
A novel use of equivalent mutants for static anomaly

detection in software artifacts

Paolo Arcainia, Angelo Gargantinib, Elvinia Riccobenec, Paolo Vavassorib

aCharles University in Prague, Faculty of Mathematics and Physics, Czech Republic
bDepartment of Economics and Technology Management, Information Technology and

Production, Università degli Studi di Bergamo, Italy
cDipartimento di Informatica, Università degli Studi di Milano, Italy

Abstract

Context: In mutation analysis, a mutant of a software artifact, either a
program or a model, is said equivalent if it leaves the artifact meaning un-
changed. Equivalent mutants are usually seen as an inconvenience and they
reduce the applicability of mutation analysis.
Objective: Instead, we here claim that equivalent mutants can be useful to
de�ne, detect, and remove static anomalies, i.e., de�ciencies of given qual-
ities : If an equivalent mutant has a better quality value than the original
artifact, then an anomaly has been found and removed.
Method: We present a process for detecting static anomalies based on mu-
tation, equivalence checking, and quality measurement.
Results: Our proposal and the originating technique are applicable to dif-
ferent kinds of software artifacts. We present anomalies and conduct several
experiments in di�erent contexts, at speci�cation, design, and implementa-
tion level.
Conclusion: We claim that in mutation analysis a new research direction
should be followed, in which equivalent mutants and operators generating
them are welcome.

Keywords: Equivalent mutant, static anomaly, quality measure

1. Introduction

Mutation has a long history and has been applied to several areas of soft-
ware engineering [1] and to di�erent kinds of software artifacts, as code and
formal speci�cations [2, 3, 4]. The main application of mutation analysis is

Preprint submitted to Information and Software Technology November 23, 2015

mutation testing [5], in which faults are arti�cially introduced in the code
under test and test cases are used to detect (or kill) these faults (mutants).
Good tests can kill all the injected faults in the program or, at least, most of
them: a test suite has a mutation score equal to the portion of mutants it can
kill. However, some mutants are impossible to kill since only behavioral faults
can be detected by a test: a mutant is said equivalent if it leaves the behavior
of the program unchanged. Equivalent mutants cannot be detected by a test
and thus they reduce the mutation score of a test suite without a real justi-
�cation. Also in test generation, equivalent mutants pose a challenge: they
consume resources without producing any useful test. Equivalent mutants
are therefore usually seen as an inconvenience and the equivalent mutant
problem is considered as one of the main causes why mutation testing is sel-
dom used in practice [6, 5]. Several attempts have been proposed to eliminate
them (e.g., by �ltering), or to automatically �nd and avoid them [7, 8].

Due to the aforementioned problems, equivalent mutants earned a bad
reputation. Following our early position paper [9], we aim in this paper at
rehabilitating equivalent mutants reputation, since we claim that they can
be useful to discover non-behavioral faults, a category of faults that has not
been targeted in mutation analysis so far. When looking for non-behavioral
faults, equivalent mutants should be seen as an opportunity, and the long
time experience in �nding them should be reused.

We de�ne a certain type of non-behavioral faults, that we call static
anomalies, in terms of equivalent mutants. We show that if, given an artifact
A and a quality of A (like readability, e�ciency and, so on), we are able to
produce an equivalent mutant with better quality than A, then A contains a
static anomaly that should be removed. Di�erently from classical approaches
targeting behavioral faults, we aspire to have a lot of equivalent mutants,
since they can be used to detect anomalies.

We present a process for detecting static anomalies based on mutation,
equivalence checking, and quality checking. We show that this process is
applicable to several types of artifacts produced at di�erent phases of the
software life cycle (at speci�cation, design, and implementation levels), for
several anomalies, and using several mutation operators.

The paper is organized as follows. Sect. 2 introduces some background
on the classical de�nition of software anomaly, mutation, and the problem
of equivalent mutants. Sect. 3 presents our de�nition of static anomalies in
terms of equivalent mutants and a technique for discovering them. Sects. 4
and 5 show the application of the technique at the speci�cation level (on fea-

2

ture models and NuSMV models), Sects. 6 and 7 at the implementation level
(on Boolean expressions and source code), and Sect. 8 on package dependency
graphs (either at the design or implementation level). Sect. 9 discusses some
threats to the validity of our proposal, while Sect. 10 presents some related
work. Finally, Sect. 11 concludes the paper.

2. Background

We here brie�y review some basic concepts on software anomalies, muta-
tion, and equivalent mutants.

2.1. Software anomalies

Software anomalies are de�ned in the IEEE standard [10] as:

Any condition that deviates from the expected based on requirements spec-
i�cations, design documents, user documents, standards, etc. or from some-
one's perceptions or experiences. Anomalies may be found during, but not
limited to, the review, test, analysis, compilation, or use of software products
or applicable documentation.

In this paper, we refer to software artifact as any product that is devel-
oped along the software life cycle at several levels: for example, source code
at implementation level or models at speci�cation level.

According to the IEEE standard, each software artifact should have some
quality attributes (like readability, compactness, e�ciency, correctness, etc.)
and an anomaly is any deviation in terms of the expected (quality) attributes.
For example, faults represent deviations w.r.t. the expected behavior, dead
code is a deviation w.r.t. compactness.

We here focus on static anomalies, i.e., anomalies that can be removed
without changing the �meaning� of the artifact. Static anomalies regard
the artifacts' structure and they relate to qualities that may be statically
measured.

2.2. Mutation

Mutation is a well known technique in the context of software artifacts
as program code and formal speci�cations. It consists in introducing small
modi�cations into the artifact such that these simple syntactic changes, called
mutations, represent typical mistakes that programmers or designers often
make. These faults are deliberately seeded into the original artifact in order

3

to obtain a set of faulty variations called mutants. A transformation rule
generating a mutant from the original artifact is known as mutation operator.

Mutation is very often used in combination with program testing, and its
use is twofold. Mutants are classically used to assess the quality of test suites.
High quality test suites should be able to distinguish the original program
from its mutants, i.e., to detect the seeded faults. Given a test suite T , if the
result of running a mutant is di�erent from the result of running the original
program for at least a test case in T , then the mutant is said to be killed ;
otherwise, it is said to have survived. A test suite has a mutation score equal
to the portion of mutants it can kill. After all test cases have been executed,
there may still be a few surviving mutants. To improve the test suite T ,
the program tester can provide additional test inputs to kill these surviving
mutants. In this case, mutation is used for test generation purposes.

The history of mutation can be traced back to the 70s [1]. Mutation has
been mainly applied to programming languages, but also at the design level
to formal speci�cations [2, 11, 12, 4, 3, 13].

2.3. Equivalent mutants

When a mutant has the same meaning (e.g., the same behavior for pro-
grams or the same logical models for Boolean expressions) as the original
artifact, it is said to be equivalent. These mutants are syntactically di�erent
but semantically equivalent to the original artifact.

Equivalent mutants are considered as one of the main causes why muta-
tion testing is seldom used in practice [6, 5]. In software testing, equivalent
mutants do not represent actual faults and can not be detected (killed) by
a test. They thus reduce the quality index (mutation score) of a test suite
without a real justi�cation. In test generation, equivalent mutants consume
resources without producing any useful test.

In code mutation, automatically detecting all equivalent mutants is im-
possible [14] because program equivalence is undecidable [15]. Several at-
tempts try to eliminate (e.g., by �ltering) or to avoid them [7, 8].

In the context of other software artifacts with a higher abstraction level
than code, and with a concept of equivalence and a technique for checking it,
some approaches for detecting equivalent mutants have been developed [3, 2].
However, also in these contexts, equivalent mutants are seen as an inconve-
nience [16, 17] and e�orts to detect them are only �nalized to skip them.

In the approach presented here, we rehabilitate equivalent mutants, in
the sense that the goal of detecting them is �nalized to use them to improve

4

artifacts' qualities, and not to eliminate or avoid them.

3. Using mutation to detect static anomalies

In this section, we introduce our de�nition of static anomalies in terms
of equivalent mutants, and we propose a technique for anomaly detection.

3.1. Static anomalies

We de�ne the concept of static anomaly in terms of equivalence and qual-
ity of artifacts. We assume that one can de�ne a quality q over artifacts and
that q induces a partial order (of better quality) >q among all the artifacts,
i.e., an artifact may be better than another one in terms of a certain quality
q. Whenever possible, we will de�ne q as a real-valued function over the
considered artifacts, such that q induces a total order. Moreover, we assume
that it is possible to check equivalence among artifacts.

Given a certain quality q, an artifact may contain a static anomaly in
terms of q if the following condition holds:

De�nition 1 (Static anomaly detection). Given an artifact A and its
mutation A′, if A′ is equivalent to A (i.e., A ≡ A′) and A′ >q A, then A
contains a static anomaly. The static anomaly is the di�erence between A′

and A.

Thesis 1. Each classic static anomaly introduced in the literature can be
rede�ned in terms of Def. 1.

3.2. Detecting static anomalies

Def. 1 gives the foundation of a methodology for de�ning, �nding, and
possibly removing static anomalies. Normally, the designer has a precise
static anomaly and the related quality q in mind. Def. 1 requires her/him
to devise a suitable mutation operator, and ways for checking equivalence
between artifacts and for comparing their qualities.

Given a quality q and a mutation operatorm, the general process followed
for detecting possible anomalies (in terms of quality q) in an artifact A is as
follows:

1. build a mutation A′ for A using m;
2. check the equivalence between A′ and A;
3. compare qualities q(A) and q(A′) of A and A′;
4. if A′ ≡ A and q(A′) > q(A), then an anomaly has been found in A.

