
This is a repository copy of Scaling-up domain-specific modelling languages through
modularity services.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/149240/

Version: Accepted Version

Article:

Garmendia, Antonio, Guerra, Esther, de Lara, Juan et al. (2 more authors) (2019) Scaling-
up domain-specific modelling languages through modularity services. Information and
Software Technology. pp. 97-118. ISSN 0950-5849

https://doi.org/10.1016/j.infsof.2019.05.010

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long
as you credit the authors, but you can’t change the article in any way or use it commercially. More
information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Scaling-up Domain-Specific Modelling Languages

through Modularity Services

Antonio Garmendia, Esther Guerra, Juan de Lara

Universidad Autónoma de Madrid (Spain)

Antonio Garćıa-Domı́nguez

Aston University (UK)

Dimitris Kolovos

The University of York (UK)

Abstract

Context. Model-driven engineering (MDE) promotes the active use of models
in all phases of software development. Even though models are at a high level of
abstraction, large or complex systems still require building monolithic models
that prove to be too big for their processing by existing tools, and too difficult
to comprehend by users. While modularization techniques are well-known in
programming languages, they are not the norm in MDE.
Objective. Our goal is to ease the modularization of models to allow their
efficient processing by tools and facilitate their management by users.
Method. We propose five patterns that can be used to extend a modelling
language with services related to modularization and scalability. Specifically,
the patterns allow defining model fragmentation strategies, scoping and visibil-
ity rules, model indexing services, and scoped constraints. Once the patterns
have been applied to the meta-model of a modelling language, we synthesize
a customized modelling environment enriched with the defined services, which
become applicable to both existing monolithic legacy models and new models.
Results. Our proposal is supported by a tool called EMF-Splitter, combined
with the Hawk model indexer. Our experiments show that this tool improves
the validation performance of large models. Moreover, the analysis of 224 meta-
models from OMG standards, and a public repository with more than 300 meta-
models, demonstrates the applicability of our patterns in practice.
Conclusions. Modularity mechanisms typically employed in programming
IDEs can be successfully transferred to MDE, leading to more scalable and
structured domain-specific modelling languages and environments.

Keywords: Model-Driven Engineering, Meta-Modelling, Scalability,
Domain-Specific Modelling Languages

Preprint submitted to Information and Software Technology March 29, 2019

1. Introduction

Model-driven engineering (MDE) promotes models as the central assets in
software development [1, 2]. Models are described either using general-purpose
modelling languages, like the UML, or with domain-specific modelling languages
(DSMLs) tailored to an area of interest [3]. In both cases, models abstract away
accidental details of the system being built, focusing on its essential features.
However, models of large complex systems may become too big and hence dif-
ficult to understand by humans and to process by tools [4].

For decades, the programming languages community has developed modu-
larity mechanisms to cope with large programs [5]. These include the possibil-
ity to fragment programs into language units (e.g., classes or interfaces) which
are stored in different files and organized in modules (e.g., packages in Java).
Many programming languages also support scoping and visibility rules control-
ling which elements are visible and can be accessed from other modules (e.g.,
through access level modifiers). Other techniques that contribute to the efficient
management of large programs focus on ways to avoid recompiling a whole pro-
gram upon localized changes, e.g., by incremental type-checking, compilation
and linking mechanisms [6, 7].

In contrast, DSMLs often lack modularity mechanisms, and models ex-
pressed with them are frequently monolithic and reside in a single file. This
is so as many language development frameworks do not provide intuitive means
to enhance the definition of DSMLs with modularity facilities, like fragmenta-
tion strategies for models, or incremental validation of constraints within a given
scope. Although some environments provide ad-hoc modularization services for
specific modelling languages (e.g., UML) [8, 9, 10, 11, 12, 13], these are not read-
ily available to developers of new DSMLs. Instead, developers need to program
the required services manually for the platform where the DSML environment
is being built. Since this is a complex task that requires expert knowledge, most
DSMLs end up lacking these features, which hinders the scalability of modelling
in practice.

To improve the scalability of domain-specific modelling in MDE, we pro-
pose generic modularity services comparable to those existing for programming
languages. This is in general challenging as programming languages come with
explicitly defined semantics that drive the abstraction mechanisms, but meta-
models often have an implicit semantics. Hence, our proposal covers a subset
of modularity concepts that seem useful to many languages (information hiding
and compilation unit) and do not necessarily rely on an explicit specification of
the meta-model semantics.

