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A B S T R A C T

Context. The demand for green software design is steadily growing higher especially in the context of mobile
devices, where the computation is often limited by battery life. Previous studies found how wrong programming
solutions have a strong impact on the energy consumption. Objective. Despite the efforts spent so far, only a
little knowledge on the influence of code smells, i.e.,symptoms of poor design or implementation choices, on the
energy consumption of mobile applications is available. Method. To provide a wider overview on the re-
lationship between smells and energy efficiency, in this paper we conducted a large-scale empirical study on the
influence of 9 Android-specific code smells on the energy consumption of 60 Android apps. In particular, we
focus our attention on the design flaws that are theoretically supposed to be related to non-functional attributes
of source code, such as performance and energy consumption. Results. The results of the study highlight that
methods affected by four code smell types, i.e.,Internal Setter, Leaking Thread, Member Ignoring Method, and Slow
Loop, consume up to 87 times more than methods affected by other code smells. Moreover, we found that
refactoring these code smells reduces energy consumption in all of the situations. Conclusions. Based on our
findings, we argue that more research aimed at designing automatic refactoring approaches and tools for mobile
apps is needed.

1. Introduction

Energy efficiency is becoming a major issue in modern software
engineering, as applications performing their activities need to preserve
battery life. Although the problem is mainly concerned with hardware
efficiency, in the recent past researchers have successfully demon-
strated how even software may be at the root of energy leaks [1]. The
problem is even more evident in the context of mobile applications
(a.k.a., “apps”), where billions of customers rely on smartphones every
day for social and emergency connectivity [2].

Green mining is the branch of software engineering responsible for
the identification of factors causing energy leaks, as well as for the
definition of practical solutions to deal with them. In this context, re-
cent research has ranged from the definition of approaches to measure
the power profile of mobile apps [1,3] to the analysis of the impact of
programming solutions on the energy consumption [4–7].

Recent advances in the latter category of studies revealed that
wrong choices made by programmers during the development tend to

negatively influence the energy usage of mobile apps. For instance,
Sahin et al. [4] highlighted the existence of design patterns that nega-
tively impact the power efficiency, as well as the role of code obfus-
cation in the phenomenon [8]. Linares-Vasquez et al. [5] studied the
API usage of Android apps and their relationship with energetic char-
acteristics of apps. More recently, Hasan et al. [7] investigated the
impact of the Java Collections, finding that using the wrong type of data
structure can decrease the energy efficiency by up to 300%.

Although several important research steps have been made and
despite the ever-increasing number of empirical studies aimed at un-
derstanding the reasons behind the presence of energy leaks in the
source code, little knowledge is available in literature on the potential
impact on energy consumption of the so-called bad code smells (also
named code smells or simply smells) defined by Reimann et al. [9].
Unlike the traditional smells introduced by Fowler [10], these smells
represent a set of bad programming practices in Android mobile ap-
plications. While the impact of these smells on energy consumption has
been theoretically assumed by Reimann et al. [9], there is a lack of
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studies providing evidence on this impact. Indeed, only the work by
Carette et al. [11] initially explored the relationship between smells and
energy efficiency. However, they analyzed the behavior of just three
code smell types on five mobile apps, finding that the removal of such
code smells has a limited effect on energy efficiency (quantified as a 4%
improvement of the overall energy consumption).

In this paper, we provide a deeper investigation to determine (i) to
what extent code smells affecting source code methods of mobile ap-
plications influence energy efficiency, and (ii) whether refactoring op-
erations applied to remove them directly improves the energy efficiency
of refactored methods. In particular, our investigation focuses on 9
method-level code smells specifically defined for mobile applications by
Reimann et al. [9] in the context of 60 Android apps belonging to the
dataset provided by Choudhary et al. [12]. To the best of our knowl-
edge, this is up to date the largest study aimed at practically in-
vestigating the actual impact of these code smells on energy con-
sumption and quantifying the extent to which refactoring code smells is
beneficial for improving energy efficiency.

To conduct our analyses, we built upon two tools that we previously
developed and evaluated, i.e.,ADOCTOR and PETRA. The former is a novel
Android-specific code smell detector that has been evaluated in our prior
study [13] using 18 apps and it is very accurate, with a precision of 98%
and a recall of 98%. The latter is a software-based tool that estimates
the energy profile of mobile applications [14]. It has been evaluated
using 54 apps [14] and provides an estimation error within 5% of the
actual values measured with a hardware-based tool [5] in 95% of the
cases.

Results of our study highlight the existence of four specific energy-
smells, namely Internal Setter, Leaking Thread, Member Ignoring Method,
and Slow Loop: methods affected by these design flaws consume up to
87 times more energy than methods affected by other code smells.
Moreover, we shed light on the usefulness of refactoring as a way of
improving energy efficiency by code smell removal. Specifically, we
found that it is possible to improve the energy efficiency of source code
methods by refactoring code smells.

Structure of the paper. Section 2 reports the design of the em-
pirical study, while Section 3 describes the results achieved. Section 4
discusses the threats that could affect the validity of the results.
Section 5 summarizes the related literature in the context of green
mining and code smells. Finally, Section 6 concludes the paper.

2. Empirical study definition and design

The goal of the study is to analyze the source code of mobile apps
with the purpose of investigating whether (i) the presence of code smells
influences energy consumption and (ii) the removal of such design
flaws through refactoring actually reduces the energy consumption of
mobile applications. More specifically, the study addresses the fol-
lowing three research questions:

• RQ1: To what extent are the considered code smells diffused in the
methods of the analyzed applications?

• RQ2: Do methods affected by code smells have high energy consump-
tion?

• RQ3: Does the refactoring of code smells positively impact the energy
consumption of mobile apps?

The first research question (RQ1) is a preliminary investigation into
the diffuseness of code smells in our dataset: this was done with the aim
of studying the relevance of the considered problem and the extent to
which each code smell type affects source code methods of Android
apps. Our RQ2 represents a deeper investigation into the relationship
between the presence of code smells and energy consumption of the
affected methods, while RQ3 aims at assessing the gain provided by
refactoring of code smells in terms of energy consumption.

2.1. Context selection

The context of the study consists of 60 open source Mobile Android
apps publicly available in the F-Droid repository1. Specifically, we se-
lected all the apps from the benchmark dataset provided by Choudhary
et al. [12], which collects a subset of apps used in previous studies
[15–18] having different size and scope and that are still maintained by
their own developers. The dataset comprises 2701 classes and 19,504
methods. The complete list of the apps used in this study is available in
our online appendix [19].

Table 1 reports the set of code smells investigated in the study,
together with a brief explanation and the corresponding refactoring
operations. In particular, we analyzed the behavior of 9 Android-specific
code smells extracted from the catalog defined by Reimann et al. [9].
This catalog reports a set of poor design/implementation choices ap-
plied by Android developers that are believed to impact non-functional
attributes of mobile apps, such as software quality, user experience,
performance, and energy consumption. However, it is important to
point out that the actual impact of the defined smells on non-functional
attributes has only been conjectured by the authors of the catalog, and
no empirical evaluation has been directly conducted to verify and
measure such an impact.

