
ar
X

iv
:1

80
3.

09
57

1v
2

 [
cs

.S
E

]
 2

 J
ul

 2
01

8

Source Code Optimization using Equivalent Mutants✩

Jorge Lópeza, Natalia Kushika, Nina Yevtushenkob

aSAMOVAR, CNRS, Télécom SudParis, Université Paris-Saclay, 9 rue Charles Fourier, 91000 Évry, France
bIvannikov Institute for System Programming of the Russian Academy of Sciences, 25 Alexander Solzhenitsyn street, 109004, Moscow, Russia

Abstract

Context: A mutant is a program obtained by syntactically modifying a program’s source code; an equivalent mutant is a mutant,

which is functionally equivalent to the original program. Mutants are primarily used in mutation testing, and when deriving a test

suite, obtaining an equivalent mutant is considered to be highly negative, although these equivalent mutants could be used for other

purposes.

Objective: We present an approach that considers equivalent mutants valuable, and utilizes them for source code optimization.

Source code optimization enhances a program’s source code preserving its behavior.

Method: We showcase a procedure to achieve source code optimization based on equivalent mutants and discuss proper mutation

operators.

Results: Experimental evaluation with Java and C programs demonstrates the applicability of the proposed approach.

Conclusion: An algorithmic approach for source code optimization using equivalent mutants is proposed. It is showcased that

whenever applicable, the approach can outperform traditional compiler optimizations.

Keywords: Program / Code Optimization, Mutation (Software) Testing

1. Introduction

Source code optimization is a process which enhances a pro-

gram’s source code, in order to obtain a functionally equivalent

program, i.e., a program which computes the same solution for

the same problem but, possesses better non-functional aspects.

Traditionally, source code optimization techniques are imple-

mented on compilers [1].

Program mutants are used in mutation testing [2], a software

testing technique whose main idea is to modify the original

source code to obtain a mutant that should be later distinguished

from the original program by a test case. The program mod-

ification is performed using a mutation operator; a mutation

operator performs changes to the original source code. When

applying a mutation operator, an equivalent program called an

equivalent mutant can be obtained. Mutation testing attempts

to detect and avoid equivalent mutants [3]. We note that de-

tecting equivalent mutants using compiler optimizations is well

established [4]. However, to the best of our knowledge, the

first publication where a novel use of equivalent mutants is dis-

cussed, appeared recently [5]; the authors show that equivalent

mutants can be used for static anomaly detection, e.g., to detect

if the mutated code possesses better readability, better execu-

tion time, etc. However, the authors do not study nor outline

✩ c© 2018. This manuscript version is made available under the CC-BY-NC-

ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ .

Email addresses: jorge.lopez@telecom-sudparis.eu (Jorge López),

natalia.kushik@telecom-sudparis.eu (Natalia Kushik),

evtushenko@ispras.ru (Nina Yevtushenko)

a procedure where mutation operators are used for source code

optimization.

Equivalent mutants can provide an optimized source code

in terms of its (program/binary) execution time and other as-

pects. However, to effectively use the software mutation tech-

nique for source code optimization, several questions should

be addressed: what are the mutation operators which can pro-

vide such optimizations? how to apply such mutation operators

for optimization purposes? what is the benefit of the mutation-

based source code optimization compared to traditional source

code optimization? This paper is devoted to answer these ques-

tions; further, we perform preliminary experiments with a mu-

tation software, µJava [2], which showcase the applicability and

effectiveness of the proposed approach (Section 3).

2. Equivalent Mutants for Source Code Optimization

Given a (computer) program P, we denote SP its associated

source code. P is obtained from SP through a proper com-

pilation process, i.e., a function C : Σ∗ 7→ {0, 1}∗ that maps

a program’s source code (a string over a particular program-

ming language alphabet Σ) into a binary (or executable) code,

i.e., P = C(SP). We denote the set of all possible inputs for

P as I; correspondingly, O is the set of all possible outputs

of P. An input sequence is denoted as α ∈ I∗; correspond-

ingly, an output sequence β ∈ O∗ is the program’s output re-

sponse to this sequence, denoted as out(P, α)1. We consider

1We assume that the program is deterministic and, therefore, such output is

unique.

