
Bootstrapping Cookbooks for APIs from Crowd Knowledge on Stack Overflow

Lucas B. L. Souza, Eduardo C. Campos, Fernanda Madeiral, Klérisson Paixão, Adriano M. Rocha, Marcelo de Almeida Maia∗

Federal University of Uberlândia, Faculty of Computing, Uberlândia, Minas Gerais, Brazil

Abstract

Context: Well established libraries typically have API documentation. However, they frequently lack examples and explanations,
possibly making difficult their effective reuse. Stack Overflow is a question-and-answer website oriented to issues related to software
development. Despite the increasing adoption of Stack Overflow, the information related to a particular topic (e.g., an API) is spread
across the website. Thus, Stack Overflow still lacks organization of the crowd knowledge available on it.

Objective: Our target goal is to address the problem of the poor quality documentation for APIs by providing an alternative
artifact to document them based on the crowd knowledge available on Stack Overflow, called crowd cookbook. A cookbook is
a recipe-oriented book, and we refer to our cookbook as crowd cookbook since it contains content generated by a crowd. The
cookbooks are meant to be used through an exploration process, i.e. browsing.

Method: In this paper, we present a semi-automatic approach that organizes the crowd knowledge available on Stack Overflow
to build cookbooks for APIs. We have generated cookbooks for three APIs widely used by the software development community:
SWT, LINQ and QT. We have also defined desired properties that crowd cookbooks must meet, and we conducted an evaluation of
the cookbooks against these properties with human subjects.

Results: The results showed that the cookbooks built using our approach, in general, meet those properties. As a highlight, most
of the recipes were considered appropriate to be in the cookbooks and have self-contained information.

Conclusions: We concluded that our approach is capable to produce adequate cookbooks automatically, which can be as useful
as manually produced cookbooks. This opens an opportunity for API designers to enrich existent cookbooks with the different
points of view from the crowd, or even to generate initial versions of new cookbooks.

Keywords: API documentation, Crowd knowledge, Stack Overflow, Cookbook

1. Introduction

Developers typically reuse predefined components through
their Application Programming Interfaces (APIs). According
to Parnas in the mid-90s, “Reuse is something that is far easier
to say than to do. Doing it requires both good design and very
good documentation” [1, p. 224]. Still nowadays, we have ob-
stacles to reuse software, and many of these obstacles are some-
how related to API documentation [2, 3]. Fortunately, other
kind of documentation is emerging: an accessible structure of
social media, such as wikis, blogs, forums, and question-and-
answer (Q&A) websites [4] is redefining how developers learn,
preserve and share knowledge on software development [5].
Barzilay et al. [6] even argue that this kind of knowledge has
the potential to become a substitute to the official software doc-
umentation.

An important example of social media is Stack Overflow,
which is a Q&A website that allows the exchange of knowledge

∗Corresponding author.
Email addresses: lucas.facom.ufu@gmail.com (Lucas B. L. Souza),

eccampos@ufu.br (Eduardo C. Campos), fernanda.madeiral@ufu.br
(Fernanda Madeiral), klerisson@ufu.br (Klérisson Paixão),
adriano.comp2@gmail.com (Adriano M. Rocha), marcelo.maia@ufu.br
(Marcelo de Almeida Maia)

between developers. Related to API documentation, Parnin et
al. [4] verified that Stack Overflow provides high coverage of
classes belonging to the APIs addressed in their study: for in-
stance, 87% of the Android API classes are referenced in ques-
tions on Stack Overflow. Delfim et al. [7] extended the analysis
performed by Parnin et al. [4], and found that 69% of the An-
droid API top-level elements are referenced in questions of the
type how-to-do-it on Stack Overflow [8], which is the question
type where the asker provides a scenario and asks how to im-
plement it. Interestingly, this type of question is adherent to the
purpose of documenting how to use API elements. Moreover,
Treude and Aniche [9] have shown that API documentation is
dispersed among many sources, and still Stack Overflow plays
a prominent role on it.

Those findings that Stack Overflow has a large volume of
information on APIs, and that conventional API documenta-
tion, when it exists, usually lacks examples and explanations,
have motivated the usage of Stack Overflow content to produce
API documentation. For instance, Treude and Robillard [10]
presented an automatic approach to augment API documenta-
tion with insight sentences on API elements mined from Stack
Overflow, i.e., an approach to improve existing documentation.
Moreover, Stack Overflow started a beta project Stack Over-
flow Documentation that ran from July 2016 to August 2017,

Preprint submitted to Information and Software Technology March 25, 2019

ar
X

iv
:1

90
3.

09
17

4v
1

 [
cs

.S
E

]
 2

1
M

ar
 2

01
9

which was a repository of organized user-written code exam-
ples, supported by some explanation. Although the Stack Over-
flow organization has considered it as a good idea, they had to
interrupt it, because of the high cost for content maintenance,
among other reasons [11].

In this paper, grounded on similar motivation, our goal is to
provide a highly automated approach to select and organize the
content available in Stack Overflow, which is indeed a chal-
lenge because the content related to a particular API is spread
across posts on Stack Overflow, lacking hierarchical organi-
zation. For instance, there are more than 41,000 discussion
threads on Stack Overflow related to the Swing library orga-
nized with social tagging [12]. To reach our goal, we developed
a semi-automated approach that uses Stack Overflow content to
construct a special type of documentation for APIs. We charac-
terize this documentation as a cookbook, because it is organized
into chapters, and each chapter should bring together a collec-
tion of recipes about the same topic. Each recipe has a scenario
and instructions on how to solve such scenario, containing ex-
planations in natural language and source code snippets. Since
we use the crowd knowledge available on Stack Overflow to
build cookbooks, we refer to them as crowd cookbooks.

Cookbooks have already been widely used as an instrument
to guide developers [13, 14, 15, 16, 17, 18, 19, 20, 21, 22].
Note that cookbooks are meant to be used through an explo-
ration process (browsing) instead of a search-driven one. For
instance, in a searching process, a developer would be able to
write a query, and a system would bring from Stack Overflow
the best results for such query. Such searching process goes
in the direction of automated on-demand developer documen-
tation [23] with recommendation systems, and a system of this
type using Stack Overflow content is presented in [24]. On the
other hand, a crowd cookbook could, for instance, be used by
someone who wants to know what are the main themes of an
API, which is specially useful for newcomers. According to Ol-
ston and Chi [25], searching and browsing are complementary
strategies, each one having advantages and disadvantages. So,
our goal is neither claiming that crowd cookbooks are substi-
tutes for searching-driven systems, nor claiming that the notion
of cookbooks is better than other forms of documentation. Our
goal is to demonstrate that adequate crowd cookbooks can be
generated by our proposed automated approach.

This study extends our previous work [26], presenting the
approach in full detail and providing a robust empirical evalu-
ation with human subjects to produce evidence that the gener-
ated cookbooks are suitable for being bootstrapped towards a
final version of an API documentation.

The main contributions of this work are:

• An approach to automate the construction of preprint
cookbooks for APIs using the crowd knowledge available
on Stack Overflow;

• The definition of desirable properties that the generated
cookbooks must meet, which are meant to measure the
effectiveness of the proposed approach in organizing and
filtering content. Assessing the technical content of the

recipes (which is content mined from Stack Overflow) is
not part of the scope of this work;

• An in-depth empirical evaluation of the produced crowd
cookbooks for widely used APIs1 conducted with a survey
applied to graduate students and developers, considering
the set of desirable cookbook properties.

The rest of this paper is organized as follows. Section 2 se-
tups a context for technical cookbooks and reviews on technical
documentation evaluation to contextualize the desired proper-
ties to assess our approach to generate cookbooks. Section 3
presents the proposed approach to build cookbooks. Section 4
presents the methodology to evaluate the cookbooks. Section 5
presents and discusses the results, followed by limitations and
threats to validity that are presented in Section 6. The related
works are discussed in Section 7, and the conclusions are pre-
sented in Section 8.

2. Background

2.1. Cookbooks

Technical cookbooks are collections of recipes. As in food
cookbooks, recipes are organized into topics/themes as the
reader typically tries to find a recipe from its table of contents,
which is a collection of chapters, each one for a topic/theme. In
food cookbooks, a recipe is composed by ingredients and direc-
tions. A person without cooking knowledge would try to follow
a recipe, and there is an increased chance of having success at
preparing the food. The same idea is related to software: a de-
veloper, new to some programming task, would find a recipe
that matches her task and would have an increased chance to
complete it whether the directions are followed.

To characterize the organization of a recipe in the con-
text of software development, we selected a sample of ten
cookbooks related to different programming subjects (see Ta-
ble 1). Except for The Core iOS 6 Developer’s Cookbook,
which contains recipes without internal structure, the other nine
cookbooks follow a similar organization regarding the inter-
nal structure of recipes. Table 1 shows the topics used to
organize the content within recipes in column “Recipe struc-
ture”. The ones that are marked with “∗” are not used in all
recipes, but only when it makes sense—e.g. “See also” refer-
ences other recipes in the same cookbook or external sources.
The remaining ones, despite the names being different be-
tween the two separated groups of cookbooks, are close to be
corresponding—“Problem”↔“Context”, “Solution”↔“How to
do it”, and “Discussion”↔“How it works”. For this reason, we
conclude that a typical recipe has, at least, the following con-
tents:

1. Title, which should be sufficiently succinct to appear ad-
equately in a table of contents and sufficiently precise so
the developer can match the title against the intended task

1The cookbooks generated for the API subjects used in the evaluation are
available at http://lascam.facom.ufu.br:8080/QAWeb_sf/.

