

Analyzing the concept of technical debt in the context of agile software

development: A systematic literature review

Woubshet Nema Behutiye a, Pilar Rodriguez a, Markku Oivo a, Ayşe Tosun b

"a University of Oulu, Oulu, Finland"

"b Faculty of Computer Engineering and Informatics, Istanbul Technical University, Turkey"

Keywords:

Technical debt

Agile software development

Technical debt management

Systematic literature review

A B S T R A C T

Context: Technical debt (TD) is a metaphor that is used to communicate the consequences of poor

software development practices to non-technical stakeholders. In recent years, it has gained significant

attention in agile software development (ASD). Objective: The purpose of this study is to analyze and
synthesize the state of the art of TD, and its causes, consequences, and management strategies in the

context of ASD. Research Method: Using a systematic literature review (SLR), 38 primary studies, out

of 346 studies, were identified and analyzed. Results: We found five research areas of interest related to

the literature of TD in ASD. Among those areas, “managing TD in ASD” received the highest attention,

followed by “architecture in ASD and its relationship with TD”. In addition, eight categories regarding the

causes and five categories regarding the consequences of incurring TD in ASD were identified. “Focus on

quick delivery” and “architectural and design issues” were the most popular causes of incurring TD in
ASD. “Reduced productivity”, “system degradation” and “increased maintenance cost” were identified as

significant consequences of incurring TD in ASD. Additionally, we found 12 strategies for managing TD

in the context of ASD, out of which “refactoring” and “enhancing the visibility of TD” were the most

significant. Conclusion: The results of this study provide a structured synthesis of TD and its management

in the context of ASD as well as potential research areas for further investigation.

1. Introduction

The technical debt (TD) concept was first introduced by Ward

Cunningham in 1992 [1] as a means to communicate the challenges

arising from the consequences of poorly developed software to non-

technical stakeholders. Since then, it has evolved to embrace different

aspects of software development that range from architectural and design

problems to documentation, people, and deployment issues [2].

Recently, TD has become a popular concept in agile software

development (ASD) ([P36], [P21], [3], and [P34]) owing to its economic

implications and the specific characteristics of ASD that make it prone to

incurring TD. In ASD, the emphasis on delivering functionality quickly

often lessens the focus on aspects such as design, good programming

practices, or test coverage with consequences leading to the rise of TD,

which then needs to be addressed in later phases of the development

process [P22]. For example, deviations in code and design made in favor

of immediate delivery may incur TD in the long run ([P27], [P4], and

[P1]). As a result, companies that apply ASD may face increased release

durations, growing costs, and a failure to maintain quality. Moreover, in

some cases, the economic implications can go as far as a market loss due

to hampering relationships with business stakeholders [P20]. However,

when properly managed and controlled, TD can be utilized as an agile

strategy to gain business opportunities and be paid back later ([P5] and

[P21]). Hence, understanding TD and its implications is important in

ASD.

Several studies have been conducted to understand the different

perspectives and implications of the TD metaphor in ASD (e.g. [P18],

[P22], [P27], and [P21]). However, their findings suggest that a solidified

understanding of the concept of TD and its management in ASD is still

lacking. The agile community lacks rigorously evaluated guidelines for

characterizing, managing and prioritizing TD [P22]. Furthermore, the

literature on the area has not been well structured to present a clarified

image of TD and its management within the context of ASD. Despite the

existence of secondary studies investigating TD and its management in

software development (Tom et al. [4], [5]; Li, et al. [6]; Alves et al. [7];

Ampatzoglou et al. [8]), none of the studies focused their analysis within

the context of ASD. This makes it difficult for agile practitioners to

identify causes, consequences and TD management (TDM) strategies

specific to ASD.

For instance, specific causes of TD in ASD, which are not revealed by

the cited secondary studies, include overlooked estimates of sprints [P28],

parallel development in isolation [P5] and organizational gaps among

2

business, operational and technical stakeholders [P22]. In such cases,

general TDM strategies found in earlier secondary studies such as code

and dependency analysis, and cost-benefit analysis ([6], [7], and [8]) may

not be helpful enough. However, strategies specifically designed to

manage TD in ASD, such as responsibility driven architecture [P7],

acceptance test reviews [P12], and defining a common ‘Definition of

Done (DoD)’ [P14], are pointed to be helpful in the context of ASD. Our

work complements earlier secondary studies by identifying new primary

studies (16), which are not included in previous secondary studies, and

analyzing primary studies differently in order to focus on particularities of

ASD. We reveal a new insight into unique causes of TD and TDM

strategies specific to ASD such as ‘the common DoD’ [P14], the

MAKEFLEXI [P17], and propagation cost model [P8]. Additionally, the

fact that “agile development appears to be more prone to technical debt

accumulation compared to traditional software development approaches,

due to its delivery-oriented focus” [9] also raises the significance of the

topic.

Our study identifies and structures the body of knowledge of TD in the

context of ASD by aggregating scientific contributions in a systematic

way and determining research gaps for future research activities ([10],

[23]). The objectives of this study are as follows:

 Analyzing the scientific literature of TD in the context of ASD in

order to:

○ Identify, classify, and structure the scientific studies of TD in the

context of ASD.

○ Investigate the research type and the kind of contributions of the

research of TD in ASD and assessing quality of these studies.

○ Identify facets that are reflected in the TD metaphor in the context

of ASD.

○ Identify, analyze, and aggregate the results of the different areas of

research that investigate TD in the context of ASD.

 Identifying and analyzing the causes and consequences of TD in the

context of ASD.

 Identifying TDM strategies applied to control TD in the context of

ASD.

 Exploring potential research gaps within the area in order to guide

future research initiatives.

The contribution of our work is twofold. On the one hand, our study

provides researchers with a structured understanding of the state of the art

of TD within the context of ASD upon which they can base their studies

on the topic, as well as recognizing research gaps that require further

study. On the other hand, the findings from this systematic literature

review (SLR) will help practitioners clarify their understanding of the

concept of TD and its causes and consequences as well as the

management strategies applied to control it within ASD.

The rest of the paper is organized as follows: Section 2 presents

background and related works on TD and ASD. Section 3 describes the

research methodology, including a discussion of threats to validity and the

countermeasures taken to minimize their effects. Section 4 presents the

results of the study, and Section 5 discusses the results in light of related

work. Finally, the conclusions of the study are presented in section 6.

2. Background and related work

This section first describes the core ideas of TD and ASD and

analyzes the reasons why TD is especially relevant in the context of ASD.

Then, previous reviews of the TD and ASD literature are summarized and

the need that motivated this study is justified.

2.1. Background

2.1.1 Technical debt (TD)

Cunningham (1992) [1] introduced the notion of TD by drawing an

analogy to financial debt: “Shipping first-time code is like going into debt.

A little debt speeds development so long as it is paid back promptly with a

rewrite. Objects make the cost of this transaction tolerable. The danger

occurs when the debt is not repaid. Every minute spent on not-quite-right

code counts as interest on that debt.” Since then, a wide range of

definitions have been suggested by different authors with the aim of

clarifying the TD concept ([P27], [4], [11], [P4], [36]). For instance,

McConnell (2007) [11] defined TD as “a design or construction approach

that's expedient in the short term but that creates a technical context in

which the same work will cost more to do later than it would cost to do

now (including increased cost over time).” Others extend the definition to

describe different manifestations of TD. For example, Hossein and Ruhe

(2015) [36] define requirements debt, which is the manifestation of TD in

requirements, as: “the trade-offs in requirements specification that are

consequences of the intentional strategic decisions for immediate gains or

unintentional changes in the context that have an impact on the future

cost of the project.” Recently, the definition of TD was refined as, “in

software-intensive systems, technical debt consists of design or

implementation constructs that are expedient in the short term, but set up

a technical context that can make a future change more costly or

impossible. Technical debt is a contingent liability whose impact is limited

to internal system qualities, primarily maintainability and evolvability” in

Dagstuhl seminar of managing TD [39].

Among the various manifestations of TD, code decay and architectural

deterioration are the most recognized dimensions in the literature [5].

However, TD can be related to other activities as well, including design,

documentation, and testing [12]. For example, in a recent study,

Alzaghoul and Bahsoon (2013) [13] introduce a new perspective of TD in

cloud computing services related to the selection, composition, and

operation of services. Non-compliance in service level agreements (SLA),

quick selection decisions with a lack of consideration for risk reduction

and probable future changes, and under-utilization of web service capacity

were identified as TD dimensions in the context of cloud services [13].

Understanding TD from both the theoretical and practical perspectives

is important in advancing the state of the art of this concept [3]. Owing to

the broad perspectives reflected in the concept, practitioners and

researchers in academia have proposed various classifications of TD to

help with the understanding and management of it. Among these, Steve

McConnell’s taxonomic classification of TD [11] and Martin Fowler’s TD

quadrants [35] are notable [14]. McConnell (2007) [11] classifies TD as

“intentional” and “non-intentional” on the basis of the reasons for the

accrual of TD. In this classification, non-strategic TD that results from the

developer’s coding inexperience or errors in design approaches are

categorized as unintentional TD. In contrast, when TD is incurred

strategically to facilitate releases, it is categorized as intentional TD.

Fowler’s TD quadrant [35] classifies TD as “prudent” and “reckless”

debts that can each be incurred in either an inadvertent or a deliberate

way. Prudent debt represents TD that is incurred proactively in order to

achieve quick releases. In this case, when the teams have plans to deal

with the consequences, the debt is incurred deliberately. However, Fowler

[35] also argues that TD can be manifested as both prudent and

3

inadvertent at the same time. In such cases, the lack of knowledge is

mainly attributed to TD. For instance, developers may come to realize that

a different design approach should have been taken at some point in the

development process. Reckless TD, on the other hand, highlights debts

that are either acquired deliberately as the result of a shortage of time (and

which development teams have no intention of solving in the future) or

incurred unintentionally as “inadvertent” reckless debt.

2.1.2 Agile software development

Agile methods were initially born to overcome the challenges that

were faced by traditional, plan-driven, heavyweight software development

methods in responding to ever-changing business demands ([15], [16],

[17], and [18]). The focus of the traditional approaches on eliminating

changes rather than embracing them was a challenge when it was

necessary to address a growth in customers’ expectations and market

demands [17]. Traditional methods such as the waterfall model emphasize

fixed and predetermined requirements where the development is process-

centric. As a result, it was not possible for customers to give frequent

feedback, making it hard to clarify misunderstandings and the needs of

change in the development process [19]. Although ASD caused some

initial controversies, it has become more and more popular among

practitioners [37]. Abrahamson et al. (2002) [20] describe ASD as an

incremental, straightforward (easy to learn) development, which is

characterized by an adaptive nature that is easy to modify and by

cooperation and open communication between developers and customers.

In general, ASD entails a specific group of software development methods

that is iterative and incremental and driven by a set of values established

through the Agile Manifesto [16], which is focused on embracing change

and people's collaborations in software development. Some of the agile

methods used in the industry include eXtreme Programming (XP), Scrum,

feature-driven development, and crystal methods [20].

One of the key principles of ASD is delivering working software more

frequently. Although the Agile Manifesto also highlights “continuous

attention to technical excellence and good design enhances agility” in one

of its 12 principles, it has been found that delivering software as fast as

possible without adequate attention to the engineering practices can

present the challenge of accumulating TD in the context of ASD [P38].

2.1.3 Understanding TD in agile software development (ASD)

Understanding TD in ASD is essential to make appropriate TDM

decisions at the right time. For example, in cases where there is no

agreement as to the type and amount of an acceptable level of TD, agile

developers can make assumptions and take paths that negatively affect the

development. Consequently, the productivity of the team may decrease,

the quality of the software product may degrade, rework costs may

increase, and, at times, business relationships might also suffer due to all

of these [21]. However, when ASD teams are aware of TD and its

implications, they can instead use the concept to their advantage. In such

cases, agile teams can plan in advance how to deal with TD and use it to

gain business opportunities [2].

Different reasons have been proposed to explain why ASD is prone to

TD. For example, ASD puts less emphasis on documentation practices

and instead prioritizes the delivery of working software, which makes it

prone to TD [9]. Additionally, insufficient attention given to software

architecture makes ASD prone to TD [P25]. In ASD, the drive for

efficiency and expediency often leads to less focus on architectural

models [P35]. Likewise, the findings from a recent mapping study on

continuous deployment (a concept closely related to ASD) reveal that, as a

consequence of trade-offs between the fast deployment of software and

poor development, testing, and quality assurance practices, organizations

tend to acquire TD over time [25].

Therefore, agile practitioners need to be particularly aware of the

constituents of TD, its economic importance, the strategies that can be

applied to paying it down when using ASD, and its other related

implications in ASD. Analyzing TD in a broad domain such as ASD

requires a thorough investigation of the relevant studies reporting on the

various aspects, including a formalization of the concept and TDM

strategies and experiences. One way to do this is to structure and

synthesize the existing knowledge on the topic and assess the research

gaps. The arguments that ASD is prone to TD ([9], [25]), the economic

and technical implications of TD in ASD, and the absence of secondary

studies investigating TD in the context of ASD motivated us to conduct

this SLR.

2.2. Related work

As per our knowledge, there are no secondary studies investigating the

state of the art of TD in the context of ASD prior to our study. However,

different secondary studies have been conducted on TD and its

management (Tom et al. (2012) [4]; Tom et al. (2013) [5]; Li et al. (2015)

[6]; Alves et al. (2015) [7]; Ampatzoglou et al. (2015) [8]) and on agile

development (Dybå et al. (2008) [18]).