5

Table 1: Anomaly detectors classi�cation

Quality check?
Yes No

Equivalence check?
Yes Weak detector Quality enhancer
No Refactorer Anomaly remover

In this way, mutation operators are used as anomaly detectors. A mu-
tation operator m can be de�ned as an anomaly detector w.r.t. a quality q
only if it can produce equivalent mutants having better quality.

3.3. Anomaly detector classi�cation

Given a quality q and a mutation operator m, the process described in
the previous section does not always require to check the quality and/or the
equivalence since some mutation operators always increase a given quality
and/or produce equivalent mutants (or they guarantee to increase the quality
when the mutant is equivalent). As shown in Table 1, we can identify four
kinds of anomaly detectors, according to the fact that equivalence checking
(i.e., step 2 of the process) and/or the quality checking (i.e., step 3) must be
executed or not.

We overview the four kinds of detectors using examples from code muta-
tion, but the classi�cation applies to any mutation of any software artifact.

In the worst case, the mutation operator may both decrease the quality
and produce a non-equivalent mutant, and, therefore, both the equivalence
and the quality must be checked (i.e., both steps 2 and 3 of the process must
be executed). In this case, we call the mutation operator weak detector.

Example 1 (Weak detector). Statement reordering, i.e., swapping the order
of two statements of a program, may produce an equivalent mutant (if the
two statements are independent), and improve qualities readability and ef-
�ciency of compiling [18]. Both qualities can be de�ned in terms of length
of du-paths [19] (i.e., the paths connecting the de�nitions of variables with
their use): the shorter the du-paths are, the higher the quality is. If a
reordering produces an equivalent mutant with better readability (or e�-
ciency), then the original artifact contains a static anomaly (low readabil-
ity). Given the code fragment x = 3; y = 6; z = x*2;, applying state-
ment reordering to the last two statements produces an equivalent mutant
(i.e., x = 3; z = x*2; y = 6;) with a better readability, because the length

6

of the du-path from the de�nition of x (i.e., x = 3;) to its use in z = x*2;

has been reduced from 2 to 1.

Some mutation operators always increase a given quality, but the pro-
duced mutant may be non-equivalent. Some other mutation operators, al-
though they can sometime weaken the quality, they guarantee to increase it
when the mutant is equivalent. Therefore, when using these two kinds of
mutation operators, only the equivalence must be checked (i.e., step 3 is not
executed); in this case, we call the mutation operator quality enhancer.

Example 2 (Quality enhancer). Let us consider the Statement Deletion mu-
tation operator (SDL) [20], which removes a statement in a program, and the
quality compactness, de�ned as 1/(#statements+1). Applying SDL to a program
always increases the program compactnesses. If the removal of a statement
from a program originates an equivalent program, then the original program
contains a static anomaly (a useless statement). However, if the removed
instruction is live code that a�ects the program behavior, the mutant is non-
equivalent.

Other mutation operators, instead, always produce equivalent mutants,
but they may decrease the quality under consideration, and, therefore, only
the quality must be checked (i.e., step 2 is not executed). In this case, we
call the mutation operator refactorer.

Example 3 (Refactorer). In a program, the rename refactoring renames
variables, methods, classes, etc., avoiding name clashes. Such refactoring al-
ways produces equivalent mutants and, with respect to the readability qual-
ity, may both increase and decrease the readability of a program. If the
readability increases, the original program contains a static anomaly (low
readability).

In the best case, the mutation operator always produces an equivalent
mutant with better quality and, therefore, neither the equivalence nor the
quality must be checked (i.e., both steps 2 and 3 are not executed). In this
case, we call the mutation operator anomaly remover.

Example 4 (Anomaly remover). The clean up feature, provided by several
IDEs (e.g., Eclipse), refactors the code to make it compliant with language
standards (e.g., no unused imports, well-formatted code, presence of annota-
tions, ...). It always produces an equivalent mutant with better compliance
to standards.

7

Among the four kinds of anomaly detectors previously described, anomaly
removers are the easiest ones to use, since they neither require quality mea-
surement nor equivalence checking. However, the usage simplicity is usually
paid by a greater complexity of the mutation operators that, somehow, in-
corporate the two checks (they can be seen as refactorers with an implicit
quality checking). Having an operator with these characteristics is di�cult
and, therefore, we will not consider them.

Also refactorers are easy to apply, since they do not require equivalence
checking that it is usually very expensive. However, in the following we
will consider them only for one artifact because (a) the class of anomalies
they can detect is rather limited, and (b) refactoring (or restructuring [21])
techniques have already been widely studied in literature [22, 23].

The aim of the this paper is investigating the use of equivalence checking
for detecting static anomalies. Therefore, we mainly consider weak detectors
and quality enhancers. However, weak detectors are usually poorly de�ned
and expensive to apply (both quality and equivalence must be checked) and,
therefore, we will seldom use them. We will mainly focus on quality en-
hancers that permit us to experiment how equivalent checking techniques
can be reused for detecting static anomalies and, in case of anomaly detec-
tion, automatically improve the quality.

In the following sections, we present di�erent kinds of static anomalies
for di�erent artifacts that are used throughout the software life cycle: fea-
ture models and NuSMV models at speci�cation level, Boolean expressions
and source code at implementation level, and package dependency graphs at
the design or implementation level. We show how static anomalies can be
detected by suitable mutation operators. For each software artifact kind, we
brie�y describe its notation, the mutation operators that have been proposed
in literature for it, and the technique(s) used for checking the equivalence;
then, we present some static anomalies with the anomaly detectors able to
discover them, and �nally we report some experiments we have done. All
the detectors reported in the following sections are quality enhancers, unless
stated otherwise. All the experiments have been executed on a Linux PC
with two Intel(R) Xeon(R) CPU E5-2630 (2.30GHz) and 64 GB of RAM.

4. Feature models

In software product line (SPL) engineering, feature models (FMs) are a
special type of information model representing all possible products of an

8

Root Optional Mandatory Requires Excludes Or Alternative

p

. . .

p

a

p

a

a

b

a

b

p

a1 . . . an

p

a1 . . . an

Figure 1: Feature models standard notation

SPL in terms of features and relations among them [24]. Speci�cally, a basic
feature model is a hierarchically arranged set of features, where each parent-
child relation between them is one of the following types (each having a
graphical notation as shown in Fig. 1):
• Or : At least one of the sub-features must be selected if the parent is
selected.
• Alternative (xor): Exactly one of the sub-features must be selected
whenever the parent feature is selected.
• And : If the relation between a feature and its sub-features is neither
an Or nor an Alternative, it is called And. Each child of an And must
be either:
� Mandatory : Child feature is required, i.e., it is selected when its
respective parent feature is selected.

� Optional : Child feature is optional, i.e., it may or may not be
selected if its parent feature is selected.

In addition to the parental relations, it is possible to add constraints, i.e.,
cross-tree relations that specify incompatibility between features:
• A requires B: The selection of feature A in a product implies the selec-
tion of feature B.
• A excludes B: A and B cannot be part of the same product.

A con�guration of a feature modelM is a subset of the features inM that
must include the root. A con�guration is valid if it respects all the parental
relations and the constraints. A valid con�guration is called a product, since
it represents a possible instance of the feature model.

Feature model semantics can be rather simply expressed by using propo-
sitional logic [24]. Every feature becomes a propositional letter, and every
relation among features becomes a propositional formula modeling the con-
straints about them. Given a feature model M, we denote as bof(M) its
representation as propositional formula.

9

4.1. Mutation operators

Mutation analysis has been applied to feature models in [25, 26]. In [13],
we devised several fault classes and corresponding mutation operators for
feature models. In this paper, those used to discover anomalies are:
MF Missing Feature: A feature f (except the root) is removed and it is

replaced by its sub-features which inherit the same relation the removed
feature f had with its parent. f is replaced by false in any constraint
containing it.

MC Missing Constraint : A constraint is removed.
OTM Optional To Mandatory : An optional relation is changed to manda-

tory.
Similar operators have also been de�ned in [27]. In [28], instead, mutation

is applied to the representation as propositional formula of the feature model.

4.2. Equivalence

Two feature models are equivalent if they describe the same set of prod-
ucts. Some approaches try to avoid to generate equivalent mutants [16, 17],
while others provide some techniques for detecting them. A technique for
equivalent mutants detection that uses an SMT-solver is described in [13];
it consists in representing a feature model M and one of its mutants M′

as propositional formulas bof(M) and bof(M′), and checking their equiv-
alence.

4.3. FMs static anomalies

4.3.1. Dead feature

A feature is dead if it is not present in any product of the FM. As quality,
we adopt liveness, de�ned as (#Fs−#DFs)/#Fs, where #Fs is the number of
features and #DFs the number of dead features. The higher the liveness,
the fewer dead features are contained in the FM. Note that identifying dead
features is important. In case of dead feature, two cases are possible: either
the feature is really useless and therefore it should be removed (so that the
�nal user does not think that it can belong to some products), or it is useful
(i.e., it should be possible to select it) and so the designer �nds a fault in
the model. In the latter case, dead features normally arise when the designer
introduces wrong constraints. We can detect dead features by using mutant
operator MF. Applying MF can diminish the liveness and can produce a
non-equivalent mutant when the removed feature is not dead. However, if

10

(a) Dead feature (b) Redundant constraint (c) False optional

Figure 2: Examples of feature models anomalies (in gray)

the removed feature is dead, then the mutant is equivalent and it has a better
liveness1. In Fig. 2a, feature D is dead because it can never be selected in
any product: removing it from the FM does not modify the set of products,
but increases the liveness from 4/5 to 1.

