constructed by mapping all coordinates of the source test case,51

DMART diversifies test cases on each coordinate, which would52

improve the failure-detection effectiveness under the situation53

of failure-unrelated parameters.54

3.2.4. Selection of source domains55

Since there exist only one source domain and many mir-56

ror domains in MART [21, 27], testers require to choose the57

selection order of mirror domains to generate mirror test cases.58

However, in DMART, the number of source domains is equal to59

that of mirror domains, and each source domain is correspond-60

ing to one and only one mirror domain. Therefore, in the new61

DMART approach we need to consider the selection order of62

source domains instead of mirror domains.63

Based on the “even spread” notion, we always select the64

source domain that contains the smallest number of test cases65

5

among all source domains. When more than one source do-1

mains have the fewest test cases, we randomly select one of2

them as the domain where the next test case will be generated3

from.4

3.3. Algorithm5

In this section, we present the detailed algorithm of6

DMART, which adopts the proposed new mirroring scheme7

given in the previous Section 3.2.8

The DMART algorithm first defines a specified integer de-9

noted as cutoff, δ, and then uses the DMP process over the10

whole input domain to obtain s = 2d∗µ subdomains, where11

µ is the depth (or partitioning rounds) of the DMP. The next12

step is to assign previously executed test cases (that form the13

executed set E) into their relevant subdomains, which obtains14

E1, E2, · · · , Es that denote the sets of executed test cases in15

D1,D2, · · · ,Ds respectively. Suppose that Di (1 ≤ i ≤ s/2)16

is a new source domain and D j (s/2 < j ≤ s) is a new mir-17

ror domain to Di after each round of DMP. We can observe18

that already executed test cases populated in D j (i.e., E j) are19

also mirror test cases of those populated in Di (i.e., Ei). This20

observation would guarantee the even spreading of test cases21

over each subdomain. With regard to test case generation,22

DMART repeatedly selects the least populated source domain23

Di (1 ≤ i ≤ s/2) such that |Ei| = minh∈{1,2,··· ,s/2}{|Eh|}, and then24

takes the following steps: (1) generate a source test case tc in25

the source domain Di (1 ≤ i ≤ s/2), and (2) use the AMF to26

construct the mirror test case mc based on tc in the correspond-27

ing mirror domain D j (s/2 < j ≤ s). When the number of28

total test cases reaches s ∗ δ, DMART will take another round29

of DMP. Such a procedure will be repeated until certain stop-30

ping criteria (such as “a failure has been detected”, “a certain31

D3

D4

D1

D2

D3

D4

D1

D2

t1

m1
t2

m2

t3

m3

t4

m4t5

m5

m6

t6

(a)

t1

D3

D4

D1

D2

t1

m1
t2

m2

t3

m3

t4

m4t5

m5

m6

t6

(b)

D1_1 D1_3

D2_3

D2_4

D3_1

D3_2

D3_3

D3_4

D4_1

D4_2

D4_3

D4_4

D1_2 D1_4

D2_1

D2_2

t1

m1
t2

m2

t4

m4t5

m5

m6

t6

t3

m3

(c)

D1_1 D1_3

D2_3

D2_4

D3_1

D3_2

D3_3

D3_4

D4_1

D4_2

D4_3

D4_4

D1_2 D1_4

D2_1

D2_2

t1

m1
t2

m2

t4

m4t5

m5

m6

t6

t3

m3

t7

m7
t8

m8

(d)

Fig. 7: Illustration of the DMART algorithm

number of test cases have been executed”, “testing resources32

have been exhausted”, etc.) are reached. Algorithm 1 shows33

the detailed information of DMART.34

Fig. 7 gives an example to illustrate the operation process35

of DMART in the 2-dimensional input domain with δ = 3. For36

ease of description, we assume that point ti is the i-th source37

test case while point mi is the i-th mirror test case constructed38

based on ti. In Fig. 7(a), DMART uses the DMP to divide the39

input domain into four subdomains, and then designates D1 and40

D2 as source domains while D3 and D4 as mirror domains. In41

Fig. 7(b), DMART randomly chooses a source domain to gen-42

erate the first test case t1 in D1 using original ART algorithms,43

and then mirrors t1 into D4 to generate the next test case m1.44

Similarly, DMART selects D2 to generate source test case t245

and mirror test case m2 in D3. When the number of total test46

cases reaches 22 ∗ δ = 12, as shown in Fig. 7(c), DMP is47

re-triggered. Since the number of subdomains increases (i.e.,48

22∗µ = 16 where µ = 2 is the depth of DMP), DMART requires49

to assign previously executed test cases in new subdomains, and50

then also assigns new source and mirror domains. After that,51

the distribution of test cases in source domains is |T1 1| = 1,52

|T1 2| = 1, |T1 3| = 1, |T1 4| = 0, |T2 1| = 1, |T2 2| = 0, |T2 3| = 1,53

and |T2 4| = 1 respectively. According to the algorithm, D1 454

or D2 2 (the region with left diagonals) should be chosen, of55

which the next test case will be generated. In Fig. 7(d), when56

each subdomain has the same number of test cases, DMART57

will randomly selects a source domain to generate the follow-58

ing test cases.59

3.4. Complexity Analysis60

In this section, we briefly investigate the time and space61

complexity of DMART by a formal mathematical analysis.62

3.4.1. Time Complexity63

The time complexity of DMART algorithm mainly depends64

on the process of generating new test cases.65

If the next test case is generated from a source domain, all66

executed test cases contained in the source domain will be used67

in the generation process. In other words, the test case gener-68

ation time in the source domain is in O(|Ei|), where Ei refers69

to the set of executed test cases in the subdomain Di. Since |Ei|70

has a maximum value of δ (which is a constant), it only requires71

a constant time to generate the next test case from a source do-72

main. Moreover, if the next test case is generated from a mirror73

domain, the process is implemented by simply executing the74

AMF function, the time complexity of which is constant. In75

summary, the generation of the next test case always requires76

the constant time.77

Considering the constant time complexity in each step, it78

can be concluded that DMART requires O(n) time to generate79

n test cases, where n = |E|, the size of execute set E.80

Note that DMART has an additional process of partitioning81

subdomains and allocating the executed test cases into subdo-82

mains. In DMART, when the number of executed test cases83

in each subdomain reaches the cutoff value δ, every subdomain84

6

Algorithm 1 Dynamic mirror adaptive random testing (DMART)
1: Initialize the cutoff δ
2: Set E = {} /* the executed set to store executed test cases in the d-dimensional input domain D */

3: Set µ = 1 /* the depth (or partitioning times) of the DMP */

4: Set d queue = {}; /* a list to store subdomains */

5: Set e queue = {}; /* a list to store executed subsets distributed in subdomains */

6: while (Stopping criteria not reached)
7: Bisectionally divide D into s = 2d∗µ subdomains;
8: Assign source and mirror domains;
9: Annotate source domains as D1,D2, · · · ,Ds/2 and mirror domains as Ds/2+1,Ds/2+2, · · · ,Ds;

10: Set d queue = {D1,D2, · · · ,Ds};
11: Assign each test case in E into E1, E2, · · · , Es according to D1,D2, · · · , Ds, and then set e queue = {E1, E2, · · · , Es};
12: while (|E| < s ∗ δ) or (Stopping criteria not reached)
13: Select the least populated source domain Di from d queue; /* i.e., Di such that |Ei| = minh∈{1,2,··· ,s/2} |Eh| */

14: Set tc = ART(Di, Ei); /* i.e., apply an ART algorithm in Di based on Ei to generate a test case tc */