2

http://lascam.facom.ufu.br:8080/QAWeb_sf/

Table 1: Commercial versions of cookbooks.

Cookbook # Chapters # Recipes # Pages Recipe structure

Python Cookbook [13] 17 245 608
Java Cookbook [14] 26 299 850 Title +

C++ Cookbook [15] 15 171 594 Problem + Solution +

R Graphics Cookbook [16] 15 156 416 Discussion + See also∗

jQuery Cookbook [17] 18 182 480

Boost C++ Application Development Cookbook [18] 12 95 348 Title +

Open GL 4.0 Shading Language Cookbook [19] 9 64 340 Context + Getting ready∗ +

Selenium Testings Tools Cookbook [20] 11 91 326 How to do it + How it works +

Apache Solr 4 Cookbook [21] 7 106 328 There’s more∗ + See also∗

The Core iOS 6 Developer’s Cookbook [22] 13 106 576 Title

to be performed. For instance, a recipe describing how
to read from a file in Python has as title: Reading from a
file [13].

2. Problem description, which also should be sufficiently
succinct and relatively general so it can be matched to dif-
ferent contexts. For the description of the problem con-
cerning reading a file, the problem description is You want
to read text or data from a file [13].

3. Solution, which shows how to solve the problem. There
may be different styles for the solution description: more
succinct with a short statement reporting on what should
be done [14], or a little bit more detailed with a simple
example that ideally could be reproduced by the devel-
oper [13].

4. Discussion, which may explain different facets for apply-
ing the solution, or may complement the solution with al-
ternatives of implementation. The idea is that the solution
should be kept as simple and general as possible, and more
details could be presented in the Discussion section.

The structure of typical recipes directly matches question-
and-answer pairs on Stack Overflow: the asker poses her ques-
tion with a title and describes the problem that motivates the
question, and responders provide solutions for such problem.

2.2. Cookbook assessment

Although there is no framework to assess the quality of
technical cookbooks, at the best of our knowledge, there has
been some work on assessing technical documents. Arthur and
Stevens [27] developed a taxonomy for evaluating documenta-
tion, where an adequate documentation has four qualities: ac-
curacy, completeness, usability, and expandability. Smart [28]
studied quality factors for technical documentation in the con-
text of software quality documents [28], and proposed three di-
mensions to evaluate documentation quality: easy to use (i.e.
task-oriented), easy to understand (i.e. concrete including ex-
amples), and easy to find (i.e. organized in a way that makes
sense to the user). Later, Robillard [2] observed that the fol-
lowing properties of software documentation are the most im-
portant: content (information in the document), organization

(index, sections, subsections), use of examples, and being up-
to-date.

To define our approach for cookbook generation, we took
into account those properties. We rely on Stack Overflow to
build the cookbooks and Robillard [2] properties are, at least,
partially met. The content of the cookbooks is already assessed
by the Stack Overflow community via the voting mechanism
(which is used in our approach). Stack Overflow has content
that is rich in examples and we only select answers containing
source code snippets to compose the cookbooks to improve the
easiness to understand how to solve a problem, thus the use of
examples property is also met. Since Stack Overflow allows
the editing of posts, the property of being up-to-date can be
met. The organization property is not always satisfied for the
recipes, because not all answers in the cookbook are organized
in sections, subsections. However, the cookbook itself partially
meets this property since its recipes are grouped into chapters
(themes).

Our approach considers, by definition, quality factors ex-
posed in the literature, taking advantage of the nature of cook-
books and the content on Stack Overflow. Moreover, we or-
ganized the assessment of the cookbooks generated by our ap-
proach considering those quality properties (see our research
questions in Section 4). Recall that completeness is out of
the scope of cookbooks as they typically do not target com-
pleteness: their main purpose is to empower adopters of a lan-
guage or API with the directions on how to solve program-
ming tasks. Hence, we evaluate whether chapters are well de-
fined, whether recipes are related to the chapter they are part
of, whether recipes are suitable to be part of a cookbook, and
whether recipes are self-contained.

3. The Proposed Approach for Cookbook Construction

In this section, we present our approach to generate cook-
books from the knowledge available in Stack Overflow. A
cookbook is a collection of chapters, and each chapter is a col-
lection of recipes related to each other. In our context, a cook-
book is related to a given API, and its chapters should be groups
of related question-and-answer (Q&A) pairs from Stack Over-
flow. A pair Q&A matches the concept of technical recipes,

3

i.e., a pair problem/solution. An example of a cookbook for
the SWT API, generated with our approach, is shown in Fig-
ure 1. The chapters of the cookbook are presented in Figure 1a;
the content of a chapter is shown in Figure 1b, containing nine
recipes; the content of a recipe is shown in Figure 1c, which
provides a Q&A pair from Stack Overflow.

Figure 2 presents the overview of the main steps of our
cookbook construction approach for a given API x. We ob-
tained Stack Overflow threads (questions plus their respective
answers) that are used to construct cookbooks from a dump2

that contains the entire content available on Stack Overflow
since its creation in 2008 until September 2013. Then, given
the obtained Stack Overflow threads and an API x, the cook-
book construction approach consists of four main steps:

1. Selection of threads related to the API x (Section 3.1);
2. Selection, among the previously selected threads, of

threads having a particular type of question, how-to-do-
it, as this is the type of question suitable for cookbooks
(Section 3.2);

3. Finding potential chapters for API x using the topic mod-
eling technique Latent Dirichlet Allocation (LDA) [29],
where each topic mined by LDA is a potential chapter to
group related recipes in the cookbook being built (Section
3.3);

4. Construction of the cookbook using the information gen-
erated by LDA, by determining its chapters and recipes
(Section 3.4).

3.1. Selection of threads related to a given API x
On Stack Overflow, the topic of a question, which shows

the main technology or construct that such question revolves
around (e.g., API), usually can be identified from the question
tags [8]. Therefore, to select threads related to a given API x,
we search for threads where their questions contain a tag related
to the API x. For instance, to select threads on SWT API, only
threads with questions having the tag “swt” are selected.

3.2. Selection of threads with how-to-do-it question
Nasehi et al. [8] identified four question categories on Stack

Overflow based on the main concerns of the askers and what
they want to solve: debug-corrective, need-to-know, how-to-
do-it and seeking-different-solution. They defined the how-to-
do-it category as the one where the asker provides a scenario
and asks on how to implement it, which is very close to the
idea of recipes from cookbooks. Thus, we are interested only
in threads containing how-to-do-it questions.

To verify the feasibility of constructing automatic classifiers
for these categories of question, we performed experimenta-
tion with different classification mechanisms [30]. Based on
the analysis of the most important features in that work, we
constructed for this work a rule-based binary classifier to auto-
matically filter only how-to-do-it questions from the others. A
question is classified as how-to-do-it whether the three follow-
ing conditions are satisfied:

2http://blog.stackoverflow.com/category/cc-wiki-dump/

(a) The SWT API Cookbook.

(b) Chapter 2 from the SWT API Cookbook: SWT table component.

(c) Recipe 2.3 from SWT API Cookbook.

Figure 1: A cookbook example: (a) cookbook summary, (b) recipes within a
chapter, (c) a recipe.

1. It has the term “how” in its title or body;
2. It does not have in its body the presence of terms generally

related to the debug-corrective category: “fail”, “prob-
lem”, “error”, “wrong”, “fix”, “bug”, “issue”, “solve”,
“trouble”;

4

1. Selection of
threads related

to an API x

Stack
Overflow
threads

Cookbook

2. Selection of
threads with
how-to-do-it

question

3. Finding
potential

chapters using
LDA

4. Construction
of the cookbook

Figure 2: Overview of our cookbook construction approach.

3. It does not have the word “error” in its code snippets (if
any is present).

The rules described above were defined after manually ana-
lyzing a random sample of 70 questions from Stack Overflow.
We intended to differentiate between how-to-do-it and debug-
corrective categories since we observed that the word “how” is
also used in the latter category but with the intention to ask help
on how to fix a problem.

To measure the accuracy of our rule-based classifier, we
evaluated it by using a dataset we constructed in a previous
work [7], which contains known how-to-do-it and non-how-to-
do-it questions. Table 2 presents the size of such dataset, which
contains 366 questions related to Android and 372 questions
related to Swing API, totaling 738 questions, where 292 are
how-to-do-it ones. Table 2 also presents the results on over-
all accuracy, precision and recall, for both APIs. Note that our
classifier has an overall accuracy of 77.91% on the 738 ques-
tions, and the precision at classifying how-to-do-it questions is
0.78.

Table 2: Evaluation results on the performance of our rule-based classifier.