4.3.2. Redundant constraint

A constraint is redundant when it does not add any further restriction or
information to the FM. Redundant constraints make the FM more di�cult
to understand and introduce useless relations between features which may
complicate the products generation for the model.

As quality, we adopt compactness, de�ned as 1/(#CNFlit+1), being #CNFlit
the number of literals of the CNF conversion of the conjunction of all the
constraints. We can detect redundant constraints using the mutation op-
erator MC; applying MC always increases the quality, but it may produce
non-equivalent mutants: removing one constraint increases the compactness
and if the mutant is equivalent, the removed constraint is redundant. In
Fig. 2b, the requires constraint between D and C is redundant because it is
implied by the requires constraint between B and C, and, therefore, it can
be safely removed: the compactness increases from 1/3 to 1.

4.3.3. False optional

A feature is a false optional if it is marked as optional but it is present
in all the products of the FM (i.e., it behaves like mandatory). Identifying
false optional features and turning them to mandatory make the model more
clear and easier to handle by tools.

1Even if we do not know the initial number of dead features #DFs, we are sure
that removing a dead feature increases the value of liveness from (#Fs−#DFs)/#Fs to
(#Fs′−#DFs′)/#Fs′ where #Fs ′ = #Fs − 1 and #DFs ′ = #DFs − 1.

11

As quality, we adopt solvability, roughly estimated as #MANs/#Fs, where
#MANs is the number of mandatory features. An FM with high solvability
can be easily solved, i.e., a product can be easily found, since the condition to
add a mandatory feature F in a product is simply the presence of F 's parent
in the product. Applying the mutation operator OTM always increases the
solvability, but it may produce non-equivalent mutants. In Fig. 2c, feature
D is a false optional because it is selected in all products; turning D to
mandatory produces an equivalent mutant with better solvability (from 4/5 to
1). Note that removing the anomaly makes the requires constraint between
B and D redundant (see Sect. 4.3.2). Indeed, removing a static anomaly
may expose another static anomaly. In this case, the introduced redundant
constraint can be removed as well, without introducing another anomaly.

4.4. Experiments

As case studies, we have taken 53 SPLOT models2 which are often used
as benchmarks. We have also included 1000 arti�cially generated models
that are available on the FeatureIDE website3; we took 200 models for �ve
di�erent groups characterized by the number of features: 10, 20, 50, 100, 200
features. The entire experiment, over the two sets, took globally around 17
mins, where 99.23% of the time was spent on equivalence checking. Discov-
ering a single anomaly took on average 24 ms. The percentage of time spent
for checking the equivalence varies from 63% (for the set with 10 features) to
99% (for the set with 200 features). Tables 2 shows the experimental results
for the two sets of speci�cations, in terms of number of applied mutations,
number of discovered anomalies, and number of anomalies discovered also by
the validator of FeatureIDE. 14.5% of SPLOT models and 91.5% of arti�cial
ones have at least one anomaly; Fig. 3a shows the distribution of the anoma-
lies for the eight a�ected SPLOT models, and Fig. 3b shows the distribution
of the anomalies for the 5 groups of the arti�cial set. Note that SPLOT
models mainly contain redundant constraints because modelers usually tend
to overspecify their models by adding similar constraints. Arti�cial mod-
els, instead, contain several anomalies of any kind because their automatic
generation does not take into consideration quality measures.

2http://www.splot-research.org/
3http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/

12

http://www.splot-research.org/
http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/

Table 2: Feature models experiments

SPLOT models Arti�cial models

Anomaly # muts # equiv.
(anom.)

found
by F.IDE

muts # equiv.
(anom.)

found
by F.IDE

Dead feature 1632 (MF) 0 0 774400 (MF) 33340 33340
Redundant
constraint

257 (MC) 13 13 77599 (MC) 3067 3067

False optional 359 (OTM) 1 1 157865 (OTM) 6420 6420

(a) SPLOT models (b) Arti�cial models

Figure 3: Feature models anomalies distribution

5. NuSMV

NuSMV [29] is a symbolic model checker that allows the representation
of synchronous and asynchronous �nite state systems, and the veri�cation of
temporal logic formulas. A NuSMV model describes the behavior of a Finite
State Machine (FSM) in terms of a �possible next state� relation between
states that are determined by the values of variables. A variable type can be
Boolean, integer de�ned over intervals or sets, or an enumeration of symbolic
constants. A state of the model is an assignment of values to variables. The
value of state variables can be determined in the ASSIGN portion in the
following way:

ASSIGN var := simple_expression −− simple assignment

ASSIGN init(var) := simple_expression −− init value

ASSIGN next(var) := next_expression −− next value

13

A simple assignment determines the value of variable var in the current state,
the instruction init permits to determine the initial value(s) of the variable,
and the instruction next is used to determine the variable value(s) in the
next state(s). In both simple- and next- expressions, a variable value can be
determined either unconditionally or conditionally, depending on the form
of the expression. One of the most used expressions in NuSMV is the case
expression, de�ned as:

case

left_exp1: right_exp1;
...
left_expn: right_expn;

esac

It returns the value of the �rst right_expi such that the corresponding
left_expi guard evaluates to TRUE, and the previous i − 1 guards evalu-
ate to FALSE.

Computation Tree Logic (CTL) and Linear Temporal Logic (LTL) formu-
las are speci�ed in the LTLSPEC and CTLSPEC sections.

5.1. Mutation operators

Some mutation operators for SMV (the ancestor of NuSMV) models have
been proposed in [30] for test case generation by model checking: some modify
the description of the FSM and others the temporal logic formulas. A wider
set of mutation operators has been de�ned in [3] for NuSMV models: some
operators are the usual ones described in literature (e.g., LOR, SA0), others
are more speci�c operators tailored on NuSMV models (e.g., MB, SB). For
our purposes, we consider MB and add another one (PS):
MB Missing Branch: In a case expression, one of the branches is removed.
PS Polarity substitution: In a temporal property, a subformula is substi-

tuted with its polarity (see Sect. 5.3.2).

5.2. Equivalence

NuSMV models describe Kripke structures and, therefore, equivalence of
NuSMV models can be reduced to equivalence of Kripke structures. Such
approach is followed in [3], where a technique is presented for checking equiv-
alence of two NuSMV models having the same signature (i.e., same variables
de�ned over the same domains). It consists in the veri�cation of a set of
properties over a model obtained from the merging of the two models.

14

MODULE main
VAR

x: boolean;
y: boolean;

ASSIGN

x := case

a: ...;

a & b: ...;

...
esac;

y := case

a: ...;
!a: ...;

TRUE: ...;

esac;

Code 1: Examples of unnecessary branches

MODULE main
VAR

hour: 0..23;
amPm: {AM, PM};

ASSIGN

init(hour) := 0;
next(hour) := (hour + 1) mod 12;
amPm := case

hour < 12: AM;
hour > 11: PM;

esac;

−− The property is vacuous in amPm = PM

CTLSPEC AG(hour > 11 −> amPm = PM)

Code 2: Example of vacuous satisfaction

5.3. Static anomalies

5.3.1. Unnecessary branch

In a case expression, a branch is unnecessary if its guard can never be
evaluated to true or never executed. Let us consider the case expression
de�ning variable x in Code 1. The second guard a & b, when evaluated, is
never true, because a is false (the �rst guard a does not hold). Let us now
consider the case expression de�ning variable y in Code 1. In this case, the
last branch is never executed because either the �rst or the second branch is
taken. Identifying unnecessary branches is important: either they are really
useless and so they should be removed to make the model more readable, or
they should be executed sometimes and so there is a behavioral fault in the
model.

As quality, we consider minimality of branches, de�ned as 1/(#branches+1).
The mutation operator MB always increases the minimality of branches, but
it may produce non-equivalent mutants.

5.3.2. Vacuous satisfaction

A well known problem in formal veri�cation is vacuous satisfaction: A
property is vacuously satis�ed if that property is satis�ed and proved true
regardless of whether the model really ful�lls what the modeler originally had
in mind or not. For example, the LTL property G(x → X(y)) is vacuously

15

satis�ed by any model where x is never true. Vacuous properties can convey
a false con�dence in the model correctness and, therefore, �nding them is
mandatory because they are a sign of a problem either in the model or in the
temporal property.

As quality, we adopt property fullness, de�ned as 1/(#vacProps+1), being
#vacProps the number of vacuous properties of the model.

Several techniques to detect vacuity have been proposed [31, 32]. The
general strategy to detect vacuity consists in replacing parts of the property
and seeing if this has any e�ect on the result of the veri�cation. In order
to detect vacuity, it is su�cient to replace a non-constant subformula φ of
property ϕ with true or false [32], depending on the polarity of φ in ϕ.
The polarity of a subformula φ is positive if it is nested in an even number of
negations in ϕ, otherwise it is negative; pol(φ) is a function such that pol(φ) =
false if φ has positive polarity in ϕ, and pol(φ) = true otherwise4.The
replacement of subformula φ with ψ in formula ϕ is denoted as ϕ[φ← ψ].

In order to discover anomalies of this kind, we introduce the mutation
operator polarity substitution (PS). Given a property ϕ of the model and
any atomic proposition φ in ϕ, PS mutates ϕ into ϕ′ = ϕ[φ ← pol(φ)].
Because PS does not change the part regarding the behavior of the system,
the mutated speci�cation is equivalent to the original one i� ϕ′ is still true.

PS can keep the property fullness of the model unchanged (when a prop-
erty contains multiple vacuous subformulas), but it can never diminish it;
moreover, it can produce non-equivalent mutants when the modi�ed tempo-
ral property is falsi�ed. However, whenever the mutant is equivalent, the
quality increases: therefore, the operator is a quality enhancer.