15: Add tc into Ei and E, and execute tc.
16: Construct the mirror test case mc from tc using AMF in the corresponding mirror domain D j (s/2 < j ≤ s);
17: Add mc into E, and execute mc.
18: end while
19: Set d queue = {};
20: Set e queue = {};
21: Increment µ by 1;
22: end while

will be partitioned into 2d new subdomains by bisecting each di-1

mension, where d is the dimension of the input domain. Appar-2

ently, such partitioning requires the time in O(2d). In addition,3

all δ executed test case in every previous subdomain will be4

re-allocated into the corresponding new 2d subdomains, which5

obviously requires the time in O(δ × 2d). Since there are n
δ

6

subdomains (n = |E|), the total time complexity for the whole7

process is O(n) (considering that both δ and d are constants).8

Nevertheless, such a process is not implemented every time a9

new test case is generated; instead, it is only implemented when10

n = δ × 2d∗µ. Therefore, the time spent for this process is neg-11

ligible compared to that for generating test cases, and thus will12

not affect the overall time complexity of DMART. As demon-13

strated later in Section 5.3, DMART only requires linear time14

(that is, O(n)) for generating test cases.15

3.4.2. Space Complexity16

During the procedure of DMART, memory space is re-17

quired to store all n executed test cases and all 2d∗µ subdo-18

mains. According to the DMART algorithm, we can have19

δ × 2d∗(µ−1) ≤ n ≤ δ × 2d∗µ; in other words, 2d∗µ is at most20

in O(n). Therefore, the space complexity for DMART is O(n).21

4. Experimental Studies22

We conducted a series of simulations and empirical studies23

to evaluate the performance of DMART. The design and set-24

tings of the experiments are described in this section.25

4.1. Research Questions26

We propose DMART to further reduce the computation27

overhead of MART as well as ART algorithms. It is there-28

fore required to examine the test case generation time of the29

new MART method. In addition, while decreasing the com-30

putation overhead, we hope that DMART also has comparable31

failure-detection effectiveness to MART and the original ART32

algorithms in order to deliver a high cost-effectiveness in test-33

ing. Thus, it is also important to evaluate the failure-detection34

effectiveness of DMART under different scenarios. Our experi-35

mental studies help us answer the following two research ques-36

tions.37

RQ1 How effective is DMART at revealing failures?38

RQ2 To what extent DMART can reduce the computation39

overhead as compared to MART and ART algorithms?40

4.2. Variables and Measures41

4.2.1. Independent variables42

The independent variable in the experimental studies is the43

test case selection method. DMART, the new approach pro-44

posed in this paper, is definitely chosen for this variable. In ad-45

dition, we selected two methods, FSCS-ART and MART. as the46

baselines for comparison. FSCS-ART was selected as the repre-47

sentation of ART following previous studies on MART [21, 27].48

Accordingly, we also adopted the MART and DMART algo-49

rithms based on the original FSCS-ART. In addition, we de-50

cided to use the “translate” mirroring function and the ran-51

dom mirror selection order, following previous investigations52

of MART [21, 27].53

4.2.2. Dependent variables54

The dependent variable for RQ1 is actually the metric to55

evaluate and compare the failure-detection effectiveness of test-56

ing techniques. We follow previous studies on ART [10, 15, 16,57

7

Table 1: Program name, dimension (d), input domain, seeded fault type, total number of faults, and failure rate of each fault-seeded program
Program

d
Input Domain Seeded Fault Type Total Failure

Name From To AOR ROR SVR CR Faults Rate
airy 1 (-5000.0) (5000.0) 0 0 0 1 1 0.000716

bessj0 1 (-300000.0) (300000.00) 2 1 1 1 5 0.001373
erfcc 1 (-30000.0) (30000.00) 1 1 1 1 4 0.000574
probks 1 (-50000.0) (50000.00) 1 1 1 1 4 0.000387
tanh 1 (-500.0) (500.00) 1 1 1 1 4 0.001817
bessj 2 (2.0, -1000.0) (300.0, 15000.0) 2 1 0 1 4 0.001298
gammq 2 (0.0, 0.0) (1700.0, 40.0) 0 3 1 1 5 0.000830
sncndn 2 (-5000.0, -5000.0) (5000.0, 5000.0) 0 0 4 1 5 0.001623
golden 3 (-100.0, -100.0, -100.0) (60.0, 60.0, 60.0) 0 3 1 1 5 0.000550
plgndr 3 (10.0, 0.0, 0.0) (500.0, 11.0, 1.0) 1 2 0 2 5 0.000368

cel 4 (0.001, 0.001, (1.0, 300.0, 1 1 0 1 3 0.0003320.001, 0.001) 10000.0, 1000.0)

el2 4 (0.0, 0.0, (250.0, 250.0, 1 3 2 3 9 0.0006900.0, 0.0) 250.0, 250.0)
AOR: arithmetic operator replacement, ROR: relational operator replacement, SVR: scalar variable replacement, and CR: con-
tant replacement.