Preprint submitted to Information and Software Technology September 3, 2018

http://arxiv.org/abs/1803.09571v2
http://creativecommons.org/licenses/by-nc-nd/4.0/

a program’s running time under a given input sequence α, in

a common and predefined architecture, measured in millisec-

onds (ms) and denoted as t(P, α). Correspondingly, we denote

the overall running time of a program P with respect to a set of

input sequences M as τ =
∑
α∈M t(P, α).

A program P is M-equivalent to P′ (written P
M
≡ P′) if

∀α ∈ M out(P, α) = out(P′, α). We focus on program M-

equivalence due to the fact that in the general case, the problem

of checking the equivalence of two arbitrary programs is unde-

cidable. However, in some cases, equivalence with respect to

a finite set of inputs implies complete functional equivalence

when having a behavior model [6]. Furthermore, many pro-

grams are used only within a context, receiving only a subset

of possible (defined) inputs, or the program is only developed

for a subset of inputs. Likewise, it is well-known that regres-

sion tests (a finite subset of the program inputs) are becoming

an industry standard, and they somehow guarantee that a new

version (including an optimized one) behaves as required.

A source code optimization process is a function which re-

ceives a source code and produces a new (optimized) source

code O : Σ∗ 7→ Σ∗. The obtained source code compiles to a

functionally equivalent program with respect to an input set M,

i.e., C(SP)
M
≡ O(C(SP)). As it is not possible to derive an algo-

rithmic approach to compute the time complexity of a program,

optimality is considered with respect to the overall running time

of a program, i.e,
∑
α∈M t(C(O(SP)), α) <

∑
α∈M t(C(SP), α).

Arcaini et al. [5] showcased that mutants can be better than

the original source code, including the case when the mutated

source code has better time complexity than the original one.

However, no discussion was performed on how equivalent mu-

tants can be exploited. Therefore, the problem stated and solved

in this paper is as follows: how can source code optimization

be forced by the use of source code mutation? It is important

to highlight that the use of source code mutants to enhance the

source code’s non-functional properties is limited in the litera-

ture; for a comprehensive survey on the subject the interested

reader can refer to [7].

We assume that there exist certain mutation operators which

are more likely to provide source code optimization due to their

nature. Operators as statement deletion can optimize the source

code by performing a dead code elimination, arithmetic oper-

ator replacement can optimize the source code by performing

operators’ strength reduction, etc. [1]. Nevertheless, compiler

optimizations are likely to be more effective while performed

on target by a compiler. Therefore, the question arises: are

there any mutation operators that can produce source code op-

timizations which are different from the known compiler op-

timizations? Indeed, we collected the following set of muta-

tion operators based on the method-level mutation operators of

µJava [2]:

• Relational Operator Replacement (ROR): replaces rela-

tional operators with others, e.g., >= with >. In certain

cases, avoiding to execute the code when the condition

reaches equality can enhance the performance (as shown

in [5]), for example, when searching for the maximum

number within an array as shown in the following code

snippet (hereafter ∆ denotes the difference/replacement,

i.e., the obtained mutant).

f o r (i n t i = 0 ; i < a r r . l e n g t h () ; i ++)

i f (a r r [i] >= max)

∆ i f (a r r [i] > max)

max = a r r [i] ;

• Shortcut Assignment Operator Replacement (ASR): re-

places shortcut assignment operators with other shortcut

assignment operators, e.g., += with ∗=. In certain cases,

advancing faster in the progression can avoid the execu-

tion of loop cycles, for example, when working over the

powers of a given number as shown in the following code

snippet.

f o r (i n t i = 1 ; i <= N; i +=3)

∆ f o r (i n t i = 1 ; i <= N; i ∗=3)

i f (i > 0 && 1162261467 % i == 0)

/ / I f −body

• Arithmetic Operator Replacement (AOR): replaces arith-

metic operators with others, e.g., from + to ∗; similar to

ASR, AOR can help advancing faster in the progressions.