Let us consider the NuSMV model shown in Code 2. The CTL property
checks that if hour is greater than 11, then the value of variable amPm
is PM . However, the model does not allow hour to be greater than 11;
therefore, the CTL property is true regardless the value of amPm, since the
antecedent of the implication is always false: the CTL property is vacuously
true for amPm = PM . The mutation operator PS applied to the consequent
of the implication produces the speci�cation AG(hour > 11 −> FALSE) that is
still true over the model. The mutant does not contain vacuous properties

4As in [32], we assume that all the occurrences of the subformula φ in ϕ are of a pure

polarity, i.e., they are either all under an even number of negations (positive polarity), or
all under an odd number of negations (negative polarity).

16

Table 3: NuSMV experiments

Anomaly # mutations # equivalents
(anomalies)

specs with
anomaly (%)

Unnecessary branch 12085 (MB) 2646 24.56
Vacuity 1069 (PS) 36 25.81

anymore (constant subformulas are not considered in vacuity evaluation);
property fullness has increased from 1/2 to 1. Note that, in this case, the
problem is in the model, not in the speci�cation.

5.4. Experiments

We have taken 68 NuSMV models from the NuSMV repository5 and com-
puted their anomalies. The experiment for unnecessary branch anomaly took
around 243 mins, where 5% of the time was spent on equivalence checking.
The experiment for vacuity, instead, took around 4 mins, where 87% of the
time was spent on equivalence checking. Note that equivalence checking for
unnecessary branches is quite fast, since it is interrupted as soon as equality
is proved to not hold. In the experiment for vacuity, instead, most of the
time is spent on equivalence checking since the mutation is very fast and
the whole experiment basically consists in verifying the mutated properties.
Table 3 reports the results of the experiments, in terms of number of applied
mutations, number of found anomalies, and percentage of models having at
least an anomaly. Note that 21.9% of the branches is unnecessary. This is
mainly due to the fact that the modeler usually adds, as last branch of a case
expression, a default branch that must be executed if none of the previous
branches has been taken: results show that often this branch can be omitted
since it is never executed. Experiments also show that 3.4% of the speci�ed
formulas are vacuous. This a sign of a serious problem: in case of vacuous
satisfaction, the modeler thinks of having correctly veri�ed the intended re-
quirements but, instead, there is a problem either in the model or in the
temporal speci�cation. The percentage of models with at least an anomaly
of a given type is quite high (24.56% and 25.81% for the two anomaly types);
if we only consider the speci�cations actually containing the construct that

5http://nusmv.fbk.eu/

17

http://nusmv.fbk.eu/

can be a�ected by the anomaly (i.e., branches and temporal properties), the
percentages raise to 29.79% and 27.59%.

6. Boolean expressions

Boolean expressions are those involving Boolean operators like AND, OR,
and NOT (denoted by ∧, ∨, ¬). Improving qualities of Boolean expressions
is important since they frequently occur in software artifacts. They express
complex conditions under which some program code is executed or a speci-
�cation action is performed. They are frequently used to provide semantics
to other formalisms (like feature models, as seen in Sect. 4). Boolean inputs
are explicitly found in models of digital logic circuits: in these cases, the
extraction of Boolean expressions is rather straightforward [33]. More often,
Boolean inputs derive from abstraction techniques that consist in replacing
complex formulas with Boolean predicates. These techniques can be applied
to high level speci�cations or to source code, for instance, in order to obtain
Boolean programs [34].

We here follow the de�nitions and notations used in [35]: the symbols
x1, x2, etc. are referred to as variables, and an occurrence of a variable in a
formula is referred to as a condition. For example, the formula x1 ∧ x2 ∨ x1
contains two variables (x1 and x2) and three conditions (two x1's and one
x2). Often there is a constraint among the variables of a Boolean expression,
i.e., another Boolean expression specifying the allowed logical values.

6.1. Mutation operators

There are 10 classical mutation operators (also known as fault classes)
for Boolean expressions [35]. For our purposes, we only introduce the two
following mutation operators (and we use the same Boolean expression ϕ :
x1 ∨¬x2 to explain them) that are su�cient to detect the kind of anomalies
we consider:
MVF Missing Variable Fault : a condition is omitted in the expression. For

example, x1 is an MVF mutation of ϕ.
SA0/SA1 Stuck-At-0/1 Fault : a subexpression is replaced by false/true

in the expression. For example, x1∨ true is an SA1 mutation of ϕ.
Note that we have slightly modi�ed the classical de�nition of SA0/SA1
that requires that only conditions (and not general subexpressions) are
replaced.

18

6.2. Equivalence

Two Boolean expressions are equivalent if they assume the same truth
values for the same input values. Given a Boolean expression ϕ with the
constraint δ, a mutation ϕ′ is equivalent to ϕ if δ |= ϕ ↔ ϕ′. Checking
equivalence of two Boolean expressions is straightforward by using a SAT (or
an SMT) solver.

6.3. Static anomalies

6.3.1. Redundant condition

Some conditions (i.e., occurrences of a variable) in a Boolean expression
may be completely redundant, with the e�ect of making the expression more
di�cult to read and to solve. Redundant conditions are those that can be
removed without changing the semantics of the expression. As quality, we
consider the simplicity of a Boolean expression, de�ned as 1/(#conditions+1).
Redundant conditions can be discovered and removed by the mutation oper-
ator MVF. Applying MVF always increases the simplicity, but it may produce
non-equivalent mutants.

Let us consider the expression ϕ : x ≤ 10 ∧ x ≤ 5 where x is an integer
variable. ϕ can be abstracted in the Boolean speci�cation a∧b where a stands
for x ≤ 10 and b for x ≤ 5. Between a and b there is the constraint b → a.
If we apply MVF to the condition x ≤ 10 of ϕ, we obtain the equivalent
expression ϕ′ : x ≤ 5 having a better simplicity (from 1/3 to 1/2).

6.3.2. Fixed-value expression

A non-constant (sub)expression supposedly changes its value by changing
the value of the inputs. A �xed-value (but not constant) expression is, on
the contrary, an expression that always takes a �xed value (either true or
false). Identifying a �xed-value expression e is important: if e should really
always keep that value, substituting e with its constant value increases the
readability; instead, if e should be able to change its value, this anomaly is
a sign of a fault in the expression.

As quality, we consider the coverability that measures how it is di�cult to
cover the input space of the expression under test. Coverability can roughly
be de�ned as (#constants+1)/(#conditions+1). Fixed-value expressions can be de-
tected by the mutation operators SA0/SA1. The application of SA0 and SA1
requires to check the equivalence but not the quality, since the coverability
is always increased by SA0/SA1.

19

Table 4: Boolean expressions experiments

Anomaly # mutations # equivalents
(anomalies)

specs with
anomaly (%)

Redundant condition 52579 (MVF) 10432 27.9
Fixed-value expression 217010 (SA0/SA1) 37907 30.2

Let us consider the Java Boolean expression x <= Integer.MAX_VALUE where
x is an Integer variable. Applying SA1 to the whole expression produces an
equivalent mutant with a better coverability (from 1/2 to 2/1).

6.4. Experiments

For experimentation, we use the benchmarks that we build in [36] for test
generation for Boolean expressions. In that work, we selected several spec-
i�cations from di�erent sources: 89332 speci�cations were extracted from
source code of projects hosted on SIR6, 99507 speci�cations were extracted
from circuit models in ISCAS format [33], and 131 speci�cations were derived
from the guards of models of the NuSMV model checker. Each speci�cation
is composed of a Boolean expression and a constraint. We then identi�ed iso-
morphic speci�cations (i.e., speci�cations that can be transformed one in the
other by a simple renaming of the inputs), obtaining 755 single speci�cations.

For each kind of anomaly, we have computed the number of anomalies
of all the considered speci�cations. The experiment for redundant condition
took around 44 mins, where 32% of the time was spent in equivalence check-
ing; the experiment for �xed-value expression took around 63 mins, where
99.9% of the time was spent in equivalence checking. Note that the mutation
operator MVF is computationally expensive and, therefore, it has a signi�-
cant impact in the experiment for redundant condition; mutation operators
SA0 and SA1, instead, are very simple and their execution time is negligi-
ble in the experiment for �xed-value expression. Moreover, there are much
more SA0/SA1 mutations than MVF mutations: this is the reason why the
experiment for �xed-value expressions takes more time. Results are shown
in Table 4. It reports the total number of applied mutations, the total num-
ber of found anomalies, and the percentage of speci�cations with at least an
anomaly. For the redundant condition anomaly, results are related to 754

6Software-artifact Infrastructure Repository http://sir.unl.edu

20

http://sir.unl.edu

speci�cations, because the number of mutations of one speci�cation was too
high and so we were not able to complete the computation of the number of
anomalies. Experiments show that 27.9% of speci�cations contain at least a
redundant condition: this result is mainly due to expressions derived from
HW models that are highly redundant. For the same reason, there are sev-
eral anomalies of type �xed-value expression (30.2% of speci�cations). Note
that anomaly �xed-value expression subsumes anomaly redundant condition,
because if a condition is redundant, it can be substituted with either true
or false; however, some speci�cations have a �xed-value subexpression but
not a redundant condition: these speci�cations are only equivalent to other
speci�cations in which non-atomic subexpressions are substituted with true
or false.

7. Source code

In this section, we consider programs as software artifacts. We report
several static anomalies for source code in C, although we believe that most
of them can occur in the majority of the programming languages.