25, 26, 28] to use the F-measure, which refers to the expected1

number of test cases required to detect the first software failure.2

In our study, FRT denotes the F-measure of RT. According to3

uniform distribution, theoretically, FRT = 1/θ when test cases4

are selected with replacement. FART denotes the F-measure of5

ART. ART F-ratio denotes the ratio of FART to FRT , which mea-6

sures the F-measure improvement of ART over RT.7

The dependent variable for RQ2 is mainly related to the8

execution time of the testing techniques under our study. As9

reported in the next section, in our simulation, we measured10

the time required for generating a certain number of test cases;11

while in our empirical studies, we measured the average time to12

detect the first failure for each real-life program.13

4.3. Simulations and Object Programs14

To address RQ1, we attempted to examine and compare the15

values of FART for FSCS-ART, MART, and DMART. As dis-16

cussed in [28], FART has been influenced by many factors, such17

as dimension, the number and the compactness of failure re-18

gions, as well as the existence and the size of a predominant19

failure region, so theoretical analysis of FART is of great dif-20

ficulty. In previous studies [10, 15, 16, 25, 26, 28], therefore,21

researchers commonly used simulations or empirical studies to22

investigate FART . In our study, we conducted both simulations23

and empirical studies to evaluate the failure-detection effective-24

ness.25

To address RQ2, we conducted simulations to evaluate26

the test case generation time of DMART as compared to the27

original ART and MART algorithms. In the simulations, we28

used each of FSCS-ART, MART, and DMART to generate to-29

tally 20,000 test cases in two- and three-dimensional input do-30

mains. The execution time taken to generate n test cases (n =31

500, 1000, 1500, . . . , 20000) was recorded and thus compared.32

In addition, in the empirical studies, we compared DMART and33

ART/MART based on the average time taken to detect the first34

failure.35

In simulations, we attempted to mimic faulty programs un-36

der different situations. For a faulty program, there are two37

basic features. One feature is failure rate, normally denoted by38

θ, which is defined as the ratio of the number of failure-causing39

inputs to the number of all possible program inputs. Another40

feature is failure pattern, which refers to the shapes of failure41

regions together with their distributions over the input domain.42

Both θ and failure pattern are fixed after coding but unknown43

before testing. In our simulations, θ and failure pattern were de-44

fined in advance, and the failure regions were randomly placed45

in the input domain. When a point generated by an ART algo-46

rithm is inside a failure region, a failure is said to be detected.47

One major advantage of simulations is that they can provide a48

full picture of FART under various scenarios. In our study, we49

simulated the following four different failure patterns (FPs).50

FP-I The first failure pattern to be simulated is that the51

failure-causing inputs are well clustered into a single52

square/hypercubic region. We mainly focused on the sit-53

uation where a single square failure region was randomly54

placed inside a two-dimensional square input domain,55

and θ was set as 0.75, 0.5, 0.25, 0.1, 0.075, 0.05, 0.025,56

0.01, 0.0075, 0.005, 0.0025, 0.001, 0.00075, and 0.0005.57

In addition, in order to check the consistency of our data,58

we also considered one-, three-, and ten-dimensional in-59

put domain while θ was set as 0.005 and 0.001.60

FP-II The second failure pattern was set as a single rectangular61

failure region randomly placed inside a two-dimensional62

input domain. The ratio among edge lengths of the rect-63

angular region is 1 : α, where α is set as 1, 4, 7, 10, 20,64

30, 40, 50, 60, 70, 80, 90, and 100. Intuitively speaking,65

with the increase of α, the rectangular region becomes66

less compact. In addition, θ was set as 0.005, and 0.001.67

8

This setting is to investigate the impact of the compact-68

ness of failure region on the failure-detection effective-1

ness of DMART.2

FP-III The third failure pattern was set as a number of square3

regions randomly placed inside a two-dimensional input4

domain. Suppose there are β failure regions, denoted by5

R1,R2, · · · ,Rβ. For each failure region Ri, we set |Ri| =6

(ρi/
∑β

j=1 ρ j) · θ · |D|, where ρi is randomly chosen from7

[0, 1) according to uniform distribution, i = 1, 2, · · · , β,8

and |D| denotes the size of the input domain. The number9

of failure regions β is set as 1, 4, 7, 10, 20, 30, 40, 50, 60,10

70, 80, 90, and 100, respectively. In addition, θ was set as11

0.005 and 0.001. This setting is to investigate the impact12

of the number of failure regions on the failure-detection13

effectiveness of DMART.14

FP-IV In the fourth failure pattern, there exists a predomi-15

nant region among a number of square failure regions16

randomly placed inside a two-dimensional input do-17

main. We assume there are β failure regions, denoted by18

R1,R2, · · · ,Rβ, respectively. For one failure region R1,19

we set |R1| = w · θ · |D|, where w = 0.3, 0.5, and 0.8. For20

all the other failure regions, we set |Ri| = (ρi/
∑β

j=2 ρ j) ·21

(1 − w) · θ · |D|, where ρi is randomly selected from [0, 1)22

according to uniform distribution, i = 2, 3, · · · , β, and |D|23

denotes the size of the input domain. The number of fail-24

ure regions β is set as 1, 4, 7, 10, 20, 30, 40, 50, 60, 70,25

80, 90, and 100, respectively. Similar to FP-III, θ was26

set as 0.005 and 0.001. This experiment is to investigate27

the impact of the existence, and the size of a predomi-28

nant failure region on the failure-detection effectiveness29

of DMART.30

Each of these FPs represents a possible failure pattern in31

practice, and they are used to evaluate how different factors af-32

fect the performance of ART algorithms. According to previous33

investigations [28], ART normally performs the best under FP-34

I. Its failure-detection effectiveness becomes lower when the35

failure region is less compact (FP-II), there is more distinct fail-36

ure regions (FP-III), or the size of the predominant region is37

smaller (FP-IV).38

In empirical studies, we used real-life programs as our ob-39

ject programs. Previous ART studies [10, 16, 28] have adopted40

12 fault-seeded programs to evaluate the effectiveness of ART41

algorithms in practical situations. These published programs42

were taken from ACM’s collected algorithms [29] and the43

Numerical Recipes [30], and were converted into C++ lan-44

guages [10]. Some faults were seeded into each programs using45

mutation technique [31]. For ease of comparison with previous46

experimental results, we selected all these 12 programs as the47

objects of our empirical studies. Table 1 summarizes the de-48

tailed information of these 12 real-life programs. After analyz-49

ing above 12 object programs, we have found that there exist50

three programs which involve failure-unrelated parameters: (1)51

in the program plgndr, the third parameter is not related to the52

failure; (2) in the program cel, the first, third, and forth param-53

eters are failure-unrelated; and (3) in the program el2, the third54

and forth parameters are not related to the failure.55

4.4. Experiment Environment56

The simulations were conducted on a machine serving Win-57

dows XP, equipped with an Intel(R) Core(TM) i3-3240 CPU58

(3.40 GHz, 4 core) with 4GB of RAM. The used programming59

language was Microsoft Visual Studio 2005 (Visual C++).60

4.5. Data Collection61

In the experiments for evaluating F-measures, test cases62

were generated (using a testing strategy) and executed until a63

failure was detected. For simulations, a failure is said to be de-64

tected when a point is picked up from the simulated failure re-65

gion; while for empirical studies, a failure refers to the different66

behaviors between the object program and the faulty version.67

In each experiment run, the number of test cases required to de-68

tect a failure is referred to as the F-count. Such a process was69

repeated for a sufficient number (S) of times to guarantee that70

the mean value of F-counts can be used as an approximate of71

FART within a certain confidence level (95% used in this paper)72

and a certain accuracy range (±5% used in this paper). As for73

the detailed calculation of S , readers can refer to [21].74

5. Experimental Results75

5.1. Answer to RQ1–Part 1: Simulations76

5.1.1. FP-I77

The simulation results for FP-I are reported in Fig. 8 and78

Table 2. We use DMART-50 and DMART-100 to represent79

DMART with δ = 50 and δ = 100, respectively. In Fig. 8,80

x-axis represents θ in the logarithmic scale, while y-axis stands81

for the ART F-ratio. For convenience of comparison, the sim-82

ulation results of FSCS-ART and MART have also been given.83

Similar to previous simulation design, the failure pattern is a84

single square/hypercubic region, which means that each per-85

mutation of the mirroring partitioning u1 × u2 × · · · × ud has no86

impact on the failure-detection capability of MART. Therefore,87

we use MART-u1 × u2 × · · · × ud (1 ≤ u1 ≤ u2 ≤ · · · ≤ ud ≤ 2)88

to represent MART in the simulations for FP-I. In Table 2, for a89

clearer presentation, we use MART-1i×2 j (i+ j = 10) to denote90

the MART with d = 10, which implies that j coordinates are91

bisected, while the remaining i coordinates not. For example,92

MART-15×25 means MART-1×1×1×1×1×2×2×2×2×2. In the93

simulations for MART with d = 10, we did not use MART with94

a very small number of subdomains (such as MART-19×21), be-95

cause the computation overhead becomes much higher with the96

increase of dimension and using a small number subdomains97

cannot reduce the overhead very well (which jeopardizes the98

very benefit of MART). We did not use MART with a very99

large number of subdomains (such as MART-210), because it100

is not advisable to have too many subdomains in MART (to101

prevent too many “duplicated test case patterns”, as discussed102

in Section 3.1).103

Based on experimental data, we can observe the followings.104

9

Table 2: Failure-detection effectiveness (ART F-ratio) of DMART on single square failure region with d = 1, 3, 10 and θ = 0.005, 0.001

d = 1
θ FSCS-ART MART-2 DMART-50 DMART-100

0.005 0.5570 0.5684 0.5590 0.5634
0.001 0.5739 0.5672 0.5620 0.5569

d = 3
θ FSCS-ART MART- MART- MART- DMART-50 DMART-1001 × 1 × 2 1 × 2 × 2 2 × 2 × 2

0.005 0.7980 0.8171 0.8332 0.8275 0.8350 0.8209
0.001 0.7731 0.9441 0.9757 0.9566 0.8136 0.7670

d = 10
θ FSCS-ART MART- MART- MART- DMART-50 DMART-10017 × 23 15 × 25 13 × 27

0.005 3.6177 3.9719 4.1365 4.0294 1.0185 0.9733
0.001 2.7480 2.1017 1.7108 1.3051 1.0218 0.9945

0 2 4 6 8 1 0 1 2 1 4
0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1 . 0

1 . 1

1 . 2

AR
T F

-ra
tio

 =
F AR

T / F
RT

 F S C S - A R T M A R T - 1 ×2 M A R T - 2 ×2 D M A R T - 5 0 D M A R T - 1 0 0

L o g 0 . 5 (q)

Fig. 8: Failure-detection effectiveness of DMART on single square failure re-
gion with d = 2