Our approach is based on extending the meta-model of the DSML with in-
formation about the modular organization of models, scope of references, object
visibility rules, attribute indexing, and validation scope of DSML constraints.
Model modularization permits describing strategies to fragment models into
packages and different kinds of units, which are stored in separate files. As a
model is fragmented into smaller parts, reference scoping and object visibility
rules permit customising how objects can be accessed and cross-linked across

2

units. To improve efficiency, constraints can define a scope and be validated
incrementally, while attributes and references can be indexed for more efficient
queries [14].

We have realized our proposal in a tool called EMF-Splitter [15]. This de-
scribes the different modularization services as patterns which are instantiated
on top of the DSML meta-model, and from which a scalable modelling envi-
ronment with the defined services is synthesized. To improve efficiency, the
generated environment makes use of Hawk [14], a model indexer supporting
efficient querying across fragmented resources.

We have evaluated the benefits of our proposal by means of three exper-
iments. The first one demonstrates the applicability of our approach, based
on the analysis of a public repository of more than 300 meta-models, and 224
meta-models from specifications of the Object Management Group (OMG). The
second and third experiments focus on performance. In particular, the second
experiment evaluates the efficiency gains of scoped constraint validation on a
fragmented model, with respect to standard constraint validation on monolithic
models. The third one is a case study where our tooling shows performance
gains over existing tools in the industrial automation domain [16].

This paper continues our work on facilitating the construction of scalable
modelling environments [15, 17] by presenting four new services: reference scop-
ing, object visibility, indexing, and scoped constraints. Moreover, we show the
integration of EMF-Splitter with indexing services [14], and evaluate the effi-
ciency gains and applicability of our approach with three experiments.

The rest of the paper is organized as follows. Section 2 motivates the need
for modularity services for DSMLs based on a running example. Section 3 de-
scribes our approach, which is based on patterns and code generation. Section 4
introduces our modularization patterns for fragmentation, reference scoping, vis-
ibility, indexing, and scoped constraints. Section 5 presents tool support, and
Section 6 reports on our evaluation. Section 7 compares with related research,
and finally, Section 8 ends with the conclusions and directions for future work.

2. Motivation and running example

In this section, we introduce a motivating running example from which we
elicit a number of requirements for scalable modelling environments.

As an example, we will be using an architectural language inspired by the in-
dustrial modelling case on wind turbine control system development presented
in [18]. Figure 1 shows the meta-model of the language. It allows describ-
ing two aspects of wind turbine control systems: (i) the constituent types of
system components and how they can be connected (classes Component, Port,
InPort, OutPort and Connector); and (ii) the admissible states and state changes
of those component types (classes StateMachine, DocumentElt, Vertex, InitialState,
SimpleState and Edge). In addition, the meta-model provides classes to organize
components into hierarchies of subsystems (class Subsystem), as well as to group
the state machines in each subsystem (class ControlSubsystem).

3

context InPort inv inputPortConnected:
 Connector.allInstances()->exists(c |
 c.inPort = self and not c.outPort.oclIsUndefined())
-
context OutPort inv outputPortConnected:
 Connector.allInstances()->exists(c |
 c.outPort = self and not c.inPort.oclIsUndefined())
-

states
elements

ports

connectors

ensembles

outgoing

incoming
states

states
beh

subsystems

subsystems

DocumentElt

name: String
description: String

Edge

SimpleStateInitialState

Vertex

StateMachine

mname: String
isPublic: boolean

ControlSubsystem

name: String

Component

label: String
Architecture

ident: String

outPortinPort

Port

label: String
isPublic: boolean

OutPortInPort

Connector

Subsystem

name: String

WTComponents

name: String

*

*

*

*
*

*

*

*

*

0..10..1

*

Figure 1: Meta-model of an architectural language for wind turbine control systems.

To be able to define models using the architectural language, we would like
to have a customised environment with typical modelling facilities like model
editing, conformance checking, model search, etc. Since we expect control sys-
tems to consist of many components, the environment should be optimized to
deal with large models from the tool perspective (performance) and the user per-
spective (usability). Building this environment by hand is possible but costly.
Instead, using a meta-modelling-based language development framework for its
construction is faster.