API
Dataset Evaluation results

Ques-
tions

How-
to-do-it

% Ac-
curacy

Precision Recall

Android 366 129 80.05 0.74 0.66
Swing 372 163 75.81 0.81 0.58

Total 738 292 77.91 0.78 0.62

3.3. Finding potential chapters using Latent Dirichlet Alloca-
tion

A cookbook is organized into chapters, each one correspond-
ing to a topic of a given API. To identify the cookbook chapters,
we use Latent Dirichlet Allocation (LDA), a topic modeling
technique that automatically finds general topics from a cor-
pus of documents, without the need of tags, supervised training,
or predefined taxonomies [29]. In our context, the corpus of
documents is a set of threads, and the topics generated by LDA
are the potential chapters for the cookbook. Note that we use
LDA to group related Stack Overflow threads into topics.

To create the corpus of documents, for each previously thread
identified as having how-to-do-it question, we created a docu-
ment containing the textual content of the thread by concate-
nating the question title, the body of the question, and the body

of all answers. Then, we preprocessed the corpus of docu-
ments similarly as Barua et al. [31]. For each document, we
discarded code snippets, if any, because source code keywords
(e.g., “while” loop) introduce noise into the analysis phase:
all code snippets contain similar programming language syntax
and keywords, which do not help the topic modeling technique
to find meaningful topics [31, 32]. We removed HTML tags
(e.g.,
), because our focus is to analyze natural language
(English) content. We also removed common English words
(stop words), and applied the Porter stemming algorithm [33]
to map the words to their base form. We used HTML Cleaner3

to discard code snippets and to remove HTML tags, and Apache
Lucene4 to remove stop words and stemming.

After the creation and preprocessing of the corpus of docu-
ments, we used the MALLET LDA implementation [34]. Each
topic mined by LDA possibly originates a chapter in the cook-
book depending on the number of recipes included on it. LDA
characterizes every topic i as a probability distribution over the
terms. Table 3 shows the probability distribution of the 10-
top terms for a mined topic from the SWT API. The numbers
indicate the relative importance: for instance, the term “tabl”
is about ten times more important (considering the frequency)
than the term “checkbox”. Since we aim at assessing the raw
content generated by our approach, we do not manually define a
chapter name. Instead, we consider the top-5 terms of the topic
as the chapter “title” in the rest of the paper.

Table 3: Top-10 terms and their frequencies in the SWT API.

Term Relative importance

tabl 0.054351167
column 0.025278521
row 0.016221274
cell 0.013537645
tableview 0.011860377
select 0.008617659
viewer 0.007387662
jface 0.006716755
item 0.005710394
checkbox 0.005263123

Additionally, as each document may refer to different topics,
LDA also defines for each document j a probability distribution
over the topics, i.e., the adherence of the document to the topics.
Given a document, the sum of its adherences to the topics is
always 1, thus the topic that has the highest adherence by such
document is called its Dominant Topic.

The number of topics (K) is a user-specified parameter and
controls the granularity of discovered topics. Small values gen-
erate more generic topics and higher values generate more de-
tailed topics. There is no single value of K that is suitable for
all situations and all datasets [35]. In this study, we aim at pro-
ducing cookbooks with similar size as commercial versions of
cookbooks. So instead of trying to find an optimal value for K

3http://htmlcleaner.sourceforge.net
4http://lucene.apache.org/core

5

as Panichella et al [36], we selected a sample of ten cookbooks,
related to several programming subjects and counted the num-
ber of chapters of each one. This information is shown in Table
1. The average number of chapters in our sample is 14.3, so we
chose the value 15 for K, even though that value is not meant to
be optimal.

3.4. Construction of the cookbook

The generation of a cookbook for a given API requires LDA
to be applied on the filtered corpus of documents (threads)
whose questions are how-to-do-it, resulting in K topics (poten-
tial chapters), which should be filled with recipes. Consider that
a recipe is a question-and-answer pair from the corpus. The rea-
son to consider a recipe as a pair, rather than the entire thread,
is due to the fact that a thread may have good and poor quality
answers. Thus, when considering separated pairs, only eligible
answers with high score are included in the cookbooks, as the
score of a post is a proxy for its quality [37]. We have defined
some conditions that make a recipe (i.e., a Q&A pair) eligible
to be included in a cookbook:

• Condition #1: The answer must have source code snip-
pets, since programming by example is an intuitive way
to learn both for novices and experts [38]. Also, com-
mercial cookbooks usually make code snippets publicly
available on source code repositories5. We identify the
presence of snippets through the use of the HTML tags
“<pre><code>...”;

• Condition #2: Both answer and question in a pair must not
have dead links in its content. Prior work [39] shown that
dead links pose a major challenge to enhance educational
resources as one cannot make use of a content that is no
longer accessible. We used HttpUnit6 to verify whether a
link is dead;

• Condition #3: The question must not be too long. Verbose
questions usually contain many inquiries or demonstrate
the asker has difficulties to explain the problem. Even on
Stack Overflow there is a policy for scope of questions.
If the question is too broad, often verbose, users can put
it “on hold” and eventually “close” the question. In other
words, if the question is not problem specific, it cannot
be answered on Stack Overflow. Further, Figure 3 shows
a histogram with the percentage of questions in different
size (number of characters) ranges. The data considered
in this graph are all questions for SWT, STL and LINQ.
The questions with size less than 1,300 characters com-
prise 81.4% of the questions. Therefore we decided not to
include pairs whose questions have size above 1,300 char-
acters.

Since each individual post on Stack Overflow has its own
score, we needed to define a metric that indicates the quality of
the Q&A pair as a whole. We consider that the answer tends

5http://github.com/dabeaz/python-cookbook
6http://httpunit.sourceforge.net/

0 `
100

100 `
300

300 `
500

500 `
700

700 `
900

900 `
1 100

1 100 `
1 300

1 300 `
26 900

0

5

10

15

20

25

Size ranges
Pe

rc
en

ta
ge

of
qu

es
tio

ns
(%

)

Figure 3: Percentage of questions by size (number of characters) range.

to be more important than its question since the answer usu-
ally carries more information about the solution of the prob-
lem. Hence, we took into consideration the score of a pair as
the weighted mean value between the individual scores of its
question and answer. In our prior work [24, Section 4.3], we ex-
perimentally test several weights, and we found the optimal val-
ues as 0.3 and 0.7 for the respective weights. Different weight
choices would lead to different results, but the above choice re-
sulted in a balanced way to give more importance to answers,
while still considering the relative importance of questions.

Algorithm 1 is the pseudocode for building a cookbook C
for an API x. The goal is to build a cookbook that has at least
R recipes. To determine the value for this threshold, we used
the information on the number of recipes in the sample of ten
commercial cookbooks shown in Table 1. As the smallest cook-
book in this sample has 64 recipes, we decided to choose this
value for the threshold R to optimize recipe quality, while still
guaranteeing that generated cookbooks contain at least as many
recipes as conventional cookbooks.

Although the minimum number of recipes is established by
the threshold R, we could, in principle, include more recipes in
the cookbook depending on their quality. Thus, for a given API,
we build a ranking of Q&A pairs based on their score, where the
pair in position one in the ranking has the higher score. Then
we establish the threshold maxRankPosAllowed that defines the
maximum position that a pair should have on the ranking, which
prevents the selection of pairs under that quality threshold to be
included in the cookbook.

The initial value for this threshold (which is retrieved in line
1, Algorithm 1) is defined by analyzing the shape of the rank-
ing curve. For example, Figure 4 shows this curve for QT API.
The idea of this analysis is to choose a cutoff point on the x-axis
considering only the best-of-breed pairs and discarding the long

6

Algorithm 1: Building a cookbook C for an API x

1 maxRankPosAllowed ← getMaxRankPosAllowed(x);
2 numRecipes← 0;
3 while numRecipes < R do
4 C ← new Cookbook();
5 numRecipes← 0;
6 foreach doc ∈ HowToDoItCorpus do
7 domTopic← getDominantTopic(doc);
8 adherence← getAdherence(doc, domTopic);
9 if adherence ≥ Ta then

10 pair ← getPair(doc);
11 if pair <> null then
12 rankingPosition← getRankingPosition(pair);
13 if rankingPosition ≤ maxRankPosAllowed

then
14 includePairIntoC(C, pair, domTopic);
15 numRecipes← numRecipes + 1;
16 end
17 end
18 end
19 end
20 removeS mallChapters(C);
21 maxRankPosAllowed ← maxRankPosAllowed + 10;
22 end

tail with lower score. For instance, for QT API, we choose the
value 200. This analysis should be done for each API, because
the number of threads can vary widely between APIs. We char-
acterize the whole approach as semi-automatic only because of
such cutoff point choice that has to be done manually.

0 500 1,000 1,500 2,000 2,500

0

20

40

60

80

Pair

Sc
or

e

Figure 4: Score ranking of the Q&A pairs for QT API.

4. Evaluation Methodology

In this section, we present the methodology used to evaluate
crowd cookbooks generated by using our approach presented in
the previous section.