• For small dimensionality (such as d = 1, 2, 3), DMART,105

MART, and FSCS-ART have similar failure-detection ca-106

pabilities, and generally outperform RT. However, for1

high dimensionality (for example d = 10), DMART nor-2

mally performs much better than FSCS-ART and MART.3

• DMART with high δ seems to have better failure-4

detection effectiveness than that with low δ, but the dif-5

ference in effectiveness is not so obvious.6

• The mirror scheme has no influence on the effectiveness7

of MART, which means that MART with different mirror8

schemes performs similarly on FP-I.9

As observed before, DMART-100 seems to have slightly10

better performance than that with DMART-50, though the dif-11

ference in performance is not so significant. In the following12

sections, therefore, we only adopt DMART-100 to represent the13

DMART algorithm.14

5.1.2. FP-II15

Fig. 9 shows the simulation results for FP-II. In this experi-16

ment, we distinguish MART-1×2 from MART-2×1. The reason17

is that as discussed in Section 3.1, different mirror schemes have18

strong impacts on the failure-detection effectiveness of MART19

when some input parameters are more sensitive to failures than20

other parameters.21

As shown in Fig. 9, the following observations can be ob-22

tained from the simulation results.23

• Similar to FSCS-ART and MART, the failure-detection24

effectiveness of DMART depends on the compactness of25

the failure region, i.e., DMART has poorer performance26

when the failure region is less compact.27

• DMART has similar failure-detection capabilities to28

FSCS-ART, irrespective of α or θ.29

• For θ = 0.001, DMART has similar performance to30

MART with all mirror schemes, regardless of α. How-31

ever, for θ = 0.005,32

– When 1 ≤ α ≤ 50, DMART has similar failure-33

detection capability to all MART versions.34

– When 50 < α ≤ 100, DMART performs similarly35

to MART-2 × 1. However, DMART has better per-36

formance than MART-1 × 2 and MART-2 × 2, and37

the improvements become larger with increase of α.38

In other words, MART has different performances39

on different mirror schemes.40

We briefly explain why MART has different failure-41

detection capabilities when choosing different mirror schemes42

when θ = 0.005 and 50 < α ≤ 100. According to experimental43

setup, the edge length ratio of the rectangular region is 1 : α,44

which means that the x-axis edge length of the rectangular re-45

gion is
√
θ/α while the y-axis edge length

√
θα, assuming that46

the input domain is a unit square. With the increase of α, the47

y-axis edge length becomes large while the x-axis edge length48

becomes small. For example, when α > 50, the y-axis edge49

length is larger than 0.5 while the x-axis edge length is smaller50

than 0.01, which indicates that y-axis increasingly becomes less51

sensitive to software failures while the x-axis becomes more52

sensitive to failures.53

In Section 3.1, we have shown by Fig. 3 that t1 and m1 have54

the same value at the vertical coordinate; while t1 and m2 have55

the same value at the horizontal coordinate. In other words, the56

mirroring process (actually due to mirror function) in MART57

with whether 2 × 1 or 1 × 2 is conducted for only one coordi-58

nate, not for all dimensions, which implies that MART does not59

achieve the even spread of test cases on each coordinate. Both60

mirror functions, Translate and Reflect, have such drawback.61

By using all-coordinated mirror function, DMART solves this62

problem.63

10

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
0 . 6

0 . 7

0 . 8

0 . 9

1 . 0

1 . 1

1 . 2

1 . 3

1 . 4

 F S C S - A R T M A R T - 1 ×2 M A R T - 2 ×1 M A R T - 2 ×2 D M A R T - 1 0 0

AR
T F

-ra
tio

 =
F AR

T / F
RT

C o m p a c t n e s s d e g r e e o f t h e f a i l u r e r e g i o n , a

(a) θ = 0.005

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
0 . 6

0 . 7

0 . 8

0 . 9

1 . 0

1 . 1

1 . 2

1 . 3

1 . 4

 F S C S - A R T M A R T - 1 ×2 M A R T - 2 ×1 M A R T - 2 ×2 D M A R T - 1 0 0

AR
T F

-ra
tio

 =
F AR

T / F
RT

C o m p a c t n e s s d e g r e e o f t h e f a i l u r e r e g i o n , a

(b) θ = 0.001

Fig. 9: Failure-detection effectiveness of DMART on single rectangular failure region

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
0 . 6

0 . 7

0 . 8

0 . 9

1 . 0

1 . 1

1 . 2

1 . 3

1 . 4

 F S C S - A R T M A R T - 1 ×2 M A R T - 2 ×2 D M A R T - 1 0 0
N u m b e r o f f a i l u r e r e g i o n s

AR
T F

-ra
tio

 =
F AR

T / F
RT

(a) θ = 0.005

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
0 . 6

0 . 7

0 . 8

0 . 9

1 . 0

1 . 1

1 . 2

1 . 3

1 . 4

N u m b e r o f f a i l u r e r e g i o n s
 F S C S - A R T M A R T - 1 ×2 M A R T - 2 ×2 D M A R T - 1 0 0

AR
T F

-ra
tio

 =
F AR

T / F
RT

(b) θ = 0.001

Fig. 10: Failure-detection effectiveness of DMART on multiple square failure regions

5.1.3. FP-III64

Similar to Section 5.1.1, we use MART-1 × 2 only as one65

version of MART, because MART-1 × 2 and MART-2 × 1 are1

equivalent to each other for FP-III, where failure regions are2

squares. The simulation results for FP-III are given in Fig. 10,3

from which we can observe that the F-measures of DMART4

becomes larger with the increase of the number failure regions,5

regardless of θ. It can also be observed that DMART has sim-6

ilar failure-detection capabilities to FSCS-ART and MART, ir-7

respective of θ and the number of failure regions.8

5.1.4. FP-IV9

Similar to Sections 5.1.1 and 5.1.3, we use MART-1×2 and10

MART-2×2 as the representative versions of MART. Fig. 11 re-11

ports the simulation results of DMART against FSCS-ART and12

MART on FP-IV, which show that the F-measures of DMART13

depend on the number of failure regions and the size of the14

predominant failure region. DMART could have better failure-15

detection capabilities, especially when the number of failure re-16

gions is smaller and the size of the predominant failure regions17

is larger, regardless of θ. Additionally, it can be also observed18

from the figures that the F-measures of DMART are very simi-19

lar to those of FSCS-ART and MART.20

Briefly speaking, similar to other ART algorithms, the21

failure-detection effectiveness of DMART also depends on22

many factors such as the dimension of input domain, the com-23

pactness of failure region, the number of failure regions, and the24

size of the predominant failure region. Compared with FSCS-25

ART and MART, DMART achieves at least the similar failure-26

detection effectiveness in most cases.27

5.2. Answer to RQ1–Part 2: Empirical Studies28

Fig. 12 shows the F-measure results of empirical studies,29

and gives the 95% confidence interval of the F-measure for30

each method, as represented by two error bars. For ease of31

comparison, we also include the previous results of FSCS-ART32

and MART. As discussed in Section 3.1, MART using differ-33

ent mirroring schemes has different failure-detection capabili-34

ties especially when testing programs with failure-unrelated pa-35

rameters. Since the failure pattern in each fault-seeded program36

is unknown for testers before testing (more specifically, in re-37

ality, testers do not have the prior knowledge of which param-38

eters in the program are failure-related or failure-unrelated), in39

this empirical study it is necessary to consider all possible mir-40

ror schemes for MART. For example, for object programs with41

d = 3, we adopt the following 7 mirror schemes for MART:42

1× 1× 2, 1× 2× 1, 2× 1× 1, 1× 2× 2, 2× 1× 2, 2× 2× 1, and43

2×2×2. In other words, for d-dimensional programs, there are44

11

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
0 . 6

0 . 7

0 . 8

0 . 9

1 . 0

1 . 1

1 . 2

1 . 3

1 . 4

 F S C S - A R T M A R T - 1 ×2 M A R T - 2 ×2 D M A R T - 1 0 0
N u m b e r o f f a i l u r e r e g i o n s

AR
T F

-ra
tio

 =
F AR

T / F
RT

(a) w = 0.3, θ = 0.005

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
0 . 6

0 . 7

0 . 8

0 . 9

1 . 0

1 . 1

1 . 2

1 . 3

1 . 4

 F S C S - A R T M A R T - 1 ×2 M A R T - 2 ×2 D M A R T - 1 0 0
N u m b e r o f f a i l u r e r e g i o n s