Tom et al. (2012) [4] conducted an SLR to get a consolidated

understanding of TD and determine the positive and negative outcomes

associated with it. They identify that code decay and architectural

deteriorations are recognized as the major constituents of TD in the

academic literature. The authors also propose a theoretical framework that

helps uncover elements of TD, establishes boundaries, and identifies the

causes behind accruing TD. Budget and resource constraints were cited as

potential causes of accumulating TD, and negative consequences in

scheduling, risk, and quality were found as the associated outcomes.

As a continuation of the preliminary SLR study [4], Tom et al. (2013)

[5] conducted an exploratory case study using a multivocal literature

review, supplemented with interviews of practitioners and academics, to

gain a more comprehensive understanding of TD and its implications in

software engineering. (multivocal literature reviews are comprised of all

accessible writings, including non-academic writings on a topic [22].) In

this study, the authors develop a taxonomical hierarchy of TD and a

theoretical framework to visualize dimensions, attributes, precedents, and

outcomes of TD and further clarify the boundaries of the concept.

Li et al. (2015) [6] include peer-reviewed studies published between

1992 and 2013 in their systematic mapping (SM) study to get a holistic

understanding of TD and its management. The authors identify 10 types

of TD, of which code debt is the most studied type. Additionally, they

identify and classify five categories of TD notions, namely, metaphor,

property, cause, effect, and uncertainty. The metaphor idea relies on

metaphors adapted from the field of economics to describe TD; the

properties idea describes characteristics of TD; the cause idea explains the

related reasons for incurring TD; the effect idea describes the related

effects of incurring TD; and the uncertainty idea reflects the ambiguous

nature of TD. Regarding compromised quality attributes, the authors find

that most studies argue that TD negatively affects maintainability.

Ampatzoglou et al. (2015) [8] conducted an SLR in order to examine

the state of the art on TDM, with a focus on the financial aspects of TD in

software engineering. The authors find that “principal” and “interest”

were the most popular financial terms used with TD. “Principal” describes

the effort required to resolve TD, whereas “interest” describes the

4

additional cost required to pay back incurred TD in later phases.

Moreover, they identify real options, portfolio management, cost/benefit

analysis, and value-based analysis as financial strategies for managing

TD.

Recently, Alves et al. (2015) [7] conducted an SM study to investigate

the types of TD, as well as the TD identification and management

strategies, which have been proposed in the literature. The authors identify

various indicators of TD, such as god class and duplicate code, which

support the identification of specific types of TD. However, software

visualization techniques were the least used to identify TD. Regarding

TDM strategies, the authors identify the portfolio approach and cost-

benefit analysis as the most frequently cited strategies.

Dybå and Dingsøyr (2008) [18] conducted a systematic review of

ASD publications in order to investigate the empirical findings of ASD

studies, provide an overview of studied topics, evaluate the strength of the

findings, and articulate the implications for academia and practitioners.

The authors identify four aspects of ASD: introduction and adoption,

human and social factors, comparative studies of ASD, and the perception

of agile methods among developers, customers, and students. However,

despite the fact that the TD concept has existed since 1992 [1] and the

significance and popularity of the concept in ASD [P18], it is not reported

in the paper. Perhaps this can be attributed to the fact that research

interests in TD have only begun receiving more attention in recent years.

Our work differs from these secondary studies in terms of the research

goal perspective, and, in some cases, the research method employed.

Unlike all the aforementioned secondary studies, our study focuses on

understanding and structuring the literature on TD within the specific

context of ASD. Despite the existence of strategies specifically designed

to manage TD in the context of ASD (e.g. common DoD), and specific

ASD processes and practices that could be prone to incurring TD (e.g.

inaccurate estimations when planning the sprint, incomplete user stories),

the particularities of TD in ASD have not been the object of study of

previous secondary studies. We base our analysis on peer-reviewed

articles to identify important research areas of interest and determine the

causes, consequences, and management strategies of TD in the context of

ASD. Our work complements the existing secondary studies by

introducing a new perspective of TD and its management in ASD. In

comparison with the research methods applied in the reviews discussed

previously, there are also some differences. For instance, Tom et al.

(2013) [5] employed multivocal literature reviews and included blogs and

publications prior to 2011. Other studies, such as [6] and [7], employed

SM as the main research method. However, our work employs an SLR

and is limited to peer-reviewed scientific publications between 1992 and

June 2014.

3. Research method

We used the SLR guidelines produced by Kitchenham and Charters

(2007) [23] to conduct this study. Additionally, the SM guideline by

Peterson et al. (2008) [10] was also taken into consideration while

carrying out the keywording process in order to identify the research areas

investigating TD in the context of ASD. The steps followed in the study

are described in the following subsections.

3.1. Definition of research questions

The objective of this study is to identify, classify, and analyze the state

of the art of TD in the context of ASD. Accordingly, four research

questions were formulated, as shown in Table 1.

The purpose of the first research question is to analyze the state of the

art of TD in ASD from different aspects. In addition to bibliographic

information and research characteristics (such as research type,

contribution type, scientific rigor, and industrial relevance), we aim to

identify definitions that refer to TD in the context of ASD as well as

research areas that focus on the topic. The second research question aims

to identify the causes and consequences of incurring TD in ASD. The

third research question intends to identify TDM strategies in ASD in

terms of practices, tools, frameworks, and other contributions. Finally,

with the fourth research question, we aim to identify research areas that

require further study.

Table 1. Research questions

Research question Aim

RQ1: How is the research of TD

characterized in the context of ASD?

Analyzing the research of TD in the

context of ASD.

RQ1.1. What is the current state

of the research pertaining to TD

in the context of ASD in terms

of research types, research

contributions, and the quality of

the reported research?

○Identifying, classifying, and

structuring the scientific studies

of TD in the context of AS.

○Investigating the research types and

the kind of contributions of the

research on TD in ASD, and

assessing the quality of these

studies.

RQ1.2. How is the concept of

TD defined in the context of

ASD?

○Identifying facets that are reflected

in the TD metaphor in the context

of ASD.

RQ1.3. What research areas are

emphasized in the literature that

reports studies of TD in the

context of ASD?

○Identifying research areas associated

with TD in the context of ASD.

RQ2: What are the related causes and

consequences of accruing TD in

ASD?

Identifying the causes and consequences

of incurring TD in the context of ASD, as

reported in the literature.

RQ3: What are the strategies proposed

in the literature to manage TD in

ASD?

Identifying TDM strategies applied to

control TD in the context of ASD.

RQ4: What are the existing research

gaps in the field of TD in ASD?

Identifying potential research gaps in the

context of TD and ASD in order to guide

future research initiatives.

3.2. Conducting the search

In order to identify the primary studies, we used electronic database

searches with a search strategy that addresses the research questions of the

study. Search strings were constructed following the population,

intervention, comparison, and outcome (PICO) criteria suggested by

Kitchenham & Charters [23]. However, we relied on a combination of the

population AND intervention groups of search terms; the comparison and

outcome facets of PICO were omitted in the search structure because we

are not interested in comparing the interventions or limiting the outcome.

The population facet represents search terms that make reference to ASD.

5

Alternative keywords that refer to ASD were combined to form the

population based on the search string used by Dybå and Dingsøyr [18] in

their SLR on empirical studies of ASD. Similarly, search terms for the

intervention facet were constructed using alternative keywords that refer

to the TD concept based on the findings of Tom et al. [5]. The population

and intervention search terms were joined using the “AND” Boolean

operator to build the search string, as shown in the Table 2.

ACM, Google Scholar, IEEE Xplore, ProQuest, Scopus, and the Web

of Science databases were used in the search for primary studies. The

rationale behind the selection of these databases is the extensive list of

articles, journals, and conference proceedings related to software

engineering that they provide. We executed tailored search queries in the

six databases mentioned above (depending on the syntax requested by

each database) based on the search string and keywords shown in Table 2.

The full-text search execution in these databases retrieved a total of 346

relevant studies, as shown in Table 3.

Table 2. Search string

Population* AND Intervention**

software AND

(agile

OR XP

OR

"extreme programming"

OR scrum

OR crystal

OR dsdm

OR fdd

OR "feature driven development "

OR lean)

"Technical debt"

OR "design debt"

OR "code debt"

OR "debt metaphor"

OR "architectural debt"

OR "environmental debt"

OR "testing debt"

OR "knowledge debt"

OR

"technical debt man*"

* Based on the search strings from Dybå and Dingsøyr, [18]

** Based on the findings of Tom et al. [5]

Table 3. Number of studies retrieved in databases

Databases Number of retrieved studies

ACM 62

Google scholar 126

IEEE Xplore 12

ProQuest 67

Scopus 76

Web of Science 3

Total 346

3.3. Screening of relevant papers

The screening process includes both establishing inclusion/exclusion

criteria to find relevant studies related to the research area and a further

selection process to identify and select primary studies. The database

selection process was complemented with snowballing in order to

minimize the validity threat of missing relevant primary studies.

3.3.1 Inclusion and exclusion criteria

The following inclusion and exclusion criteria were laid out to ensure the

inclusion of relevant studies that are within the scope of this study and

address the research questions.

Inclusion criteria:

 Publications that contribute to the knowledge area of both TD and

ASD.

 Peer-reviewed publications.

 Scientific papers (including experience reports).

 Publications that are written in the English language.

Exclusion criteria:

 Topics that are not related to TD and ASD (e.g., if the paper merely

mentions the concepts of TD and ASD without an investigation of the

topic of TD in the context of ASD).

 Studies published in unrecognized (non-scientific) venues that are

different from journal or conference publications, such as prefaces,

article summaries, overhead presentations, interviews, short papers,

introductions to special issues, tutorials, theses, books, and book

chapters.

 Duplicates of the same study (in this case, the most complete version

of the study was selected).

In addition, this SLR is limited to scientific studies published between

1992 and June 2014. Our rationale for selecting this period relies on the

fact that the TD concept was first coined by Cunningham in 1992.

Additionally, software development practices that are the basis of ASD

have also been in use long before the official declaration of the Agile

Manifesto in 2001. Hence, we aim to include relevant studies of ASD that

have been published prior to the official declaration of the Manifesto, if

any.

3.3.2 Study selection

The study selection process started with the exclusion of duplicates,

followed by checking whether the study was a scientific article or not.

Following this, retrieved studies were screened based on whether the

study contributes to the body of knowledge of TD in ASD. This step was

carried out in different rounds depending on the parts of the article that we

needed to read in order to make sure that the study was within the scope

of our research. Thus, we started selecting studies on the basis of reading

titles and keywords. If we were unsure about the nature of the study, we

proceeded to reading the abstract, the introduction, and the conclusion;

lastly, we consulted the full text of the paper if needed.

In order to increase the reliability of the selection process, a pilot was

performed of the inclusion and exclusion criteria on 20 randomly selected

studies. Two evaluators (the first and second authors) followed the

screening process independently on the 20 randomly selected studies. The

consistency of the selection process for each criterion was evaluated

through an inter-rater agreement calculation using Fleiss’ Kappa [24].

Furthermore, in order to describe the relative strength of agreement of the

Kappa statistics, we adapted Landis & Koch (1977) [32]. According to

[32], Kappa values < 0 indicate no agreement and values from 0 – 0.20

indicate slight agreement, values from 0.21 – 0.40 show fair agreement,

values from 0.41– 0.60 indicate moderate agreement, values from 0.61–

0.80 show substantial agreement, and those from 0.81 to 1 indicate an

almost perfect agreement.

Results from the inter-rater agreement showed that there was a

moderate agreement (Fleiss’ Kappa. K=0.5) in identifying papers as

scientific and a perfect agreement (Fleiss’ Kappa K= 0.897) for

determining the relevance of studies to the research area. We further

discussed the differences in evaluation in a meeting to clarify

disagreements and reach a common understanding on the selection

process.

Once the selection process was validated, it was applied on the 346

papers retrieved from our search. 71 studies were duplicates and 115

6

documents were non-scientific. Non-scientific papers excluded in the

process were in the form of books, theses, tutorials, keynotes, blogs, and

conference announcements. Following the exclusion of duplicates and

non-scientific papers, the remaining 160 papers were screened in order to

check whether they focused on TD in the context of ASD based on title

and keywords. At this stage, 69 were excluded, eight primary studies were

selected, and 83 studies were passed to the next step. The selection then

proceeded by checking the abstract, introduction, and conclusion of each

study, and reading the paper fully if need be, as mentioned in the above

paragraph. As a result, 31 primary studies were found at the end of the

selection process.

3.3.3 Snowballing process

The study selection process was complemented with the backward

snowballing process, which involves checking the references of the 31

primary studies. We also checked recent works from the main authors of

the primary studies, whenever it was mentioned that there was a work in

progress, in order to determine whether there were any other relevant

studies. As a result, four additional papers were found and included (Dos

et al. [P38]; Frank et al. [P14]; Antinyan et al. [P20]; Holvitie et al. [P33])

at this stage. A further investigation into the reasons behind the absence of

these papers in the search results indicated that the papers were not

indexed in the databases that were used in our search execution.

Moreover, it was observed that two of the papers appeared in

XP/Agile20XX conferences in different years, while the other two papers

were not indexed at the time of our search execution.

The XP conference series, established in 2002, was the first

conference dedicated to agile and lean processes in software engineering

[38]. Similarly, the Agile20XX conference, organized by the Agile

Alliance, is an annual agile conference that has been carried out since

2002. Hence, we decided to do a further manual search of XP/Agile20XX

conferences from 2002-2014, to ensure that we did not miss any relevant

papers. As a result, we found three additional papers (Birkeland et al.