7.1. Mutation operators

There exist many mutation operators for programs, although only few of
them are su�cient to obtain most of the mutations [1]. For our purposes, we
consider the classical operator ROR and we introduce two more operators:
ROR Relational Operator Replacement : It replaces a relational operator

with a di�erent one.
SDL Statement Deletion operator [20]: It removes an entire statement from

the program.
RNM Rename operator : It renames a variable/method.

7.2. Equivalence

Equivalent mutants for source code leave the program's behavior un-
changed. Detecting if a program and one of its mutant is equivalent is
undecidable [15]. Moreover, the number of equivalent mutants can be high:
empirical results show that from 10% to 45% of program mutants are equiva-
lent and �nding them by hand can be very time consuming [37]. Fortunately,
there has been much research work on the automatic detection of equivalent
mutants, as reviewed in details in [14]. Note that there exist some simple
techniques that, although not complete, can be easily automatized. For in-
stance, the use of compiler optimizations is advocated in [38].

21

int m(int b) {
int a;
a = 2;
a = b;
return a;

}

Code 3: Useless code

#de�ne DEBUG
void main(void) {
#if de�ned DEBUG

printf("Mode=Debug");
#else

printf("Mode=Release");
#endif

}

Code 4: Unreachable code

public int max(int[] val) {
int r = 0;
for(int i = 1; i < val.length; i++)

// use > instead

if (val[i] >= val[r])

r = i;
return val[r];

}

Code 5: Ine�cient code

7.3. Static anomalies

7.3.1. Dead code

One static anomaly that can be easily detected is the dead code. Dead
code is code that either is never executed (unreachable code) or it is exe-
cuted but its e�ects are never used in any other computation (useless code).
Removing dead code improves the quality compactness of the code (without
changing the code behavior): it is more compact, more easily maintainable
and more suitable for mobile applications. The mutation operator SDL can
remove dead code: If the code without a statement is equivalent, then it
contains fewer lines of code and, therefore, is more compact. Note that
SDL may remove side-e�ect free statements, like logging; in this case, the
compactness quality would improve, but other qualities like maintainability
would decrease.

Codes 3 and 4 contain dead code: the �rst assignment in Code 3 has
no visible e�ects, while the code inside the else branch of the conditional
statement of Code 4 is never executed. Applying the SDL mutation operator
to the �rst assignment of Code 3 removes the static anomaly, since it produces
an equivalent mutant which is more compact. Note that code review would
easily �nd both anomalies, but it would require human e�ort.

7.3.2. Poor readability

Another quality aspect is code readability : it measures how much a text
is readable (by a human). The readability of a program is important for its
maintainability, and is thus a key factor in overall software quality. Aggarwal
et al. claim that source code readability and documentation readability are
both critical to the maintainability of a project [39], and some automatic
techniques for its measurement have been proposed [40]. Poor readability

22

anomalies can be discovered and removed by the RNM operator. Note that
RNM is a refactorer, but if it is used in a suitable way (e.g., by using mean-
ingful substituting names), then it becomes an anomaly remover.

7.3.3. Ine�cient code

Sometimes a code does not contain dead code, but nevertheless it can be
modi�ed in order to improve its e�ciency (in terms of average number of
executed statements). For instance, Code 5 could be modi�ed as shown in
the comment and the code would be equally functional but more e�cient. In
this case, the ROR mutation operator would discover this anomaly. However,
ROR is a weak detector since it may produce non-equivalent mutants and
weaken the e�ciency.

7.4. Experiments

We have investigated the use of the proposed technique in order to �nd
dead code in real source code. We have gathered 17 simple C programs
from the literature and from teaching material about dead code (includ-
ing Wikipedia and the examples given in Sect. 7.3) and we have added all
the complex programs presented in [38]. We have implemented a simple
SDL operator which removes one entire statement at the time. To check
the equivalence, we have used the simple TCE technique proposed in [38]
which consists in compiling (with gcc -O3) both the original program and
the mutant and checking the equivalence. In this way, we ultimately use the
optimization techniques of the compiler to �nd dead code, as suggested also
in [41, 42], although we use them in combination with mutation and in order
to �nd anomalies (and not to have a more compact object code).

Table 5 reports the number of mutants we have generated and the num-
ber of anomalies we have found. We have also compared the results with the
static code checker Cppcheck7. As shown by the table, our technique is capa-
ble of �nding anomalies that Cppcheck cannot. For instance, the source code
of Code 4 contains an anomaly that can be discovered only after compiling
the code. This is not the only case: we found that many anomalies can pass
undetected by Cppcheck, which adopts a rather conservative approach since
it openly aims at having zero false positives. On the other hand, Cppcheck
is capable of �nding dead code that is not a single statement. For instance,

7http://cppcheck.sourceforge.net/

23

http://cppcheck.sourceforge.net/

Table 5: Dead code anomalies in the source code. #M: number mutations, #A: number
of discovered anomalies, #C: number of anomalies discovered by Cppcheck

Program #lines #M #A #C Program #lines #M #A #C
es1.c (Code 3) 14 10 1 1 gzip_gzip.c 5393 3004 24 103
es2.c (Code 4) 14 10 1 0 gzip_trees.c 2113 1250 330 53
unreachable.c 16 11 1 1 make_job.c 5622 3191 14 111
wikipedia1.c 10 9 2 1 make_main.c 6136 3582 16 120
wikipedia2.c 12 9 1 0 msmtp_msmtp.c 7190 4461 959 133
git_di�.c 18194 12344 86 429 msmtp_smtp.c 4405 2581 740 69
git_refs.c 15944 10606 81 440 vim_eval.c 23508 16718 26 258
gsl_blas.c 8986 5847 1617 60 vim_spell.c 17658 12410 18 231
gsl_gen.c 9102 5817 1786 70

Total 5702 2082

Cppcheck has found several struct and function declarations that are never
used, while we were able to �nd only useless statements. We plan to extend
our SDL operator in order to �nd more complex anomalies. Our technique
requires much more resources to be performed (the entire benchmark took
56 hours, while around 3 minutes for Cppcheck). Most of time (99.8%) is
spent by the equivalence checking: for the biggest �le, it took 22 hours to
complete the equivalence checking of all the 16718 mutants. However, our
technique is not constrained by the power of the static analysis rules, which
may be di�cult to write, it produces only true positives, and it can be easily
performed. To reduce the required time, we plan to select the compile op-
timizations, to �lter the mutations in order to exclude syntactically wrong
mutants, and optimize the comparison of object �les.

8. Package dependency graph

Package dependency graphs show the dependencies among packages as
induced by their classes and they are commonly used to better understand
and simplify the relationship among the components of a system [43]. Since
they can be derived from requirements models, as UML package diagrams, or
directly from source code using some static analysis tools, they can be used
to detect related anomalies both at design and implementation level. In this
work, we derive the package dependency graphs from the implementations.
A package dependency graph represents all the packages of a program as
vertexes, and dependencies among packages as arcs: a package pkg1 depends
on a package pkg2 if a class of pkg1 depends on a class of pkg2.

24

8.1. Mutation operators

As mutation operators for package dependency graphs we consider:
MC Move Class : A class is moved from its package to another package.
A2C Abstract To Concrete: An abstract class is transformed to concrete.

8.2. Equivalence

We assume that both mutation operators are always applicable and they
produce equivalent artifacts. This is generally the case because a class can
be moved from a package to another one (with the necessary changes in visi-
bility) and an abstract class can be converted to a concrete one (with empty
implementation if needed). If desired, the user can introduce constraints on
the operator applicability.

8.3. Static anomalies

8.3.1. Low modularity

Design guidelines require that cyclic dependencies among packages should
be avoided [44]. If two packages depend on each other, they constitute a
unique entity that must be designed and maintained all together. This entity
constitutes a module and it can be de�ned as the maximum set of packages
depending (directly or indirectly) on each other. A module is identi�ed in a
dependency graph by a strongly connected component (SCC). The system is
ideally modularized when each package is one SCC. As quality attribute we
consider modularity, de�ned as #SCCs/#packages . A modularity equals to
one represents the ideal situation, a modularity lower than one means that
two or more packages belong to the same SCC. A low modularity implies a
greater e�ort in designing, implementing, testing, and maintaining the sys-
tem. By increasing the modularity, we can reduce the e�ort of the designer,
the developer, and the tester [45].

Low modularity can be detected by using MC: if by moving a class we
can increase the modularity of the system, we have found (and removed) an
anomaly. Fig. 4a shows a package dependency graph with a cycle between
packages a and b. Moving class B of package b to package a (as shown in
Fig. 4b) removes the cycle and increases the modularity from 1/2 to 2/2.

8.3.2. Deviation from main sequence

Besides modularity, several metrics have been proposed for measuring the
quality of the division in packages. The abstractness of a package pkg is given
by the ratio of the number of its abstract classes to the number of its total

25

(a) Package graph with cycle (b) Cycle removal

Figure 4: Example of package dependency graph anomalies

classes. The a�erent couplings (Ca) is the number of other packages that
depend upon (classes of) pkg. The e�erent couplings (Ce) is the number
of other packages that (the classes of) pkg depends upon. Ca and Ce are
combined in the instability (I) metric, de�ned as I = Ce/(Ce+Ca): it measures
the resilience of a package to changes, where 0 indicates a totally stable
package, whereas 1 indicates a totally unstable one.

Previous measures do not provide any quality assessment, but their com-
bination does. The distance from the main sequence has been de�ned as
D = |A+ I − 1|, where the ideal main sequence is de�ned as A+ I = 1 [44].
The less a package deviates from the main sequence, the better it is. The
idea is that completely abstract packages should also be completely stable,
i.e., if all the classes are abstract, they should not depend on classes in other
packages. On the opposite side, totally concrete packages could be com-
pletely unstable, i.e., if all the classes are concrete, no class in other packages
should depend on them. Also the packages staying on the main sequence are
considered good: they have the right number of concrete and abstract classes
in proportion to their e�erent and a�erent dependencies.