AR
T F

-ra
tio

 =
F AR

T / F
RT

(b) w = 0.3, θ = 0.001

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
0 . 6

0 . 7

0 . 8

0 . 9

1 . 0

1 . 1

1 . 2

1 . 3

1 . 4

 F S C S - A R T M A R T - 1 ×2 M A R T - 2 ×2 D M A R T - 1 0 0
N u m b e r o f f a i l u r e r e g i o n s

AR
T F

-ra
tio

 =
F AR

T / F
RT

(c) w = 0.5, θ = 0.005

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
0 . 6

0 . 7

0 . 8

0 . 9

1 . 0

1 . 1

1 . 2

1 . 3

1 . 4

 F S C S - A R T M A R T - 1 ×2 M A R T - 2 ×2 D M A R T - 1 0 0
N u m b e r o f f a i l u r e r e g i o n s

AR
T F

-ra
tio

 =
F AR

T / F
RT

(d) w = 0.5, θ = 0.001

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
0 . 6

0 . 7

0 . 8

0 . 9

1 . 0

1 . 1

1 . 2

1 . 3

1 . 4

 F S C S - A R T M A R T - 1 ×2 M A R T - 2 ×2 D M A R T - 1 0 0
N u m b e r o f f a i l u r e r e g i o n s

AR
T F

-ra
tio

 =
F AR

T / F
RT

(e) w = 0.8, θ = 0.005

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
0 . 6

0 . 7

0 . 8

0 . 9

1 . 0

1 . 1

1 . 2

1 . 3

1 . 4

 F S C S - A R T M A R T - 1 ×2 M A R T - 2 ×2 D M A R T - 1 0 0
N u m b e r o f f a i l u r e r e g i o n s

AR
T F

-ra
tio

 =
F AR

T / F
RT

(f) w = 0.8, θ = 0.001

Fig. 11: Failure-detection effectiveness of DMART on multiple square failure regions with one predominant region

(2d−1) mirror schemes for MART, which will be all considered45

in this study.1

Based on experimental results, we can have the following2

observations.3

• For real-life programs with d = 1 (airy, bessj0,4

erfcc, probks, and tanh), DMART has much smaller5

F-measures than FSCS-ART; for programs with d ≥ 2, in6

most cases DMART and FSCS-ART perform similarly.7

• Compared with MART, when testing object programs8

without failure-unrelated parameters (including airy,9

bessj0, erfcc, probks, tanh, bessj, gammq, sncndn,10

and golden), DMART has similar F-measures in most11

cases. However, when testing programs with failure-12

unrelated parameters (including plgndr, cel, and el2),13

DMART generally has similar failure-detection effective-14

ness to the best case of MART. In other words, MART15

with different mirroring schemes has different perfor-16

mances. It can be also observed that when the mirror17

partitioning is conducted on at least one failure-unrelated18

parameter, the F-measure of MART will become larger19

than that of RT.20

5.3. Answer to RQ2: Execution Time21

Fig. 13 shows the test case generation time of FSCS-ART,22

MART and DMART, in which x-axis represents n while y-23

axis represents the execution time required to generate n test24

12

0

500

1000

1500

2000

RT FSCS-ART MART-2 DMART-100

F-
m
e
as
u
re

(a) airy

0

200

400

600

800

1000

RT FSCS-ART MART-2 DMART-100

F-
m
e
as
u
re

(b) bessj0

0

500

1000

1500

2000

RT FSCS-ART MART-2 DMART-100

F-
m
e
as
u
re

(c) erfcc

0

500

1000

1500

2000

2500

3000

RT FSCS-ART MART-2 DMART-100

F-
m
e
as
u
re

(d) probks

0

100

200

300

400

500

600

700

RT FSCS-ART MART-2 DMART-100

F-
m
e
as
u
re

(e) tanh

0

200

400

600

800

1000

RT FSCS-ART MART-1×2 MART-2×1 MART-2×2 DMART-100

F-
m
e
as
u
re

(f) bessj

0

200

400

600

800

1000

1200

1400

RT FSCS-ART MART-1×2 MART-2×1 MART-2×2 DMART-100

F-
m
e
as
u
re

(g) gammq

0

100

200

300

400

500

600

700

800

RT FSCS-ART MART-1×2 MART-2×1 MART-2×2 DMART-100

F-
m
e
as
u
re

(h) sncndn

0

500

1000

1500

2000

2500

3000

RT FSCS-ART MART-1×1×2 MART-1×2×1 MART-2×1×1 MART-1×2×2 MART-2×1×2 MART-2×2×1 MART-2×2×2 DMART-100

F-
m
e
as
u
re

(i) golden

0

500

1000

1500

2000

2500

3000

3500

4000

RT FSCS-ART MART-1×1×2 MART-1×2×1 MART-2×1×1 MART-1×2×2 MART-2×1×2 MART-2×2×1 MART-2×2×2 DMART-100

F-
m
e
as
u
re

(j) plgndr

0

2000

4000

6000

8000

10000

12000

14000

16000

RT FSCS-ART MART-1×1×1×2 MART-1×1×2×1 MART-1×2×1×1 MART-2×1×1×1 MART-1×1×2×2 MART-1×2×1×2 MART-1×2×2×1 MART-2×1×1×2 MART-2×1×2×1 MART-2×2×1×1 MART-1×2×2×2 MART-2×2×2×1 MART-2×2×1×2 MART-2×1×2×2 MART-2×2×2×2 DMART-100

F-
m
e
as
u
re

(k) cel

0

1000

2000

3000

4000

5000

RT FSCS-ART MART-1×1×1×2 MART-1×1×2×1 MART-1×2×1×1 MART-2×1×1×1 MART-1×1×2×2 MART-1×2×1×2 MART-1×2×2×1 MART-2×1×1×2 MART-2×1×2×1 MART-2×2×1×1 MART-1×2×2×2 MART-2×2×2×1 MART-2×2×1×2 MART-2×1×2×2 MART-2×2×2×2 DMART-100

F-
m
e
as
u
re

(l) el2

Fig. 12: F-measures on each object program

cases. It should be noted that MART with mirroring partition-25

ing u1 × u2 × · · · × ud (1 ≤ ui ≤ 2, i = 1, 2, · · · , d) actually has1

the same test case generation time as that with each mirroring2

partitioning u j1 ×u j2 ×· · ·×u jd , where (u j1 , u j2 , · · · , u jd) is a per-3

mutation of (u1, u2, · · · , ud), because the number of subdomains4

for the mirroring partitioning is fixed (i.e.,
∏d

i=1 ui). Therefore,5

we use MART-u j1 × u j2 × · · · × u jd , where u j1 ≤ u j2 ≤ · · · ≤ u jd ,6

to represent the MART algorithm.7

Based on the experimental results, we can have the follow-8

ing observations.9

• DMART has much lower execution time than FSCS-ART10

and MART with different ways of mirroring partitioning11

for generating the same number of test cases, regardless12

of the dimension of the input domain.13

• DMART with higher cutoff value δ generally has higher14

computational overhead than that with lower δ, but the15

difference in overhead within different DMART meth-16

ods is ignorable compared with the difference between17

DMART and MART/FSCS-ART.18

• Consistent with previous MART studies [21, 27], the test19

case generation time of MART is less than that of FSCS-20

ART, and MART with the larger number of mirror do-21

mains needs less test case generation time than that with22

the smaller number of mirror domains.23

• Similar to FSCS-ART, the computational overhead of24

MART is also in O(n2). However, the computation over-25

head of DMART is in linear order, i.e., O(n).26

Fig. 14 reports the average time rather than generation time27

to detect the first failure for each object program. Based on28

experimental data, we can observe that DMART needs much29

less average time to detect the first failure than FSCS-ART and30

MART with any mirror partitioning, irrespective of object pro-31

gram.32

In summary, our DMART method can deliver similar33

failure-detection effectiveness as FSCS-ART but with much34

lower computation overhead (execution time and average time35

13

0 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0 1 0 0 0 0 1 2 0 0 0 1 4 0 0 0 1 6 0 0 0 1 8 0 0 0 2 0 0 0 0
0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