Examples of graphical and textual language development frameworks include
GMF [19], Sirius [20] and Xtext [21]. However, these frameworks typically yield
environments for editing monolithic models, i.e., models with all their elements
included in the same file/resource. As a consequence, these environments have
performance problems when managing big models. Moreover, having monolithic
models is not optimal in our example, as the language clearly identifies two dif-
ferent concerns (structure and behaviour) and so a mechanism that enables
their separation is desirable [22]. Additionally, the language provides primi-
tives (nested subsystems, control subsystems) that may be used to organize the
model content in packages according to the subsystems structure. Even though
modelling frameworks like EMF [23] permit cross-referencing elements across
files, they lack a native way to define and enforce fragmentation policies, or
to organize a model into packages (the latter is available for meta-models but
not for models). While some language frameworks like Sirius [20] support the
definition of diagram types, they do not provide mechanisms to combine several

4

model fragments into a unified model, or to map parts of the model structure
to the file system (like packages in Java). Moreover, the fragmentation strategy
should be intrinsic to the abstract syntax, not tied to specific concrete syntaxes.

Once a model is fragmented, it is desirable to control which elements can
be cross-referenced from other model fragments. For example, we may wish
to restrict a Component to reference only those StateMachines located in Control-

Subsystems within the same Subsystem the Component belongs to. While it is
possible to define a constraint that checks this using any constraint language,
an advanced modelling environment would also filter out all StateMachine objects
that are out of the scope. Frameworks like Xtext [21] support scopes, but these
are tied to the concrete syntax, are normally defined in low-level programming
languages, and require deep knowledge of the framework.

Meta-models may include integrity constraints, typically specified using the
Object Constraint Language (OCL) [24], to be satisfied by models. As an exam-
ple, Figure 1 shows in the bottom-right corner two constraints demanding that
every input port is connected to some output port, and vice versa. Constraints
are defined in the context of a class, and evaluated on every instance of the class
that is contained in a model, which is time-consuming for big models. Instead,
we may take advantage of the fragmentation of models to scope the evaluation
of constraints to smaller fragment units. In the running example, this means
that whenever a component is changed, only the ports in that component should
get their constraints re-evaluated, but not the rest of the ports.

Finally, searches on big models can be slow. One way to tackle this problem
is the use of model indexers and indices of relevant attributes to speed up the
search [14]. However, since building an index incurs a time overhead, it should
be possible to customize the subset of attributes to be indexed (only those used
in recurrent searches).

Altogether, the modelling environment for the proposed architectural lan-
guage has to fulfil the following requirements, which indeed are general require-
ments of scalable modelling environments:

R1 Ability to define fragmentation strategies for models, to enforce the sepa-
ration of concerns.

R2 Ability to organize the model content hierarchically into packages, to im-
prove usability.

R3 Ability to control the visibility of elements across fragments, and the scope
of cross-references, to manage complexity through information hiding.

R4 Ability to customize the scope of integrity constraints, to improve their
validation performance.

R5 Ability to define model indices, to improve the performance of recurrent
searches.

The next section presents our approach to the construction of modelling
environments for DSMLs, where the previous services can be customized.

5

3. A pattern-based approach to modularity in DSMLs

Figure 2 shows a scheme of our approach to the development of modelling
environments with support for modularity services. The approach provides a
catalogue of modularity services expressed as meta-model patterns [25], which
can be applied to the domain meta-model for which the environment is being
developed (label 1). The modelling language designer can apply as many pat-
terns as required to the domain meta-model. Each pattern application produces
a customization of the corresponding service for the domain meta-model. Sec-
tion 4 will present our catalogue of modularity patterns, which covers services
for model fragmentation, object visibility, reference scoping, attribute indexing
and scoped validation.

Domain meta-model

modelling
language
designer

automatic
generation

fragmentation
visibility
scoping
indexing
scoped validation

Modularity services

modelling
language

users

1 Modelling environment

package

modelling project

subpackage

3 Customization of modularity services

2

Model
indexer

Figure 2: Overview of our approach to build modelling environments with modularity services.