Among the 30 types of Android-specific design flaws available in the
catalog, we selected only 9 code smells for three main reasons. First of
all, we selected the design flaws that directly affect the source code,
while the catalog also includes problems related to poor user interface
design choices, e.g.,Nested Layout. Secondly, we included the code
smells supposed to be directly connected with the energy consumption
of the app rather than the ones related to violations of other non-
functional aspects, such as data security and privacy. For instance, we
have not considered the Public Data code smell, which appears when
private data is stored in a location publicly accessible by other appli-
cations [9]: even if this problem affects the source code of an app, it
does not seem directly connected with its energy consumption. Finally,
we focused on method-level code smells only, since for them we can
isolate the energy consumption for each single method execution. On
the other hand, the analysis of class-level code smells (e.g.,most of the
Fowler’s smells [10]) are particularly challenging because objects (in-
stances of a class) can remain in memory during the execution of the
app2 and, hence, isolating their behavior is more difficult. Therefore,
while the analysis of other class-level code smells could be worthwhile,
it requires specialized tools and methodologies able to adequately deal
with them. It is, therefore, part of our future research agenda.

It is worth observing that we included in our selection the so-called
Internal Getter/Setter: this smell arises when methods access external
fields using getters and setters. While this is usually a good design
practice that allows the encapsulation of the internal fields of a class,
using getters and setters may lead a mobile app to be less performing as
they represent additional function calls [9]. Since ANDROID 2.3, the
compiler automatically optimizes “simple getters that do nothing other
than return the field” [20], while it does not optimize for setters. On the
one hand, this means that taking into account this smell still make
sense, as internal setters might have an impact on energy efficiency. At
the same time, the original definition of the code smell needs to be
revised. For this reason, in the context of this paper we considered as
smelly methods only those accessing internal fields via setters. In other
words, we only considered the Internal Setter component of the original
smell definition.

2.2. Data extraction

In this section, we provide an overview of the data extraction

1 https://f-droid.org/
2 https://developer.android.com/reference/android/app/Activity.html
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process to (i) detect code smell instances and (ii) measure the energy
consumption of the considered apps.

2.2.1. Code smell detection
To answer our research questions, we first needed to identify the

instances of the 9 code smells considered in the study. A manual de-
tection would have been prohibitively expensive because of the number
of both code smell types and mobile apps involved in the study. For this
reason, we relied on a code smell detector that we previously devel-
oped, named ADOCTOR [13]. ADOCTOR extracts structural properties from
the source code to detect instances of all the considered smells. It is
important to notice that the design flaws defined for Android apps are
often easier to identify when compared to the traditional smells de-
scribed by Fowler [10]. As an example, the Inefficient Data Structure
smell is based on the fact that the mapping from an integer to an object
is slow: for this reason, the smell is strongly related to the use of an
HashMap<Integer, Object> as data structure and, therefore, easily
detectable automatically by identifying the methods using an instance
of HashMap<Integer, Object>. The complete list of detection rules
exploited by ADOCTOR is available in [13]. To evaluate the performance
of our tool in detecting smells, we have conducted a case study invol-
ving 18 apps in our dataset, finding that ADOCTOR is able to suggest code
smells with an average precision of 98% and an average recall of 98%.
Thus, the detection process is quite effective. The interested reader can
find the publicly available version of the tool as well as more in-
formation about its validation in [13].

2.2.2. Energy consumption estimation
The second step consisted of deriving the energy consumption

profile of Android apps. Despite the fact that a number of tools have
been proposed to perform such measurements, these are not available
[3] or require hardware equipment and a strong experience in the set-
up of the test bed [21]. For this reason, in our study, we relied on PETRA

(Power Estimation Tool for Android), which is publicly available [14].
PETRA is a software-based approach that is able to estimate the energy
consumed by each executed method. More in detail, the tool instru-
ments the methods of the app under analysis and runs a set of test cases
received as input. PETRA records the time needed to complete the ex-
ecution of each exercised method along with the estimation of the
joules consumed by the app during the time between the entry and the
exit of the monitored method.

More formally, as depicted in Listing 1, PETRA’s main process is
composed of three main blocks: (i) app preprocessing, (ii) energy pro-
file computation, and (iii) output generation. In the following para-
graphs, we detail each part independently.

App preprocessing. In the first step, PETRA needs to set the software
environment before measuring the energy consumed when executing a
mobile app. To this aim, it uses as input an executable version of the
app under analysis in the form of an apk file. The app is identified by
the apk location and the name of the app to profile, which correspond
to apkLocation, and appName in Listing 1 respectively. Then, PETRA

installs the apk on a mobile phone able to run it (e.g.,a smartphone

having an arbitrary version of the Android operating system) and en-
ables the debuggable option. Enabling debugging is mandatory be-
cause otherwise the instrumentation and profiling of the app would not
be possible.

Energy profile computation. Once the app is properly set up, PETRA
exercises the app under consideration using a test case given as input,
i.e.,tCase in Listing 1. This test case can be created with automated
tools (e.g.,Monkeyrunner or Monkey) or with manual operations
performed by the software engineer. Once the test case is run, the core
process behind PETRA starts.

For the profiling phase, we leverage the Project Volta Android
tools3, which are based on the self-modeling paradigm proposed by
Dong and Zhong [22], i.e.,the definition of a mobile system that auto-
matically generates its energy model without any external assistance.
Such tools are dmtracedump4, Batterystats5, and Systrace6.
Specifically:

• dmtracedump provides an alternate way to show trace log files.
The files generated by dmtracedump are easy to parse and allow
the developers to establish precisely, at microseconds granularity,
when a method call has been invoked and when it returned. PETRA

relies on this component to store the execution traces of the app
under analysis. For each method call dmtracedump provides the
entry and the exit time. The final output is a list of the executed
method calls during the run.

• BatteryStats is an open source tool of the Android framework
able to collect battery data from the device under evaluation. In
particular, it is able to show which processes are consuming battery
energy and which tasks should be modified to improve battery life.
It is executable via the command line. The data collected can be
analyzed as a log file or can be converted to an HTML visualization
that can be viewed in a browser using Battery Historian. PETRA

uses the Batterystats log to retrieve the active smartphone
components and their status in a specific time window.
Furthermore, it can provide the information about the device vol-
tage. Given this information, it is then possible to calculate the en-
ergy consumed by the smartphone during a time window.

• Systrace is a tool that can be used to analyze application perfor-
mance. It captures and displays the execution time of the active
processes of a smartphone, combining data from the Android kernel,
i.e.,the CPU scheduler, disk activity, and application threads. The
data can be viewed as an HTML report that shows the overview of
the processes in a given time window. In PETRA, the information
provided by Systrace is used to capture the frequency of the CPU
in a given time window. Considering that CPUs have different
consumptions as their frequency varies, this information completes
the one provided by Batterystats improving the estimations.

Table 1
The Code Smells considered in our study.

Abbreviation Name Description Refactoring

DTWC Data Transmission Without Compression A method transmitting a file over a network without compressing it Add Data Compression
DWL Durable Wakelock A method acquiring a wakelock and not releasing it Aquire WakeLock with Timeout
IDS Inefficient Data Structure A method using an Hashmap< Integer, Object> Use Efficient Data Structure
ISQLQ Inefficient SQL Query A method using a SQL query over a JDBC connection to a remote server Use JSON query
IDFAP Inefficient Data Format And Parser A method using a TreeParser Use Efficient Data Parser and Format
IS Internal Setter Internal fields are set via setters Direct Field Access
LT Leaking Thread A method using a thread that will never be stopped Introduce Run Check Variable
MIM Member-Ignoring Method Non-static methods that don’t access any property Introduce Static Method
SL Slow Loop A slow version of a for-loop is used Enhanced For-Loop

3 https://developer.android.com/about/versions/android-5.0.html#Power
4 https://developer.android.com/studio/profile/traceview.html
5 https://developer.android.com/studio/profile/battery-historian.html
6 https://developer.android.com/studio/profile/systrace-commandline.html
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After gathering the information related to the active components
with their status, the CPU frequencies and the method call invocations,
the power profile file is loaded. The power profile values define the
current consumption for a component along with an approximation of
the battery drain caused by each component over time. For instance, it
specifies how many MilliAmperes of current are required to run the
CPU at a certain frequency. Every smartphone has its own power
profile. It is worth noting that each device manufacturer must provide
this information and that it can be found in a defined location in the
device7.