 F S C S - A R T M A R T - 1 ×2 M A R T - 2 ×2 D M A R T - 5 0 D M A R T - 1 0 0
| E |

Ex
ec

uti
on

 tim
e (

se
co

nd
s)

(a) d = 2

0 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0 1 0 0 0 0 1 2 0 0 0 1 4 0 0 0 1 6 0 0 0 1 8 0 0 0 2 0 0 0 0
0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

Ex
ec

uti
on

 tim
e (

se
co

nd
s)

| E |

 F S C S - A R T M A R T - 1 ×1 ×2 M A R T - 1 ×2 ×2
 M A R T - 2 ×2 ×2 D M A R T - 5 0 D M A R T - 1 0 0

(b) d = 3

Fig. 13: Test case generation time of DAMRT algorithm

to detect the first failure). Compared with MART, our DMART36

method not only requires much less time, but also delivers more1

reliable failure-detection effectiveness especially when there2

are failure-unrelated input parameters. Therefore, we can sug-3

gest that DMART should be considerably more cost-effective4

than both DMART and FSCS-ART.5

6. Threat to Validity6

Despite our best efforts, our experiments may face some7

threats to validity. In this section, we briefly discuss them,8

which are classified into the following categories.9

6.1. Threats to Construct Validity10

Construct validity refers to whether or not we have con-11

ducted the studies fairly. In this paper, we emphasize the12

failure-detection effectiveness of each ART method, measured13

with the F-measure (or ART F-ratio). As we know, there are14

another two most popular effectiveness of metrics: P-measure15

– the probability of detecting at least one failure; and E-measure16

– the expected number of failures detected [10]. Generally, a set17

of test cases with a given size is assumed when using P-measure18

or E-measure. Since the size of the test case set has signifi-19

cant impact on the P-measure or E-measure values, F-measure20

is more suitable than P-measure and E-measure to be used to21

compare adaptive methods, such as ART [32]. Additionally,22

previous studies have consistently demonstrated that whenever23

ART has smaller F-measures than RT, ART also performs better24

than RT in terms of P-measure [32]; while E-measure is even25

less appropriate than P-measure as it has been observed [25]26

that multiple failures may be associated with single fault. As a27

consequence, F-measure rather than P-measure or E-measure is28

used as the evaluation metric in this study.29

6.2. Threats to External Validity30

External validity is specifically about to what extent our ex-31

perimental results can be generalized. The first threat to exter-32

nal validity of the experiment is the choice of the representative33

ART algorithms. The main purpose of this paper is to propose34

an enhanced mirror adaptive random testing (MART), i.e., dy-35

namic mirror adaptive random testing (DMART). Both MART36

and DMART can be applied to most of ART algorithms. Since37

previous MART studies [21, 27] have used one version of ART38

by distance to represent the ART algorithm, namely fixed size39

candidate set ART (FSCS-ART) [10], it is reasonable to use40

FSCS-ART for DMART in our study.41

The second threat to external validity is the cutoff value δ42

used in the DMART algorithm. We choose 50 and 100 for δ in43

our experiments, but we do not discuss in depth the impact of δ44

on the effectiveness of DMART.45

The third threat to external validity is that the selection of46

object programs is based on the previous study and for ease47

of comparison, and the dimension of each program is not very48

high. However, there is no reason why the results on higher49

dimension will be quite different from the current ones.50

To address these potential threats, additional studies, using51

other ART algorithms such as lattice-based ART (LART) [15]52

and restricted random testing (RRT) [16], more δ values, and53

more object programs, will be conducted in the future.54

6.3. Threats to Internal Validity55

Internal validity refers to whether or not there were mistakes56

in the experiments. We have manually cross-validated our an-57

alyzed programs on various examples, and we have confidence58

on the correctness of the simulation and empirical setups.59

7. Related Work60

It is worthwhile to note that there are some other overhead61

reduction techniques for ART. In this section, we briefly re-62

view five techniques, namely ART through dynamic partition-63

ing (ART-DP) [22], ART through iterative partitioning (ART-64

IP) [23], forgetting [24], fast random border centroidal voronoi65

tessellations (RBCVT-Fast) [25], and ART with divide-and-66

conquer (ART-DC) [26].67

14

0

500

1000

1500

FSCS-ART MART-2 DMART-100

M
e

an
 t

im
e

 t
o

d

et
e

ct
 f

ir
st

 f
ai

lu
re

 (
m

s)

(a) airy

0

100

200

300

400

500

FSCS-ART MART-2 DMART-100

M
e

an
 t

im
e

 t
o

d

et
e

ct
 f

ir
st

 f
ai

lu
re

 (
m

s)

(b) bessj0

0

500

1000

1500

2000

2500

FSCS-ART MART-2 DMART-100

M
e

an
 t

im
e

 t
o

d

et
e

ct
 f

ir
st

 f
ai

lu
re

 (
m

s)

(c) erfcc

0

1000

2000

3000

4000

5000

FSCS-ART MART-2 DMART-100

M
e

an
 t

im
e

 t
o

d

et
e

ct
 f

ir
st

 f
ai

lu
re

 (
m

s)

(d) probks

0

50

100

150

200

250

FSCS-ART MART-2 DMART-100

M
e

an
 t

im
e

 t
o

d

et
e

ct
 f

ir
st

 f
ai

lu
re

 (
m

s)

(e) tanh

0

100

200

300

400

500

600

FSCS-ART MART-1×2 MART-2×1 MART-2×2 DMART-100

M
e

an
 t

im
e

 t
o

d

et
e

ct
 f

ir
st

 f
ai

lu
re

 (
m

s)

(f) bessj

0

500

1000

1500

2000

2500

3000

3500

FSCS-ART MART-1×2 MART-2×1 MART-2×2 DMART-100

M
e

an
 t

im
e

 t
o

d

et
e

ct
 f

ir
st

 f
ai

lu
re

 (
m

s)
(g) gammq

0

200

400

600

800

1000

1200

1400

FSCS-ART MART-1×2 MART-2×1 MART-2×2 DMART-100

M
e

an
 t

im
e

 t
o

d

et
e

ct
 f

ir
st

 f
ai

lu
re

 (
m

s)

(h) sncndn

0

2000

4000

6000

8000

10000

FSCS-ART MART-1×1×2 MART-1×2×1 MART-2×1×1 MART-1×2×2 MART-2×1×2 MART-2×2×1 MART-2×2×2 DMART-100

M
e

an
 t

im
e

 t
o

d

et
e

ct
 f

ir
st

 f
ai

lu
re

 (
m

s)

(i) golden

0

2000

4000

6000

8000

FSCS-ART MART-1×1×2 MART-1×2×1 MART-2×1×1 MART-1×2×2 MART-2×1×2 MART-2×2×1 MART-2×2×2 DMART-100

M
e

an
 t

im
e

 t
o

d

et
e

ct
 f

ir
st

 f
ai

lu
re

 (
m

s)
(j) plgndr

0

2000

4000

6000

8000

10000

FSCS-ART MART-1×1×1×2 MART-1×1×2×1 MART-1×2×1×1 MART-2×1×1×1 MART-1×1×2×2 MART-1×2×1×2 MART-1×2×2×1 MART-2×1×1×2 MART-2×1×2×1 MART-2×2×1×1 MART-1×2×2×2 MART-2×2×2×1 MART-2×2×1×2 MART-2×1×2×2 MART-2×2×2×2 DMART-100

M
e

an
 t

im
e

 t
o

d

et
e

ct
 f

ir
st

 f
ai

lu
re

 (
m

s)