[P15]; Elssamadisy et al. [P28]; and Stolberg, [P6]) from the search

extension, supplementing our primary studies. Therefore, a total of 38

primary studies were found at the end of the selection process, including

the papers acquired through the snowballing process (see Appendix A).

The overall selection process for the primary studies, including

snowballing, is shown in Table 4.

3.4. Data extraction

In order to answer RQ1, we extracted publication details such as

publication year, publication source, research method, research type,

contribution type, pertinence, industrial relevance, and research rigor.

Additionally, deductive coding was followed to identify definitions of TD

in the context of ASD (RQ1.2). Similarly, RQ2 and RQ3 (causes and

consequences of TD in ASD and TDM strategies in ASD) were answered

by using a deductive approach. An overview of the data extracted to

answer the RQs is shown in Table 5, and a further description of the

properties is included in Appendix B.

We initially extracted keywords that reflected the contribution of the

studies in order to identify topics that are emphasized in the literature on

TD and ASD (RQ1.3). The qualitative data and research analysis software

NVivo was used to support this process. Coding in NVivo was applied by

quoting sentences directly from the primary studies that referred to areas

of interest of our study.

In order to validate the data extraction process, the first two authors of

the paper carried out a pilot and independently extracted data on five

randomly selected primary studies. The findings of the data extraction

pilot showed that there were differences in classifying research types and

contributions. For instance, the inter-rater agreement calculation using

Fleiss’ Kappa when classifying the research type as a solution proposal

shows that we had a substantial level of agreement (Fleiss’ Kappa K=

0.651).

Table 4. Selection of primary studies

Step Excluded

studies

No. of

studies

left

Selected

primary

studies

Studies

to next

stage

1. Search retrieval

from databases

0 346 0 346

2. Exclusion of

duplicates

71 275 0 275

3. Exclusion of non-

scientific papers

115 160 0 160

4.Inclusion based on

title and keywords

69 91 8 83

5.Inclusion based on

abstract

28 55 5 50

6.Inclusion based on

introduction and

conclusion

4 46 8 38

7. Inclusion based on

reading the paper

fully

28 10 10 0

8. Snowballing 7

Total 38

Table 5. Overview of extracted data

Property ID Property

Pr1 Publication ID

Pr2 Publication source (conference/journal)

Pr3 General type of paper (empirical/theoretical/both) and

research method (case study, survey, experiment, etc.)

Pr4 Research type (evaluation, solution proposal,

experience, philosophical, and opinion)

Pr5 Pertinence (full, partial and medium)

Pr6 Contribution (advice/implications, framework,

guideline, lessons learned, model, theory, and tool)

Pr7 Research rigor (value from 0-3)

Pr8 Industrial relevance (value from 0-4)

Pr9 TD definitions in ASD

Pr10 TD causes in ASD

Pr11 TD consequences in ASD

Pr12 TDM strategies in ASD

3.5. Keywording

Keywording was applied in order to identify and structure the research

areas emphasized in studies of TD in the context of ASD (RQ1.3).

Keywording is a process that clusters keywords that reflect topics of

interest in the primary studies. According to Peterson et al. [10],

7

keywording facilitates the creation of the classification scheme and helps

ensure that all aspects of the studies are reflected in the mapping. The

keywording followed in this study is presented in Fig. 1. First, the

abstracts, introductions, and conclusions of the primary studies were read

in order to identify keywords that reflect the areas of interest of the

primary studies from the perspective of TD in ASD. Then (step 2), the

keywords were clustered into groups to identify recurring patterns. The

outcome of this step was an initial insight into topics characterizing the

research area. In the third step, we utilized the word frequency query

feature of NVivo in order to identify the most frequently occurring

keywords. We carried out this step to reconfirm that we were not missing

important topics. Following these steps, the classification schema was

built up by fully reading the primary studies and taking into account the

most frequently used keywords that suggested significant research areas

(outcome of steps 2 and 3). As a result, we found five research areas of

interest (see Section 4.3).

Fig. 1. Keywording

3.6. Quality assessment

In order to assess the quality of the primary studies, we used the model

proposed by Ivarsson and Gorschek (2011) [27] to test research rigor and

industrial relevance. The distinction between research rigor and industrial

relevance of the model adds an important angle of analysis (e.g., a highly

relevant study can have a very low rigor or vice versa [28]), so it helps

guide the interpretation of the findings. We evaluated the research rigor of

each primary study as the sum of context, study design, and validity

values, on a range scale of 0 to 3. Similarly, the industrial relevance of a

study was evaluated as the sum of context, research method, scalability,

and subject values. The range scale for the total relevance runs from 0 to

4. A further description of the research rigor and industrial relevance

aspects is included in Appendix B.

Similar to the data extraction, two of the authors carried out a pilot of

the research rigor and industrial relevance assessment criteria on five

randomly selected primary studies in order to increase the reliability of the

quality assessment. During the pilot, there were differences when

evaluating rigor, specifically context, and validity dimensions. While the

differences were mainly subjective, a common understanding and

clarification on the model was achieved to guide the rest of the quality

assessment.

3.7. Data synthesis

The data extracted from the primary studies was synthesized by

applying thematic synthesis as is suggested by Cruzes & Dybå (2011)

[29]. Thematic synthesis applies coding on primary studies; related

concepts and findings are labeled and further translated into themes by

drawing recurrent patterns. These themes are subjected to further analysis

wherein higher ordered themes are created by exploring the relationships

among subthemes. We followed a deductive approach based on thematic

synthesis in NVivo to extract TDM strategies, the causes and

consequences of incurring TD in ASD, and TD definitions. These were

further labeled and clustered through conceptual links and relationships to

form initial categories. Recurrent patterns were categorized into the initial

themes of definitions, causes, consequences, and TDM strategies. These

themes were further analyzed and refined to obtain higher-level themes

through an inductive thematic synthesis approach, forming categories.

3.8. Threats to validity

When considering the validity concerns in our study, the main

limitations come from biases in the identification of relevant studies,

primary study selection, data extraction, and quality assessment processes.

However, in order to ameliorate these threats and increase the reliability

of the study, we took the following mitigation actions.

There is an ample amount of non-scientific literature, such as blogs,

tutorials, white papers, etc. that discuss TD within the context of ASD.

Consequently, the inclusion of such studies might have different results.

In order to increase the reliability of the findings of the study and

minimize limitations that could come from the inclusion of non-scientific

literature, we only included peer-reviewed scientific articles.

In order to mitigate limitations in the identification of primary studies,

we applied a systematic search strategy to increase the retrieval of

relevant studies in our search [23]. We constructed the search strings

based on the research questions and relevant SLRs on TD and ASD. We

included all publications between 1992 and June 2014 to increase retrieval

of all relevant studies in the research area. We also performed snowballing

and applied an extension search through Agile (agile20XX) and XP

conferences in order to minimize the chance of missing relevant

publications. While the aforementioned measures minimize the risk of

omission of relevant papers, we still cannot rule out the possibility that we

missed relevant studies (e.g. if there are interventions that are not

described as debt and were not hit during the snowballing process).

The potential threat due to the primary study selection process was

mitigated by two of the authors carrying out pilots on a total of 20 studies.

This was done to build a common understanding of the selection process,

clarify differences in the inclusion/exclusion criteria, and improve the

reliability of the selection process. Similarly, potential threats from the

8

data extraction and quality assessment processes were mitigated by

conducting pilot runs. Two authors conducted the pilot data extraction to

mitigate risks that may result in subjective interpretation of data synthesis.

A pilot of quality assessment was also performed on five primary studies

to minimize the risk of misinterpretation while assessing the research rigor

and industrial relevance of primary studies. We believe that these

mitigations increase the reliability of the study findings and the

conclusions derived from the analysis.

Another potential threat comes from the keywording process used to

structure the research areas discussing TD in ASD. It is possible that the

results of classification may have overlooked some research areas of

interest. However, we undertook a detailed, progressive analysis and

refinement process that is complemented with automatic word query

findings in the keywording to minimize the risk of misinterpretation of the

result and classifications.

4. Results and analysis

This section presents the findings from the analysis of the 38 primary

studies (with the exception of rigor and relevance assessment that is

carried out only on 28 primary studies based on empirical data). In

Section 4.1 we provide an overview of the research on TD in ASD

(RQ1.1), and in Section 4.2, we identify different aspects reflected in the

definitions of TD in ASD (RQ1.2). Section 4.3 presents an analysis of the

research areas that are the focus of the literature of TD in ASD (RQ1.3),

and in Section 4.4 we present the causes and consequences found in

literature of incurring TD in ASD (RQ2). In Section 4.5, TDM strategies

in ASD are presented (RQ3). Finally, Section 4.6 presents the research

gaps identified in the area (RQ4).

4.1. Overview of the research of TD in ASD

There were 38 primary studies published between 2002 and 2014 that

were included in the SLR. As shown in Fig. 2, there were only three

studies published prior to 2010, whereas almost 97% of the studies were

published in 2009 and later.

Fig. 2. Annual distribution of primary studies

Furthermore, when considering the distribution from 2011 to 2013, we

can see that the number of publications in the area has been increasing.

This trend suggests a relatively growing research interest in the topic of

TD in the context of ASD. This is well-aligned with previous studies

citing the growing popularity of TD in ASD (Letouzey, 2012 [P36]; Nord

et al., 2012 [30]; Kruchten et al., 2013 [3]; Codabux et al., 2013 [P22]). In

addition, the SLR only includes five studies published during 2014.

However, the decrease in the number of studies during this period can be

explained as a result of the study time period, which ended in June

2014(thereby limiting the included studies to those published in the first

half of the year). The results also showed that there were no publications

prior to 2002 included in the SLR, even if the inclusion criteria were set to

between 1992 and 2014. One possible reason for this may be the fact that

the Agile Manifesto was formulated in 2001 and that different agile

methods have been acknowledged following the Manifesto.

When considering the distribution of the primary studies based on the

type of venue, we found that a relatively high number of studies (84%, or

32 studies) were published in conference proceedings, while 16% of the

studies (six studies) were published in journals.

We also classified the primary studies as empirical, theoretical, or both

and investigated the research methods used in the primary studies. The

results of the general type of research show that 69% of the primary

studies (26 studies) were categorized as empirical studies, and 26% (10

studies) were theoretical papers, while 5% (two studies) were classified

under both.

Regarding the research methods applied in the empirical studies, case

studies were the most popular, followed by surveys. We found that there

were ten case studies, seven industrial reports, five surveys, one action

research study, and one experiment, as well as two studies where the

research method was not stated by the authors of the primary studies.

RQ1.1. What is the current state of the research pertaining to TD in

the context of ASD in terms of research types, research contributions, and

quality of the reported research?

In order to analyze the type of publication, we used the research type

classification by Wieringa et al. (2006) and categorized the primary

studies as evaluation papers, solution proposals, experience reports,

opinion and philosophical papers (see Fig. 3. a.). We found that 11 studies

were experience papers reporting lessons learned, 10 studies were

evaluation papers investigating TD in practice and conducting evaluations

to validate their claims, and 9 studies were solution proposals that suggest

solutions to specific problems of TD in ASD but without a full validation

of the proposed solution. Opinion papers accounted for 7 studies and 1

study was philosophical paper.

Overall, the results looked promising, considering the fair distribution

of evaluation and solution proposals. However, we argue that there should

still be a greater focus on evaluation papers in order to validate the

proposed solutions. TDM strategies that are validated in practice are

needed in order to support the identification and management of TD.

Based on the contribution classification by Shaw (2003) [31], research

contributions were identified as shown in Fig. 3.b. Lessons learned

(outcomes directly analyzed from research results) stand out first,

followed by advice/implications. There were also tools (technologies,

programs, or applications applied to manage TD in ASD), models,

frameworks, and theoretical contributions. The findings suggest the need

for more tools, frameworks, models, and other concrete guidelines that

assist in understanding and managing TD in practice in ASD.

9

Fig 3- (a) Distribution of research type classification

Fig 3- (b) Distribution of primary studies by contribution

Finally, the results of the quality assessment of the primary studies are

shown in Fig. 4. The bubble size in the figure represents the number of

studies with the corresponding pair of research rigor and industrial

relevance values.

Fig. 4. Map of research rigor and industrial relevance quality

assessment

The rigor and relevance assessment was applied to studies that drew

their findings on empirical evidence. We decided to exclude the

theoretical studies from this evaluation, as the Ivarsson & Gorschek

(2011) [27] quality assessment model is targeted for evaluating the quality

of empirical studies. Hence, the bubble plot represents only the quality

assessment results from the 28 empirical primary studies included in the

SLR. As can be observed from the figure, we classify 11 studies (39% of

the 28 empirical studies) as high research rigor (3) and high industrial

relevance (4). As a whole, there were 17 studies whose research rigor

value was ≥ 1.5 and industrial relevance value was ≥ 2, and they are in the

upper right corner. At the upper left position of Fig. 4, we can see that

there were five studies with a research rigor value of 1 and higher

industrial relevance value of 4. In addition, there were two studies that had

a lower research rigor value of 1 and a favorable industrial relevance

value of 3. In the lower left corner, there was one study with the research

rigor value of 1 and an industrial relevance value of 1.

In general, most of our studies are highly relevant. However, 11

studies have a research rigor value equal or less than 1, which indicates

the need for improving the scientific rigor of the studies conducted in the

research area. These primary studies mainly lack a report on the study

design and validity of the studies. According to Ivarsson and Gorschek

(2011) [27], when studies with a high potential for impacting the industry

(as it is the case here) fail to provide sufficient reports, they risk the

chance of reduced value. Poor descriptions of the study design and

validity make evaluations difficult for researchers in academia [27].