As quality measure, we adopt average closeness to the main sequence
(AvgClMS), de�ned as 1 −

∑n
i=1 Di/n, being Di the distance from the main

sequence of package pkgi. Quality AvgClMS must be taken with a certain
level of tolerance: a very small augment of AvgClMS does not really imply
the presence of an actual anomaly. Therefore, in Def. 1 we consider that
there is an improvement of the quality only if the di�erence between the
qualities of the original graph A and the mutated graph A′ is higher than a
given threshold T , i.e., q(A′) > q(A) + T . As value for T , we suggest 0.01.

An anomaly of deviation from the main sequence can be detected by using
A2C, since it can decrease the abstractness of a package and, therefore, reduce
the distance when (A + I) > 1. Also MC can detect an anomaly, since it
can increase (resp. decrease) I (by a�ecting the values of Ca and Ce) and,

26

Table 6: Package dependency graphs experiments

Low modularity Deviation from the main sequence
Program # muts

(MC)
anoms # JDepend # muts

(MC/A2C)
anoms # JDepend

antlr-4.5.1 31896 0 29 31935 582 28
argouml 121121 520 53 121218 259 95
choco-3.3.1-j7 85244 1108 96 85294 1832 86
jedit-5.3.1 45115 85 29 45164 3832 28

therefore, reduce the distance when (A+I) < 1 (resp. (A+I) > 1). However,
when moving a class, although we may reduce the deviation of a package, we
may also increase the deviation of another one, and so it is not guaranteed
that AvgClMS increases.

8.4. Experiments

For experimentation, we took the four projects considered in [46] (namely,
ANTLR, ArgoUML, Chocho solver, and jEdit) and we analyzed their package
dependency graphs in order to detect the two considered anomalies. Since all
our mutation operators are refactorings, we only had to measure the quality.
The experiment for low modularity took 382 secs, and that for deviation
from the main sequence took 946 secs. Table 6 reports the results. It also
reports the number of anomalies detected by the analysis tool JDepend.
Regarding low modularity, JDepend �nds some cycles in all the projects,
whereas we do not �nd cycles in antlr: however, JDepend can report some
false positives. For the other three projects, we report more anomalies since
we can remove a cycle with multiple mutations. For deviation from the main
sequence, JDepend can compute the distance for each package: using the tool,
we assume that there is an anomaly if the distance is greater than 0.1. For
each project, we report the number of packages for which there is an anomaly.
Again, we cannot really compare the results of our approach with JDepend
results, since we compute the average of the distances over the packages and
we state that there is an anomaly if the graph can be improved by mutation
(that it is not possible on JDepend that only reasons on the original graph):
however, we can observe that we are able to identify anomalies of deviation
from the main sequence as JDepend.

27

9. Threats to validity

Our approach is subject to some threats to validity.
First, removing a static anomaly is not always the right choice, since its

real cause may be a di�erent anomaly. For instance, a feature in an FM is
dead (see Sect. 4.3.1) because the model is over-constrained: removing the
feature may be not the right solution. In this case, the mutation operator
should be used only as detector but not as remover.

Removing a static anomaly can introduce another static anomaly, as seen
in Sect. 4.3.3 for false optionals; in that case, the introduced anomaly can
be removed without reintroducing the original anomaly, but there may exist
two seesawing anomalies: removing one causes the appearance of the other.

Sometimes two qualities may be in con�ict: removing an anomaly can
increase a quality and decrease another. For instance, consider readability
and compactness: the code x = y++; is more compact than x = y; y ++;

but less readable. In this case, the user should choose which quality is more
important and use that to guide the detection and removal of anomalies.

Equivalence checking may be hard to execute and it may be not au-
tomatable. For instance, checking equivalence of source code is in general an
undecidable problem (but also checking for an anomaly can be undecidable)
and, because it is di�cult to automate, a time-consuming activity [47]. How-
ever, in particular cases, incomplete techniques can be devised (see Sect. 7.2):
they do not guarantee to prove equivalence, but they can be used in practice.
They can be exploited to �nd anomalies without false positives. Moreover,
for some formal notations (like feature models and NuSMV models), equiv-
alence checking is feasible by using tools like SAT/SMT solvers or model
checkers.

Finally, quality may be not formally de�ned and its measurement may
require some human intervention. For instance, readability in general can
be judged only by human experts, although some proposals exist to autom-
atize its measurement [40]. In these cases, the use of quality enhancers and
anomaly removers is preferable since they do not require quality checking.
For instance, clean up operators are widely used to increase readability.

We cannot exclude that some static anomalies de�ned in the literature
may be not detectable by the proposed technique. However, the examples
presented in this work report many types of anomalies/qualities and a wide
variety of artifacts used in several phases of the software life cycle and, there-
fore, they give us con�dence that Thesis 1 holds in practice.

28

10. Related work

Related work regarding mutation operators and equivalence checking for
the considered software artifacts has been presented in the previous sections.
We here review works presenting approaches for detecting static anomalies.

Feature model anomalies are considered also in [48], where the three kinds
of anomalies we consider (i.e., dead feature, redundant constraint, and false
optional) are described as refactorings. The approach is similar to ours since
it is based on mutation (in [48], a mutant is called edit), but their algorithm
is more complicated since they are not only interested in checking if the orig-
inal model and the mutated one are equivalent (i.e., the mutated model is a
refactoring), but they also want to discover if the mutated one is a general-
ization (i.e., it describes a proper superset of products), a specialization (i.e.,
it describes a proper subset of products), or an arbitrary edit (i.e., there is
no proper inclusion in the described products) of the original one.

An approach for detecting static anomalies of NuSMV models has been
proposed in [49]. The desired qualities are de�ned as meta-properties and
they are expressed as temporal properties: the violation of a meta-property
is the signal of the presence of a static anomaly.

For di�erent programming languages, several tools automatically look for
common errors as, for example, FindBugs, PMD and Checkstyle for Java,
or Splint for C8. These tools look for erroneous code but also for stylistic
conventions violations that may indicate a possible problem. For example,
the pattern Unwritten �eld of FindBugs signals if a �eld has never been
written and always returns its default value: the violation of this pattern
could show that the �eld is not necessary or that it must be updated some-
where. Note that the use of mutation to improve the quality of programs
is also proposed in [50, 51], with similar goal of removing anomalies related
to e�ciency. In [50], the authors aim at improving the e�ciency to solve a
given class of problems, and in [51] the authors show how to tune program
parameters in order to reduce runtime costs.

Regarding software architectures and program refactoring, the classical
technique for detecting anomalies is to use static analysis and some heuristics
(like estimation of cycle undesirability in [46]). There exist several attempts
to automatically improve the source code structure by using mutation. How-

8http://findbugs.sourceforge.net/, http://pmd.sourceforge.net/, http://ch
eckstyle.sourceforge.net/, http://www.splint.org/

29

http://findbugs.sourceforge.net/
http://pmd.sourceforge.net/
http://checkstyle.sourceforge.net/
http://checkstyle.sourceforge.net/
http://www.splint.org/

ever, some recent studies show that using �tness functions for code refactoring
can be ine�ective [52].

We had previous experience in detecting static anomalies also for soft-
ware artifacts not presented here. A technique for detecting static anomalies
for combinatorial models has been presented in [53]: it proposes di�erent
techniques for detecting redundant constraints, useless values, and useless
parameters, but they are not expressed in terms of mutations of the model.

11. Conclusions

Equivalent mutants are usually seen as a drawback in mutation analysis
and so techniques have been studied in the past for discovering them in di�er-
ent software artifacts. In this paper, we claim that equivalent mutants can be
seen as an opportunity and techniques for equivalence checking can be useful
for detecting static anomalies, i.e., de�ciencies of a given quality (as com-
pactness, readability, ...): if an equivalent mutant with a better quality can
be found for a given artifact, this means that the artifact contained a static
anomaly. We have proposed a technique that combines mutation, equiva-
lence checking, and quality checking for detecting static anomalies. We have
shown that the technique can be simpli�ed (avoiding either the equivalence
or the quality checking, or both) for some particular qualities and mutation
operators. We have demonstrated that our proposal is applicable to di�er-
ent kinds of software artifacts, as feature models, NuSMV models, Boolean
expressions, source code, and package dependency graphs. Although each
software artifact has its own speci�c static anomalies, we may identify some
commonalities among the anomalies of di�erent artifacts. Several anomalies
are related to a lack of minimality in the artifact (i.e., the presence of ele-
ments that can be removed without changing the meaning of the artifact), as
redundant constraint in feature models and redundant condition in Boolean
expressions; in both cases, the artifact without the anomaly is more compact.
Other anomalies, instead, identify unnecessary elements (i.e., never used el-
ements), as dead feature in feature models, unnecessary branch in NuSMV,
and dead code in source code; in all the three cases, the anomalies can re-
ally indicate an element that can be removed or they can reveal a problem
in the artifact. A third class of anomalies is related to a lack of clarity in
the artifact, as false optional in feature models, �xed-value expression in
Boolean expressions, and low modularity for package dependency graphs; in

30

all the three cases, the artifact without the anomaly is more clear to read
and understand.

Experiments show that, in most cases, the proposed approach is able to
capture the same anomalies detected by other techniques. We claim that,
although our method cannot be competitive in terms of time with these
techniques because equivalence checking is still a computationally expen-
sive task, our approach constitutes a conceptual framework for any type of
static anomaly detection methodology. The aim of our work is to rehabili-
tate the reputation of equivalent mutants and propose to consider them in
future static analysis tools, in particular for those software artifacts for which
equivalence checking is not so expensive.