Technically, our modularity patterns have the form of a meta-model, and
their elements (classes, references and attributes) are called roles [26]. Each
role defines a cardinality interval which governs how many times the role can
occur in a pattern application. If a role does not define a cardinality explicitly,
then it is assumed to be of cardinality [1..1]. Class roles can be tagged with the
stereotype abstract, in which case the class role cannot be instantiated but is a
placeholder for attribute or reference roles that get inherited by children class
roles. Since roles tagged as abstract cannot be instantiated, they do not have
any cardinality.

Class roles may have two kinds of fields1: field roles and configuration fields.
Field roles must be mapped to fields with a compatible type in the domain
meta-model, while their name can be different. Just like class roles, field roles
define a cardinality range ([1..1] by default). On the other hand, configuration
fields are not mapped but need to receive a value when the pattern is applied.
Inspired by deep characterization in multi-level modelling [27, 28], we tag the
configuration fields with “@1” (potency 1) as they receive a value when the
pattern is instantiated one meta-level below, while the field roles have potency

1We uniformly refer to attributes and references as fields.

6

2 as they receive a value two meta-levels below. We omit the inscription “@2”
in the field roles for readability reasons.

As an example, the upper-left corner of Figure 3(a) shows a pattern defini-
tion. We use a synthetic example to better illustrate all features of our patterns
and their application, and refer to Section 4 for the catalogue of proposed pat-
terns. The pattern has two class roles, one reference role, one attribute role,
and one configuration attribute (marked with “@1”). RoleA and roleatt do not
specify a cardinality, hence they are assumed to have [1..1]; RoleB and roleref

define cardinality [1..∗]. Note that field roles have two cardinalities: a role car-
dinality which governs the number of instances of the role ([1..∗] for roleref),
and a field cardinality which must be compatible with the field mapped in the
domain meta-model (∗ for roleref).

RoleA

roleref *

RoleB
1..*

1..*

pattern

:RoleA

:roleref *
:RoleB

pattern
instantiation

:roleref *
:RoleB

domain meta-model

binding

1

2

ClassB1

b *

ClassB2 ClassA

ClassC
*

b1

*

b2

att@1: String

roleatt: String

att= “val”

:roleatt: String :roleatt: String

a2: String
a3: String

a1: String

b *

ClassC
*

b1

*

b2

a2: String
a3: String

a1: String

«RoleA»

ClassA «roleref»

«roleref»

«RoleB»

ClassB1

«roleatt»

«RoleB»

ClassB2

«roleatt»

(a) (b)

att=“val”

Figure 3: (a) Example of pattern application to domain meta-model. (b) Visualization of
applied pattern.

The application of a pattern to a domain meta-model proceeds in two steps.
First, the language designer instantiates the pattern as a regular meta-model,
respecting its role cardinalities. Then, he/she needs to bind the elements in the
pattern instance to elements in the domain meta-model (class roles to domain
classes, attribute roles to domain attributes, and reference roles to domain refer-
ences). This binding allows structural matching, i.e., if a class role r is mapped
to a domain class c, then the field roles inside r must be bound to fields owned or
inherited by c. In addition, some patterns may define extra conditions expressed
in OCL or Java to restrict the bindings considered correct [25].

Figure 3(a) exemplifies the application of a pattern (in the upper-left corner)
to a meta-model (in the upper-right corner). As a first step, the pattern is
instantiated. In the example, the created pattern instance contains one instance
of RoleA, two instances of RoleB, and the configuration attribute att receives the
value “val”. In a second step, the pattern instance elements are bound to
elements of the meta-model. In Figure 3(a), the binding (depicted as dotted
arrows) maps :RoleA to ClassA; one :RoleB to ClassB1 and the other to ClassB2;

7

one :roleatt to a1 and the other to a2; and the two :roleref to two references
of ClassA, one owned and the other inherited. In general, one element in the
domain meta-model is allowed to receive several roles. For example, if ClassA

had a self-reference r and a String attribute a, then both :RoleA and :RoleB could
be mapped to ClassA, with :roleref mapped to r, and :roleatt to a.

Figure 3(b) visualizes the domain meta-model with the applied pattern.
Roles are depicted as stereotypes on the mapped class or field, and configuration
fields (like att) are shown in a box attached to the stereotyped class.