(k) cel

0

500

1000

1500

2000

FSCS-ART MART-1×1×1×2 MART-1×1×2×1 MART-1×2×1×1 MART-2×1×1×1 MART-1×1×2×2 MART-1×2×1×2 MART-1×2×2×1 MART-2×1×1×2 MART-2×1×2×1 MART-2×2×1×1 MART-1×2×2×2 MART-2×2×2×1 MART-2×2×1×2 MART-2×1×2×2 MART-2×2×2×2 DMART-100

M
e

an
 t

im
e

 t
o

d

et
e

ct
 f

ir
st

 f
ai

lu
re

 (
m

s)

(l) el2

Fig. 14: Average time to detect the first failure for each object program

7.1. ART-DP68

Chen et al. [22] have proposed ART-DP, which partitions69

the input domain dynamically. There are two main types of1

ART-DP, namely ART by bisection (ART-B) and ART by ran-2

dom partitioning (ART-RP). ART-B divides the input domain3

into equally-sized partitions by bisecting the longest coordinate.4

The next test case is randomly generated from one empty par-5

tition. Once each partition contains a test case, another parti-6

tioning process will be conducted. ART-RP always selects the7

next test case randomly from the largest subdomain in the input8

domain, and uses this test case to further divide the subdomain9

on all coordinates. The time complexities of ART-B and ART-10

DP are O(n) and O(n log n), respectively, for generating n test11

cases [33]. Though our DMART approach also involves dy-12

namic partitioning, it is not a standalone ART algorithm but13

used to improve the efficiency of existing ART algorithms.14

7.2. ART-IP15

ART-IP [23] provides a new partitioning approach. When16

all the partitions are either non-empty (that is, containing exe-17

cuted test cases) or adjacent to the non-empty partitions, ART-18

IP applies an “iterative” partitioning scheme to generate totally19

new partitions from scratch. On the contrary, ART-DP always20

generates new partitions by dividing the previous partitions. For21

the generation of the next test case, ART-IP not only eliminates22

the non-empty partition, but also disregards their neighbors. In23

other words, ART-IP achieves an even spread of test cases by24

selecting test cases only from the partitions that are far away25

from the non-empty partitions. Similar to ART-DP, ART-IP is a26

standalone ART algorithm, whereas our DMART approach can27

be applied to reduce the computation overhead of many existing28

ART algorithms.29

7.3. Forgetting30

Generally speaking, generating the next test case is very31

time-consuming, because with the increase of the number of32

15

previously executed test cases (i.e., |E|), their computation over-33

head become higher. The forgetting overhead reduction tech-34

nique [24] generates the next test case by utilizing a constant35

number of previously executed test cases rather than all of them.1

Chan’s studies [24] showed that if a constant number of previ-2

ously executed test cases is used, the forgetting makes the new3

test case generation independent of |E|, which leads to the time4

complexity in linear order. However, the simulation results also5

show that the F-measure of the ART algorithm with forgetting6

depends on the number of test cases used in generating the next7

test case: The fewer executed test cases were used, the larger8

the F-measure was. Compared with the forgetting technique,9

our DMART approach delivers a more consistent performance10

improvement over RT.11

7.4. RBCVT-Fast12

Recently, Shahbazi et al. [25] have proposed a novel testing13

approach by using the Centroidal Voronoi Tessellations, namely14

random border centroidal voronoi tessellations (RBCVT), in15

order to make random test cases evenly spread over the in-16

put domain. Since the order of time complexity of RBCVT17

is quadratic to |E| (i.e., O(|E|2)), they have used a novel search18

algorithm to develop an alternative RBCVT, namely RBCVT-19

Fast, which can generate test cases with linear runtime (O(|E|)).20

RBCVT-Fast was a “brand-new” ART algorithm, different from21

all other ART algorithms.22

7.5. ART-DC23

Chow et al. [26] have proposed ART-DC to improve the ef-24

ficiency of ART algorithms. ART-DC first defines a constant25

number, namely threshold denoted by λ, and then uses the ART26

algorithm to generate test cases over the whole input domain.27

When the number of already executed test cases reaches λ,28

ART-DC bisectionally divides the input domain into some sub-29

domains, and then generates test cases within each subdomain.30

The simulation results show that ART-DC can significantly im-31

prove efficiency of ART algorithms while maintaining the sim-32

ilar failure-detection effectiveness.33

Though ART-DC and our DMART approach show a cer-34

tain degree of similarity especially with respect to the bisec-35

tional partitioning process, they are different from basic in-36

tuition. ART-DC makes use of the concept of “divide-and-37

conquer” and divides a large problem into some sub-problems.38

DMART uses the bisectional partitioning process to dynami-39

cally construct source and mirror domains, with the specific40

purpose of overcoming the drawbacks of the static mirroring41

scheme in the original MART method.42

In ART-DC, the original ART algorithm is implemented in43

each subdomain, while DMART only requires the implemen-44

tation in half of the subdomains. In other words, as compared45

to ART-DC, DMART virtually incurs half of the execution cost46

for generating the same number of test cases. With regard to47

the failure-detection effectiveness, by examining the simula-48

tions results in previous study of ART-DC [26], we can observe49

that DMART performs at least similarly to ART-DC.50

8. Conclusion51

Adaptive random testing (ART) was proposed to enhance52

the failure-detection effectiveness of random testing (RT). Pre-53

vious studies have demonstrated that ART can generate more54

evenly distributed test cases than RT over the input domain,55

and requires fewer test cases to detect the first failure. How-56

ever, it was also noted that ART needs higher computation over-57

head to achieve the even spread of test cases. Mirror adap-58

tive random testing (MART) was proposed as a light-weight59

ART technique to reduce computation overhead, which applied60

original ART algorithms to the source domain and then used a61

simple mirror function to generate test cases in the mirror do-62

mains. MART can reduce computational overhead compared63

with original ART algorithms while maintaining similar failure-64

detection effectiveness. However, MART actually cannot de-65

crease the order of magnitude for computation overhead of orig-66

inal ART algorithms. Additionally, before testing testers may67

face a challenge of choosing the mirroring scheme (including68

mirror partitioning, mirror function, and mirror selection or-69

der) for MART, because different mirroring schemes may re-70

sult in significantly different performances. In this paper, we71

proposed an enhancement of MART, namely dynamic mirror72

adaptive random testing (DMART), in order to overcome the73

above drawbacks of MART by using a new mirroring scheme.74

The simulation results indicate that DMART needs much less75

time than the original ART and MART algorithms for generat-76

ing the same number of test cases, while achieving at least the77

similar failure-detection capabilities. Additionally, the empiri-78

cal studies show that DMART has a more reliable performance79

than MART. In particular, DMART performs better than MART80

when testing programs with failure-unrelated parameters.81

One important research direction for future work is on the82

cutoff value δ used in DMART. Intuitively speaking, DMART83

with larger δ generally has better failure-detection capability84

but requires higher execution costs, because the number of test85

cases used in the generation of the next test cases becomes86

larger. On the other hand, if δ is assigned a small value, the87

testing efficiency of DMART can be improved, but its testing88

effectiveness would be constrained. In other words, there ex-89

ists a trade-off between testing effectiveness and efficiency of90

DMART. In practice, when testers want to have better testing91

efficiency, it is reasonable to choose smaller δ values, such as92

5 and 10; on the contrary, when testers want to deliver higher93

testing effectiveness, larger δ values should be selected, such as94

100 and 200. It is quite interesting to investigate the impacts95

of different values of δ and see how to balance the trade-off96

between the effectiveness and efficiency.97

Since the mirroring scheme of DMART is independent of98

concrete ART algorithms, DMART can be generally applied99

to improve the cost-effectiveness of various ART algorithms.100

Nevertheless, it is still desirable to have more investigations on101

the integration of DMART and other ART algorithms. The cur-102

rent studies of both MART and DMART have focused on nu-103

meric input domains. It is also worthwhile to extend MART104

and DMART to other types of input domains, especially those105

with non-numeric inputs [34].106

16

Acknowledgement107

This work is in part supported by the National Natu-108

ral Science Foundation of China (Grant No. 61202110 and1

61103053), the Natural Science Foundation of Jiangsu Province2

(Grant No. BK2012284), and the Senior Personnel Scien-3

tific Research Foundation of Jiangsu University (Grant No.4

14JDG039).5

References6

[1] P. Bourque, R. E. D. Farley (Eds.), SWEBOK 3.0: Guide to the Software7

Engineering Body of Knowledge, 3rd Edition, IEEE, 2014.8

[2] A. Orso, G. Rothermel, Software testing: A research travelogue (2000-9

2014), in: Proceedings of Future of Software Engineering, FOSE ’14,10

2014, pp. 117–132.11

[3] P. G. Frankl, R. G. Hamlet, B. Littlewood, L. Strigini, Evaluating testing12

methods by delivered reliability, IEEE Transactions on Software Engi-13

neering 24 (8) (1998) 586–601.14

[4] G. J. Myers, The Art of Software Testing, John Wiley & Sons: New York,15

2004.16

[5] B. P. Miller, L. Fredriksen, B. So, An empirical study of the reliability of17