Given the previous data, it is possible to compute the energy con-
sumed for every method call invocation. First of all, given a method call
invocation and its termination we can calculate the overall time
window Tw as the arithmetic difference between the two instants of
time when these two events occurred. However, the energy consumed
within one single time window is not constant but may change because
of a CPU frequency variation or a component state change. Therefore,
we divided the time windows into smaller time units, i.e.,data frames
TΔ. When the entry to a method is registered, a new time window Tw
and a new time frame TΔ start. Whenever a component changes its state,
the existing time frame TΔ is terminated and a new one (for the new
state) is started. When the exit point to a method is registered, then the
corresponding time window Tw is terminated as well as the latest time
frame TΔ. In this way, each data frame TΔ is characterized by coherent
component states (e.g.,CPU frequency) and by a coherent (constant)
energy drain. For example, if the CPU is working at the maximum
frequency and none of the components change their state, the time
windows Tw will be composed by only one-time frame TΔ of the same
duration, i.e.,the difference between the method entry and exit.
Therefore, we can calculate the current power intensity at each time
frame TΔ as follows:

∑=
∀ ∈

I I
c C

cΔ Δ,
(1)

where C is the set of smartphone hardware components, IΔ, c is the
current intensity of the component c within the current time frame TΔ.
For example, 92.6 is the number of MilliAmpere consumed in one
second by a Nexus 4 when the CPU frequency is fixed at 384 Mhz.

After calculating the current intensity, it is possible to calculate the
energy consumed in a time frame, as follows:

= × ×J I V TΔ Δ Δ Δ (2)

where JΔ is the consumed energy in Joule, IΔ is the current intensity in
Ampere, VΔ is the device voltage in Volt, and TΔ is the length of the time
frame in seconds.

Finally, the energy consumed by a method call can be calculated by
summing up the energy consumed in each time frame in which the
method call was active:

∑= × ×
∈

J I V T( )
T T

Δ Δ Δ
wΔ (3)

Output generation. The final output provided by PETRA is a CSV file,
containing the energy estimation for each method call. More precisely,
it provides the signature of each executed method call, along with the
consumption in Joule and the execution time in seconds.

Finally, PETRA relies on the Android Activity Manager8, so the
apk must be enabled for debugging. Furthermore, in order to provide a
better estimation, PETRA exercises the app multiple times (nRuns in
Listing 1). Note that in our experiments nRuns is fixed to 10 and that in
order to avoid any bias due to multiple runs, at the start of each run the
app cache is cleaned and Batterystats is reset (lines 4 and 5 in
Listing 1).

PETRA is able to provide power estimations similar to those obtained
using the power estimation model provided by Android. We empirically
evaluated the performances of our tool, comparing its estimations with
a publicly available oracle [5] reporting the actual consumptions pro-
vided by a hardware-based tool, i.e.,Monsoon9. To this aim, we used
the same phone (i.e.,LG Nexus 4) and settings used by Linares–Vasquez
et al. [5]. In summary, the results show that the estimations produced
by PETRA are very close to the actual values, more precisely:

• The mean estimation error achieved using PETRA is 0.04 with respect
to the actual value calculated using Monsoon.

• The measurement errors are mainly due to a significant use of net-
work capabilities or sensors.

• In 89% of the cases, PETRA produces overestimations, mainly due to
the accumulated noise achieved during the estimations. In the re-
maining cases, the use of sensors and network produces under-
estimations.

The interested reader can find more information about the valida-
tion of the tool in [14]. In the context of this work, we followed a well-
defined process already used in previous work [3,5,21,23] to extract the
energy profile of the 60 Mobile apps:

• The phone used in the experiment is a factory re-setted LG Nexus 4
having Android 5.1.1 Lollipop as operating system, equipped with a
1.5 GHz quad-core Snapdragon S4 Pro-processor with 2 GB of RAM,
and having a 2100 mAh, 3.8 V battery. The choice of the phone was
guided by previous research in the field [3,5,21,23], but also be-
cause this particular hardware allows to be connected via a data
cable, namely a cable where the USB charging can be disabled10.
Therefore, no energy is transferred over the cable, enabling more
stable measurements. Before starting the experiment, we completely
reset the phone to avoid bias in the power measurements. Moreover,
to limit noise (i) we disabled all the unnecessary apps and processes

Fig. 1. Diffusness of code smells on the considered dataset.

7 https://source.android.com/devices/tech/power/values.html

8 https://developer.android.com/studio/command-line/shell.html
9 http://tinyurl.com/3ys7arm
10 http://tinyurl.com/jg7q3lf
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running on the phone to avoid race conditions, (ii) we did not insert
any sim card to avoid asynchronous events, such as incoming mes-
sages or calls, and (iii) to avoid energy measurements by sensors and
WiFi signal changes we held the phone steady. This setup, available
in our online appendix [19], was needed to allow PETRA to work in an
adequate test environment.

• As for the test cases to give as input to PETRA, we automatically
generated them using Monkey11, a tool belonging to the Android
SDK that produces pseudo-random streams of user events (i.e.,clicks,
touches, gestures). The choice of Monkey has been guided by recent
results [12,24], showing that this tool achieves the better compro-
mise between coverage and effort needed for the setup. In the ex-
periment, we used the configuration of Monkey suggested by
Choudhary et al. [12]. Since Monkey may produce events which
have the effect of testing external parts of the app under test (e.g.,a
click may open the status bar), we properly configured Monkey to
focus only on the app under analysis. Moreover, to not improperly
enable/disable smartphone functionality (e.g.,WiFi, Bluetooth,
GPS), we hid the status bar12.

• The measurements provided by PETRA were repeated 10 times to have
a more reliable estimation of the energy profiles. Each run costs
around five minutes since, as reported by Choudhary et al. [12], this
is the time needed by Monkey to achieve code coverage con-
vergence. The results achieved after 10 runs (i.e.,the joules con-
sumed by the methods in each run) were aggregated using the mean
operator. In our case, the mean can be considered significant be-
cause the energy consumption of each exercised method tends to
remain similar over the 10 runs and, therefore, the distribution of
the energy consumption of each method does not contain outliers. In
particular, to verify the normality of the distribution of the energy
consumptions we adopted the following process: (i) we normalized
the data of each run in the interval [0,1] using the mix-max algo-
rithm [25] and (ii) we applied the Shapiro–Wilk test [26] with an α
threshold for significance set to 0.05. It is important to remark that
for this test the null hypothesis represents the normality of the
distribution. In our case, the −ρ value assumed value equals to
0.4921 and thus we could not reject the hypothesis that the sample
comes from a population which has a normal distribution, meaning
that the variance of the distribution is not large and, therefore, the
mean operator can be considered.
Thus, the final output consisted of a unique value representing the
average energy consumed by the methods exercised during the test
execution. Overall, the data extraction process (i.e.,the smell de-
tection and the extraction of the energy profiles of 60 apps) took
eight weeks.