4.1. Research questions

To evaluate our crowd cookbook construction approach, we
first formulated seven research questions. We further provide
the answers for these research questions (in section 5) based
on a survey conducted with human subjects (participants), who
analyzed sampled chapters and recipes and provided answers to
our survey questions.

Five of the research questions are related to four desirable
properties concerning crowd cookbooks (RQ #1 to RQ #5),
which are answered based on ratings given by participants in
the study according to a 5-point Likert scale. The two additional
research questions were posed to understand qualitative aspects
on the characteristics of crowd cookbooks (RQ #6 and RQ #7),
which are answered based on free natural language texts given
by participants in the study. We present each research question
as follows, together with the associated survey question made to
participants that gathers data to answer such research question.

RQ #1: To what extent do the chapters have defined themes?
Chapters of cookbooks should have well-defined themes, which
should be identifiable from the top-5 LDA terms assigned to
their titles. We refer to this property as chapter semantics.

Survey question for participants. “Concerning the <five terms>
terms assigned to the title of the chapter x from the cookbook
C, indicate your agreement with the statement ‘the five terms
are related with the theme of the chapter”’.

Response type. 5-point Likert scale defined from strongly dis-
agree (1) to strongly agree to (5):

• (5: strongly agree) It is possible to assign an unique theme
to the chapter and all the five terms are related to this theme;

• (4: agree) It is possible to assign a theme to the chapter, but
some of the five terms is not related to this theme;

• (3: neutral) Undecided or identified more than one theme;

• (2: disagree) It it possible to see some relation between the
terms, but it is not possible to assign a theme for the chapter;

• (1: strongly disagree) It is not possible to see any type of
relationship between the terms.

RQ #2: To what extent are recipes related to the theme of the
chapter where they were included?
Recipes within a chapter should be related to the theme of the
chapter. For instance, if a recipe is within a chapter about
“String Manipulation”, it must address this theme. We refer
to this property as recipe relatedness to chapter.

Survey question for participants. “Concerning the recipe x from
the cookbook C, indicate your agreement with the statement
‘the recipe is related to the terms assigned to the title of its chap-
ter”’.

Response type. 5-point Likert scale defined from strongly dis-
agree (1) to strongly agree to (5):

• (5: strongly agree) The recipe is related to three or more
terms;

7

• (4: agree) The recipe is related to two terms;
• (3: neutral) Undecided;
• (2: disagree) The recipe is related to one term;
• (1: strongly disagree) The recipe is not related with any

term.

RQ #3: To what extent are recipes suitable for inclusion in cook-
books?
Recipes are suitable to be part of a cookbook if they contain
information from how-to-do-it questions. Therefore, recipes
where the question is of another type, such as where the asker
asks for help to fix a bug, are not suitable for being in a cook-
book. We refer to this property as recipe adequacy.

Survey question for participants. “Concerning the recipe x from
the cookbook C, indicate your agreement with the statement
‘the recipe is adequate to be part of the cookbook as it has how-
to-do-it nature”’.

Response type. 5-point Likert scale defined from strongly dis-
agree (1) to strongly agree to (5):

• (5: strongly agree) The recipe is strongly adequate;
• (4: agree) The recipe is partially adequate;
• (3: neutral) Undecided;
• (2: disagree) The recipe is inadequate;
• (1: strongly disagree) The recipe is strongly inadequate.

RQ #4: To what extent do recipes have self-contained informa-
tion?
Recipes should be self-contained, i.e., the information inside
them should be sufficient to understand the described problems
and their solutions. Many recipes have links to external sources
(e.g., the official API documentation website, blogs, forums),
and although this type of content may be beneficial as they serve
as a complement to the presented solution, it is not desirable
that the solution is available only in an external resource, be-
cause there is no guarantee that it will be still available in the
future. We refer to this property as recipe self-containment.

Survey question for participants. “Concerning the recipe x from
the cookbook C, indicate your agreement with the statement
‘the recipe is self-contained as it contains the necessary infor-
mation to understand the scenario and its solution”’.

Response type. 5-point Likert scale defined from strongly dis-
agree (1) to strongly agree to (5):

• (5: strongly agree) It is possible to completely understand
the scenario and its solution contained in the recipe by just
considering the textual content of the recipe (disregarding
the possible external sources referenced in the recipe);

• (4: agree) It is possible to understand the most part of the
scenario and its solution contained in the recipe by just con-
sidering the textual content of the recipe (disregarding the
possible external sources referenced in the recipe);

• (3: neutral) Undecided;

• (2: disagree) To understand the most part of the scenario and
its solution contained in the recipe, it is necessary to access
the external sources referenced in the recipe;

• (1: strongly disagree) The information contained in the
recipe is completely dependent of the external sources refer-
enced in the recipe.

RQ #5: To what extent do recipes meet all the properties
recipe relatedness to chapter, recipe adequacy and recipe self-
containment?
Ideally, recipes should meet more than one property as each one
corresponds to a different advantage. If a recipe does not meet
one of these properties, it probably should not be considered
to be part of the cookbook, even if the other two properties are
well-evaluated.

RQ #6: What role can crowd cookbooks play in API learning?
This research question aims to identify the perception of the
participants regarding the usefulness of crowd cookbooks in
API learning.

Survey question for participants. “Would you use the cookbook
to learn the API x? If yes, how? If no, justify your answer and,
if it is possible, suggest how to enhance it”.

Response type. Free natural language text.

RQ #7: What are the strengths, weaknesses and improvements
that can be made to crowd cookbooks?
This research question aims to identify the perception of the
participants regarding the strengths, weaknesses and opportu-
nities for improvement of the crowd cookbooks.

Survey question for participants. “In your opinion, which are
the positive and negative points concerning the crowd cook-
books? Also, suggest improvements for the generation of the
cookbooks”.

Response type. Free natural language text.

4.2. API subjects

We generated cookbooks for three APIs: SWT7 (Java),
LINQ8 (.NET programming languages) and QT9 (C++). These
APIs are widely used by the software development community,
and they are related to different programming languages, which
allows us to observe, to some extent, the generality of our ap-
proach.

The size of the generated cookbooks are: 12 chapters and 69
recipes for SWT; 9 chapters and 94 recipes for LINQ; and 12
chapters and 119 recipes for QT. The evaluation of all the chap-
ters and recipes from the cookbooks would take a long time due
to their sizes. For this reason, participants evaluated a stratified
sample of chapters and recipes from the cookbooks—the sam-
pling process is presented in Section 4.5.

7http://www.eclipse.org/swt/
8http://msdn.microsoft.com/pt-br/library/bb397926.aspx
9http://qt-project.org/

8

4.3. Human subjects

The human subjects that participated in the study to assess
the cookbooks were graduate students in Computer Science
(MSc or PhD) from the Federal University of Uberlândia and/or
junior software development professionals from Uberlândia
city. All of them work with software development and have
similar profile in terms of experience.

Initially, 33 people expressed interest in participating in the
study. Aiming to prepare the participants for the evaluation pro-
cess, we prepared a training document containing information
on the purpose of the study and instructions on how to pro-
ceed during the assessment of cookbooks. Out of the 33 initial
volunteers, 16 completed the evaluation process, which con-
sisted of filling out questionnaires built using the online service
LimeSurvey10.

To check the expertise level of the participants on the APIs
considered in the study, we asked them to inform their respec-
tive level for each API (novice, intermediary or advanced), if
any. Most of the subjects had no knowledge on the APIs. Ex-
ceptions were that out of 16 subjects, four answered novice for
SWT, one answered intermediate for LINQ, and one answered
novice for QT.

4.4. Construction of controlled cookbooks

To ensure that participants were being honest during the eval-
uation and that they had understood the evaluated properties,
we built modified versions of the cookbooks. These modified
versions are called controlled cookbooks.

So, the set of cookbooks considered in this study
is: SWT-Cookbook, SWT-Controlled-Cookbook, LINQ-
Cookbook, LINQ-Controlled-Cookbook, QT-Cookbook and
QT-Controlled-Cookbook. The non-controlled cookbooks were
constructed with Algorithm 1. The controlled cookbooks were
manually constructed from non-controlled cookbooks adding
items (i.e., recipes and chapters) that are notoriously bad to
the original cookbooks, with respect to the defined proper-
ties. For the chapter semantics property, we created a chap-
ter title with five unrelated terms. For instance, in the case of
SWT-Controlled-Cookbook, we created a chapter title: “pdf
press thread eclipse wizard”. For each other property (i.e.,
recipe relatedness to chapter, recipe adequacy and recipe self-
containment), we have chosen a Q&A pair that is bad regarding
these properties. For example, for the recipe adequacy property,
we picked a Q&A in which the question is not a how-to-do-
it. Since each item artificially included in the controlled cook-
books is bad with respect to one property, ideally they should
be rated with disagreement values (rating values 1 or 2).