The language designer can apply as many patterns as desired to the do-
main meta-model, following the described process. From this definition, a mod-
elling environment that integrates modularity services configured in compliance
with the instantiated patterns is automatically synthesized (labels 2 and 3 in
Figure 2). This environment features model indexers [29] that improve the
efficiency of searches across model fragments and manage inconsistent cross-
references when fragments are moved to a different location [30]. Before detail-
ing our tooling in Section 5, the next section describes the supported modularity
patterns.

4. Catalogue of modularity patterns and services

In this section, we present our catalogue of modularity services and their
associated patterns, which are illustrated using the running example.

4.1. Fragmentation

Programming languages offer techniques for dividing a program into smaller
building blocks. This helps developers to tame the system complexity, and
increments the efficiency of the tooling to perform tasks such as syntax and
type checking, compilation and linking.

Similarly, to scale modelling to larger systems, we propose transferring the
concept of fragmentation to DSMLs. This provides benefits in terms of model
navigability and processing efficiency (see Section 6.2). Moreover, teams of
engineers working collaboratively on a fragmented model will potentially have
fewer conflicts in version control systems than when working on a monolithic
model.

To support model fragmentation, we take inspiration from the modularity
concepts of languages like Java and its JDT [31] Eclipse programming envi-
ronment. Eclipse JDT allows creating Java projects, and the language permits
breaking programs physically into compilation units (classes, interfaces and enu-
merations residing in different files) which are organised into hierarchies of pack-
ages. Projects, folders and files are located in the workspace organized into a
tree structure with projects at the top, and folders and files underneath.

We have adapted these ideas to DSMLs by defining the fragmentation pat-
tern shown in Figure 4(a). The pattern defines Project, Package and Unit as class
roles. Designers can configure which classes of a DSML will play those roles.
This way, the instances of the DSML will not be monolithic, but they will be
structured into projects, packages and units according to the given strategy.

8

*
contents

<<abstract>>

IdentifiableElement

name: String
icon@1: String

Unit

extension@1: String

«abstract»

Containee

Project

«abstract»

Container

1..*

1..*

1..*
Package

0..*

«Project»

WTComponents

«Package»

Subsystem

«Package»

ControlSubsystem

«Unit»

Architecture

«Unit»

StateMachine

«contents»

«
co

n
te

n
ts

»

*
*

«contents»

*

«contents»
*

«contents»

*

(a) (b)

name: String «name»

ident: String «name»

extension=“arq”
icon=“arq.png”

mname: String «name»

extension=“sm”
icon=“sm.png”

name: String «name»

name: String «name»

icon=“ssys.png”

subsystems

su
b

sy
st

e
m

s

beh

ensembles states

icon=“csys.png”

icon=“prj.png”

Figure 4: (a) Fragmentation pattern. (b) Applying the fragmentation pattern to the running
example.

Typically, the root class that contains directly or indirectly all other classes
of a DSML should be mapped to Project. The pattern declares a condition
(omitted in the figure) checking that all classes bound to Project are root. As a
result, each time the root class is instantiated in the generated environment, a
new modelling project (i.e., a folder that will hold all fragments of a model) is
produced. To account for meta-models that have several root classes, role Project

has cardinality [1..∗]. Similarly, when a class with role Package is instantiated,
the environment creates a folder in the file system, together with a hidden file
storing the value of the class attributes and non-containment references. Finally,
instantiating a class c with Unit role results in the creation of a file that holds
instances of the classes that can be directly or indirectly reached from c by
means of containment relations.

In the pattern, all concrete class roles inherit the attribute role name to be
used as the project, folder or file name, and the configuration attribute icon

to specify the icon file to be used as a decorator in the generated environment.
Units can also indicate a file extension using the configuration attribute extension.
Containers (i.e., Projects and Packages) and Containees (i.e., Packages and Units) are
related through the reference role contents. This must be mapped to a contain-
ment reference in the DSML meta-model, modelling the inclusion of files in
folders, and these in projects. Extending our pattern to support fragmentation
along non-containment relations is future work.

As previously mentioned, classes in the domain meta-model are allowed to
play several roles. For example, a class C can be both Package and Unit. In such
a case, upon creating a C object, the user decides whether a package or a file
should be created. Similarly, a class can be both Project and Package (which is
implicit for Project classes that have self-containment references); as well as both
Project and Unit (to allow the creation of monolithic models, if desired).