2.3. Data analysis

Once we extracted the code smell instances affecting the apps with
ADOCTOR, we turned our attention to answer RQ1: we verified the dif-
fuseness of each considered code smells in our dataset and we com-
puted the absolute and relative number of methods they affected. In
RQ2, we aimed at providing a first understanding of the relation be-
tween the presence of code smells and energy consumption of the af-
fected methods. Exploiting the energy profiles coming from the output
of PETRA, we proceeded as follows: as a first step, we ordered the
methods in our dataset by energy consumed to obtain a ranked list
having at the top the most consuming methods. Then, we computed
how many of those methods were affected by a certain type of code
smell. In other words, we assessed how many methods ranked at the top
of the list were affected by a code smell, with the aim of understanding
the extent to which code smells represent a co-occurring phenomenon

with respect to energy consumption. More specifically, given the ranked
list we investigated how many methods of the top α% of them were also
affected by each of the considered smells. We set α% with values in the
set [10, 20, 30, 40, 50]: in this way, we measured the extent of the
relation in the first half of the most consuming methods.

Finally, as for RQ3, we evaluated whether refactoring operations
(originally targeted to remove the smells) are actually useful for redu-
cing the energy consumption of the smelly methods. To perform this
analysis, we manually analyzed the source code of the methods in-
volved in the design problem and performed refactoring operations
according to the guidelines provided by Reimann et al. [9]. In parti-
cular, the methods to analyze and refactor have been distributed among
two of the authors, who were responsible for refactoring half of the
instances each. Each of the involved authors independently refactored
the methods assigned to him, by relying on (i) the definitions of re-
factoring and (ii) the examples provided by Reimann et al. [9]. The
output of this phase consisted of the source code where code smells
were removed. Then, the two authors involved in this task discussed
their activities to double-check the consistency of their individual re-
factoring applications. It is worth remarking that these types of smells
can be removed by applying simple program transformations that do
not impact the external behavior of the source code. For instance, the
previously mentioned Inefficient Data Structure can be refactored by
replacing the HashMap<Integer, Object> with a SparseAr-
ray<Bitmap> [9]. To be confident that the process did not alter the
behavior of the app under analysis, we also re-executed the test cases
generated by Monkey (and used to answer our previous RQ) at the end
of each refactoring. Once refactored the source code, we repeated the
energy measurements. Then, we compared the energy consumption
obtained using the smelly version of the app with the energy con-
sumption obtained by its corresponding refactored version. To test the
statistical significance of the differences (if any) between such dis-
tributions we used the Mann–Whitney test [27]. The results are in-
tended as statistically significant at =α 0.05. We estimated the mag-
nitude of the measured differences using Cliff’s Delta (or d), a non-
parametric effect size measure [28] for ordinal data. We followed well-
established guidelines to interpret the effect size values: negligible for
|d|< 0.10, small for 0.10≤ |d|< 0.33, medium for
0.33≤ |d|< 0.474, and large for |d|≥ 0.474 [28].

To have a practical view of the results achieved in the study, we also
computed the percentage of the battery charge consumed by methods
affected and not affected by code smells. In particular, given the
characteristics of the phone used in the experiments (i.e.,2100 mAh and
3.8V battery), the percentage of battery discharge can be computed
using the following formula [29]:

= ⎛
⎝

⎞
⎠

f n V S I
V I S

( ) · · · 1
·

%
(4)

where V is the voltage, I represents the current intensity, and S the time.
Our measures are performed by considering the joules consumed by a
method. Formally, a joule represents the work required to move an
electric charge of one coulomb through an electrical potential differ-
ence of one volt (V · C). Since a coulomb is the charge transported by a
constant current of one ampere in one second (I · S), the numerator of
the first part of Eq. (4) (i.e.,V · S · I) is exactly the number of joules
consumed by a method. Hence, a method consuming 0.01 J will con-
sume −3·10 %5 of the total battery charge because Eq. (4) is instantiated
as follow:

⎜ ⎟⎛
⎝

⎞
⎠

= −0.01
3.8

· 1, 000
2, 100·3, 600

% 3·10 %5

(5)

where the value of 1000 at the numerator is because the charge is ex-
pressed in mAh and not in Ah, and 3600 is used to convert hours to
seconds.

11 http://tinyurl.com/gvnxdd3
12 http://tinyurl.com/jxkor7a
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3. Analysis of the results

In this section, we describe the results achieved to answer our three
research questions.

3.1. To what extent are the considered code smells diffused in the methods
of the analyzed applications?

Fig. 1 shows the code smells diffuseness throughout the entire da-
taset. In particular, ADOCTOR detected 6155 code smell instances
(i.e.,≈ 32% of the total 19,504 methods are smelly). The most frequent
ones are: Member Ignoring Method (3104 instances, 16% of all the
methods), Slow Loop (1288 instances, 7% of all the methods), Leaking
Thread (828 instances, 4% of all the methods), and Data Transmission
Without Compression (564 instances, 3% of the smelly methods) code
smells. At the same time, the least diffused smells are Inefficient Data
Format And Parser and Inefficient SQL Query, with 3 and 0 instances,
respectively. As a consequence, we can firstly conclude that the earlier
cited smells are those having the highest relevance in our dataset,
meaning that they are the ones that appear more frequently in mobile
apps. For the sake of our study, these results had a major outcome: we
excluded the Inefficient SQL Query smell from the analysis. At the same
time, despite its extremely low diffuseness we still kept the Inefficient
Data Format And Parser into consideration: it might theoretically
happen that even few instances of such code smell have a strong impact
on energy efficiency. Thus, we kept evaluating the extent to which this
smell contributes to energy consumption. The detailed results about the
distribution of the studied smells over the 60 apps are reported in our
online appendix [19].

While our first analysis targeted the diffuseness of the single code
smell types, it is important to note that methods in our dataset may be
affected by multiple smell types. Several studies in the past [30–32]
have shown that smell co-occurrences might amplify the negative ef-
fects on the source code. For this reason, we took into account the
phenomenon of code smell co-occurrences. Fig. 2 shows the results of
this analysis. It is worth noting that we did not find any method affected
by more than three code smell types at the same time. Looking at our
findings, it is interesting to note that 62% of the methods are affected
by more than one smell: this confirms the recent findings by Palomba
et al. [32] on the high relevance of the co-occurrence phenomenon.
Further analyses on the interaction between different smells revealed
that most of the times there are four specific smells that co-occur to-
gether, namely Leaking Thread, Member Ignoring Method, Slow Loop, and
Internal Setter. In particular, in 84% of the cases, the methods having
three smells are affected by a combination of these four specific design
flaws. Moreover, the frequent co-occurrence of such smells is also
visible when analyzing methods affected by two smells (Member Ig-
noring Method and Slow Loop co-occur in 33% of the methods, Leaking
Thread and Member Ignoring Method in 28%, Leaking Thread and Slow
Loop in 11%, Internal Setter and Slow Loop in 8%). Interestingly, the Data
Transmission Without Compression smell, despite its diffuseness, gen-
erally tends to arise alone: this indicates that its high diffuseness does
not necessarily imply a high co-occurrence with other smells.

As a matter of fact, the results of this first research question revealed
that some code smell types tend to occur and co-occur more frequently:
more detailed analysis of the impact of such smells (if any) on energy
consumption is presented in the next section.

Summary for RQ1. Overall, four of the code smells analyzed
tend to occur more frequently: they are the Leaking Thread,
Member Ignoring Method, Slow Loop, and Data Transmission
Without Compression ones. The latter three, together with the
Internal Setter, are those co-occurring more frequently.