4.5. Sampling chapters and recipes for evaluation

The assessment of all chapters and recipes from all cook-
books for all research questions would be a very time-
demanding task. For this reason, we conducted a stratified sam-
pling of chapters and recipes. Given a cookbook C for the API

10http://www.limesurvey.org/en

x, both recipe and chapter samplings are conducted simultane-
ously for the non-controlled cookbook and for the controlled
cookbook. Recipe sampling is performed as follows:

1. For both cookbooks, randomly sample one recipe from
each chapter of the cookbook C, resulting n sampled
recipes. Thus, the random sample is stratified by chapter,
guaranteeing that a representative part of the cookbook is
sampled.

2. For the controlled cookbook, additionally to those n sam-
pled recipes, include four control recipes. Recall that each
one of these control recipes is a specifically bad recipe
according to one of the four properties related to recipes
mentioned above.

3. For the non-controlled cookbook, additionally to those n
sampled recipes, sample four other recipes with no other
criteria, so that both controlled and non-controlled sam-
pled cookbooks have n + 4 recipes.

Chapter sampling is performed as follows:

1. Chapters are sorted by number of recipes.

2. For both cookbooks, randomly sample two chapters with
number of recipes lower than the median number of
recipes and two chapters with number of recipes higher
than the median. After this step, four chapters have been
sampled.

3. For the controlled cookbook, include one controlled chap-
ter, so the controlled cookbook has five chapters and the
non-controlled cookbook has four chapters.

4.6. Participant assignment to control cookbooks

All study participants evaluated the sampled cookbooks
showed in the previous subsection answering to Likert-scale
questions and essay questions. However, since we created
cookbooks with controlled items, this could influence answers
to the essay questions: evaluating cookbooks with artificially
included bad items would not make sense. For this reason, the
participants were divided into three groups: SWT-Controlled,
LINQ-Controlled and QT-Controlled. Note that participants did
not know about the existence of controlled items.

Participants in SWT-Controlled rated the cookbooks SWT-
Controlled-Cookbook, LINQ-Cookbook and QT-Cookbook,
but the essay questions were just about the two non-controlled
cookbooks (LINQ-Cookbook and QT-Cookbook). Similar
logic was applied to the other two groups. The participants were
randomly assigned to one of the three groups in a way that the
sizes of the groups are balanced. The groups SWT-Controlled
and QT-Controlled had 5 subjects each, and LINQ-Controlled
had 6 subjects.

4.7. Answers to controlled items

The answers given to questions related to controlled items are
shown in Table 4, grouped by API. In this table, ratings with
disagreement values were colored in different shades of gray:

9

dark gray for 1 (strongly disagree) and light gray for 2 (dis-
agree). Ideally, all the cells from such table should be gray, as
the controlled chapters and the controlled recipes are not good.
In fact, we noted that most of the cells are gray, which means
that the controlled items were mostly assessed with disagree-
ment values by the participants.

Table 4: Responses to the controlled items of the three APIs.

Sub-
API

Chapter Recipe Recipe Recipe
ject Semantics Adequacy SelfCont Relatedness

4 SWT 1 2 1 1
5 SWT 1 1 1 1
8 SWT 2 1 1 1

10 SWT 1 1 1 1
16 SWT 1 1 1 2
3 LINQ 3 5 2 4
9 LINQ 1 2 3 3

11 LINQ 1 1 1 1
12 LINQ 3 3 1 3
14 LINQ 2 1 1 2
15 LINQ 1 1 1 1
1 QT 3 3 3 1
2 QT 3 4 3 4
6 QT 2 1 2 2
7 QT 2 4 1 2

13 QT 1 2 2 2

(1) strongly disagree, (2) disagree, (3) neutral, (4) agree, and (5) strongly agree.

The participants who did rate the controlled items with agree-
ment values (4 or 5) or neutral (3) for a given property (e.g.
chapter semantics) were excluded in the analysis of the results
presented in this paper based on the non-controlled items (Sec-
tion 5). For example, all the ratings of subject 4 are considered;
however, only the ratings for chapter semantics and recipe ad-
equacy properties by subject 9 are considered; and none of the
ratings given by subject 2 is considered.

5. Evaluation Results and Discussion

In this section, we present and discuss the results for each
research question. The results are on the answers given by the
participants to non-controlled items. Moreover, the results for
each property (e.g. chapter semantics) are on the answers from
participants that negatively evaluated such property in the anal-
ysis of controlled items as described in Section 4.7.

5.1. On the chapter semantics property (RQ #1)

Context. 12 participants rated 12 chapters each, according to
the 5-point Likert scale for the chapter semantics property, re-
sulting 144 ratings.

Findings. The ratings are distributed in the 5-point Likert scale
as follows: 10.42% is strongly disagree, 14.58% is disagree,
15.28% is neutral, 24.31% is agree, and 35.42% is strongly
agree. Thus, 59.72% of the 144 ratings are from participants
who agreed that the five terms of a given chapter are related

with the theme of the chapter as they could derive this theme
through these terms.

Statistics. Figure 5 shows, for each of the five possible rating
values for the chapter semantics property, the distribution of
the number of ratings. Kruskal-Wallis test on the rating val-
ues returned p-value = 0.011. Post-hoc analysis with pairwise
comparisons using Tukey and Kramer (Nemenyi) test showed
that the number of rating value 1 is significantly lower than the
number of rating value 5.

0
1

2
3

4
5

6
7

strongly
disagree

neutral agree strongly
agree

disagree

Figure 5: Response frequency distribution for the chapter semantics property
per rating.

Participants’ comments. From comments made by participants,
one of the opportunities for improvement is to form the chap-
ter titles with the original words instead of stems (i.e., “table”
instead of “tabl”).

RQ #1: To what extent do the chapters have defined themes?
59.72% of the ratings are from participants that could derive
a theme for chapters through the five terms assigned to the
chapters, i.e., they agreed that the chapters have a defined
theme.

5.2. On the recipe relatedness to chapter property (RQ #2)

Context. 12 participants rated 41 recipes each, according to the
5-point Likert scale for the recipe relatedness to chapter prop-
erty, resulting 492 ratings.

Findings. The ratings are distributed in the 5-point Likert scale
as follows: 9.15% is strongly disagree, 6.5% is disagree, 8.74%
is neutral, 26.63% is agree, and 48.98% is strongly agree. Thus,
75.61% of the 492 ratings are from participants who agreed that
the recipe is related to the title of its chapter, i.e., that the recipe
is related to at least two terms assigned to the title.

Statistics. Figure 6 shows, for each of the five possible rating
values for the recipe relatedness to chapter property, the distri-
bution of the number of ratings. Kruskal-Wallis test returned
p-value = 6.8 × 10−7. Post-hoc analysis with pairwise com-
parisons using Nemenyi test showed that the number of rating
value 5 is significantly higher than the number of rating values
1 and 2. There was no significant difference from rating value

10

5 to rating value 4, but still the number of rating value 4 is sig-
nificantly higher than rating value 2, but not with rating value
1.

0
5

10
15

20
25

30

strongly
disagree

neutral agree strongly
agree

disagree

Figure 6: Response frequency distribution for the recipe relatedness to chap-
ter property per rating.

Participants’ comments. From comments made by participants,
the main criticism regarding the recipe relatedness to chap-
ter property is the existence of a few poorly localized recipes,
i.e., recipes that are in certain chapters, but that are more related
to the theme of other chapters.

Additional analysis. Concerning the recipe relatedness to chap-
ter property, we provide additional data on how chapters over-
lap. We calculated, for each chapter, the number of terms of its
title that are also part of the title of other chapters. The pres-
ence of repeated terms between chapters could be an indication
of the existence of the same theme being treated in more than
one chapter, in a larger or lower extent.

We found that the number of chapters having terms in com-
mon with other chapters is not high. In the case of SWT, there
are only six pairs of chapters with non-empty intersection, cor-
responding to 9% of all possible pairs of chapter (66 pairs, i.e.,
2-combination of 12 chapters). In the case of LINQ, we had
16.67%, and 9% in the case of QT.

This additional data analysis also corroborates with the sur-
vey result, because the low intersection in terms from chapters’
titles indicates a low number of posts on the intersected themes,
therefore reducing chances of recipe non-relatedness to chap-
ter.

RQ #2: To what extent are recipes related to the theme of
the chapter where they were included?
75.61% of the ratings are from participants that agreed that
the recipe is related to the theme of its chapter.

5.3. On the recipe adequacy property (RQ #3)

Context. 11 participants rated 41 recipes each, according to the
5-point Likert scale for the recipe adequacy property, resulting
451 ratings.

Findings. The ratings are distributed in the 5-point Likert scale
as follows: 4.43% is strongly disagree, 4.66% is disagree,

7.54% is neutral, 27.72% is agree, and 55.65% is strongly
agree. Thus, 83.37% of the 451 ratings are from participants
who agreed that the recipe is adequate to be part of the cook-
book.

Statistics. Figure 7 shows, for each of the five possible rat-
ing values for the recipe adequacy property, the distribution of
the number of ratings. Kruskal-Wallis test returned p-value =

4.3 × 10−6. The result of the post-hoc analysis with pairwise
comparisons using Nemenyi test showed that the number of rat-
ing value 5 is significantly higher than the number of rating val-
ues 1, 2 and 3. There was no significant difference from rating
value 5 to rating value 4, but still the number of rating value 4
is significantly higher than rating value 1, but not with rating
value 2.