Example. Figure 4(b) depicts the application of the fragmentation pattern to
the meta-model of Figure 1. The role Project is assigned to the class WTCom-

ponents. Two types of packages are defined: Subsystem, which can recursively

9

contain other Subsystem packages, and ControlSubsystem. There are also two unit
types: Architecture and StateMachine. These classes will be physically persisted
as files with extensions “arq” and “sm” respectively, and may store objects of
the classes contained in them. For instance, a unit of type Architecture can hold
objects of types Architecture, Component, Connector, InPort and OutPort (see Fig-
ure 1). As an example, Figure 5(c) shows a model organised according to the
defined fragmentation strategy.

4.2. Reference scoping

When a model is monolithic, its objects can refer to other objects within
the same file, according to the reference types defined in the model’s meta-
model. However, when a model is fragmented, some references may need to
cross fragment boundaries. In this context, there is the need to control the
fragments a reference can reach, that is, its scope. This control mechanism is
useful to manage the access modifiers for the classes of a given DSML, and to
reduce the set of potential candidate objects for a given reference.

We allow customizing this information using the scoping pattern in Fig-
ure 5(a). This declares a single class role ScopedClass, which should be mapped
to the domain class owning or inheriting the reference to be scoped. In its turn,
this reference should be mapped to one of the five reference roles in the pat-
tern, which represent five different scoping policies. The least restrictive policy
is sameWS, which allows a reference to refer to objects in the same workspace,
i.e., anywhere in any project. This is the default option for references with
no scope. The sameProject policy permits referring to objects within the same
project. The policies samePkg and sameRootPkg allow referencing objects within
the same package, or that have the same root package, respectively. Finally,
sameUnit restricts a reference to the objects residing in the same file. In any
of the cases, it is possible to further constrain the scope of the reference by
providing an OCL expression to filter out additional unwanted objects.

sameWS
*

ScopedClass

1..*

sameProject
*

sameRootPkg
*

samePkg
*

sameUnit
*

filter@1:
OCLExpression [0..1]

«Unit»

StateMachine

«ScopedClass»

Component «samePkg»

states

*

 (a)

project
wt:WTComponents

s1:Subsystem

s2:Subsystem cs2 :Control
Subsystem

package package

package

a:Architecture

file

sm2:StateMachine

file

cs1 :Control
Subsystem

package

sm1:StateMachine

file

c: Component

 (b) (c)

Figure 5: (a) Scoping pattern. (b) Applying same package scope to reference Compo-
nent.states. (c) Effect of pattern application on a fragmented model.

It can be noted that our notion of pattern supports reference roles with no
target class role, so that there is no need to map the latter to any domain class.

10

Moreover, the reference roles in the scoping pattern can be mapped multiple
times to meta-model references, but they do not impose any cardinality to those
references (i.e., they do not specify any reference cardinality).

Example. Figure 5(b) assigns the same package scope to the reference Compo-

nent.states, and Figure 5(c) shows the effect of this scope on a fragmented model.
The scope allows connecting the Component object c to any StateMachine located
in the container package of c (i.e., in the Subsystem s2). Therefore, c can refer
to sm1 as this is (indirectly) contained in s2, but not to sm2 because it is in
a different package. Changing the reference scope to same root package would
allow connecting c to sm2.

4.3. Visibility

Programming languages like Java allow classes to control whether other
classes can use a particular field or method by means of access level modi-
fiers. Similarly, we allow model fragments to define an interface to expose only
a subset of its elements to other fragments, while hiding the rest.

By default, objects are accessible from any other fragment, but this can be
constrained by using the pattern in Figure 6(a). This pattern allows defining
whether the instances of a class are visible to other fragments in the same
workspace, project, root package or package. An object is always visible within
its file. The visibility is configured by means of an OCL expression which
is evaluated on every object of the class, and only the objects satisfying the
expression become visible to other fragments in the given scope.