3.2. Do methods affected by code smells have high energy consumption?

As explained in Section 2, to investigate the impact of code smells
on energy consumption, we firstly ordered the methods in our dataset
by energy consumed, with the aim of assessing how many of those
ranked at the top of the list were affected by a code smell. Overall, we
observed that in the top 50% of the list (i.e.,9752 methods), 3120
methods were smelly (32%), while 2773 smelly methods (47%) were in
the top 30% (i.e.,5851 methods) and 1835 (94%) were in the top 10%
(i.e.,1950 methods). These results somehow suggest a relation between
code smells and energy consumption. A representative example can be
found in the a2dpvolume project13, an app able to automatically ad-
just the media volume when the phone is connected to Bluetooth de-
vices. The method onCreate of the Vol.AppChooser class creates a
thread without closing it and, therefore, it is affected by a Leaking
Thread smell. In ten runs, PETRA estimates its energy consumption
around 0.77 J on average (i.e.,it was the 58th most consuming method
in our experiment).

The fine-grained findings of our analysis are reported in Fig. 3:
specifically, the figure shows the percentage of the top-α% (with α=10,
20, 30, 40, 50), energy consuming methods that were also affected by
each of the code smells in our dataset. The plot highlights that four code
smells tend to frequently occur in the most consuming methods, namely
Member Ignoring Method, Slow Loop, Leaking Thread, and Internal Setter.

On the other hand, instances of Data Transmission Without
Compression, Durable Wakelock, Inefficient Data Structure, and Inefficient
Data Format and Parser appeared in just the 5%, 4%, 3%, 0.001%, re-
spectively, of the top-10% of the most consuming methods.
Nevertheless, it is important to note that such percentages might be
biased by the low diffuseness of these smells. For this reason, we also
analyzed how many of the methods affected by a given smell are in-
cluded in the top-α% (with α=10, 20, 30, 40, 50) most consuming
methods, with respect to the total number of methods affected by that
smell. The results are graphically shown in Fig. 4. As it is possible to
see, we discovered that in the top-10% of the list appeared (i) 67% of all
the Internal Setter instances (i.e.,119 out of the total 178 instances), (ii)
62% of the Durable Wakelock ones (i.e.,75/122), (iii) 81% of all the
Inefficient Data Structure instances (55/68), and (iv) 66% of Inefficient
Data Format and Parser ones (2/3). In other words, we can conclude that
despite their low diffuseness, most of the instances of these smells ap-
pear in the top-10% of the most consuming methods, indicating that
they potentially have an effect on energy consumption. The next re-
search question aims at investigating further the causality between the
presence of code smells and energy consumption of the affected
methods. We analyzed all the smells, independently of their diffuseness.

As a final point of discussion, it is worth analyzing the relevance of
code smell co-occurrences. Fig. 5 shows that methods affected by two
smells simultaneously are those more frequently appearing at the top of
the list of the most consuming methods.

Fig. 2. Diffuseness of code smell co-occurrences on the considered dataset.

13 https://play.google.com/store/apps/details?id=a2dp.Vol
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Summary for RQ2. 94% of the most consuming methods in
our dataset were affected by at least one code smell: this might
indicate the existence of a strong relationship between the
considered code smells and the energy consumption of
methods.

3.3. Does the refactoring of code smells positively impact the energy
consumption of mobile apps?

The results of the previous research question pointed out that most
of the analyzed code smells have a kind of relation with the energy
consumption of the affected methods. However, this is not enough to
show the actual impact of code smells. Our final research question is

aimed at assessing the actual impact of code smells on energy con-
sumption. To this aim, we evaluated to what extent the refactoring of
the considered smells has an effect on the reduction of the energy
consumption of the smelly methods. Specifically, we manually re-
factored the 2354 smelly methods affected by only one of the smells
considered. Note that in this research question we have not considered
the methods affected by more smells since we are interested in under-
standing the effect of the single refactoring operations on the energy
consumption of such methods. The refactoring phase required approx-
imatively 450 man-hours.

Table 2 reports the statistics on the energy consumption of the
methods affected by Data Transmission Without Compression, Durable
Wakelock, Inefficient Data Structure, and Inefficient Data Format and
Parser, respectively, before and after the refactoring. As it is possible to
observe, the refactoring operations applied do not have any effect on
the resulting energy consumption. On the one hand, it is important to

Fig. 3. Percentage of most consuming methods also affected by a code smell.

Fig. 4. Percentage of code smells appearing in the top-10%, top-20%, top-30%, top-40%, and top-50% most consuming smells.
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point out that our study was conducted at method-level, while the
negative impact of certain code smell types might arise at a higher level
of granularity. For instance, the high energy consumption of the In-
efficient Data Structure smell was shown by Hasan et al. [7] when the
workload of an Hashmap < Integer, Object > increases (i.e.,when
many insertions or iterations are done over the data structure): this
indicates that some smells may have a negative influence under stres-
sing conditions observable at app-level, while others (those with the
highest co-occurrences with the most energy consuming methods in our
study) immediately impact energy consumption of methods. Further
investigations on the role of code smells at different levels of granu-
larity would be desirable. On the other hand, some previous studies

(such as the one by Hasan et al. [7]) were conducted in the context of
larger and more complex applications, like Java libraries: the low re-
lation between certain smells and energy consumption observed in our
study might also be due to the fact that we analyzed mobile apps,
i.e.,significantly smaller software systems as compared to libraries. In
this context, we observed that some types of issues are generally poorly
diffused and, therefore, not particularly relevant. For instance, In-
efficient Data Structure instances represent the 0.01% of the analyzed
methods, while Inefficient Data Format And Parser only the 0.001%: this
makes their impact notably marginal while reinforcing the idea to
deeper investigate the effect of such smells at a higher level of granu-
larity.

A similar discussion can be held with respect to the other code
smells considered in the study: Durable Wakelock and Data Transmission
Without Compression. Methods acquiring a wakelock without releasing it
might be problematic from an energy perspective due to a long ex-
ecution of an app, as well as methods transmitting a file over a network
without compression may create energy leaks depending on the size of
the transmitted file. In other words, some smells might be more prone
to cause energy leaks in different situations of those explored in this
paper. This further confirms the need for additional studies on the
impact of code smells. At the same time, we believe that our results
represent valuable findings since they actually show how the negative
impact of some code smells (i) is not visible at method-level and (ii)
should be assessed in different contexts.

At the same time, Table 3 reports the statistics on the energy

Fig. 5. Percentage of most consuming methods that are affected by one or more smells.

Listing 1. PETrA workflow.

Table 2
Energy consumed by methods before and after the application of refactorings.
“R-” prefix stands for Refactored.

Smell Type Min 1st Qu. Median Mean 3rd Qu. Max

DTWC 0.004 0.006 0.008 0.010 0.013 0.018
R-DTWC 0.004 0.006 0.008 0.010 0.013 0.018
DWL 0.001 0.001 0.001 0.001 0.002 0.003
R-DWL 0.001 0.001 0.001 0.001 0.002 0.003
IDS 0.002 0.002 0.003 0.003 0.003 0.004
R-IDS 0.002 0.002 0.003 0.003 0.003 0.004
IDFAP 0.001 0.001 0.001 0.001 0.001 0.002
R-IDFAP 0.001 0.001 0.001 0.001 0.001 0.002
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consumption of methods affected by Internal Setter, Leaking Thread,
Member Ignoring Method, and Slow Loop, respectively, before and after
the application of the corresponding refactoring operations. In all the
comparisons between smelly and refactored versions a recurring pat-
tern can be observed: when the code smells affecting the methods are
removed, the energy consumption of such methods decrease. For
methods affected by Internal Setter we can observe that the associated
solution, namely the Direct Field Access refactoring [9], reverses the
negative effect of the smell by reducing the energy consumption by
almost 27 times with respect to the smelly methods (the median energy
consumption of smelly methods is 0.082 J, while the median of the
distribution of the refactored methods is 0.003 J). A representative
example is the method AcalDateTime.applyLocalTimeZone of the
aCal app14, which sets the local time zone by reading information
about the actual zone using the method getUTCInstance, and then
sets a new time using the method setTimeZone. By directly using the
fields reporting the actual zone and the current time, the method con-
sumes, on average, 0.012 J, namely 7 times less than the non-refactored
version (0.094 J). The magnitude of the differences between smelly and
refactored methods is large (d=0.67) and statistically significant (p-
value<0.005).