As future work, we plan to de�ne anomaly detectors using those muta-
tion operators that are known to produce a lot of equivalent mutants [6].
We also plan to study new operators producing a great deal of equivalent
mutants. This could open a new research direction in mutation analysis,
complementary to the current approaches focused on mutation testing, in
which equivalent mutants and operators generating them are welcome.

Acknowledgements

The work was partially supported by Charles University research funds
PRVOUK.

References

[1] Y. Jia, M. Harman, An analysis and survey of the development of muta-
tion testing, IEEE Transactions on Software Engineering 37 (5) (2011)
649�678. doi:10.1109/TSE.2010.62.

[2] S. D. R. S. De Souza, J. C. Maldonado, S. C. P. F. Fabbri, W. L.
De Souza, Mutation Testing Applied to Estelle Speci�cations, Software
Quality Control 8 (1999) 285�301. doi:10.1023/A:1008978021407.

[3] P. Arcaini, A. Gargantini, E. Riccobene, Using mutation to assess fault
detection capability of model review, Software Testing, Veri�cation and
Reliability 25 (5-7) (2015) 629�652. doi:10.1002/stvr.1530.

[4] T.-C. Lee, P.-A. Hsiung, Mutation Coverage Estimation for Model
Checking, in: F. Wang (Ed.), Automated Technology for Veri�cation

31

http://dx.doi.org/10.1109/TSE.2010.62
http://dx.doi.org/10.1023/A:1008978021407
http://dx.doi.org/10.1002/stvr.1530

and Analysis, Vol. 3299 of Lecture Notes in Computer Science, Springer
Berlin / Heidelberg, 2004, pp. 354�368.

[5] A. J. O�utt, R. H. Untch, Mutation 2000: Uniting the orthogonal,
in: W. Wong (Ed.), Mutation Testing for the New Century, Vol. 24
of The Springer International Series on Advances in Database Systems,
Springer US, 2001, pp. 34�44. doi:10.1007/978-1-4757-5939-6_7.

[6] X. Yao, M. Harman, Y. Jia, A study of equivalent and stubborn mu-
tation operators using human analysis of equivalence, in: Proceed-
ings of the 36th International Conference on Software Engineering,
ICSE 2014, ACM, New York, NY, USA, 2014, pp. 919�930. doi:

10.1145/2568225.2568265.

[7] E. S. Mresa, L. Bottaci, E�ciency of mutation operators and selec-
tive mutation strategies: an empirical study, Software Testing, Veri�ca-
tion and Reliability 9 (4) (1999) 205�232. doi:10.1002/(SICI)1099-

1689(199912)9:4<205::AID-STVR186>3.0.CO;2-X.

[8] M. Harman, R. Hierons, S. Danicic, The relationship between program
dependence and mutation analysis, in: W. Wong (Ed.), Mutation Test-
ing for the New Century, Vol. 24 of The Springer International Se-
ries on Advances in Database Systems, Springer US, 2001, pp. 5�13.
doi:10.1007/978-1-4757-5939-6_4.

[9] P. Arcaini, A. Gargantini, E. Riccobene, P. Vavassori, Rehabilitating
equivalent mutants as static anomaly detectors in software artifacts,
in: Software Testing, Veri�cation and Validation Workshops (ICSTW),
2015 IEEE Eighth International Conference on, 2015, pp. 1�6. doi:

10.1109/ICSTW.2015.7107452.

[10] IEEE standard classi�cation for software anomalies (1044-2009) (1995).

[11] S. C. P. F. Fabbri, M. E. Delamaro, J. C. Maldonado, P. C. Masiero,
Mutation analysis testing for �nite state machines, in: Software Relia-
bility Engineering, 1994. Proceedings., 5th International Symposium on,
1994, pp. 220 �229. doi:10.1109/ISSRE.1994.341378.

[12] L. Liu, H. Miao, Mutation operators for Object-Z speci�cation, in: Pro-
ceedings 10th IEEE Int. Conf. Engineering of Complex Computer Sys-
tems ICECCS 2005, 2005, pp. 498�506. doi:10.1109/ICECCS.2005.65.

32

http://dx.doi.org/10.1007/978-1-4757-5939-6_7
http://dx.doi.org/10.1145/2568225.2568265
http://dx.doi.org/10.1145/2568225.2568265
http://dx.doi.org/10.1002/(SICI)1099-1689(199912)9:4<205::AID-STVR186>3.0.CO;2-X
http://dx.doi.org/10.1002/(SICI)1099-1689(199912)9:4<205::AID-STVR186>3.0.CO;2-X
http://dx.doi.org/10.1007/978-1-4757-5939-6_4
http://dx.doi.org/10.1109/ICSTW.2015.7107452
http://dx.doi.org/10.1109/ICSTW.2015.7107452
http://dx.doi.org/10.1109/ISSRE.1994.341378
http://dx.doi.org/10.1109/ICECCS.2005.65

[13] P. Arcaini, A. Gargantini, P. Vavassori, Generating tests for detecting
faults in feature models, in: Software Testing, Veri�cation and Valida-
tion (ICST), 2015 IEEE 8th International Conference on, IEEE, 2015,
pp. 1�10. doi:10.1109/ICST.2015.7102591.

[14] L. Madeyski, W. Orzeszyna, R. Torkar, M. Jozala, Overcoming the
equivalent mutant problem: A systematic literature review and a com-
parative experiment of second order mutation, IEEE Trans. Softw. Eng.
40 (1) (2014) 23�42. doi:10.1109/TSE.2013.44.

[15] T. A. Budd, D. Angluin, Two notions of correctness and their relation
to testing, Acta Informatica 18 (1) (1982) 31�45.

[16] J. M. Ferreira, S. R. Vergilio, M. A. Quináia, A mutation approach to
feature testing of software product lines, in: The 25th International Con-
ference on Software Engineering and Knowledge Engineering, Boston,
MA, USA, June 27-29, 2013., Knowledge Systems Institute Graduate
School, 2013, pp. 232�237.

[17] R. Â. Matnei Filho, S. R. Vergilio, A mutation and multi-objective test
data generation approach for feature testing of software product lines,
in: XXIX Simpósio Brasileiro de Engenharia de Software (SBES 2015),
2015.

[18] Y. N. Srikant, P. Shankar, The Compiler Design Handbook: Optimiza-
tions and Machine Code Generation, Second Edition, 2nd Edition, CRC
Press, Inc., Boca Raton, FL, USA, 2007.

[19] P. Ammann, J. O�utt, Introduction to Software Testing, 1st Edition,
Cambridge University Press, New York, NY, USA, 2008.

[20] L. Deng, J. O�utt, N. Li, Empirical evaluation of the statement deletion
mutation operator, in: Software Testing, Veri�cation and Validation
(ICST), 2013 IEEE Sixth International Conference on, IEEE, 2013, pp.
84�93.

[21] W. G. Griswold, D. Notkin, Automated assistance for program re-
structuring, ACM Trans. Softw. Eng. Methodol. 2 (3) (1993) 228�269.
doi:10.1145/152388.152389.

33

http://dx.doi.org/10.1109/ICST.2015.7102591
http://dx.doi.org/10.1109/TSE.2013.44
http://dx.doi.org/10.1145/152388.152389

[22] T. Mens, T. Tourwe, A survey of software refactoring, Software Engi-
neering, IEEE Transactions on 30 (2) (2004) 126�139. doi:10.1109/

TSE.2004.1265817.

[23] M. Fowler, Refactoring: Improving the Design of Existing Code,
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[24] D. Batory, Feature models, grammars, and propositional formulas, in:
H. Obbink, K. Pohl (Eds.), Proceedings of the 9th International Confer-
ence on Software Product Lines, Vol. 3714 of Lecture Notes in Computer
Science, Springer-Verlag, 2005, pp. 7�20. doi:10.1007/11554844_3.

[25] C. Henard, M. Papadakis, G. Perrouin, J. Klein, Y. L. Traon, Assess-
ing software product line testing via model-based mutation: An appli-
cation to similarity testing, in: Proceedings of the 2013 IEEE Sixth
International Conference on Software Testing, Veri�cation and Valida-
tion Workshops, ICSTW '13, IEEE Computer Society, Washington, DC,
USA, 2013, pp. 188�197. doi:10.1109/ICSTW.2013.30.

[26] C. Henard, M. Papadakis, G. Perrouin, J. Klein, Y. Le Traon, Towards
automated testing and �xing of re-engineered feature models, in: Proc.
of the 2013 Int. Conf. on Software Engineering, ICSE '13, IEEE Press,
Piscataway, NJ, USA, 2013, pp. 1245�1248.

[27] D. Reuling, J. Bürdek, S. Rotärmel, M. Lochau, U. Kelter, Fault-
based product-line testing: E�ective sample generation based on feature-
diagram mutation, in: Proceedings of the 19th International Conference
on Software Product Line, SPLC '15, ACM, New York, NY, USA, 2015,
pp. 131�140. doi:10.1145/2791060.2791074.

[28] C. Henard, M. Papadakis, Y. Le Traon, Mutation-based generation
of software product line test con�gurations, in: C. Le Goues, S. Yoo
(Eds.), Search-Based Software Engineering, Vol. 8636 of Lecture Notes
in Computer Science, Springer International Publishing, 2014, pp. 92�
106. doi:10.1007/978-3-319-09940-8_7.