4.2. Aspects reflected within definitions of TD in ASD

RQ1.2. How is the concept of TD defined in the context of ASD?

As shown in Table 6, five aspects are emphasized in TD definitions in

the context of ASD, out of which the most often mentioned is the

consequences that are incurred from poor software development practices.

Consequences, such as increased future cost, degraded architecture and

code, reduced productivity, rigidity that impacts development and future

changes, and failure to meet business demands in the long run, result from

10

poor software development practices (e.g., shortsighted architectural

decisions, rigidities in design and code, and shortcuts taken by

developers) and are mostly considered to refer to TD in the context of

ASD. This aspect of the definitions of TD in ASD is in accordance with

the original definition of TD by Cunningham [1].

Table 6. Aspects reflected in definitions of TD in ASD

Aspects of definitions Primary studies Frequency

Consequences that are incurred

from poor software development

P1, P2, P5, P10, P17,

P22, P24, P27, P30, P31,

P33, and P38

12

Deviations from design and

architectural principles and

coding standards

P4, P9, P11, P15, P18,

P36, P37

7

Deferred technical problems P4, P5, P12, P13, and

P25

5

Trade-offs between short-term

and long-term value

P21, P23, P24, P29 4

Missing knowledge or inadequate

(not up-to-date) documentation

P3, P14, P22 3

Deviations from standard practices of software development (that is,

poor architectural, design, and code development practices) is the second

most frequent aspect used to refer to TD in ASD. Unlike the first

category, these definitions do not underline the associated outcomes, but

rather focus on referring to TD as poor software development practices.

TD has also been used to denote deferred technical problems, including

technical problems or reworks that have been deferred in software

development in five of the primary studies. Additionally, TD is simply

used in some of our primary studies to refer to the trade-off that exists

between short-term and long-term value in ASD. Missing knowledge or

inadequate documentation about unspecified or underspecified

requirements [P3], and inadequate documentation from incomplete user

stories [P1] or documentation that is not up-to-date [P22] is also used to

refer to TD in ASD.

In general, the results reveal a certain inconsistency in the use of the

TD metaphor. We notice that the authors of the primary studies in our

SLR use the term differently. However, we also observe that most of the

TD definitions reflect dimensions of TD that have been identified in

previous secondary studies on TD, such as those by Tom et al. (2013) [5],

and Li et al. (2015) [6]. For example, code debt (TD that is the result of

badly written code), architectural debt (TD that is caused by overlooked

architectural decisions), design debt (TD caused by shortcuts taken in

design), and knowledge and documentation debt (TD that occurs from the

absence of well-written documentation or lack of knowledge distribution)

are seen in aspects reflected in the definitions of TD in ASD.

4.3. Research areas of interest in the context of TD in ASD

RQ1.3. What research areas are emphasized in the literature reporting

studies of TD in the context of ASD?

We used the keywording process described in Section 3.5 in order to

identify the research areas emphasized in the literature of TD in ASD. We

found that five main categories or research areas are discussed in the

primary studies, as shown in Table 7. Managing TD in ASD is the most

popular research area, followed by architecture in ASD and its

relationship to TD. In the following, we further describe the research

areas.

4.3.1 Managing TD in ASD

Research focused on managing TD has been prominent in ASD to

meet the desire to deliver value quickly, reduce rework costs, and enhance

architecture flexibility. In our study, 28 of the primary studies made

reference to managing TD in ASD. Generally, this category includes

primary studies that focus on the identification, measurement, monitoring,

and reduction of TD in ASD. In the case of ASD, TDM requires

understanding the factors that are associated with TD, such as the

emphasis on quick delivery, sub-optimal architectural decisions, and

solutions that balance expediency, customer value, stability, and

flexibility in development. Thus, research into solutions that help conduct

formal analysis and decision-making related to TD ([P1], [P5], [P8]) and

into tools and models that support visualizing TD ([P9], [P20], [P25],

[P37]) are emphasized in the TDM research in ASD.

Table 7. Research areas

Category Description Primary

studies

Frequency

1. Managing TD

in ASD

Identification, measurement,

tracking, and reduction of

TD in ASD. Practices, tools,

and models used or

proposed to manage TD in

ASD and experience papers

of TDM in ASD.

P1, P3, P4, P5,

P6, P7, P8, P9,

P10, P12, P14,

P15, P16, P17,

P20, P21, P22,

P23, P24, P26,

P27, P28, P29,

P30, P32, P36,

P37, P38

28

2. Architecture in

ASD and its

relationship to

TD

The role of architecture in

ASD and its relationship to

TD.

P5, P7, P8,

P17, P18, P21,

P25, P31, P35

9

3. TD know-how

in ASD

Understanding and assessing

the know-how of TD in

ASD.

P11, P22, P33,

P38

4

4. TD in rapid

fielding

(expedited

development)

Factors for enabling rapid

fielding, where managing

TD is one of the main

concerns.

P2, P13 2

5. TD in

distributed ASD

TD in the context of

distributed ASD.

P11, P19 2

Models that quantify TD, such as the constructive cost model

(COCOMO) [P5] and the propagation cost model [P8], as well as

practices and methods to identify, monitor, prevent, and reduce TD

([P27], [P28], [P30], [P32], and [P38]) have also been focuses in the area

of TDM in ASD. In this category, most of the studies were concerned

with providing TD reduction strategies ([P5], [P12], [P14], [P15], [P16],

[P27], [P28], [P30], and [P37]).

When considering the research type, industrial experiences that

reported lessons learned in TDM of ASD projects ([P4], [P6], [P10],

[P12], [P14], [P15], [P16], [P28], [P30], and [P38]) are popular. These

studies were conducted to understand and manage TD in different agile

team settings. For instance, P30 reports the experience of an XP team in

the reduction of TD. By introducing the code Christmas tree (this method

employs a visual diagram where colored squares in a chart are used to

show the level of unit test coverage areas of different classes, and a

second chart in the tree uses the cyclomatic complexity of the code to

identify how simple and understandable the code under development is)

11

and encouraging communication, the team was able to improve awareness

of the concept of TD and its level of manifestation within the team.

Additionally, this category includes solution proposals where TDM

tools and models are the focus. In P9, the DebtFlag tool is introduced for

capturing, tracking, and resolving TD in software development. The

DebtFlag tool is mainly comprised of an Eclipse plugin that is used for

capturing, monitoring, and managing TD during development, as well as a

linked web application that provides a dynamic list of TD. The authors

claim that their approach follows a mechanism that supports software

development methods such as Scrum. The tool maintains a TD log by

capturing observations (e.g., developers identify deviations from the

active requirements and create a TD list in the TD log), which can be

used, for instance, in Scrum’s sprint planning to define new backlog

items. The tool utilizes human-made observations to capture TD during

the implementation level, which enables developers to become aware of

the level of TD and take action.

Considering the fact that most of the studies in this research area were

lessons learned, the amount of guidelines, frameworks, tools, and models

that support TDM in ASD is insufficient. A more detailed description and

classification of studies in this group is presented in Appendix C. The

concrete strategies to manage TD in ASD are analyzed in Section 4.5.

4.3.2 Architecture in ASD and its relationship to TD

Architecture in ASD and its relationship with TD is the second most

popular research area in our primary studies, and nine primary studies

focus on this area. Agile methods are adaptive to changes and avoid

traditional software architecture that emphasizes big upfront planning,

which may lead to increased documentation [P7]. Instead, agile methods

rely on incremental architecture that evolves through time [P18], which

may increase the risk of a lack of soundness. In ASD, software

architecture inflexibility and untimely architectural decisions incur TD.

Primary studies in this research area investigated the relations among

software architecture, ASD, and TD. The emphasis is on combining

architecture flexibility and agility in ASD ([P7], [P8], [P18], [P31] and

[P35]). Understanding the role of architecture in ASD and its relationship

with TD, and making informed architecture decisions that are aligned with

ASD values (e.g., responding to changes), are considered essential. For

instance, Brown et al. [P18] show that in ASD, the over and under

anticipation of architecture is related to delayed reworks and increased

costs (TD). The authors raise the need for “just enough” in ASD, focused

on a balanced, informed, and flexible architecture. They suggest an agile

release planning that combines the real options concept and TD to enable

architecture agility as well balance flexibility. The real options concept,

by comparing the business value of immediate and delayed architectural

decisions, is considered to make flexible architectural decisions that

balance TD in ASD [P18].

Another study, [P7], shows the importance of timely architectural

decisions in ASD. As the software architecture of agile projects evolves

through time, making changes in later phases can become complex and

expensive. According to the authors, applying architectural decisions too

early minimizes flexibility in development, especially in agile

development teams.

Some of the studies utilize the relationship between architecture

flexibility and ASD to analyze and support architectural decision-making

related to TD ([P5], [P8], and [P17]). Fernandez-Sánchez et al. (2014)

[P17] provide a model (MAKEFLEXI, Making dEcisions about

Flexibility investment in Software Architecture) to assist architectural

flexibility decisions in ASD. The model uses TD to bring visibility to

additional costs arising from lack of architectural flexibility in ASD.

Using the model, software architects in ASD can make flexibility

decisions based on economic considerations (assessing the right time to

either delay or invest).

4.3.3 TD know-how in ASD teams

The third most studied research area focuses on analyzing the know-

how of TD in ASD teams. Generally, these studies are concerned with

assessing practitioners’ knowledge of TD, and understanding which agile

practices and processes practitioners find vulnerable for incurring TD in

ASD. The studies also investigate how agile teams characterize TD and

perceive the consequences of incurring TD. For instance, Holvitie et al.

(2014) [P33] investigate individual perceptions of TD and its

manifestations among agile practitioners. In their study, the authors asked

for assumed perceptions of TD among agile developers and later provided

the respondents with TD definitions and its related effects, to compare the

level of perception of TD with the provided definitions. Their findings

indicate a difference in how practitioners perceive TD. While many

respondents had prior knowledge of TD, over 20% had poor or no

knowledge of the concept. The authors in [P33] argue that the concept is

underutilized. Regarding the manifestations of TD, inadequate

architecture was reported as the main cause for TD in their projects. The

findings from the primary studies in this research area suggest that a better

understanding of TD in ASD teams would help determine and clarify the

scope, characteristics, and other implications of TD in ASD. An

experience report of agile teams [P38] shows that the lack of knowledge

of TD among agile developers contributed to reworks, poor architecture

and quality, and delays that affected the relationships with customers. The

authors show that raising awareness of TD among members of agile teams

plays a significant role in managing TD in ASD.

4.3.4. TD in rapid fielding (expedited system development)

We found two studies that aim to understand factors associated with

rapid fielding where TD was identified as a concern. Rapid fielding

provides immediate responses to organizations interested in faster time to

market and product delivery. The emphasis on quick delivery often leads

to solutions that incur TD in the long run.

 In rapid fielding, TD is considered as a significant factor in

determining the balance between speed and stability while delivering

business value. Thus, rapid fielding research with the aim of identifying

solutions that balance rapid delivery and quality development and

minimized TD were the main research interests. For instance, in [P2],

monitoring TD with a focus on quality is revealed as an enabling factor

for expediting systems development in agile projects. Development teams

identified the lack of TD measures in order to convince business

stakeholders to make investment in paying down TD. The study shows

that a lack of TD measures made it hard for development teams to make a

strong case for the business side to invest in TD fixes. Additionally,

practices followed by agile practitioners to respond to problems associated

with rapid fielding, such as combining architecture and agile practices, are

also presented. Koolmanojwong and Lane (2013) [P13], which aims to

determine factors for rapid fielding systems development, shows

unmonitored TD as an inhibiting factor in rapid fielding.

4.3.5. TD in distributed ASD

There are two studies ([P11], [P19]) where TD is raised as a concern

in distributed ASD. In distributed ASD, geographical and time distances

pose a challenge for managing TD. For instance, there are difficulties in

12

communicating TD among different teams. As a result, distributed agile

teams need to have a common strategy for the accumulation and

management of TD.

Bavani (2012) [P11] investigates the understanding of TD and its

management in distributed ASD environments, with a special emphasis on

distributed agile teams and agile testing teams. The author suggests that

distributed agile teams need to be aware and aligned (that is, to achieve a

common understanding on how to organize and manage TD) in order to

manage TD. When distributed agile teams are aware and aligned, they are

able to identify TD items easily and make optimal and informed TDM

decisions. Moreover, the author argues that distributed ASD and agile

testing teams should track and determine the value of paying off TD.

Agile testing teams should be involved in addressing not only the TD

issues of the application under development, but also the TD related to the

test automation design and scripts. It has to be noted that this type of TD

is different from testing debt (e.g. lack of software tests, deficient unit

tests, etc.) but refers to TD in test automation scripts.

In the second study [P19], the experience of distributed ASD

development on a cloud-based platform revealed TD as a key risk

resulting from miscommunication among distributed teams. Once they

began making changes to the code base of the cloud-based platform,

distributed ASD developers at one site were unable to see the impacts on

other linked parts of the code base.

Regarding the value from distributed ASD, such as production cost

savings and quick time delivery [33], examining TD in distributed ASD

becomes important. Understanding and internalizing the concept of TD in

distributed ASD will provide the knowledge to develop approaches that

enable distributed ASD that is economical and of acceptable quality.

Hence, more studies should be conducted to investigate the effects of TD

in distributed ASD.

4.4. Causes and consequences of TD in ASD

RQ2. What are the related causes and consequences of accruing TD in

ASD?