Similar results can be observed for the Leaking Thread smell, with
the median energy consumption equal to 0.080J when methods are
affected by the smell, compared to 0.003J when the methods are re-
factored. Hence, the Introduce Run Check Variable refactoring [9] helps
in reducing the energy consumption 26 times of methods previously
affected by a Leaking Thread. Also in this case, we discuss the differences
between the smelly and the refactored version of the AppChooser.-
onCreate method of the a2dpvolume class, mentioned in the context
of RQ2. From an average of 0.770 J previously obtained, we observed
that the energy consumed by the refactored version is 0.010 J, namely
77 times lower. The differences are statistically significant (p-
value<0.001) with a medium effect size (d=0.35).

The Introduce Static Method refactoring [9] needed to remove the
Member Ignoring Method smell turned out to be strongly impacting the
energy efficiency of source code methods. On average, the energy
consumption of methods changes from a mean of 0.070–0.008 J,
leading to the definition of a method nine times more efficient. The
differences are statistically significant (p-value< 0.001) with a medium
effect size (d=0.46). An example appeared in the Alarm Klock app15.
The method onItemClick of the alarmclock.ActivityAlarm-
Clock class is responsible for capturing the taps of the user on the
screen when using the app. This method is therefore called in action
several times during each app execution. Once refactored, we observed
a strong improvement of its energy efficiency (in the ten runs the
consumption decreases from 0.870 J to 0.030 J, namely 29 times
lower).

The discussion about the Slow Loop smell is similar to one of the
other energy smells. The differences are statistically significant (p-

value< 0.005), yet, with small effect size ( =d 0.12). As an example, the
onOptionsItemSelected method, belonging to the
BlinkenlightsBattery class of the Battery Circle app16 is re-
sponsible for analyzing all the possible configuration options provided
as input by the user, using a slow version of the for loop. When re-
factored, the method passed from a consumption of 0.870 J to 0.010 J
(87 times less), i.e.,it completely changed its energy profile.

To broaden the scope of the discussion, the quantity of source code
that needs to be refactored to remove the code smells is small. For in-
stance, the Introduce Static Method only requires the addition of the
keyword static to the signature of the method, together with other
small changes to adapt method calls over all the project (i.e.,modifying
external method calls in a way they call a static method). However, we
observed that such small changes in the source code result in a big change
in the energy consumed by the methods involved. The results are con-
firmed by the analysis of the percentage of battery discharge of methods
before and after being refactored, as reported in Table 4. As we can see,
all the types of refactoring result in a significantly lower energy drain.
In our opinion, this is a key result since it reveals the actual cost-ef-
fectiveness of refactoring of Android-specific code smells.

Summary for RQ3. Refactoring code smells has a key role in
improving the energy efficiency of source code methods. On
average, we found that the refactored versions of methods
previously affected by Internal Setter, Leaking Thread, Member
Ignoring Method, and Slow Loop, consume up to 87 times less
than methods affected by smells. Based on these results, we
observe that refactoring is a powerful activity that should be
applied by mobile developers.

4. Threats to validity

The main threats related to the relationship between theory and
observation (construct validity) are due to imprecisions in the mea-
surements we performed. Above all, we relied on the ADOCTOR tool to
detect candidate code smell instances. We are aware that our results can
be affected by the presence of false positives and false negatives.
However, the performance of the tool has been evaluated on 18 apps
considered in the study, finding that ADOCTOR has a precision of 98% and
a recall of 98%. These results allow us to be confident about the code
smell instances found over all the considered apps. In addition, we re-
plicated all the analysis performed to answer our research questions by
just considering the 18 apps where the smells have been validated. The
results achieved in this analysis (available in our replication package
[19]) are in line with those obtained in our paper, confirming all our
findings.

On the other hand, we measured energy consumption using our tool
PETRA. As briefly explained in Section 2, we empirically evaluated the
accuracy of the approach on 54 mobile apps comparing the power es-
timation of the tool with the oracle provided by Linares–Vasquez [5].
The validation revealed that in 95% of the cases the estimations of our
tool are within 5% of the actual values. Therefore, we believe that the
data provided by the tool are consistent and close enough to the actual
energy consumption [14]. Moreover, in case of differences between the
estimations provided by PETRA and the hardware-based tool, these would
be consistent for both methods affected by smells and refactored
methods, so that the error would not invalidate our findings. We ag-
gregated the results given by PETRA using the mean operator. As high-
lighted in Section 2, in our case, the mean can be considered significant
because the energy consumption of each exercised method tends to
remain similar over the ten runs and, therefore, the distribution of the

Table 3
Energy consumed by methods before and after the application of refactorings.
“R-” prefix stands for Refactored.

Smell Type Min 1st Qu. Median Mean 3rd Qu. Max

IS 0.076 0.076 0.082 0.083 0.092 0.092
R-IS 0.001 0.001 0.009 0.016 0.024 0.024
LT 0.01 0.02 0.03 0.077 0.013 0.77
R-LT 0.001 0.001 0.003 0.009 0.009 0.019
MIM 0.001 0.002 0.004 0.04 0.028 0.981
R-MIM 0.0001 0.002 0.018 0.02 0.019 0.038
SL 0.001 0.006 0.0119 0.056 0.026 0.929
R-SL 0.001 0.004 0.0114 0.010 0.014 0.018

14 http://tinyurl.com/8hg67fk
15 http://tinyurl.com/ngzkv3v 16 http://tinyurl.com/o33ms7d
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energy consumption of each method does not contain outliers. Despite
this, to be more confident about our findings, we repeated the experi-
ment by aggregating the energy consumption using the sum, i.e.,the
final output was a unique value representing the sum of the energy
consumption of the methods exercised during the ten runs. The results
achieved from this analysis are available in our online appendix [19]
and similar to those reported in Section 3. Furthermore, it is worth
noting that to measure the consumption of each method we analyzed
the energy consumed by the application within a certain time frame.
Although this is clearly an approximation (e.g.,the presence of more
threads running simultaneously might bias the measurements), the
same procedure has been performed in several previous research papers
[33–37], which, however, also include additional approximations due
to tail energy usage (that arise when certain hardware components are
optimistically kept active by the operating system, even during idle
periods): in this sense, we believe that our measurement process is still
more precise than previous work and thus we are confident about the
results provided in this paper.

To execute the apps, we automatically generated test cases using
Monkey. Despite the possible limitations of this tool, it is worth con-
sidering that a previous study [12] demonstrated that Monkey was one
of the best alternatives on the set of apps considered in our empirical
study, as it was the tool able to perform best in terms of coverage.
Moreover, it is worth noting that this tool does not deal with pre-
liminary authentication steps of an application like, for example, the
login phase. Nevertheless, this did not represent a threat in our case
since all the applications taken into account did not have any pre-
liminary step to access the real functionalities. Thus, we could entirely
test the involved apps. To collect the energy consumption for each
method, we had to run the apps in debugging mode. It is possible that
due to this process, some optimization phases were prevented. How-
ever, on the one hand, we followed a well-defined process already used
in previous work [3,5,21,23] and on the other hand the official Android
documentation does not provide any information on this topic. Despite
this, we acknowledge the possible threat.