0
10

20
30

40

strongly
disagree

neutral agree strongly
agree

disagree

Figure 7: Response frequency distribution for the recipe adequacy property per
rating.

Participants’ comments. The participants pointed out several
factors that make a given recipe suitable for cookbooks: the
presence of explanations of the API elements used in code snip-
pets; questions that are how-to-do-it; the presence of references
to external sources for additional information; and the presence
of explanations in natural language.

RQ #3: To what extent are recipes suitable for inclusion in
cookbooks?
83.37% of the ratings are from participants that agreed that
the recipe is adequate to be part of the cookbook.

5.4. On the recipe self-containment property (RQ #4)

Context. 13 participants rated 41 recipes each, according to the
5-point Likert scale for the recipe self-containment property,
resulting 533 ratings.

Findings. The ratings are distributed in the 5-point Likert scale
as follows: 0.94% is strongly disagree, 6% is disagree, 5.25%
is neutral, 18.76% is agree, and 69.04% is strongly agree. Thus,
87.8% of the 533 ratings are from participants who agreed that
the recipe is self-contained as external sources referenced in
the recipe are not required to understand the scenario and its
solution presented in the recipe.

11

Statistics. Figure 8 shows, for each of the five possible rating
values for the recipe self-containment property, the distribution
of the number of ratings. Kruskal-Wallis test returned p-value
= 1.804 × 10−9. Post-hoc analysis with pairwise comparisons
using Nemenyi test showed that the number of rating value 5 is
significantly higher than the number of rating values 1, 2 and 3.
There was no significant difference from rating value 5 to rating
value 4, but still the number of rating value 4 is significantly
higher than rating value 1, but not with rating value 2.

0
5

10
15

20
25

30
35

strongly
disagree

neutral agree strongly
agree

disagree

Figure 8: Response frequency distribution for the recipe self-containment prop-
erty per rating.

Participants’ comments. From the comments made by par-
ticipants, we concluded that the presence of very summarized
recipes makes the comprehension of the information contained
in them difficult, and the participants claimed the need of addi-
tional sources of information in such cases.

RQ #4: To what extent do recipes have self-contained infor-
mation?
87.8% of the ratings are from participants that agreed that
the recipe is self-contained as it contains the necessary in-
formation to understand the scenario and its solution, i.e.,
external sources referenced in the recipe are not required.

5.5. On the join of recipe relatedness to chapter, recipe ade-
quacy and recipe self-containment properties (RQ #5)

Recipes should have good evaluation with respect to more
than one property simultaneously. Thus, for those partici-
pants that had the recipe relatedness to chapter, recipe ade-
quacy and recipe self-containment columns painted gray in Ta-
ble 4, we checked the number of recipes that were rated with
values 4 or 5 for all the three properties related to recipes.
The chapter semantics property was not considered in this case
since it applies to chapters instead of recipes. The average num-
ber of recipes rated with value 4 or 5 for the three properties is
26.8, which corresponds to 65.37% of assessed recipes for each
subject.

RQ #5: To what extent do recipes meet all the properties
recipe relatedness to chapter, recipe adequacy and recipe

self-containment?
The percentage of recipes rated with values 4 and 5 for
the three properties related to recipes (recipe relatedness
to chapter, recipe adequacy and recipe self-containment) is
65.37%, which is high.

5.6. On the usage of cookbooks for API learning (RQ #6)

Context. Participants evaluated cookbooks with free natural
language text.

Findings. For SWT API, answers were collected from ten sub-
jects. Four of them said they would use the SWT-Cookbook to
learn about such API. Six subjects said they would prefer to use
the cookbook just to seek information about specific problems.
In this case, the cookbooks would not be used as an introductory
documentation to learn an API as a whole, from the beginning
to the end. The lack of a logical sequence between chapters and
the lack of a “Hello-Word” recipe were cited as something that
hinders the usage of cookbooks to learn an API. The fact that
the cookbook has several basic information about the API and
the presence of source code that can be executed were cited as
justifications to use the cookbook for learning about SWT.

For LINQ API, answers were collected from nine subjects.
Six of them said that the cookbook could be used to solve spe-
cific problems, although three of them have said that the cook-
book could also be used in learning. The organization of the
cookbook in chapters was cited as an intuitive factor that facil-
itates learning about the API, since Stack Overflow originally
does not have this structure. The presence of generic questions
was also cited as a positive aspect of using the cookbook for
learning.

For QT, answers were collected from eleven subjects. We
also observed that a prevalent opinion (five out of eleven) is that
the cookbook could be used to obtain information about specific
problems but not to learn about the API from the beginning to
the end.

Overall, the prevalent view from the answers from the par-
ticipants on the three cookbooks is that they can be used as a
source of information for specific problems but not for learning
an API as a whole. The main reason cited by the participants on
not using cookbooks for learning an API as a whole is the lack
of logical and chronological order among cookbook chapters.

From all of the 30 answers, 17 were from participants who
said they would use cookbooks to seek information about a spe-
cific problem. Indeed, it is possible for developers navigating
through the chapters and recipes of the cookbooks to locate
needed information, since the cookbooks have only two levels
of hierarchy (chapters and recipes), which facilitates their ex-
ploration. A possible usage would be checking if the cookbook
has a chapter theme connected with the problem theme, and
if there is such a chapter, peruse the recipes contained therein.
However, it is possible that there is no recipe in the cookbook
that is specific to the current problem, because the cookbooks
are built from content well evaluated by the crowd on Stack
Overflow, and do not target high API coverage.

12

Additionally, there could be more efficient ways to seek in-
formation about a specific problem as, for example, search-
ing with Google, the Stack Overflow search engine, or even
using recommendation approaches that use Stack Overflow
data [40, 41, 24]. We advocate that due to its browsing na-
ture, cookbooks can be complementary to searching mecha-
nisms. Browsing can be used in cases where it is not possible
to formulate keywords for composing a query, which can oc-
cur, for example, when a developer is relatively inexperienced
concerning the API [25].

RQ #6: What role can crowd cookbooks play in API learn-
ing?
The most prevalent statement among the participants (17
out of 30 answers) is that crowd cookbooks could be used to
seek information about a specific problem. Since the cook-
book construction approach has the ability to filter, sum-
marize and organize recipes, we conclude that crowd cook-
books could also be indicated to help new developers to
become familiarized with the API features and vocabulary,
to be able to produce queries when trying to solve specific
problems.

5.7. On strengths, weaknesses and suggested improvements
(RQ #7)

Context. Participants evaluated cookbooks with free natural
language text.

Findings. The first author of this paper conducted a Thematic
Analysis [42] to summarize the answers given by the partici-
pants with respect to the strengths, weaknesses and improve-
ments that can be made to the generated cookbooks. Such
analysis comprehends reading all answers, identifying specific
segments of text, coding the segments, reducing overlaps, and
mapping codes into the following themes which were consid-
ered sufficiently synthesized.

The main strengths cited were: 1) presence of chapters with
well-defined themes; 2) organization that facilitates locating
important information, since Stack Overflow originally lacks
the organization available in cookbooks; 3) presence of answers
that refer to additional sources of information; 4) presence of
generic problems; and 5) existence of source code examples in
recipes.

The main weaknesses cited were: 1) presence of very spe-
cific questions; 2) presence of recipes that are not related to the
theme of their chapters; 3) presence of chapters with poorly-
defined themes; 4) presence of stems in the titles of the chap-
ters instead of original words; 5) presence of chapters with too
many recipes; and 6) presence of very brief/incomplete recipes
and with too small/incomplete source code.

The improvements suggested were:

• The recipes could contain the indications for other similar
recipes. Although each chapter brings together recipes on
the same general theme, it would be interesting to know
which other recipes deal with similar problems, at a lower
level of granularity;

• The recipes could explain the used classes/methods, so
less experienced developers would not need to use other
sources for this information. A way to achieve such fea-
ture could be to identify the API elements (e.g., classes and
methods) used in the source code snippets in the recipe,
and to link them to the official API documentation. For
example, we could use the approach presented by Subra-
manian et al. [43];

• The cookbooks could have a chronological sequence to
present chapters, for example, from basic chapters to more
advanced ones. However, chronological sequence of chap-
ters is not a typical characteristic of cookbooks. This fea-
ture is more common in other kinds of documentation,
such as tutorials.

RQ #7: What are the strengths, weaknesses and improve-
ments that can be made to crowd cookbooks?
Among the points raised by the participants, the high-
lights are: as positive point, that the cookbooks have an
easy organization for locating important information, since
Stack Overflow originally lacks that organization; as neg-
ative point, the presence of recipes that are not related to
the theme of their chapters, and the presence of chapters
with poorly-defined themes; and as suggestion for improve-
ments, to indicate in recipes, other similar recipes, and to
include information on the API elements used in a recipe.