We identified eight categories of causes behind incurring TD in ASD

(shown in Table 8), from which the emphasis on quick delivery in ASD

was identified as one of the most frequently mentioned causes. Agile

developers frequently face the pressure of dealing with tight schedules

while trying to deliver value to customers. As a result, they are often

forced to take shortcuts in the pursuit of quick delivery, which leads to

incurring TD.

Likewise, architectural and design issues such as inflexibility in

architecture, poor design, and suboptimal up-front architecture and design

solutions are reported by 16 primary studies as the other significant cause

behind incurring TD in ASD. While this can probably be attributed to the

shortsighted view of architecture within ASD, it also indicates the need

for balancing architecture and agility in ASD. We need approaches that

deliver robust and flexible architecture that enables flexibility and

adapting to dynamic business changes.

When ASD practices such as test automation are not properly

followed, they can result in TD. There are 10 studies where inadequate

test coverage is reported as a cause of incurring TD. The lack of

automated tests, acceptance tests, and integration tests contributes to

testing-related TD. Similarly, nine studies attributed TD in ASD to the

lack of understanding of the systems being built (requirements). A failure

to understand the system under development may lead developers to make

assumptions that consequently incur TD in ASD.

Table 8. Causes of incurring TD in ASD

Cause Primary studies Frequency

Emphasis on quick delivery P1, P2, P4, P5, P8, P11,

P19, P21, P23, P24, P26,

P27, P28, P34, P35, P38,

16

Architecture and design issues P2, P4, P5, P10, P12, P13,

P17, P18, P21, P25, P27,

P31, P33, P35, P36, P38

16

Inadequate test coverage P5, P6, P11, P12, P16,

P23, P27, P28, P32, P38

10

Lack of understanding of system

being built/requirements

P5, P7, P11, P13, P19,

P20, P27, P28, P29

9

Overlooked and delayed

solutions and estimates

P5, P7, P10, P11, P13,

P21, P27, and P28

8

Less/no/delayed refactoring P5, P8, P21, P23, P28, P37 6

Code duplicates/copy pasting P11, P16, P29 and P38 4

Others P5, P22 2

Another significant factor associated with TD in ASD is an oversight

in estimations of sprints in ASD and subsequent delayed decisions.

Overlooked estimations in sprints, schedules and working velocity,

delayed refactoring, and architectural decisions incur TD in ASD.

Unrealistic estimations and delayed decisions can be the result of

inexperienced ASD teams. However, the literature suggests that these can

be mitigated by improving team’s estimation ability [P10].

Inadequate refactoring or delayed refactoring is also reported by six

studies as a cause of incurring TD in ASD. This implies that developers

should give enough attention to refactoring in order to prevent TD from

building up in the software product. Another significant cause of incurring

TD came from code duplicates (copy pasting), which were implemented

as shortcuts during development.

Furthermore, we identified other non-recurring causes related to

incurring TD in ASD, such as: parallel development in isolation where the

buildup of TD increase when source code from isolated branches are

merged to the code base [P5], resource constraints [P22], and an

organizational gap between business, operational, and technical

stakeholders [P22].

While considering the consequences of incurring TD in ASD, reduced

productivity, system quality degradation, and increased maintenance costs

are the most notable ones (see Table 9).

Table 9. Consequences of incurring TD in ASD

Consequence Primary studies Frequency

Reduced productivity P1, P2, P5, P8, P10, P11,

P13, P14, P16, P17, P20,

P23, P29, P31, P32, P37,

P38

17

System quality degradation P3, P4, P5, P7, P8, P10,

P13, P15, P20, P22, P25,

P26, P27, P32, P33, P37,

P38

17

Increased cost of maintenance P8, P11, P12, P13, P17,

P18, P21, P22, P23, P24,

P26, P27, P29, P30, P38

15

Complete redesign or rework

of system

P13, P35, and P38 3

Market loss/

hurt business relationships

P11, P20, P38 3

13

Whenever TD is not incurred strategically, it builds up to a level that

forces agile teams to put a great deal of effort into fixing defects and

addressing stability issues. This in turn results in a slowdown of working

speed and reduced productivity. Similarly, TD affects the quality of a

system through degradation, making it error-prone, less stable and at

times redundant ([P5], [P22] and [P13]).

The other significant consequence of TD in ASD was the increased

cost of maintenance. Failure to address TD on time accrues more TD and

results in a more complex and hard to maintain software with an increased

cost of maintenance ([P8], [P11], [P12], [P13], [P17], [P18], [P21], [P22],

[P23], [P24], [P26], and [P27]). In such cases, agile teams need to put in

extra effort to fix sub-optimal design choices, and the further introduction

of post-delivery costs significantly affects the revenue that could be

gained if there were proper management of TD.

Complete redesign or rework of the system as well as a market loss

have also been reported as consequences of TD in ASD. From the

developers’ perspective, TD forces big bang responses, such as taking

shortcuts in maintenance, which further increase the accumulation of TD

([P2] and [P4]). A loss in traceability or predictability might also arise,

forcing either a complete redesign or rework of the system ([P13], [P35],

and [P38]). When left unmanaged, TD can grow to a level that is more

complex and costly. TD in ASD can also lead to a market loss and failure

of businesses ([P11], [P20]) or negatively impact the relationship with

business stakeholders [P38]. In contrast, when TD is incurred

systematically, it can be used to gain business value and opportunities and

to achieve project goals ([P5], [P10], and [P21]).

4.5. TDM strategies in ASD

RQ3. What are the strategies proposed in literature to manage TD in

ASD?

We identified 31 studies addressing RQ3, from which 12 categories of

TDM strategies in ASD were derived. As shown in Table 10, there are 12

studies where the use of specific approaches, tools, and models are

suggested for managing TD in ASD. In general, these are TDM strategies

that assist with decisions in ASD, tools for identifying, tracking, and

resolving TD in ASD, and models that help in the analysis of TDM

decisions.

For instance, Cavaleri et al. (2012) suggest in [P23] that having a

project problem-solving pattern in ASD would help to manage TD

concerns, as well as measure and monitor TD. Project problem-solving

patterns are “the recurring organizational configuration of human

interactions designed to support a project team in seeking, recognizing

and formulating problems” [P23]. Others such as Holvitie et al. (2013)

[P9] proposed the DebtFlag tool for identifying, tracking, and managing

TD in ASD.

Our findings reveal that refactoring (a TD repayment strategy) is the

most popular TDM strategy in ASD. Refactoring helps to pay down TD

by restructuring the code base or system architecture without altering the

external behavior of the software system under development. Suggestions

regarding the refactoring strategy for TDM in ASD include educating

developers to refactor, embracing refactoring culture, and applying

continuous refactoring ([P4], [P13], [P18], [P20], [P21], [P22], [P24],

[P27], [P28,] [P32], and [P33]). However, there are some concerns with

refactoring in ASD. For instance, Nord et al. (2012) [P21] argue that

refactoring may not be as effective in large-scale projects as it is in small-

scale projects. Additionally, it is considered time-consuming and hard to

apply in complex projects [P32]. TD quantification is also key in

managing TD in ASD. We found cost models such as the COCOMO

([P5], [P17]), project solving pattern framework [P23] and the

propagation cost model [P8] were used to quantify TD and analyze

decisions related to TD in ASD. The detailed list of approaches, tools, and

models used for managing TD is shown in Table11.

Table 10. TDM strategies in ASD

TDM strategy Primary studies Frequency

1.Specific approaches, tools and

models to manage TD in ASD

 12

 Tools P9, P11, P25, P32, P38 5

 Approaches P1, P7, P21, P23 4

 Models P5, P8, P17 3

2. Refactoring P4, P13, P18, P20, P21, P22,

P24, P27, P28, P32, P33

11

3. Enhanced visibility of TD P2, P7, P8, P21, P30,

P32, P36, P37

8

4. Test automation P11, P16, P22, P32, P34 5

5. Common (agreed) DoD P12, P14, P34, P36, P37 5

6. Planning in advance for TD P4, P11, P16, P22, P27 5

7. Code analysis P4, P12, P15, P16, P27 5

8. Agile practices such as pair

programming, TDD (test driven

development) and CI

(continuous integration)

P6, P16, P22, P28, P29 5

9. Prioritizing TD P11, P12, P27, P389 4

10. Improving estimation

techniques

P10, P27, P28, P29 4

11. Transparent communication

as to the level of TD with

business stakeholders

P2, P23, P28 3

12. Establishing an acceptable

level of TD

P4, P32, P36 3

Table 11. Approaches, tools, and models for managing TD in ASD

Primary

study

Approaches, tools, and models

P1 (Approach) Cost-benefit analysis approach

P5 (Model) Cost-model (COCOMO) to analyze trade space and

show the range of options and the resulting consequences related

to TD

P7 (Approach) Responsibility driven architecture approach applying

concepts of real options theory to track decision-making and

understand timing for appropriate TD decisions

P8 (Model) Propagation cost model to get an insight into degrading

architecture quality

P9 (Tool) DebtFlag tool to capture, track, and resolve TD

P11 (Tool) Continuous integration tool to quantify TD on the basis of

code complexity and automated test coverage

P17 (Model) MAKEFLEXI and COCOMO models to estimate and

manage TD in ASD

P21 (Approach) Collective dashboards and visualization approaches

(e.g., assisting TDM through a sonar visualization plugin)

P23 (Approach) Project problem-solving pattern approach

P25 (Tool) Dependency analysis and revision history to detect

architectural deviations

P32 (Tool) Quality “from now” through tools such as Ndpend to

detect and monitor code violations

P38 (Tool) TD board to visualize and manage TD, accompanied with

metrics to measure TD (static code analysis tools)

Enhancing the visibility of TD, architectural dependencies, and a list

of design decisions related to TD are reported as TDM strategies in ASD

by eight studies ([P2], [P7], [P8], [P21], [P30], [P32], [P36], and [P37]).

Improving TD visibility by keeping track of a list of architectural and

14

design decisions in a backlog ([P2], [P7]), the use of TD visualization

boards ([P21], [P36], and [P38]), “ code Christmas tree” [P30], pie and

bar charts to visualize and manage TD [P37], and TD visualization tools

like Ndpend to detect code violations [P32] that assist in identifying,

tracking, and managing TD, are included in this category. Increased

visibility of architectural dependencies is argued to enhance rework

estimations and communication of architectural quality ([P8], [P21]).

Test automation has also been reported as a strategy to reduce the

level of TD incurred in ASD ([P11], [P16], [P22], [P32], and [P34]). This

is done by automating manual tests or assigning test automation teams

[P22] to increase the coverage of automated tests. However, it is

important that agile teams understand and apply test automation practices

properly. Agile developers and testers should collaborate in the design of

automated test scripts [P11].

The “Definition of Done” (DoD) concept was also commonly applied

as a TDM strategy in ASD. Establishing a common understanding on

what “done” means (e.g., Scrum’s “Definition of Done”) within agile

teams has a significant value in TDM. The concept of DoD has been

applied to improve the quality of software and reduce TD resulting from

deferred defects in five studies ([P12], [P14], [P34], [P36], and [P37]).

Employing a common DoD in different levels, such as story, sprint, and

release, in order to achieve a common understanding on TD-related issues

and strategically manage TD is a unique TD reduction strategy applied in

ASD. For instance, in P12, multi-level DoD (DoD at the story, sprint, and

release levels) is used to monitor TD with metrics such as deferred defects

(measure of TD for future releases) and reopened defects. A DoD with

fewer deferred defects shows reduced TD. The strategies related to

“Common DoD” reported in the primary studies are shown in Table 12.

Table 12. Common DoD for managing TD in ASD

Primary

study

Common (agreed) DoD

P12 Multilevel DoD (DoD at story, sprint, and release levels) is

used.

P14 DoD is used during sprint reviews to identify and highlight

fall out items (incomplete stories).

P34 DoD is applied (through quality assurance checklists) in order

to prioritize TD.

P36 “Definition of the right code” is applied to manage TD.

P37 TDM is included as part of the DoD for user stories, sprints,

and releases.

Planning ahead for TD is indicated as a TDM strategy in ASD in five

studies ([P4], [P11], [P16], [P22], and [P27]). Advance planning for TD

involves assigning pre-emptive efforts to address TD. Resources were

allocated in advance for tasks such as code cleanup and the removal of

design shortcuts [P4], code review and refactoring [P27], and more

appropriate planning of user stories to pay down TD in the future [P11].

Dedicated teams that are particularly responsible for TD reduction can

also be allocated in advance in agile teams ([P4], [P16], and [P22]).

Additionally, code analysis through code review, test reviews, and the

use of automated tools were also reported as important practices for

managing TD in ASD, as shown in Table 13. These cover manual and

automated code reviews and code analysis practices help to identify

deviations from coding conformance and testing.

The agile practices of pair programming, test-driven development,

(TDD), and continuous integration (CI) are also reported as strategies for

managing TD in ASD in five studies ([P6], [P15], [P21], [P27], and

[P28]). For instance, with CI, developers were able to check whether the

integration of new code broke the existing code base and make corrections

quickly ([P6], [P28]). Applying TDD is also reported as a practice for

managing TD in small-scale agile software projects ([P15], [P21], and

[P27]). Furthermore, through pair programming, developers can easily

communicate and learn about TD and its management [P27].

Table 13. Code analysis for managing TD in ASD

Primary

study

Code analysis

P4 Code reviews to reveal design shortcuts.

P12 An acceptance test peer review and design peer review.

P15 Code review with better-defined acceptance criteria.

P16 Application of automated code analysis (code coverage, code,

and design rule conformance).

P27 A review to understand where the code went wrong.