All the experiments were performed on an LG Nexus 4, equipped
with Android 5.1.1. It is worth considering that this choice was guided
by previous research in the field [3,5,21,23]. However, it is possible
that different results could be achieved on different smartphones and
Android versions.

We cannot exclude that in the relation between code smells and
energy consumption other factors may have played a role: however, we
strengthen the observations made in RQ3 by explicitly performing a
study on how refactoring of those smells affect the investigated phe-
nomenon. Another observation is that some methods might tend to be
more smelly because of application design, e.g.,some design constraints
enforcing developers in introducing code smells. While it would be
worth analyzing the extent to which code smell introduction is due to
such design constraints, our work aims at targeting the Android-specific
code smells that impact more on energy efficiency as well as the impact
of refactoring on the resulting energy consumption.

To study the effect of refactoring on energy efficiency (RQ3), we
manually refactored the source code. The procedure involved two of the
authors who carefully followed the guidelines provided by Reimann
et al. [9]. At the end of the first stage of refactoring, the authors in-
volved in the task opened a discussion aimed at double checking the

refactoring operations individually performed. While we cannot ex-
clude imprecision and some degree of subjectiveness (mitigated by the
discussion) in the way we refactor the source code, it is important to
note that we re-executed the same test cases generated by Monkey to (i)
double-check the validity of the refactoring operations applied and (ii)
control that the external behavior of the refactored methods was not
changed after the refactoring. As a result, all tests passed, confirming
that the refactoring of code smells did not change the external behavior
of the app.

Threats related to the relationship between the treatment and the
outcome (conclusion validity) are represented by the analysis methods
exploited in our study. We discuss our results by presenting descriptive
statistics and using proper statistical tests in order to assess the sig-
nificance and the magnitude of our findings. In addition, the practical
relevance of the differences observed in terms of energy consumption is
highlighted by effect size measures. Another aspect to discuss is related
to the granularity of the measurements conducted, which might have
influenced our observations. We worked at the method level as our goal
was to assess the relation between code smells and energy consumption
of methods: nevertheless, this does not exclude that other code smells at
class- or app-level might still have an impact when considering the
overall app consumption. For example, the Inefficient Data Structure
might still be highly consuming in cases where several operations
(e.g.,frequent insertions/iterations/removals of elements) are per-
formed over a Hashmap < Integer, Object > [7]. Thus, it might be
worth to spend future research effort on studying the impact of higher
level code smells on the energy consumption.

Threats to internal validity concern factors that could influence our
observations. We are aware that in principle we cannot claim a direct
cause-effect relationship between the presence of code smells and the
energy consumption of methods. However, on the one hand, the impact
of code smells is firstly demonstrated by the fact that we observed a
strong improvement of the energy efficiency when such smells were
refactored (RQ3). On the other hand, we performed an additional
analysis to verify whether other factors could have influenced our re-
sults. Specifically, we re-run our analysis by considering the energy
consumption of both smelly and non-smelly methods having different
(i) size, (ii) complexity, and (iii) level of test coverage. We selected
these three confounding factors for the following reasons: size can
impact energy consumption since longer methods might execute more
code, thus leading to consume more energy; more complex methods can
have more complex programming constructs that might require more
energy consumption; as we executed test cases, the level of coverage
might impact the number of executed statements and, therefore, a
higher/lower coverage might influence the energy consumed by a
certain method. In details, we performed the following operations to
control for the three confounding factors:

1. We grouped together methods with similar size by considering their
distribution in terms of size. Specifically, we computed the dis-
tribution of the lines of code of methods. This step results in the
construction of (i) the group composed of all the methods having a
size lower than the first quartile of the distribution of all the size of
the methods, i.e.,small size; (ii) the group composed of all the
methods having a size between the first and the third quartile of the
distribution, i.e.,medium size; and (iii) the group composed of the
methods having a size larger than the third quartile of the dis-
tribution of all the method sizes, i.e.,large size;

2. We computed the energy consumption for each method belonging to
the three groups, to investigate whether larger methods consume
more than smaller methods.

The experiment has been repeated considering the McCabe cyclo-
matic complexity [38] and the coverage obtained by the test cases ran
over the methods analyzed [39] as measures to split methods in small,
medium, and large sets. We reported the achieved results in our online

Table 4
Average battery discharge of methods before and after refactored.

Smell Typey % of Battery Discharge Before % of Battery Discharge After

IS −2.8·10 %6 −3.1·10 %7

LT −1.1·10 %6 −1.1·10 %7

MIM −1.4·10 %6 −6.2·10 %7

SL −2.1·10 %6 −3.9·10 %7
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appendix [19], however, we observed that such characteristics are not
strongly related with the energy consumption of the methods: specifi-
cally, only 13% of the largest methods are in the top-10% of the most
consuming methods. Similarly, 11% of the most complex ones are in the
top-10% and 6% of the methods having the highest coverage are on the
list of the most consuming smells. These results indicate that such
confounding factors do not have a relevant impact on energy efficiency.
We are aware that other factors might have influenced our findings: for
instance, methods belonging to Activity classes of Android apps
might consume more by design, as they are called more frequently.
Nevertheless, our main goal was to study the effect of code smells and
the results obtained by refactoring smelly instances make us confident
enough the causation between their removal and the improvement of
energy efficiency of methods. However, further investigations on the
role of the additional factors on energy consumption would be worth-
while.

Finally, regarding the generalization of our findings (external va-
lidity), we evaluated the impact of nine code smell types on the energy
consumption of 60 mobile applications. However, further studies
aiming at replicating our work on larger datasets are desirable and part
of our future agenda.

5. Related work

This section discusses the related literature about code smells and
energy consumption.

5.1. About code smells and refactoring

The traditional code smells defined by Fowler [10] have been
widely studied in the past. Several studies demonstrated their negative
effects on program comprehension [31], change- and fault-proneness
[40,41], and maintainability [42,43]. At the same time, several ap-
proaches and tools, relying on different sources of information, have
been proposed to automatically detect [44–47], and fix them through
the application of refactoring operations [48,49].

Traditional code smells have also been studied in the context of
mobile apps by Mannan et al. [50], who demonstrated that, despite the
different nature of mobile applications, the variety and density of code
smells is similar. In the same context, Morales et al. [51] studied the
effect of several anti-patterns [10,52] with respect to the energy effi-
ciency of mobile apps. They analyzed 59 Android apps and found that
some refactorings have a positive effect on the energy efficiency of
mobile apps, while applying others has a negative effect. Similarly,
Gjoshevski and Schweighofer [53] analyzed 30 Android apps using 140
Lint rules showing that the size of the apps does not have an impact on
technical debt. A more detailed overview about code smells and re-
factoring can be found in [54] and [55].

As for the Android-specific code smells defined by Reimann et al.
[9], there is little knowledge about them. Indeed, while the authors of
the catalog assumed the existence of a relationship between the pre-
sence of code smells and non-functional attributes of source code, they
never empirically assessed it [9]. The unique investigation on the im-
pact of three code smells on the performance of Android applications
has been carried out by Hetch et al. [56], who found some positive
correlations between the studied smells and the decreasing perfor-
mance in term of delayed frames and CPU usage. Finally, Morales et al.
[57] proposed EARMO, a refactoring tool that, besides code quality, takes
into account the energy consumption when refactoring code smells
detected in mobile apps. It is important to note that the authors mostly
considered the code smells proposed by Fowler [10], while our work
aims at understanding the impact of a large variety of Android-specific
code smells on energy efficiency as well as the role of refactoring on the
performance improvement of mobile apps.