6. Limitations and Threats to Validity

There are some limitations in our approach to construct cook-
books. First, although the approach relies on standard LDA
technique with long history in software engineering academic
research [44], we use LDA without sophisticated parameter tun-
ing to generate topics, which might have a detrimental effect on
the generated topics. Recent study [45] suggests that the or-
der of inputed texts to train LDA matters, i.e., topics may vary
given different order of the same input.

Another limitation is that the complexity of chapters and
recipes was not taken into account, so chapters and recipes are
currently not organized according to the complexity of under-
standing. How to rank chapters and recipes according to their
complexities could be addressed in future work.

There are some threats to internal validity of the results. The
participants of the study are mostly acquaintances of the first
author of this paper, which could create a bias towards evalua-
tion, because they could positively evaluate the cookbooks just
trying to benefit the research results. To mitigate this threat, we
created controlled cookbooks that contain chapters and recipes
notoriously bad, and we checked how the subjects rated these
items (Section 4.7).

Participants that evaluated the cookbooks were typically not
familiar with the APIs, which would be a severe threat if they
had to evaluate the correctness of the content in recipes. How-
ever, the recipes contain content from Stack Overflow, and our
approach relies on the score of the posts on Stack Overflow to

13

produce a reliable cookbook. Moreover, the participants were
not evaluating the correctness of the posts. The evaluation point
of view is from a person that does not know the technical de-
tails of the API, but could be capable to recognize whether the
provided content would be relevant, organized, and coherent,
so someone else could use it to use that unknown API.

There are also some threats to external validity. The study
we conducted to evaluate our approach was performed with
only three APIs, which may impact the generalization of the
results. However, we chose APIs related to different program-
ming languages (SWT–Java, LINQ–.NET languages and QT–
C++), which minimizes this threat.

Another factor that affects the generalization of the results is
that only 16 subjects participated in the evaluation, which may
not correspond to a representative sample of the software de-
velopment community. Moreover, the participants assessed a
sample of recipes and chapters from cookbooks, instead the en-
tire cookbooks. To minimize this threat, we randomly sampled
recipes from each chapter of the cookbooks to create a repre-
sentative sample of the cookbooks.

7. Related Work

Documenting and using APIs effectively is not trivial [4].
There are some tools designed to produce or augment docu-
mentation for APIs. Stylos et al. [46] developed Jadeite, which
extracts common usage scenarios and inserts them into an ex-
isting API documentation (Javadoc). However, the scenario ex-
amples are limited to instantiation of classes. Kim et al. [47]
proposed a technique to automatically increment the documen-
tation of APIs (e.g., Javadocs) with source code examples. Ac-
cording to their results, it was possible to include code exam-
ples for more than 20,000 API methods (around 75% of all
elements considered in the study). Montandon et al. [48] de-
veloped APIMiner, a platform that enhances the documenta-
tion of APIs for Java (i.e., Javadocs) with concrete usage ex-
amples, extracted from a private code repository. There are
three main differences between those works and ours: 1) our
approach produces cookbooks as type of documentation, those
other approaches focused on Javadocs; 2) our approach con-
structs documentation from scratch instead of improving exist-
ing documentation; and 3) whereas the data source for those
tools are repositories of software projects, our approach uses
the crowd knowledge available on Stack Overflow.

Henβ et al. [49] presented a semi-automated technique to
build FAQs (Frequently Asked Questions) from data available
in discussions, such as mailing lists and forums. There are sim-
ilarities between their approach and ours, regarding the method
for producing the documentation. For instance, both strategies
apply similar data preprocessing before applying LDA. How-
ever, there are differences between cookbooks and FAQs. First,
cookbooks are designed to contain practical problems that de-
velopers may encounter, and we included only how-to-do-it
questions in cookbooks. In contrast, FAQs include different
types of question. Second, the content available on Stack Over-
flow is semi-structured in questions and answers while the con-
tent in mailing listings and forums is not structured. Third, the

recipes of the cookbooks must contain source code examples,
since the goal of the recipes is to show how to solve program-
ming tasks using an API. On the other hand, the goal of FAQs
is to organize knowledge scattered in natural language text.

The content available on Stack Overflow has also been used
in previous works to support developers at using APIs. We
find two different veins of work: API documentation, which
is the focus of this work, and recommendation systems. For the
former, Treude and Robillard [10] presented an automatic ap-
proach to mine insight sentences from Stack Overflow and aug-
ment existing API documentation (Javadoc) with them. These
insight sentences are related to a particular API type (e.g. class)
and provide insight not contained in the API documentation of
that type. The main differences between such work and ours
are: 1) our approach constructs documentation from scratch in-
stead of improving existing documentation; and 2) their focus
is on documenting API elements individually (each mined in-
sight sentence is about an API element), while our focus is on
documenting APIs with problem-solution recipes, which may
include several API elements.

On recommendation systems using Stack Overflow content,
Campos et al. [24] proposed a solution to recommend Q&A
pairs to programming tasks that developers are facing. This
type of work is different from our work by conception: the rec-
ommendation system proposes solutions for developers given
a query (searching process), while crowd cookbooks are gen-
erated without a query for an entire API (giving an overview
of the API, to be used in a browsing process). Searching and
browsing are different but complementary strategies [25]. Fi-
nally, crowd cookbooks are an organization of the API docu-
mentation that is spread on Stack Overflow, while recommen-
dation systems do not actually create a documentation, but pro-
vide suggestions for developers given a context.

8. Conclusions

In this paper, we reported on an approach to build crowd
cookbooks (recipe-oriented book) to document APIs using the
crowd knowledge available on Stack Overflow. Our approach
structures chapters using LDA and fills them out with recipes,
each one composed by a question and an answer from Stack
Overflow posts. We selected a special kind of question (how-to-
do-it) and well voted posts from Stack Overflow to be included
in cookbooks. The proposed approach applies LDA on all how-
to-do-it content of an API, which results a partitioning of the
content of the corpus in a broad range of dissimilar topics.

We conducted an evaluation of our cookbook generating ap-
proach to check the quality of chapter organization and selected
recipes that the approach can produce. We generated cook-
books for three APIs (SWT, LINQ and QT), and defined desir-
able properties that chapters and recipes must meet. Finally, hu-
man subjects (participants) evaluated the generated cookbooks
based on the defined properties.

Among the findings, we highlight that the participants found
a considerable percentage of the cookbooks’ chapters having
well-defined themes (59.72% positive ratings). On the recipes,
the participants found that the majority of recipes are related to

14

the terms of the chapter that they are part of (75.61% positive
ratings), are suitable to be in the cookbook (83.37% positive
ratings), and have self-contained information (87.8% positive
ratings).

Despite the fact that cookbooks were originally designed to
be used through an exploration (browsing) strategy, we con-
cluded that they can be useful for an API newcomer to become
familiar with the terms of that API, and then being able to use a
searching strategy more effectively to obtain specific informa-
tion about a problem in hand.

Although human-edited versions of cookbooks may typically
have better quality than our crowd cookbooks, it is not for every
type of technology or API that there exists commercial version
of cookbooks. Thus, crowd cookbooks can be especially use-
ful for APIs that lack official documentation and/or cookbooks
produced/edited by humans. Moreover, they could be a useful
starting point to manually edit polished versions of cookbooks.
Moreover, after setting the environment, cookbooks can be gen-
erated straightforwardly: we provide a site11 with several exam-
ples of automatically generated cookbooks with default param-
eters, such as, target number of chapters equals 15 and initial
maximum rank allowed equals 200.

As future work, techniques for tuning LDA parameters to
provide topics more adherent to chapters and recipes could be
proposed. Furthermore, other metrics (e.g., cosine similarity)
to enhance the recipe relatedness to its chapter theme could be
investigated. There are other research opportunities related to
software documentation, for instance, to produce other kinds of
documentation (e.g., tutorials) from the crowd knowledge.

Acknowledgment

We acknowledge CAPES, CNPq, and FAPEMIG for partial
funding. We acknowledge the students and professionals who
participated on this study.

References

References

[1] F. P. Brooks, Jr., The Mythical Man-Month: Essays on Software Engi-
neering, Addison-Wesley Longman Publishing Co., Inc., 1995.

[2] M. P. Robillard, What Makes APIs Hard to Learn? Answers from Devel-
opers, IEEE Software 26 (6) (2009) 27–34.

[3] M. P. Robillard, R. Deline, A Field Study of API Learning Obstacles,
Empirical Software Engineering 16 (6) (2011) 703–732.

[4] C. Parnin, C. Treude, L. Grammel, M.-A. Storey, Crowd Documentation:
Exploring the Coverage and the Dynamics of API Discussions on Stack
Overflow, Technical Report GIT-CS-12-05, Georgia Institute of Technol-
ogy (2012).

[5] M.-A. Storey, A. Zagalsky, F. F. Filho, L. Singer, D. M. German, How
Social and Communication Channels Shape and Challenge a Participa-
tory Culture in Software Development, IEEE Transactions on Software
Engineering 43 (2) (2017) 185–204.

[6] O. Barzilay, C. Treude, A. Zagalsky, Facilitating Crowd Sourced Software
Engineering via Stack Overflow, Springer, 2013, pp. 289–308.