We also identified four studies ([P11], [P22], [P27], and [P38]) that

suggest prioritizing TD as a TDM strategy in ASD projects. TD in ASD

needs to be classified and ranked according to factors such as severity

during the process of paying it down. For instance, Davis (2013) [P12]

proposes prioritizing TD items in earlier iterations of ASD/flows of lean

development as a preventive measure to pay down TD in ASD.

There are four studies where improving estimation techniques (e.g.,

tackling estimation problems) is found as a mitigation strategy for TD in

ASD projects (see Table 14). Optimistic estimations by agile developers

lead to TD ([P10], [P28]). In such cases, increasing the teams’ estimation

ability leads to improved size estimates and incurs a smaller amount of

TD.

Table 14. Improving estimation techniques in ASD

Primary

study

Improving estimation techniques in ASD

P10 Improve the agile team’s estimation ability.

P27 Empower teams in estimation; agile teams should keep

realistic estimates (hours for code review and

refactoring).

P28 Practice frequent deadlines in previous user stories,

which is assumed to improve estimates for new user

stories.

P29 Develop a method for bulk estimating a release

backlog to identify high-risk backlog items.

While ASD promotes engaging customers in the product development,

establishing a transparent communication about TD with customers can be

a concern. Developers find it difficult to communicate a business case for

TDM decisions with business stakeholders [P2]. In order to fulfill the

continuous demand of customers, agile developers might focus on speedy

delivery and make suboptimal decisions that incur TD. Moreover, failing

to communicate TD transparently and pay it back at the right time impacts

the team’s productivity and schedules [P2]. There are three studies where

building transparent communication as to the level of TD with business

stakeholders is observed as a strategy towards managing TD in ASD

([P2], [P23], and [P28]). By communicating the level of TD clearly with

customers, agile developers can collaborate with customers to make

appropriate decisions that balance delivery as well help manage TD.

We identified three papers which discern establishing a consensus

about the acceptable level of TD as a TDM strategy in agile projects ([P4],

[P32], and [P36]). These studies show that it is important for teams to

establish an agreement on the minimum quality of the code base and the

level of TD that can be assumed. It was observed that by agreeing on the

15

acceptable level of TD, agile teams can prevent further increase of TD and

take corrective action in time [P32]. A consensus as to the minimum

quality of source codes added to the code base helps to keep TD to a

minimum [P4].

4.6. Research gaps

RQ4: What are the existing research gaps in the field of TD in ASD?

The findings of our study provide important research areas that need

further investigation. We use the relationship between facets such as

pertinence, research type, and contribution to analyze and explore

research gaps in the area. As the first step, we wanted to investigate the

relationship between the pertinence and contribution facets of primary

studies, as shown in Fig. 5.a. Information for determining the pertinence,

contribution and research type of studies is shown in Appendix B.

By analyzing the pertinence and contribution facets of the studies in

Fig. 5.a, it can be observed that only 10 studies have full pertinence

(entirely dedicated to discussing TD in ASD). However, among these

studies, eight have a lessons learned contribution; the rest include one tool

and one guideline contribution. This further reflects a scarce contribution

of models, frameworks, theories, guidelines, and tools that are fully

focused on TD in the context of ASD. Hence, we can argue the need for

more studies that are fully pertinent and offer such a necessary

contribution to help characterize and manage TD in ASD. Additionally,

Fig. 5.a reveals that 17 studies have partial pertinence, and the other 11

studies have marginal pertinence. We also undertook an investigation of

the research type to determine the trends through the years, as shown in

Fig. 5.b. Philosophical studies constitute the least employed research type

in the area. Given that philosophical studies introduce a new and

innovative way of looking at things, we can also argue the need for more

philosophical papers that provide novel approaches to characterize and

manage TD in ASD.

In addition, while considering publications from 2011 onward, we can see

that there has been more emphasis on evaluation papers (10 studies). It

can also be seen that there are six experience papers, eight solution

proposals, four opinion papers, and one philosophical paper during the

same period of time. A relatively growing adoption of evaluation studies

during this period shows that there have been more practical

implementations and their evaluations conducted in the area. The

distribution also shows that a relatively high number of studies (about

24%) in the area are solution proposals. The increasing adoption of

evaluation and solution proposal papers should further be encouraged

Additionally, we observe concrete research gaps that need further

investigation, which are presented as follows.

The two most important research areas imply that academia should

focus on providing solutions for managing TD in ASD and further

investigate the role of architecture in ASD and its relationship with TD.

For instance, there is a need for solutions that quantify degrading

architecture quality (architectural debt) [P8] and characterize the business

value of architectural decisions in ASD.

Considering the different tools and models for managing TD in ASD,

we need standardized, advanced, and validated approaches, tools, and

models. We found studies that recommend tools, models, and approaches

without empirical validation. For instance, the DebtFlag tool suggested in

[P9] supports only the Java language and lacks cross-compatibility (that

is, support for other programming languages). Moreover, there is no

empirical validation of the tool.

Immediate delivery of software should counterbalance the delivery of

overall business value and likely accrued TD [34]. In the context of rapid

fielding, solutions that balance schedule (expediency), cost, and flexibility

are required for managing TD. We need validated cost models that

support a method of TDM decision-making that values both expediency

and quality in ASD.

Fig. 5 - (a) Contribution Vs pertinence of primary studies

Fig. 5 - (b) Annual distribution of studies by research type

16

Similarly, a detailed investigation of TDM strategies, such as the

applicability of refactoring in large-scale ASD, remains to be done ([P21],

[P24], and [P32]). The lack of support mechanisms to aid developers in

paying down TD through refactoring was reported as a challenge [P32].

Future studies can examine ways to adapt refactoring in complex and

large-scale agile projects and provide refactoring decision-making

approaches that support managing TD in ASD.

In ASD, strategies that clarify the business value of TDM decisions,

especially from the business stakeholders’ perspective, are critical for

communicating the state of TD. While TD problems may be visible for

developers, communicating the impact of TD with business stakeholders

is a challenge [P2]. Identifying strategies that increase the business

visibility of TD [P10], provide transparent communication on the value of

TD, and assist in TDM decisions among developers and business

stakeholders is a potential research gap that needs to be addressed.

Although none of our primary studies explicitly mentioned the concept of

“social debt”, aspects that reflect social debt were found for example in

social interactions and organizational structure that are affected by TD.

For instance, there were cases where the lack of trust and informal

communications were affecting decisions related to TD in the case of

distributed software development [P19]. Cases related to organizational

gaps that affect TD have also been discussed. [P22]. Therefore, social debt

in ASD seems to be a fruitful area for future research.

Regarding the application of DoD in ASD, some empirical studies

show its effectiveness in managing TD incurred from code defects.

However, the implication of DoD for non-functional requirements is still

an open research issue, and validations are necessary to determine a

relevant DoD strategy [P12].

Finally, the majority of the research contribution in the area is lessons

learned. Therefore, academia should emphasize providing more tools,

models, and frameworks to assist formalization and management of TD in

ASD.

5. Comparison to related work

Our SLR aggregates the existing knowledge on TD in the context of

ASD in terms of the most studied research areas, the causes of TD in

ASD, the consequences of incurring TD in ASD, and strategies for

identifying, measuring, and preventing TD in ASD. We included a

significant number of primary studies that have not been part of the

previous secondary studies ([P5], [P7], [P8], [P14], [P15], [P17], [P18],

[P19], [P20], [P23], [P25], [P26], [P28], [P31], [P32], and [P35]).

While the context of our research (ASD) is completely different from

the other studies, we observe close relationships between the research

questions of existing secondary studies and our SLR. Table 15 provides

the list of corresponding questions raised in other studies in comparison to

ours.

For instance, regarding the causes of incurring TD in ASD (RQ2), we

found eight categories of causes (see Table 8). Similarly, Tom et al.

(2012; 2013) ([4], [5]) investigated the reasons behind TD, asking “why

does technical debt arise?” The authors highlight the precedents of TD as

a prioritization of delivering the product (time constraint), poor

communication, poor collaboration among team members, poor

documentation, and individual attitudes such as ignorance and oversight

[5]. Among those, the first cause (emphasis on quick delivery) is also

considered to be one of the most common potential causes of TD in ASD.

Our analysis shows that architecture and design issues are also the most

common causes of TD in ASD. Our work complements the findings of

Tom et al. (2012) and introduces new perspectives regarding the causes of

TD in ASD, such as overlooked estimations of sprints, parallel

development in isolation, issues in testing and coding processes, and

organizational gaps among business, operational, and technical

stakeholders. Alves et al. (2015) did not study the causes of TD, but the

authors looked at indicators to find different types of TD. Under the

design and documentation debt categories, Alves et al. (2015) highlight

bad coding practices, architecture issues, and documentation issues as

potential reasons for incurring TD, and propose a list of indicators from

coding and design to identify TD (e.g., modularity violation, code smells,

and automatic static analysis). In our SLR, we also found coding and

design issues (e.g., code duplicates and insufficient or no refactoring) to

be potential causes of TD in ASD. Architecture and design issues were

also among the popular themes, but coding debt was not popularly

reported by primary studies in the context of ASD.

Table 15. Corresponding questions with other secondary studies

Secondary

study

Research questions

Our study RQ2.

What are the related causes and

consequences of incurring TD

in ASD?

RQ3.

What are the strategies

proposed in literature to

manage TD in ASD?

Tom et al.

(2012;2013)

RQ2.

Why does technical debt arise?

RQ3.

What are the benefits and

drawbacks of allowing TD to

accrue?

Li et al. (2015) RQ6.

What are the

different activities of

TDM?

RQ7.

What approaches

are used in each TDM

activity?

RQ8.

What tools are used in

TDM and what TDM

activities are supported

by these tools?

Alves et al.

(2015)

 Q3.

What strategies have

been proposed for the

management of TD?

Ampatzoglou et

al. (2015)

 RQ2.

What are the financial

approaches that have

been applied in

technical debt

management?

Regarding our second research question (RQ2), we can infer that in

ASD the focus should be on balancing the immediate and long-term

concerns to minimize TD. More specifically, resource constraints and

architecture and design issues are the causes driving TD in ASD, and have

17

similarly been reported by Tom et al. (2012; 2013) and Alves et al. (2015)

as two main factors that in turn lead to TD.

In our SLR, reduced productivity, system and quality degradation, and

increased maintenance cost were found as the most significant

consequences of incurring TD in ASD. Likewise, the study by Tom et al.

([4], [5]) of the outcomes of TD in software development reveals that TD

impacts productivity, the quality of the product, and project risk.

Moreover, Tom et al. (2012) show that team morale is impacted as a result

of incurring TD. While we did not find consequences related to team

morale, other consequences (such as market loss and a complete

redesign/rework) were the other recurrent themes in our findings.

Therefore, we could argue that the consequences of TD are common

among software teams regardless of the development approaches

implemented.

Regarding the TDM strategies in ASD (RQ3), we find relevant

questions raised by Li et al. (2015) [6], Alves et al. (2015) [7] and

Ampatzoglou et al. (2015) [8] despite the difference in context. Li et al.

[6] investigate TDM in terms of identification, measurement, repayment,

communication, and prevention techniques. The authors suggest both

code and dependency analysis to identify TD. In our SLR, we also looked

for specific approaches, tools, and models to identify TD in ASD and

found that code and architectural dependency analysis are techniques

suggested in the primary studies. Different from earlier work, detailed

strategies are proposed in the context of ASD to identify TD, such as

acceptance test reviews, code and design reviews, and automated analysis.

To measure TD, Li et al. [6] identified cost estimation models, human

estimation, and code and operational metrics. In our SLR, we also find

that the COCOMO model, propagation cost models, project solving

patterns and the more specialized MAKEFLEXI cost model are different

ways to measure and monitor TD in ASD. In terms of agile practices, we

observe that collective dashboards, visualization techniques, and

continuous integration tools were also proposed in the primary studies to

identify and monitor TD in ASD. To reduce TD, Li et al. [6] propose

refactoring, automation, reengineering, and bug fixing activities; among

these, refactoring, code analysis, and test automation are also reported in

our SLR. Furthermore, we report more agile-specific approaches to

monitor and reduce TD, such as setting a commonly agreed DoD,

improving estimation techniques of sprints, planning in advance for TD,

and implementing pair programming or test-driven development.

Ampatzoglou et al. [8] investigate financial approaches used in TDM.

Similarly, Alves et al. (2015) summarize TDM strategies. The authors in

both of these studies list cost-benefit analysis, portfolio management, and

real options as frequently applied techniques. Ampatzoglou et al. [8]

mention that these financial approaches are employed differently in

various studies, and there is an inconsistency between their use in

software engineering and finance contexts. Alves et al. [7] confirm that

the same approaches were employed for TDM, but they further add both

the analytical hierarchical process and dependency analysis as more

software–engineering specific approaches. In our SLR, we also find cost-

benefit analysis as one strategy for TDM in ASD. Furthermore, we

identify a list of primary studies employing custom approaches that have

not been listed in previous secondary studies, e.g., a responsibility-driven

architecture approach (based on real options theory) and a project

problem-solving pattern. These custom approaches also confirm

Ampatzoglou et al. [8]’s findings that TDM has been done differently in

different settings, and there is a lack of consistency in this regard.

Overall, we observe that studies on ASD share similar causes of TD

(e.g., coding and architecture issues), encounter similar consequences of

incurring TD (e.g., reduced productivity and quality), and the studies

employ similar strategies for TDM (e.g., dependency analysis, automated

static code analysis, testing activities, cost estimation models, and

refactoring). Our study, on the other hand, complements prior work on TD

by introducing TDM strategies used in agile teams (e.g. ‘common DoD’,

improving estimation techniques for sprints), causes of incurring TD in

ASD (e.g. oversight in sprint estimations, isolated parallel development),

and new approaches, tools, and models for identifying, measuring, and

reducing TD in the specific context of ASD (e.g. MAKEFLEXI,. project

solving pattern).