5.2. About energy consumption

Themes related to energy consumption are becoming ever more
relevant for the research community due to the large diffusion of
smartphones. In recent years several hardware and software tools to
estimate the energy consumption have been proposed, such as
GreenMiner [21] or eLens [3]. Unfortunately, these tools are not pub-
licly available. Our solution has been the construction of PETRA, a new
software-based energy estimator based on reliable Android tools,
having high accuracy in power estimations.

On top of estimation tools, researchers have studied ways to predict
the energy consumption using empirical data [33,34] or dynamic
analysis [35,36], to study how changes across software versions affect
energy consumption [1] or to estimate the energy consumed by single
lines of code [58]. At the same time, several empirical investigations
have been carried out. Procaccianti et al. [37] provided evidence on the
beneficial effect of using green practices such as query optimization in
MySQL Server and the usage of the sleep instruction in the Apache
web server. Sahin et al. [8] studied the influence of code obfuscation on
energy consumption, finding that the magnitude of such impacts is
unlikely to impact end users. Sahin et al. [4] also studied the role of
design patterns, highlighting that some patterns (e.g.,the Decorator
pattern) negatively impact the energy efficiency of an application. Si-
milar results have been found by Noureddine et al. [59].

Sahin et al. [6] studied the effect of the refactoring operations de-
fined by Fowler [10] on energy consumption. Specifically, they eval-
uated the behavior of six types of refactoring, finding that some of
them, such as Extract Local Variable and Introduce Parameter Object, can
both increase or decrease the amount of energy used by an application
[6]. On the other hand, Park et al. [60] experimented with 63 different
refactorings and propose a set of 33 energy-efficient refactorings. It is
worth noticing that these papers analyzed the effect of refactoring in-
dependently from the presence of design flaws. In contrast, our study
analyzes the impact of code smells specifically defined for Mobile ap-
plications [9] on energy consumption as well as the influence of re-
factoring operations aimed at removing them from the source code.

Hasan et al. [7] investigated the impact of the Collections type used
by developers, demonstrating how the application of the wrong type of
data structure can increase the energy consumption by up to 300%.
Along the same lines, other researchers focused their attention on the
behavior of sorting algorithms [61], lock-free data structures [62], GUI
optimizations [63], API usage of Android apps [5], providing findings
on how to efficiently use different programming structures and algo-
rithms.

Cruz et al. [64] performed an analysis of eight best practices for
improving the energy consumed by Android apps. Through their em-
pirical study on six popular apps, they observed that it is possible to
extend the battery life of the device applying energy-aware practices.
Our work is complementary to the one by Cruz et al. [64]: rather than
analyzing the effect of energy-aware best practices, we studied the ef-
fect of refactoring code smells on energy consumption of methods.

Kim [65] introduced a complementary set of performance-enhan-
cing best practices for Android programming with respect to those
proposed by Reimann et al. [9]. He evaluated these practices on the
CPU time of the apps showing that applying them it is possible to de-
velop cpu-efficient mobile apps.

Li et al. [66] conducted a small-scale empirical in-
vestigation—involving four code snippets—into some programming
practices believed to be energy-saving, such as the strategies for in-
voking methods, accessing fields, and setting the length of arrays. The
results of this study confirmed the expectations, showing that such
practices help in reducing the energy consumption of mobile apps.
While some of the practices considered by Li et al. [66] are similar to
the code smells we considered (e.g.,the way developers access fields), it
is worth noting the set of analyzed programming practices is quite
small. Moreover, their study did not quantify how much energy can be
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saved by removing the analyzed poor programming practices. Fur-
thermore, they focused their attention only on a few code snippets,
rather than considering a large variety of mobile apps.

Finally, the studies proposed by Hecht et al. [67] and Carette et al.
[11] have the same purpose as the one proposed in this paper, since
both are aimed at investigating the impact of three Android-specific
code smells on the energy consumption of mobile apps. Specifically,
Carette et al. [11] considered the behavior of the Internal Getter/Setter,
Inefficient Data Structure, and Member Ignoring Method smells on a set of
five mobile applications, and measured the energy consumption before
and after their removal. Their results are strongly different from those
reported by us. Indeed, the authors found that the removal of single
code smells increase the energy efficiency up to 3.86%, while the cor-
rection of all the code smells can reduce the energy consumption of
mobile apps by up to 4.83%. On the one hand, this is due to the fact that
their results are affected by the presence of the Inefficient Data Structure
smell, that in this paper we show to be poorly diffused in mobile apps.
On the other hand, we exploited a much larger set of apps, being able to
better characterize the behavior of the Internal Setter and Member Ig-
noring Method smells. Moreover, the voltmeter used in their experi-
mentation to measure the energy consumption works at a frequency of
only 10Hz; as demonstrated by Saborido et al. [68], such a frequency is
too low to observe the actual consumption of methods, thus possibly
producing unreliable results. In other words, our work is com-
plementary with this work, considering that the former performs an
analysis at app level granularity, while our analysis is at method level
granularity. For this reason, it is possible that some effects of code
smells on energy consumption are not visible in their evaluation, but
are visible in ours, and vice versa.

Afterward, Habci et al. [69] extended the Paprika tool proposed by
Hecht et al. [67] for analyzing the effect of code smells on iOS apps
developed in Objective-C or Swift. The result of their empirical study
shows that both the apps developed in Objective-C and Swift tend to
contain the same proportions of code smells. However, iOS apps seem
to be less code smells prone with respect to Android apps.

6. Conclusion

This paper presented a large-scale empirical investigation taking
into account the role of nine Android-specific code smells [9] on the
energy consumption of mobile apps. Starting from an analysis aimed at
studying the relevance of each code smell type in the context of mobile
apps (RQ1), we then further investigated the relation between code
smells and energy consumption (RQ2). Finally, we evaluated whether
refactoring operations applied to remove code smells help in sub-
stantially improving the efficiency of mobile applications (RQ3). The
achieved results provide valuable findings and insights for the research
community. Summarizing, the paper provided the following contribu-
tions:

1. A large-scale empirical study involving 60 Android apps aimed at
assessing the extent to which nine method-level code smells impact
energy efficiency and whether refactoring operations are able to fix
energy leaks.

2. A comprehensive replication package [19], including all the raw
data and scripts used for the empirical study.

The results achieved provide two main lessons for both the research
community and tool vendors:

Lesson 1. Some code smells have a strong impact on the energy effi-
ciency of source code methods. Specifically, methods affected by four
particular smell types that frequently co-occur, i.e.,Leaking Thread,
Member Ignoring Method, Slow Loop, and Internal Setter, have an energy
consumption up to 87 times higher than other smelly methods. This
result highlights the importance of investing (1) in studying more in-
depth the dynamics behind Android-specific code smells and (2) in

developing tools that prevent their introduction.
Lesson 2. Refactoring code smells is a key activity to improve energy

efficiency. We found that refactoring represents a powerful technique to
reduce the energy consumption of methods. Approaches and tools able
to support mobile developers in automatically refactoring the source
code represent a must for future research in the field.

These lessons represent the main input for our future research
agenda on this topic, mainly focused on designing and developing a
new generation of code quality-checkers and refactoring tools, other
than corroborating our results by studying the impact of other smells,
(e.g.,Fowler’s smells [10]) as well as code smell co-occurrences on en-
ergy efficiency of methods or apps. Furthermore, we plan to investigate
whether certain smells have an effect on energy consumption when this
is computed at a higher granularity (e.g.,overall app consumption).
Finally, we plan to test the effect of refactoring in an in-vivo experiment
with end-users, with the aim of assessing whether they can actually
perceive the energy optimization of used apps after refactoring.
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