11http://lascam.facom.ufu.br:8080/cookbooks

[7] F. M. Delfim, K. V. R. Paixão, D. Cassou, M. A. Maia, Redocumenting
APIs with crowd knowledge: a coverage analysis based on question types,
Journal of the Brazilian Computer Society 22 (9) (2016) 1–34.

[8] S. M. Nasehi, J. Sillito, F. Maurer, C. Burns, What Makes a Good
Code Example? A Study of Programming Q&A in StackOverflow, in:
ICSM’12, IEEE Computer Society, 2012, pp. 25–34.

[9] C. Treude, M. Aniche, Where Does Google Find API Documentation?,
in: WAPI’18, ACM, 2018, pp. 19–22.

[10] C. Treude, M. P. Robillard, Augmenting API Documentation with In-
sights from Stack Overflow, in: ICSE’16, ACM, 2016, pp. 392–403.

[11] Documentation - Stack Overflow, https://stackoverflow.com/documentation,
accessed: 2018-Nov-16.

[12] H. Halpin, V. Robu, H. Shepherd, The Complex Dynamics of Collabora-
tive Tagging, in: WWW’07, ACM, 2007, pp. 211–220.

[13] A. Martelli, D. Ascher, Python Cookbook, O’Reilly Media, 2002.
[14] I. Darwin, Java Cookbook, O’Reilly Media, 2001.
[15] D. Stephens, D. Christopher, J. Turkanis, J. Cogswell, C++ Cookbook,

O’Reilly Media, 2006.
[16] W. Chang, R Graphics Cookbook, O’Reilly Media, 2012.
[17] S. Laurent, jQuery Cookbook, O’Reilly Media, 2010.
[18] A. Polukhin, Boost C++ Application Development Cookbook, Packt

Publishing, 2013.
[19] D. Wolff, Open GL 4.0 Shading Language Cookbook, Packt Publishing,

2011.
[20] U. Gundecha, Selenium Testings Tools Cookbook, Packt Publishing,

2012.
[21] R. Kuc, Apache Solr 4 Cookbook, Packt Publishing, 2013.
[22] E. Sadun, The Core iOS 6 Developer’s Cookbook, Addison-Wesley, 2013.
[23] M. P. Robillard, A. Marcus, C. Treude, G. Bavota, O. Chaparro, N. Ernst,

M. A. Gerosa, M. Godfrey, M. Lanza, M. Linares-Vasquez, G. C. Mur-
phy, L. Moreno, D. Shepherd, E. Wong, On-demand Developer Docu-
mentation, in: ICSME’17, 2017, pp. 479–483.

[24] E. C. Campos, L. B. L. d. Souza, M. d. A. Maia, Searching Crowd Knowl-
edge to Recommend Solutions for API Usage Tasks, Journal of Software:
Evolution and Process 28 (10) (2016) 863–892.

[25] C. Olston, E. H. Chi, ScentTrails: Integrating Browsing and Searching
on the Web, ACM Transactions on Computer-Human Interaction 10 (3)
(2003) 177–197.

[26] L. Souza, E. Campos, M. Maia, On the Extraction of Cookbooks for APIs
from the Crowd Knowledge, in: SBES’14, IEEE, 2014, pp. 21–30.

[27] J. D. Arthur, K. T. Stevens, Document Quality Indicators: A Framework
for Assessing Documentation Adequacy, Journal of Software Mainte-
nance: Research and Practice 4 (3) (1992) 129–142.

[28] K. L. Smart, Assessing quality documents, ACM Journal of Computer
Documentation 26 (3) (2002) 130–140.

[29] D. M. Blei, A. Y. Ng, M. I. Jordan, Latent Dirichlet Allocation, The Jour-
nal of Machine Learning Research 3 (2003) 993–1022.

[30] E. C. Campos, M. de Almeida Maia, Automatic categorization of ques-
tions from Q&A sites, in: SAC’14, ACM, 2014, pp. 641–643.

[31] A. Barua, S. W. Thomas, A. E. Hassan, What Are Developers Talking
About? An Analysis of Topics and Trends in Stack Overflow, Empirical
Software Engineering 19 (3) (2014) 619–654.

[32] S. W. Thomas, Mining Software Repositories Using Topic Models, in:
ICSE’11, ACM, 2011, pp. 1138–1139.

[33] M. F. Porter, Readings in information retrieval, Morgan Kaufmann Pub-
lishers Inc., 1997, Ch. An algorithm for suffix stripping, pp. 313–316.

[34] A. K. McCallum, MALLET: A Machine Learning for Language Toolkit,
http://mallet.cs.umass.edu (2002).

[35] H. M. Wallach, I. Murray, R. Salakhutdinov, D. Mimno, Evaluation Meth-
ods for Topic Models, in: ICML’09, ACM, 2009, pp. 1105–1112.

[36] A. Panichella, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, A. De Lu-
cia, How to Effectively Use Topic Models for Software Engineering
Tasks? An Approach Based on Genetic Algorithms, in: ICSE’13, IEEE
Press, 2013, pp. 522–531.

[37] D. H. Dalip, M. A. Gonçalves, M. Cristo, P. Calado, Exploiting User
Feedback to Learn to Rank Answers in q&a Forums: A Case Study with
Stack Overflow, in: SIGIR’13, ACM, 2013, pp. 543–552.

[38] E. Lahtinen, K. Ala-Mutka, H.-M. Järvinen, A Study of the Difficulties of
Novice Programmers, ACM SIGCSE Bulletin 37 (3) (2005) 14–18.

[39] R. P. Dellavalle, E. J. Hester, L. F. Heilig, A. L. Drake, J. W. Kuntzman,
M. Graber, L. M. Schilling, Going, Going, Gone: Lost Internet Refer-

15

http://lascam.facom.ufu.br:8080/cookbooks
http://mallet.cs.umass.edu

ences, Science 302 (5646) (2003) 787–788.
[40] L. Ponzanelli, A. Bacchelli, M. Lanza, Leveraging Crowd Knowledge for

Software Comprehension and Development, in: CSMR’13, IEEE Com-
puter Society, 2013, pp. 57–66.

[41] L. B. L. d. Souza, E. C. Campos, M. d. A. Maia, Ranking Crowd Knowl-
edge to Assist Software Development, in: ICPC’14, ACM, 2014, pp. 72–
82.

[42] D. S. Cruzes, T. Dyba, Recommended Steps for Thematic Synthesis in
Software Engineering, in: ESEM’11, IEEE Computer Society, 2011, pp.
275–284.

[43] S. Subramanian, L. Inozemtseva, R. Holmes, Live API Documentation,
in: ICSE’14, ACM, 2014, pp. 643–652.

[44] T.-H. Chen, S. W. Thomas, A. E. Hassan, A Survey on the Use of Topic
Models when Mining Software Repositories, Empirical Software Engi-
neering 21 (5) (2016) 1843–1919.

[45] A. Agrawal, W. Fu, T. Menzies, What is Wrong with Topic Modeling?
(and How to Fix it Using Search-based Software Engineering), Informa-
tion and Software Technology online (2018) –.

[46] J. Stylos, B. A. Myers, Z. Yang, Jadeite: Improving API Documentation
Using Usage Information, in: CHI’09, ACM, 2009, pp. 4429–4434.

[47] J. Kim, S. Lee, S.-w. Hwang, S. Kim, Adding Examples into Java Docu-
ments, in: ASE’09, IEEE Computer Society, 2009, pp. 540–544.

[48] J. E. Montandon, H. Borges, D. Felix, M. T. Valente, Documenting
APIs with Examples: Lessons Learned with the APIMiner Platform, in:
WCRE’13, 2013, pp. 401–408.

[49] S. Henβ, M. Monperrus, M. Mezini, Semi-Automatically Extracting
FAQs to Improve Accessibility of Software Development Knowledge, in:
ICSE’12, IEEE Press, 2012, pp. 793–803.

16

	1 Introduction
	2 Background
	2.1 Cookbooks
	2.2 Cookbook assessment

	3 The Proposed Approach for Cookbook Construction
	3.1 Selection of threads related to a given API x
	3.2 Selection of threads with how-to-do-it question
	3.3 Finding potential chapters using Latent Dirichlet Allocation
	3.4 Construction of the cookbook

	4 Evaluation Methodology
	4.1 Research questions
	4.2 API subjects
	4.3 Human subjects
	4.4 Construction of controlled cookbooks
	4.5 Sampling chapters and recipes for evaluation
	4.6 Participant assignment to control cookbooks
	4.7 Answers to controlled items

	5 Evaluation Results and Discussion
	5.1 On the chapter semantics property (RQ #1)
	5.2 On the recipe relatedness to chapter property (RQ #2)
	5.3 On the recipe adequacy property (RQ #3)
	5.4 On the recipe self-containment property (RQ #4)
	5.5 On the join of recipe relatedness to chapter, recipe adequacy and recipe self-containment properties (RQ #5)
	5.6 On the usage of cookbooks for API learning (RQ #6)
	5.7 On strengths, weaknesses and suggested improvements (RQ #7)

	6 Limitations and Threats to Validity
	7 Related Work
	8 Conclusions