[29] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, A. Tacchella, NuSMV Version 2: An Open-
Source Tool for Symbolic Model Checking, in: Proceedings of the 14th
International Conference on Computer Aided Veri�cation, Vol. 2404 of

34

http://dx.doi.org/10.1109/TSE.2004.1265817
http://dx.doi.org/10.1109/TSE.2004.1265817
http://dx.doi.org/10.1007/11554844_3
http://dx.doi.org/10.1109/ICSTW.2013.30
http://dx.doi.org/10.1145/2791060.2791074
http://dx.doi.org/10.1007/978-3-319-09940-8_7

Lecture Notes in Computer Science, Springer-Verlag, London, UK, 2002,
pp. 359�364.

[30] P. E. Ammann, P. E. Black, W. Majurski, Using model checking to
generate tests from speci�cations, in: Proceedings of the Second IEEE
International Conference on Formal Engineering Methods, ICFEM '98,
IEEE Computer Society, Washington, DC, USA, 1998, pp. 46�.

[31] I. Beer, S. Ben-David, C. Eisner, Y. Rodeh, E�cient detection of vacuity
in ACTL formulas, in: Proc. 9th International Computer Aided Veri�-
cation Conference, no. 1254 in Lecture Notes in Computer Science, 1997,
pp. 279�290.

[32] O. Kupferman, M. Y. Vardi, Vacuity detection in temporal model check-
ing, International Journal on Software Tools for Technology Transfer
(STTT) 4 (2) (2003) 224�233.

[33] M. C. Hansen, H. Yalcin, J. P. Hayes, Unveiling the ISCAS-85 bench-
marks: a case study in reverse engineering, Design Test of Computers,
IEEE 16 (3) (1999) 72�80. doi:10.1109/54.785838.

[34] T. Ball, R. Majumdar, T. Millstein, S. K. Rajamani, Automatic pred-
icate abstraction of C programs, in: Proceedings of the ACM SIG-
PLAN 2001 Conference on Programming Language Design and Imple-
mentation, PLDI '01, ACM, New York, NY, USA, 2001, pp. 203�213.
doi:10.1145/378795.378846.

[35] K. Kapoor, J. P. Bowen, Test conditions for fault classes in Boolean spec-
i�cations, ACM Transactions on Software Engineering and Methodology
16 (3) (2007) 10. doi:10.1145/1243987.1243988.

[36] P. Arcaini, A. Gargantini, E. Riccobene, How to optimize the use of SAT
and SMT solvers for test generation of Boolean expressions, The Com-
puter Journal 58 (11) (2015) 2900�2920. doi:10.1093/comjnl/bxv001.

[37] D. Schuler, A. Zeller, Covering and uncovering equivalent mutants, Soft-
ware Testing, Veri�cation and Reliability 23 (5) (2013) 353�374.

[38] M. Papadakis, Y. Jia, M. Harman, Y. Le Traon, Trivial compiler equiv-
alence: A large scale empirical study of a simple, fast and e�ective

35

http://dx.doi.org/10.1109/54.785838
http://dx.doi.org/10.1145/378795.378846
http://dx.doi.org/10.1145/1243987.1243988
http://dx.doi.org/10.1093/comjnl/bxv001

equivalent mutant detection technique, in: Proceedings of the 37th In-
ternational Conference on Software Engineering - Volume 1, ICSE '15,
IEEE Press, Piscataway, NJ, USA, 2015, pp. 936�946.

[39] K. Aggarwal, Y. Singh, J. Chhabra, An integrated measure of soft-
ware maintainability, in: Reliability and Maintainability Symposium,
2002. Proceedings. Annual, 2002, pp. 235�241. doi:10.1109/RAMS.

2002.981648.

[40] R. P. Buse, W. R. Weimer, Learning a metric for code readability,
Software Engineering, IEEE Transactions on 36 (4) (2010) 546�558.
doi:10.1109/TSE.2009.70.

[41] S. K. Debray, W. Evans, R. Muth, B. De Sutter, Compiler techniques
for code compaction, ACM Trans. Program. Lang. Syst. 22 (2) (2000)
378�415. doi:10.1145/349214.349233.

[42] R. Bodík, R. Gupta, Partial dead code elimination using slicing trans-
formations, in: Proceedings of the ACM SIGPLAN 1997 Conference on
Programming Language Design and Implementation, PLDI '97, ACM,
New York, NY, USA, 1997, pp. 159�170. doi:10.1145/258915.258930.

[43] M. Consens, A. Mendelzon, A. Ryman, Visualizing and querying soft-
ware structures, in: Proceedings of the 1991 Conference of the Centre
for Advanced Studies on Collaborative Research, CASCON '91, IBM
Press, 1991, pp. 17�35.

[44] R. C. Martin, Agile Software Development: Principles, Patterns, and
Practices, Prentice Hall PTR, Upper Saddle River, NJ, USA, 2003.

[45] K. J. Sullivan, W. G. Griswold, Y. Cai, B. Hallen, The structure and
value of modularity in software design, in: Proceedings of the 8th Eu-
ropean Software Engineering Conference Held Jointly with 9th ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering, ESEC/FSE-9, ACM, New York, NY, USA, 2001, pp. 99�108.
doi:10.1145/503209.503224.

[46] J. Laval, J. Falleri, P. Vismara, S. Ducasse, E�cient retrieval and rank-
ing of undesired package cycles in large software systems, Journal of Ob-
ject Technology 11 (1) (2012) 1�24. doi:10.5381/jot.2012.11.1.a4.

36

http://dx.doi.org/10.1109/RAMS.2002.981648
http://dx.doi.org/10.1109/RAMS.2002.981648
http://dx.doi.org/10.1109/TSE.2009.70
http://dx.doi.org/10.1145/349214.349233
http://dx.doi.org/10.1145/258915.258930
http://dx.doi.org/10.1145/503209.503224
http://dx.doi.org/10.5381/jot.2012.11.1.a4

[47] B. J. Grun, D. Schuler, A. Zeller, The impact of equivalent mutants, in:
The 4th International Workshop on Mutation Analysis (Mutation 2009)
- ICST, IEEE, 2009, pp. 192�199.

[48] T. Thum, D. Batory, C. Kastner, Reasoning about edits to feature mod-
els, in: Proceedings of the 31st International Conference on Software En-
gineering, ICSE '09, IEEE Computer Society, Washington, DC, USA,
2009, pp. 254�264. doi:10.1109/ICSE.2009.5070526.

[49] P. Arcaini, A. Gargantini, E. Riccobene, A model advisor for NuSMV
speci�cations, Innovations in Systems and Software Engineering 7 (2)
(2011) 97�107. doi:10.1007/s11334-011-0147-2.

[50] J. Petke, M. Harman, W. Langdon, W. Weimer, Using genetic improve-
ment and code transplants to specialise a C++ program to a prob-
lem class, in: M. Nicolau, K. Krawiec, M. I. Heywood, M. Castelli,
P. García-Sánchez, J. J. Merelo, V. M. Rivas Santos, K. Sim (Eds.),
Genetic Programming, Vol. 8599 of Lecture Notes in Computer Science,
Springer Berlin Heidelberg, 2014, pp. 137�149. doi:10.1007/978-3-

662-44303-3_12.

[51] F. Wu, W. Weimer, M. Harman, Y. Jia, J. Krinke, Deep parameter
optimisation, in: Proceedings of the 2015 on Genetic and Evolutionary
Computation Conference, GECCO '15, ACM, New York, NY, USA,
2015, pp. 1375�1382. doi:10.1145/2739480.2754648.

[52] C. Simons, J. Singer, D. R. White, Search-based refactoring: Metrics are
not enough, in: M. de Oliveira Barros, Y. Labiche (Eds.), Search-Based
Software Engineering, Vol. 9275 of Lecture Notes in Computer Science,
Springer International Publishing, 2015, pp. 47�61. doi:10.1007/978-
3-319-22183-0_4.

[53] P. Arcaini, A. Gargantini, P. Vavassori, Validation of models and tests
for constrained combinatorial interaction testing, in: The 3rd Interna-
tional Workshop on Combinatorial Testing (IWCT 2014) - ICST, 2014,
pp. 98�107. doi:10.1109/ICSTW.2014.5.

37

http://dx.doi.org/10.1109/ICSE.2009.5070526
http://dx.doi.org/10.1007/s11334-011-0147-2
http://dx.doi.org/10.1007/978-3-662-44303-3_12
http://dx.doi.org/10.1007/978-3-662-44303-3_12
http://dx.doi.org/10.1145/2739480.2754648
http://dx.doi.org/10.1007/978-3-319-22183-0_4
http://dx.doi.org/10.1007/978-3-319-22183-0_4
http://dx.doi.org/10.1109/ICSTW.2014.5

	Introduction
	Background
	Software anomalies
	Mutation
	Equivalent mutants

	Using mutation to detect static anomalies
	Static anomalies
	Detecting static anomalies
	Anomaly detector classification

	Feature models
	Mutation operators
	Equivalence
	FMs static anomalies
	Dead feature
	Redundant constraint
	False optional

	Experiments

	NuSMV
	Mutation operators
	Equivalence
	Static anomalies
	Unnecessary branch
	Vacuous satisfaction

	Experiments

	Boolean expressions
	Mutation operators
	Equivalence
	Static anomalies
	Redundant condition
	Fixed-value expression

	Experiments

	Source code
	Mutation operators
	Equivalence
	Static anomalies
	Dead code
	Poor readability
	Inefficient code

	Experiments

	Package dependency graph
	Mutation operators
	Equivalence
	Static anomalies
	Low modularity
	Deviation from main sequence

	Experiments

	Threats to validity
	Related work
	Conclusions