6. Conclusion

TD has broad economic and technical implications in ASD, and has

recently been gaining more attention from both academia and industry. As

a result, an increasing number of studies have been conducted on TD

within the context of ASD. Our study yielded 38 primary studies

discussing TD in the context of ASD.

In this study, we determine five research areas from the literature of

TD within the context of ASD. These are: managing TD in ASD,

architecture in ASD and its relationship with TD, TD know-how in ASD

teams, TD in distributed ASD, and TD in rapid fielding development.

Among these research areas, great attention was given to managing TD in

ASD.

The majority of literature discussing TD in the context of ASD reports

consequences of poor software development practices to describe TD. An

emphasis on quick delivery and architecture and design issues are the

most frequent causes attributed to TD within the context of ASD. The lack

of understanding of the system being built (requirements) and inadequate

test coverage are the second most reported causes of incurring TD in

ASD. Additionally, the study identifies causes such as overlooked

solutions and estimates, less/delayed refactoring, code duplicates, parallel

development in isolation, and organizational gaps among business,

operational, and technical stakeholders attributed to incurring TD in ASD.

Regarding the consequences of TD in ASD, reduced productivity, system

(quality) degradation and increased maintenance costs are the top three

consequences. There are various approaches, models, and tools employed

to identify, quantify, monitor, and pay back TD in in the specific context

of ASD. In terms of TDM strategies in ASD, refactoring is the most

popular practice used to repay TD. Additionally, a significant number of

studies suggest enhancing the visibility of TD as a TDM strategy in ASD.

Applying common (agreed) DoD, test automations, and planning in

advance for TD are also popular strategies of managing TD in ASD.

With regards to practitioners, the results of our study provide

knowledge on TD and its management within the context of ASD. They

also provide a comparison with previous studies’ categorization of TD

concepts, highlight techniques used in general by the software engineering

community, and introduce new approaches that are specifically useful for

ASD. Through this study, practitioners can identify the most common

reasons for incurring TD, its consequences, and the economic implications

of ASD and TDM strategies applied in ASD. For instance, when

employing test automation for managing TD in ASD, it is important that

agile testers ensure that their test automation design and scripts will not

incur TD.

From an academic perspective, the study identifies important research

areas that need further investigation. Future studies should emphasize

investigating TDM in ASD, as well as the role of architecture in ASD and

its relationships to TD. Our findings also indicate the need for more tools,

18

models, and guidelines that support management of TD in ASD.

Moreover, there is a potential research gap for standardized approaches to

manage TD. Examining the relationship between causes and

consequences of TD in ASD will assist in uncovering potential TDM

strategies that address TD-related issues. These findings would help agile

practitioners to understand different causes of TD in ASD, monitor and

prevent TD in their teams through agile specific strategies.

Acknowledgements

This research has been partially supported by ICT SHOK N4S program

financed by the Finnish Funding Agency for Technology and Innovation

(Tekes) and Digile OY.

Appendix A. Primary studies

[P1] Schmid, K. (2013). A formal approach to technical debt decision

making. In Proceedings of the 9th international ACM Sigsoft conference

on Quality of software architectures (pp. 153-162). ACM.

[P2] Bellomo, S., Nord, R. L., & Ozkaya, I. (2013). A study of enabling

factors for rapid fielding combined practices to balance speed and

stability. pp. 982-991.

[P3] Stochel, M. G., Wawrowski, M. R., & Waskiel, J. J. (2012).

Adaptive agile performance modeling and testing. Computer Software and

Applications Conference Workshops (COMPSACW), 2012 IEEE 36th

Annual, pp. 446-451.

[P4] Torkar, R., Minoves, P., & Garrigós, J. (2011). Adopting

Free/Libre/Open source software practices, techniques and methods for

industrial use*. Journal of the Association for Information Systems, 12(1),

88-122.

[P5] Lane, J. A., Koolmanojwong, S., & Boehm, B. (2013). Affordable

systems: Balancing the capability, schedule, flexibility, and technical debt

tradespace. 2. pp. 1391-1405.

[P6] Stolberg, S. (2009). Enabling agile testing through continuous

integration. Agile Conference, 2009. AGILE'09. 369-374

[P7] Abrahamsson, P., Babar, M. A., & Kruchten, P. (2010). Agility and

architecture: Can they coexist? IEEE Software, 27(2), 16-22.

[P8] Brown, N., Nord, R. L., Ozkaya, I., & Pais, M. (2011). Analysis and

management of architectural dependencies in iterative release planning.

Software Architecture (WICSA), 2011 9th Working IEEE/IFIP

Conference on, 103-112.

[P9] Holvitie, J., & Leppänen, V. (2013). DebtFlag: Technical debt

management with a development environment integrated tool. pp. 20-27.

[P10] Oualid Ktata and Ghislain Lévesque. 2010. Designing and

implementing a measurement program for Scrum teams: what do agile

developers really need and want? In Proceedings of the Third C*

Conference on Computer Science and Software Engineering (C3S2E

[P11] Bavani, R. (2012). Distributed agile, agile testing, and technical

debt. IEEE Software, 29(6), 28-33.

[P12] Davis, N. (2013). Driving quality improvement and reducing

technical debt with the definition of done. Agile Conference (AGILE),

2013, pp. 164-168.

[P13] Koolmanojwong, S., & Lane, J. A. (2013). Enablers and inhibitors

of expediting systems engineering. 16. pp. 483-491.

[P14] Frank, A., & Hartel, C. (2009). Feature teams collaboratively

building products from READY to DONE. Agile Conference, 2009.

AGILE '09. 320-325

[P15] Birkeland, J. O. (2010). From a timebox tangle to a more flexible

flow. In Agile Processes in Software Engineering and Extreme

Programming (pp. 325-334). Springer Berlin Heidelberg.

[P16] Israel Gat and John D. Heintz. 2011. From assessment to reduction:

how cutter consortium helps rein in millions of dollars in technical debt.

In Proceedings of the 2nd Workshop on Managing Technical Debt (MTD

'11). ACM, New York, NY, USA, 24-26.

[P17] Fernández-Sánchez, C., Díaz, J., Pérez, J., & Garbajosa, J. (2014).

Guiding flexibility investment in agile architecting. System Sciences

(HICSS), 2014 47th Hawaii International Conference on, pp. 4807-4816.

[P18] Brown, N., Nord, R., & Ozkaya, I. (2010). Enabling Agility through

Architecture,

[P19] Oza, N., Münch, J., Garbajosa, J., Yague, A., & Gonzalez Ortega,

E. (2013). Identifying potential risks and benefits of using cloud in

distributed software development

[P20] Antinyan, V., Staron, M., Meding, W., Osterstrom, P., Wikstrom,

E., Wranker, J., Hansson, J. (2014). Identifying risky areas of software

code in Agile/Lean software development: An industrial experience

report. Software Maintenance, Reengineering and Reverse Engineering

(CSMR-WCRE), 2014 Software Evolution Week - IEEE Conference on,

154-163.

[P21] Nord, R. L., Ozkaya, I., Kruchten, P., & Gonzalez-Rojas, M.

(2012). In search of a metric for managing architectural technical debt. pp.

91-100.

[P22] Codabux, Z., & Williams, B. (2013). Managing technical debt: An

industrial case study. Managing Technical Debt (MTD), 2013 4th

International Workshop on, pp. 8-15.

[P23] Cavaleri, S., Firestone, J., & Reed, F. (2012). Managing project

problem-solving patterns. International Journal of Managing Projects in

Business, 5(1), 125-145.

[P24] Brown, N., Cai, Y., Guo, Y., Kazman, R., Kim, M., Kruchten, P., et

al. (2010). Managing technical debt in software-reliant systems.

Proceedings of the FSE/SDP Workshop on Future of Software

Engineering Research, pp. 47-52.

[P25] Schwanke, R., Lu Xiao, & Yuanfang Cai. (2013). Measuring

architecture quality by structure plus history analysis. Software

Engineering (ICSE), 2013 35th International Conference on, 891-900.

[P26] Sneed, H. M., & Verhoef, C. (2013). Migrating to service-oriented

systems (why and how to avoid developing customized software

applications from scratch). pp. 91-96.

[P27] Krishna, V., & Basu, A. (2012). Minimizing technical debt:

Developer's viewpoint. Software Engineering and Mobile Application

Modelling and Development (ICSEMA 2012), International Conference

on, pp. 1-5.

[P28] Elssamadisy, A., & Schalliol, G. (2002). Recognizing and

responding to "bad smells" in extreme programming. Software

Engineering, 2002. ICSE 2002. Proceedings of the 24rd International

Conference on, 617-622.

[P29] Greening, D. R. (2013). Release duration and enterprise agility.

System Sciences (HICSS), 2013 46th Hawaii International Conference on,

pp. 4835-4841.

[P30] Kaiser, M., & Royse, G. (2011). Selling the investment to pay down

technical debt: The code christmas tree. Agile Conference (AGILE), 2011,

pp. 175-180.

[P31] David Garlan. 2014. Software architecture: a travelogue. In

Proceedings of the on Future of Software Engineering (FOSE 2014).

ACM, New York, NY, USA, 29-39.

[P32] Hanssen, G. K., Yamashita, A. F., Conradi, R., & Moonen, L.

(2010). Software entropy in agile product evolution.

[P33] Holvitie, J., Leppanen, V., & Hyrynsalmi, S. (2014). Technical debt

and the effect of agile software development practices on it - an industry

practitioner survey. Managing Technical Debt (MTD), 2014 Sixth

International Workshop on, 35-42.

19

[P34] Wiklund, K., Eldh, S., Sundmark, D., & Lundqvist, K. (2012).

Technical debt in test automation. pp. 887-892.

[P35] Palmer, K. D. (2014). The essential nature of product traceability

and its relation to agile approaches., 28. pp. 44-53.

[P36] Letouzey, J. -. (2012). The SQALE method for evaluating technical

debt. pp. 31-36.

[P37] Power, K. (2013). Understanding the impact of technical debt on

the capacity and velocity of teams and organizations: Viewing team and

organization capacity as a portfolio of real options. pp. 28-31.

[P38] Dos Santos, Paulo Sérgio Medeiros, Varella, A., Dantas, C. R., &

Borges, D. B. (2013). Visualizing and managing technical debt in agile

development: An experience report Springer.

Appendix B. Extracted data properties

Property Description

Pr1. Publication Year Publication year of the primary study.

Pr2. Publication Source Publication forum used to disseminate the primary study e.g. conference or journal.

Pr3. General type of paper

and research method

Studies were classified as a) empirical when the study findings were based on direct empirical evidence, b) theoretical if the study

findings primarily base on understanding of a certain field but without any empirical evidence to support the findings or

suggestions made in the study, and c) both if they were a combination of both empirical and theoretical studies.

Additionally, empirical studies were classified according to the specific empirical research method reported by the authors of the

primary studies as follows:

 Case study: the study employs case study, exploratory study where researchers analyze and answer predefined

questions for a single or multiple cases.

 Survey (questionnaire, observation, interview)

 Industrial report.

 Action Research: apply a research idea in practice, evaluate results, modify idea (cross between experiment and case

study).

 Experiment: empirical enquiry that investigates causal relations and processes.

 Not stated

Pr4. Research Type Research type classification adapted from Wieringa et al. (2006).

 Evaluation paper: investigates the problem in practice or techniques that are implemented in practice and evaluation is

conducted to validate the knowledge claim.

 Solution proposal: proposes a solution or technique and argues for the relevance without full validation. The solution

can be novel or significant improvement of an already existing technique.

 Philosophical paper: sketches or introduces new way of looking at things, a new conceptual framework, etc.

 Opinion paper: describe the personal opinion of the author about some topic, practice, etc. Explains what is good and

bad about something.

 Experience paper: reports personal experience of the author on one or more projects, it explains lessons learned by the

author.

Pr5. Pertinence of the paper Extent to what the study discusses TD in the context of ASD.

 Full: entirely related, the paper’s main focus is related to investigating TD in the context of ASD

 Partial: while the main topic of the research can be different from TD, the paper discusses the concept in the context of

ASD to an average level.

 Marginal: slightly discusses issues of TD in the context of ASD, but the main topic of the research is different from

TD.

Pr6.Contribution Adapted from Shaw, (2003) was used to identify the type of contribution from the primary study.

 Model: representation of an observed reality by concepts or related concepts after conceptualizing the process.

 Theory: construct of cause-effect relationships between determined results.

 Framework: conceptual maps and methods that help in analyzing and managing TD in ASD

 Lessons learned: a set of outcomes, directly analyzed from and obtained from research results (results found from

industrial/experience reports were also considered as lessons learned).

 Guidelines: list of advice, synthesis of obtained research results.

 Tools: technologies used, programs or applications applied to manage TD in ASD.

 Advice/implications: recommendations driven from personal opinions of the authors

Pr7. Research rigor

Assess rigor of the research method of an empirical study based on (Ivarsson and Gorschek, 2011) model of rigor and relevance, as

follows:

1. Evaluate the extent to which 3 aspects (Context, Study design, and Validity) are described

 Context (e.g. description of development mode, speed, company maturity)

 Study design/research method (measured variables, treatments, controls used in the study)

 Validity (description of threats to validity, measures to limit threats

*These aspects are scored on 3 level “weak” [0] medium [0.5] strong [1]. Total rigor is calculated as the sum of the rigor values of

the 3 aspects.