Visibility

sameWS@1: OCLExpression [0..1]
sameProject@1: OCLExpression [0..1]
sameRootPkg@1: OCLExpression [0..1]
samePkg@1: OCLExpression [0..1]

1..*

(a)

project
wt:WTComponents

s1:Subsystem

s2:Subsystem cs2 :Control
Subsystem

package package

package

a:Architecture

file

sm2:StateMachine

file

cs1 :Control
Subsystem

package

sm1:StateMachine

file

c: Component
mname=“__sm1”
isPublic=true

mname=“sm2”
isPublic=true

 (b) (c)

«Unit, Visibility»

StateMachine
mname: String
isPublic: boolean

«name»

samePkg=

 self.isPublic and

 not self.mname.startsWith(“__”)

«ScopedClass»

Component «samePkg»

states

*

Figure 6: (a) Visibility pattern. (b) Applying same package visibility to class StateMachine.
(c) Effect of pattern application on a fragmented model.

A class can define visibility conditions for different scopes, e.g., same project
and same package. In such a case, the more general scope is selected. For
example, if the visibility conditions for both scopes same package and same
project evaluate to true, then the object is visible at the project level; otherwise,
the object is only visible at the level of the expression that evaluates to true.

The visibility and scoping patterns are complementary. While scoping re-
stricts the content of a reference, visibility restricts the usage context of an

11

object. If a certain class of objects should be visible to all fragments in its
package or project, then specifying class visibility is equivalent to specifying the
corresponding scope for every cross-reference pointing to the class; however, in
this case, the first option is less costly as it is done once for the class instead of
once per reference.

Example. Figure 6(b) applies the visibility pattern to class StateMachine. The
OCL condition, which is defined for samePkg, appears in a grey box. In this
way, StateMachine objects will only be visible from other fragments in the same
package when they are public and their name does not start by a double under-
score. Figure 6(c) shows the effect of this pattern on a fragmented model. In
the figure, the StateMachine sm1 is not visible from other fragments in the same
package because its name starts by a double underscore; therefore, it cannot
be referenced from the Component c, even if sm1 is in the reference scope. On
the other hand, sm2 is not visible to Component c because the visibility level is
samePkg and sm2 is in a different package. Moreover, sm2 is not reachable from
c because the reference states has scope samePkg.

4.4. Indexing

To speed up the computation of common queries over models, we support the
creation of indices of objects by selected fields, backed by a model indexer [14].
The pattern in Figure 7(a) allows selecting the fields to index. It is made of the
class role IndexedClass and the field role index, both with role cardinality [1..∗].
This way, for each domain class mapped to IndexedClass, it is possible to specify
one or more fields (attributes or references) to be used as indices. The field role
defines the data type Any and no field cardinality; this means that the indexed
fields in the domain meta-model can have any type and cardinality.

IndexedClass

index: Any

1..*

1..*

 (a) (b)

«Unit, Visibility, IndexedClass»

StateMachine
mname: String
isPublic: boolean

«name, index»

samePkg=

 self.isPublic and

 not self.mname.startsWith(“__”)

«index»

Figure 7: (a) Indexing pattern. (b) Applying pattern to class StateMachine.

Example. Figure 7(b) applies the indexing pattern to select the attributes mname

and isPublic as indices for class StateMachine. The motivation to index these at-
tributes is their use in the expression samePkg specified in a previous application
of the visibility pattern. This index permits improving the retrieval of StateMa-

chine objects [14].

12

4.5. Scoped validation

Meta-models may define integrity constraints that are evaluated on mono-
lithic models, have access to all objects within the model, and need to be re-
evaluated upon any model change. However, once a model is fragmented, it
is natural to incorporate the notion of scope into the integrity constraints, so
that each constraint only accesses the objects within the defined scope, and is
re-evaluated just when there is a change within the scope. We call an integrity
constraint that defines a validation scope a scoped constraint. As we will show in
Section 6.2, scoped constraints can be evaluated more efficiently than standard
constraints, as they consider a subset of model objects instead of the whole
model, and the need of re-evaluation is less frequent. Moreover, scoped con-
straints decouple the constraint from the objects affected by it, while standard
constraints need to explicitly select the affected objects by means of filters in
the constraint expression.