We are interested in the set of mutation operators that per-

form different optimizations from traditional compiler opti-

mizations, and can be applicable to different programming lan-

guages. Let µ = {ROR, AS R, AOR} be the set of mutation op-

erators of interest. This set can be always extended by adding

other mutation operators that can also perform compiler opti-

mizations. We aim at limiting the mutation operators to be con-

sidered in order to avoid deriving mutants that do not optimize

the source code. Indeed, executing all mutants against the set

of inputs M may take a very long time. However, we note that

even if the optimization process takes more time than executing

the original program once, the time investment can be worthy

for widespread programs which may be executed in millions of

devices, or systems for which critical components are executed

millions of times. Furthermore, selecting the critical parts of

the code to be optimized can aid to reduce the complexity of

this approach.

We propose Algorithm 1 for source code optimization using

equivalent mutants. Hereafter, mutate denotes a mutation func-

tion which takes the mutation operator and the source code to

mutate as parameters, and produces a set of mutants of the cor-

responding type. The resulting optimizations depend on the set

of inputs M on which the program is stimulated.

Algorithm 1 returns a source code which compiles to a pro-

gram that is M-equivalent to the initial one. Therefore, for as-

suring the program equivalence, one can derive a set M of in-

puts as a complete/exhaustive test suite which guarantees that

the original and optimized programs have the same behavior

[6]. In fact, the more precise this set M is constructed, the

higher is the guarantee of the equivalence between the opti-

mized and the original programs.

2

Algorithm 1: Code optimization using equivalent mutants

input : µ,SP,M

output: An optimized source code SO
SO ← SP
O ← C(SP)

τO ← 0

foreach α ∈ M do

τO ← τO + t(O, α)

foreach m ∈ µ do

Ω← mutate(m,SP)

foreach SP′ ∈ Ω do

P′ ← C(SP′)

if P′ == ε// the program does not compile

then
goto end loop

τP′ ← 0

ǫ ← true

foreach α ∈ M do

ǫ ← ǫ & (out(O, α) == out(P′, α))

if !ǫ then
goto end loop

τP′ ← τP′ + t(P′, α)

if τO > τP′ then

SO ← SP′

O ← P′

τO ← τP′

end loop:

3. Preliminary Experimental Results

As a simple case study, we chose the source code of an intri-

cate Java function which given a binary string, returns its inte-

ger value. Note that in this source code there is no verification

that the string is indeed binary, however, we do not focus on

such enhancements. The source code is shown below.

s t a t i c i n t b2 tob10 (S t r i n g b i n a r y) {

S t r i n g b i n = new S t r i n g B u i l d e r (b i n a r y) . r e v e r s e () .

t o S t r i n g () ;

i n t s i z e = b i n . l e n g t h () ;

i f (b i n . l e n g t h () == 0)

re turn 0 ;

i n t pos = 1 , i = 2 , number = 0 , count , aux ;

number += I n t e g e r . p a r s e I n t (b i n . s u b s t r i n g (0 , 1)) ;

whi le (i <= 1 << s i z e − 1) {

aux = i ;

c o u n t = 0 ;

whi le (aux > 0) {

c o u n t++;

aux = aux & (aux − 1) ;

}

i f (c o u n t > 1) {

i +=2;

cont inue ;

}

number += I n t e g e r . p a r s e I n t (b i n . s u b s t r i n g (pos , ++pos

)) ∗ i ;

i+= 2 ;

}

re turn number ;

}

When performing experiments, Algorithm 1 has been exe-

cuted with the following parameters:

• µJava as the mutation function,

• the source code SP as shown above,

• µ = {ROR, AS R, AOR} as the mutation operator set,

• M = {111111111111111111111111110110, 0, 1} as the

set of inputs (test suite).