20

Property Description

Pr8. Industrial relevance

Assess industrial relevance of an empirical study based on (Ivarsson and Gorschek, 2011) model of rigor and relevance, as follows:

1. Evaluation of the realism of the study environment:

 Subjects (practitioners, students, researchers)

 Context (industrial setting)

 Scale (realistic size usefulness scalability)

2. Evaluation of how the research method applied in the study contributes to its industrial relevance:

 Research method (action research, case studies, conceptual analysis, survey, interview, experiment)

*All these aspects are evaluated on 2 levels as “Contribute to relevance” [1] and “Do not contribute to relevance” [0].

Then, the total relevance is computed as the sum of the relevance values of the 4 aspects

Pr9. TD definitions in ASD Definitions of TD in the context of ASD that are reported in literature.

Pr10. TD cause in ASDs Identify reasons behind incurring TD in the context of ASD

Pr11. TD consequences in ASD Identify the result of incurring TD in the context of ASD

Pr12. TDM strategies in ASD TD management mechanisms reported in literature e.g. practices, approaches etc.

Appendix C. Primary studies investigating TDM, their research type and contribution facets

PS TDM Focus Research type Contribution

P1 TD formalization and decision making approach to help TDM that can be applied in ASD. Philosophical Theoretical

P3 Proposes an adaptive performance modelling supported with automated performance analysis in ASD where TD is

paid off strategically.

Solution

proposal

Model

P4 Educates and encourages to refactor, build consensus on minimum quality of source code additions, apply code

review, plan in advance for TD, and assign special teams responsible for TD.

Experience paper Lessons learned

P5 Shows how engineering cost model (COCOMO) is used in the analysis of options and consequences into balance

expedited engineering, increase flexibility in architecture and minimize TD.

Solution proposal Model

P6 Shows how automated testing through continuous integration enable agile testing and slowed down testing TD Experience paper Lessons learned

P7 Shows how a balance between architecture and agility can be used to manage TD. Opinion paper Advice

P8 Demonstrates the propagation cost analysis model (propagation cost metric to model the impact of degrading

architectural quality by quantifying degrading architectural quality and the potential for future rework costs during

iterative release planning to strategically manage TD).

Evaluation paper Model

P9 DebtFlag tool to capture, track and manage TD, applicable in scrum sprint planning. Solution proposal Tool

P10 Lessons learned from design and implementation of measurement program in agile team where visibility of TD was

considered one key issue along with business value, and sprint time estimations.

Experience paper Lessons learned

P12 Multilevel use of the definition of done is applied to reduce TD in ASD and improve the quality. Experience paper Lessons learned

P14 Experience of a cross-functional team using scrum’s definition of done to reduce TD. Experience paper Lessons learned

P15 Applies work flow (flow based, lean/Kanban development approach) to ensure work items are slowed down enough

to have quality (applied analysis with acceptance criteria followed by implementation of code through TDD, code

review and testing - exploratory and manual acceptance tests) to reduce TD.

Experience paper Lessons learned

P16 Systematic agile adoption targeted towards cutting TD (highlights importance of TD assessment plan followed by TD

reduction project, assigning special SWAT (special teams that are tasked with evangelizing TD, applying unit testing

to reduce TD)

Experience paper Lessons learned

P17 MAKEFLEXI, to assist architectural flexibility decisions based on TD and real options. It consists of a set of steps to

create a model, based on decision trees to estimate when to design for flexibility (decide when to incur TD or

strategically payback TD).

Evaluation paper Model

P20 Method to identify and asses hard to maintain, fault prone code (TD) when developing software code in agile and

lean development by measuring code properties (method based on code complexity and revisions of source files)

Evaluation paper Tool

P21 Describes architecture focused and measurement based approach to strategically manage TD. Solution proposal Lessons learned

P22 Investigates TDM strategies in a company adopting agile approaches. Evaluation Lessons learned

P23 Shows a case where project solving pattern is seen as a viable option for measuring TD, balancing short and long

term values and monitor TD in ASD project. Proposes project solving pattern framework.

Solution proposal Framework

P24 Identifies TDM as important research area in ASD Opinion paper Advice

P25 Proposes combining evolution history information with file dependency structure to detect and locate architecture

deviation/degradation, discover shared but undocumented assumptions that cut across module boundaries in ASD.

Evaluation paper Tool

P26 Suggests adopting service oriented system development to reduce maintenance cost resulting from TD. Opinion paper Advice

P27 Suggests 13 steps to minimize TD from developers' perspective (technique implemented to minimize TD) in ASD. Solution proposal Guideline

P28 Examined & suggests XP practices to identify & mitigate TD Experience paper Lessons learned

P30 Shows experience of XP team in reducing TD by making problems visible using the code Christmas tree. Experience paper Lessons learned

P32 Suggests a 2 step approach for managing TD in ASD, i.e. establishing manageable entropy as first step and applying

continuous semi-automated quality monitoring and refactoring as 2nd step to support TDM.

Solution proposal Lessons learned

P36 Introduces the Sqale method to analyze the structure and impact of TD in ASD. Solution Proposal Framework

P37 Insight into the organization’s strategy for managing and reducing TD in ASD, suggests a technique for visualizing,

quantifying and tracking TD (Uses team capacity& velocity to understand the impact of TD; pie and bar charts to

visualize, track and understand value of TD).

Solution proposal Tool

P38 Experience of architecture team in supporting TDM, shows how to visualize high level TD and raise awareness of TD

by developers. Proposes the use of TD board to manage and visualize high level TD.

Experience paper Lessons learned

REFERENCES

[1] W. Cunningham, The WyCash Portfolio Management System, SIGPLAN OOPS Mess. 4 (1992) 29–30. doi:10.1145/157710.157715.

[2] P. Kruchten, R.L. Nord, I. Ozkaya, Technical Debt: From Metaphor to Theory and Practice, Software, IEEE. 29 (2012) 18–21. doi:10.1109/MS.2012.167.

[3] P. Kruchten, R.L. Nord, I. Ozkaya, D. Falessi, Technical debt: towards a crisper definition report on the 4th international workshop on managing technical debt, ACM

SIGSOFT Softw. Eng. Notes. 38 (2013) 51–54.

21

[4] E. Tom, A. Aurum, R. Vidgen, A consolidated understanding of technical debt, in: ECIS 2012 - Proc. 20th Eur. Conf. Inf. Syst., Association for Information Systems, 2012.

http://www.scopus.com/inward/record.url?eid=2-s2.0-84905750366&partnerID=tZOtx3y1.

[5] E. Tom, A. Aurum, R. Vidgen, An exploration of technical debt, J. Syst. Softw. 86 (2013) 1498–1516. doi: 10.1016/j.jss.2012.12.052.

[6] Z. Li, P. Avgeriou, P. Liang, A systematic mapping study on technical debt and its management, J. Syst. Softw. 101 (2015) 193–220.

[7] N.S.R. Alves, T.S. Mendes, M.G. de Mendonça, R.O. Spínola, F. Shull, C. Seaman, Identification and management of technical debt: A systematic mapping study, Inf.

Softw. Technol. 70 (2016) 100–121.

[8] A. Ampatzoglou, A. Ampatzoglou, A. Chatzigeorgiou, P. Avgeriou, The financial aspect of managing technical debt: A systematic literature review, Inf. Softw. Technol. 64

(2015) 52–73.

[9] Y. Guo, R.O. Spínola, C. Seaman, Exploring the costs of technical debt management--a case study, Empir. Softw. Eng. (2014) 1–24.

[10] K. Petersen, R. Feldt, S. Mujtaba, M. Mattsson, Systematic Mapping Studies in Software Engineering, in: Proc. 12th Int. Conf. Eval. Assess. Softw. Eng., British Computer

Society, Swinton, UK, UK, 2008: pp. 68–77. http://dl.acm.org/citation.cfm?id=2227115.2227123.

[11] McConnel, Technical Debt-10x Software Development | Construx, (2007). http://www.construx.com/10x_Software_Development/Technical_Debt/ (accessed June 16,

2014).

[12] S.M.A. Shah, M. Torchiano, A. Vetrò, M. Morisio, Exploratory testing as a source of technical debt, IT Prof. 16 (2014) 44–51. doi:10.1109/MITP.2013.21.

[13] E. Alzaghoul, R. Bahsoon, Evaluating Technical Debt in Cloud-Based Architectures Using Real Options, in: 2014 23rd Aust. Softw. Eng. Conf., IEEE, 2014: pp. 1–10.

doi:10.1109/ASWEC.2014.27.

[14] P. Kruchten, R.L. Nord, I. Ozkaya, J. Visser, Technical Debt in Software Development: From Metaphor to Theory Report on the Third International Workshop on

Managing Technical Debt, SIGSOFT Softw. Eng. Notes. 37 (2012) 36–38. doi:10.1145/2347696.2347698.

[15] S. Nerur, R. Mahapatra, G. Mangalaraj, Challenges of Migrating to Agile Methodologies, Commun. ACM. 48 (2005) 72–78. doi:10.1145/1060710.1060712.

[16] History: The agile manifesto, (2002). http://agilemanifesto.org/history (accessed June 9, 2014).

[17] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunningham, M. Fowler, et al., Agile Manifesto, Softw. Dev. 9 (2001) 28–35.

[18] T. Dybå, T. Dingsøyr, Empirical Studies of Agile Software Development: A Systematic Review, Inf. Softw. Technol. 50 (2008) 833–859. doi:

10.1016/j.infsof.2008.01.006.

[19] D. Cohen, M. Lindvall, P. Costa, An introduction to agile methods, Adv. Comput. 62 (2004) 1–66.

[20] P. Abrahamsson, Agile Software Development Methods: Review and Analysis (VTT publications), 2002.

[21] R. Bavani, 10 principles for success in distributed agile delivery, Cut. IT J. 26 (2013) 30–35. http://www.scopus.com/inward/record.url?eid=2-s2.0-

84890327069&partnerID=tZOtx3y1.

[22] R.T. Ogawa, B. Malen, Towards rigor in reviews of multivocal literatures: Applying the exploratory case study method, Rev. Educ. Res. 61 (1991) 265–286.

[23] C.S. Kitchenham B, Guidelines for performing systematic literature reviews in software engineering, in: Tech. Report, Ver. 2.3 EBSE Tech. Report. EBSE, 2007.

[24] J.L. Fleiss, Measuring nominal scale agreement among many raters., Psychol. Bull. 76 (1971) 378.

[25] Rodríguez, P., Haghighatkhah, A., Lwakatare, L. E., Teppola, S., Suomalainen, T., Eskeli, J., . Oivo, M. (2016). Continuous deployment of software intensive products and

services: A systematic mapping study. Journal of Systems and Software.

[26] R. Wieringa, N. Maiden, N. Mead, C. Rolland, Requirements engineering paper classification and evaluation criteria: a proposal and a discussion, Requir. Eng. 11 (2006)

102–107.

[27] M. Ivarsson, T. Gorschek, A method for evaluating rigor and industrial relevance of technology evaluations, Empir. Softw. Eng. 16 (2011) 365–395.

[28] H. Munir, M. Moayyed, K. Petersen, Considering Rigor and Relevance when Evaluating Test Driven Development: A Systematic Review, Inf. Softw. Technol. 56 (2014)

375–394. doi: 10.1016/j.infsof.2014.01.002.

[29] D.S. Cruzes, T. Dyba, Recommended Steps for Thematic Synthesis in Software Engineering, in: Empir. Softw. Eng. Meas. (ESEM), 2011 Int. Symp., 2011: pp. 275–284.

doi:10.1109/ESEM.2011.36.

[30] S. Bellomo, N. Ernst, R. Nord, R. Kazman, Toward Design Decisions to Enable Deployability: Empirical Study of Three Projects Reaching for the Continuous Delivery

Holy Grail, in: 2014 44th Annu. IEEE/IFIP Int. Conf. Dependable Syst. Networks, IEEE, 2014: pp. 702–707. doi:10.1109/DSN.2014.104.

[31] M. Shaw, Writing good software engineering research papers: minitutorial, in: Proc. 25th Int. Conf. Softw. Eng., 2003: pp. 726–736.

[32] Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. biometrics, 159-174.

[33] S.V. Shrivastava, others, Distributed agile software development: A review, arXiv Prepr. arXiv1006.1955. (2010).

[34] Ho, J., & Ruhe, G. (2014). When-to-release decisions in consideration of technical debt. Managing Technical Debt (MTD), 2014 Sixth International Workshop on, 31-34.

[35] Fowler, M. (2009). Technical debt quadrant. Retrieved November 20, 2014 from http://martinfowler.com/bliki/TechnicalDebtQuadrant.html
[36] Abad, Z. S. H., & Ruhe, G. (2015). Using real options to manage technical debt in requirements engineering. Requirements Engineering Conference (RE), 2015 IEEE 23rd

International, 230-235.

[37]. Rodríguez, P., Markkula, J., Oivo, M., & Turula, K. (2012, September). Survey on agile and lean usage in finnish software industry. In Proceedings of the ACM-IEEE

international symposium on Empirical software engineering and measurement (pp. 139-148). ACM.

[38] Abrahamsson, P. (Ed.). (2008). Agile Processes in Software Engineering and Extreme Programming: 9Th International Conference, XP 2008, Limerick, Ireland, June 10-

14, 2008: Proceedings (No. 9). Springer Science & Business Media

[39]. P. Kruchten.Refininig the definition of technical debt. (2016, April). https://philippe.kruchten.com/2016/04/22/refining-the-definition-of-technical-debt/ (accessed August

18, 2016).

http://martinfowler.com/bliki/TechnicalDebtQuadrant.html