unix utilities, Communications of the ACM 33 (12) (1990) 32–44.18

[6] J. Forrester, B. Miller, An empirical study of the robustness of windows19

nt applications using random testing, in: Proceedings of the 4th USENIX20

Windows Systems Symposium (WSS ’00), 2000, pp. 59–68.21

[7] T. Yoshikawa, K. Shimura, T. Ozawa, Random program generator for java22

jit compiler test system, in: proceedings of the 3rd International Confer-23

ence on Quality Software (QSIC ’03), 2003, pp. 20–24.24

[8] J. Regehr, Random testing of interrupt-driven software, in: Proceedings of25

the 5th ACM International Conference on Embedded Software (EMSOFT26

’05), 2005, pp. 290–298.27

[9] H. Bati, L. Giakoumakis, S. Herbert, A. Surna, A genetic approach for28

random testing of database systems, in: Proceedings of the 33rd Inter-29

national Conference on Very Large Data Bases (VLDB ’07), 2007, pp.30

1243–1251.31

[10] T. Y. Chen, H. Leung, I. K. Mak, Adaptive random testing, in: Proceed-32

ings of the 9th Asian Computing Science Conference (ASIAN ’04), 2004,33

pp. 320–329.34

[11] L. White, E. Cohen, A domain strategy for computer program testing,35

IEEE Transactions on Software Engineering 6 (3) (1980) 247–257.36

[12] P. E. Ammann, J. C. Knight, Data diversity: an approach to software fault37

tolerance, IEEE Transactions on Computers 37 (4) (1988) 418–425.38

[13] G. B. Finelli, Nasa software failure characterization experiments, Relia-39

bility Engineering and System Safety 32 (1–2) (1991) 155–169.40

[14] P. G. Bishop, The variation of software survival times for different opera-41

tional input profiles, in: Prceedings of the 23rd International Symposium42

on Fault-Tolerant Computing (FTCS ’93), 1993, pp. 98–107.43

[15] J. Mayer, Lattice-based adaptive random testing, in: Proceedings of the44

20th IEEE/ACM International Conference on Automated Software Engi-45

neering (ASE ’05), 2005, pp. 333–336.46

[16] K. P. Chan, T. Y. Chen, D. Towey, Restricted random testing: Adaptive47

random testing by exclusion, International Journal of Software Engineer-48

ing and Knowledge Engineering 16 (4) (2006) 553–584.49

[17] I. Ciupa, A. Leitner, M. Oriol, B. Meyer, ARTOO: Adaptive random test-50

ing for object-oriented software, in: Proceedings of the 30th International51

Conference on Software Engineering (ICSE ’08), 2008, pp. 71–80.52

[18] Y. Lin, X. Tang, Y. Chen, J. Zhao, A divergence-oriented approach to53

adaptive random testing of java programs, in: Proceedings of the 24th54

IEEE/ACM International Conference on Automated Software Engineer-55

ing (ASE ’09), 2009, pp. 221–232.56

[19] H. Hemmati, A. Arcuri, L. Briand, Achieving scalable model-based test-57

ing through test case diversity, ACM Transactions on Software Engineer-58

ing and Methodology 22 (1) (2012) 6:1–6:42.59

[20] A. Arcuri, L. Briand, Adaptive random testing: An illusion of effective-60

ness?, in: Proceedings of the 20th International Symposium on Software61

Testing and Analysis (ISSTA ’11), 2011, pp. 265–275.62

[21] T. Y. Chen, F.-C. Kuo, R. Merkel, S. P. Ng, Mirror adaptive random test-63

ing, Information & Software Technology 46 (15) (2004) 1001–1010.64

[22] T. Y. Chen, R. Merkel, P. K. Wong, G. Eddy, Adaptive random testing65

through dynamic partitioning, in: Proceedings of the 4th International66

Conference on Quality Software (QSIC ’04), 2004, pp. 79–86.67

[23] T. Y. Chen, D. H. Huang, Z. Q. Zhou, On adaptive random testing through68

iterative partitioning, Journal of Information Science and Engineering69

27 (4) (2011) 1449–1472.70

[24] K.-P. Chan, T. Y. Chen, D. Towey, Forgetting test cases, in: Proceedings71

of the 30th Annual International Computer Software and Applications72

Conference (COMPSAC ’06), 2006, pp. 485–494.73

[25] A. Shahbazi, A. F. Tappenden, J. Miller, Centroidal voronoi tessellations74

— a new approach to random testing, IEEE Transactions on Software75

Engineering 39 (2) (2013) 163–183.76

[26] C. Chow, T. Y. Chen, T. Tse, The art of divide and conquer: An inno-77

vative approach to improving the efficiency of adaptive random testing,78

in: Proceedings of the 13th International Conference on Quality Software79

(QSIC ’13), 2013, pp. 268–275.80

[27] F.-C. Kuo, An indepth study of mirror adaptive random testing, in: Pro-81

ceedings of the 9th International Conference on Quality Software (QSIC82

’09), 2009, pp. 51–58.83

[28] T. Y. Chen, F.-C. Kuo, Z. Zhou, On favourable conditions for adaptive ran-84

dom testing, International Journal of Software Engineering and Knowl-85

edge Engineering 17 (6) (2007) 805–825.86

[29] ACM, Collected Algorithms from ACM, Association for Computer Ma-87

chinery: New York, 1980.88

[30] W. Press, B. P. Flannery, S. A. Teulolsky, W. T. Vetterling, Numerical89

Recipes, Cambridge University Press: Cambridge, 1986.90

[31] R. A. DeMillo, R. J. Lipton, F. G. Sayward, Hints on test data selection:91

Help for the practicing programmer., IEEE Computer 11 (4) (1978) 31–92

41.93

[32] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen, W. Grieskamp,94

M. Harman, M. J. Harrold, P. Mcminn, An orchestrated survey of method-95

ologies for automated software test case generation, Journal of Systems96

and Software 86 (8) (2013) 1978–2001.97

[33] J. Mayer, C. Schneckenburger, An empirical analysis and comparison of98

random testing techniques, in: Proceedings of the 2006 ACM/IEEE Inter-99

national Symposium on Empirical Software Engineering (ISESE2006),100

2006, pp. 105–114.101

[34] A. Barus, T. Y. Chen, F.-C. Kuo, H. Liu, R. Merkel, G. Rothermel, A102

novel linear-order algorithm for adaptive random testing on programs103

with non-numeric inputs, Tech. rep., University of Nebraska – Lincoln.1190

17

	Huai, liu - n2006054096 Enhancing mirror adaptive.pdf
	Iyer-Raniga, Usha- n2006046404- A greenhouse gas.pdf
	Abstract
	Introduction
	Method
	Unit of assessment and system boundary
	Inventory
	Impact assessment

	Results
	Discussion
	Limitations
	Exclusion of travel
	Partition methodology
	Stadium life time and attendance
	Exclusion of upstream construction processes

	Conclusion
	Acknowledgement
	Funding
	References