The obtained set of optimized source code contains a mutant

of interest, identified in µJava as ASRS 18 which is the replace-

ment of an assignment operator (ASR), i.e., the statement i+=2

with i∗=2. The obtained mutant is M-equivalent to the original

program as it outputs 1073741814, 0, 1. At the same time, its

overall execution time is 0.463s, strictly less than the original

program’s overall execution time of 5.857s. As it can be seen,

the performance enhancement obtained by the showcased ap-

proach is significant. Furthermore, despite the fact that M is not

a complete test suite, one can assure that the obtained mutant is

equivalent to the initial program. Indeed, the variable number

(the return value of the function) gets updated only when the

continue instruction is not executed. The continue instruction

is not executed under the condition that there exists more than

one ‘1’ in the binary representation of the iterator i. Any binary

string with only one ‘1’ represents a power of two; that implies

that the next time the condition does not execute the continue

instruction occurs when the iterator i equals i∗2.

As the Java compiler (javac) and virtual machine (JVM)

perform static and dynamic optimizations, the previously pre-

sented optimization outperforms the optimizations performed

by both, javac and JVM. However, in order to compare this ap-

proach to traditional compiler optimizations, we translated the

example to standard C code. The overall running time of the

program obtained from compiling the original C source code

without optimizations was 14.596s. The program obtained by

compiling the program with the highest Gnu Compiler Col-

lection (gcc) optimizations (gcc −O3) had an overall running

time of 4.878s. The program obtained by compiling the mu-

tant without any compiler optimizations had an overall running

time of 0.022s. As it can be seen, the provided optimizations

outperform the traditional ones. The main reason behind this

improvement is that the optimizations obtained using equiva-

lent mutants affect the semantics of the source code, differently

from compiler optimizations.

4. Conclusion

We presented an approach for source code optimization using

equivalent mutants. Preliminary experimental results show that

the presented approach can outperform the traditional compiler

3

optimizations, whenever the approach is applicable. Many di-

rections are left open for future work and perhaps the most im-

portant of them is the study of the applicability of the approach,

by performing a thorough experimental evaluation. Other in-

teresting directions include studying other types of source code

optimization together with the extended list of mutation oper-

ators and the exploration of symbolic model checking for the

efficient verification of equivalent mutants.

References

References

[1] A. V. Aho, M. S. Lam, R. Sethi, J. D. Ullman, Compilers: Principles,

Techniques, and Tools (2Nd Edition), Addison-Wesley Longman Publish-

ing Co., Inc., Boston, MA, USA, 2006.

[2] Y.-S. Ma, J. Offutt, Y. R. Kwon, Mujava: An automated class mutation

system: Research articles, Softw. Test. Verif. Reliab. 15 (2) (2005) 97–133.

[3] B. J. M. Grün, D. Schuler, A. Zeller, The impact of equivalent mutants,

in: 2009 International Conference on Software Testing, Verification, and

Validation Workshops, 2009, pp. 192–199.

[4] M. Papadakis, Y. Jia, M. Harman, Y. L. Traon, Trivial compiler equiva-

lence: A large scale empirical study of a simple, fast and effective equiva-

lent mutant detection technique, in: 2015 IEEE/ACM 37th IEEE Interna-

tional Conference on Software Engineering, Vol. 1, 2015, pp. 936–946.

[5] P. Arcaini, A. Gargantini, E. Riccobene, P. Vavassori, A novel use of equiv-

alent mutants for static anomaly detection in software artifacts, Information

and Software Technology 81 (2017) 52 – 64.

[6] R. Dorofeeva, K. El-Fakih, S. Maag, A. R. Cavalli, N. Yevtushenko, Fsm-

based conformance testing methods: A survey annotated with experimen-

tal evaluation, Information & Software Technology 52 (12) (2010) 1286–

1297.

[7] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. L. Traon,

M. Harman, Mutation testing advances: An analy-

sis and survey, Advances in Computers, Elsevier, 2018.

doi:https://doi.org/10.1016/bs.adcom.2018.03.015 .

4

http://dx.doi.org/https://doi.org/10.1016/bs.adcom.2018.03.015

	1 Introduction
	2 Equivalent Mutants for Source Code Optimization
	3 Preliminary Experimental Results
	4 Conclusion