As in the previous patterns, we consider five scopes for constraints: same
unit, same package, same root package, same project and same workspace. To
illustrate their implications, consider the fragmented model in Figure 8 and the
constraint inputPortConnected below the model (also shown in Figure 1).

wt:WTComponents

s1:Subsystem

s2:Subsystem

a2:Architecture

file

c2: Componentn2: Connector

i2: InPort

o2: OutPort

s3:Subsystem

a3:Architecture

file

c3: Component n3: Connector

i3: InPort

o3: OutPort

s4:Subsystem

a1:Architecture

file

c1: Component n1: Connector

i1: InPort

o1: OutPort

a4:Architecture

c4: Component n4: Connector

i4: InPort

o4: OutPort

packagepackage

packagepackage

F1 F2 F3

fileF4

project

context InPort inv inputPortConnected:

Connector.allInstances()→exists(c | c.inPort = self and not c.outPort.oclIsUndefined())

Figure 8: A fragmented model where a scoped constraint is to be evaluated on the InPort i1.

Depending on the validation scope assigned to the constraint, expression
Connector.allInstances() returns a different set of objects when it is evaluated on
object i1 of file F1:

• if the scope is same unit, the result is Set{n1} because n1 is the only
Connector object within the same file as i1, even though other Connector

objects exist in the whole model.

• if the scope is same package, the result is Set{n1, n2, n3} because the three
objects are contained in the same package as i1 (s1) directly or indirectly.
Instead, evaluating the expression on i2 returns Set{n2}, as this is the only
Connector within i2’s container package s2.

13

• if the scope is same root package, the result is Set{n1, n2, n3} as the root
package of i1 is s1. Evaluating the expression on i2 yields the same result.

• if the scope is same project, the expression returns Set{n1, n2, n3, n4}

independently of the object where it is evaluated. If this is the only project
in the workspace, we obtain the same set of Connectors when we assign the
scope same workspace to the constraint.

Listing 1 shows the algorithm to validate scoped constraints. It considers
two scenarios: (i) the validation of all constraints within a project, which is
useful, e.g., when a project is loaded in the workspace; (ii) the re-evaluation of
constraints upon model changes, where we efficiently restrict the re-evaluation
to the subset of objects where the constraint value may have changed. We refer
to scenario (i) as full validation, and to scenario (ii) as incremental validation.

The entry point of the algorithm is the scopedValidation method in lines 1–23.
This receives as parameters the resource r that has changed (a unit, a package
or a project), and a boolean flag full (true to execute scenario (i), and false
for scenario (ii)). For each scoped constraint in the meta-model, the method
first obtains its validation context, i.e., the instances of the constrained class
where the constraint needs to be evaluated (lines 5–14). In case of scenario
(i), the constraint needs to be evaluated on all instances of the constrained
class defined in the project (line 7); in case of scenario (ii), the instances are
retrieved from the scope specified by the constraint (lines 8–14), and this scope
is computed by the methods in lines 25–56. As an example, the method package

is invoked when the constraint defines the scope same package, and it returns
the received resource if it is a package, or its container if it is a unit (lines 39–
42). Before the obtained resource can be used, we make sure that all other
resources that it contains directly or indirectly are loaded as well (line 32). We
use a cache to avoid reloading previously loaded resources. The following steps
in the algorithm are the same for both scenarios. Specifically, for each object in
the validation context, the algorithm obtains its validation scope (line 18). This
is calculated similarly to the validation context, but considering the resource
that contains the object, instead of the modified resource. Then, the algorithm
validates the constraint over each object of the validation context considering
only the validation scope (line 22), and reports an error if the validation returns
false (line 23).

Please note that given a constraint c with scope samePkg, the algorithm
avoids validating c recursively on each container package until reaching the root
package. Instead, it directly jumps to the root package (line 11), and then
considers the validationScope of each context object when evaluating c (line 18).

For efficiency reasons, we do not maintain all model fragments in memory,
but we load them on demand. Therefore, our algorithm needs to load and
merge any model fragment that is necessary to perform the validation. Line 32
in Listing 1 takes care of this. In practice, we rely on EMF proxies and their
lazy loading mechanism to achieve this behavior. This way, fragments can refer
to elements in other fragments by means of proxies, and only when there is the

14

1 def scopedValidation (r : Resource, full : boolean)
2 for each scoped constraint c:
3
4 −− obtain objects over which the constraint will be evaluated (context)
5 var validationContext = nil
6 if full = true and type(r) = Project then
7 validationContext = objects of type c.constrainedClass within r
8 else if c.scope = samePkg then

9 −− jump to root pkg to avoid validating c in each intermediate container pkg
10 validationContext = objects of type c.constrainedClass
11 within resource4scope (r, sameRootPkg)
12 else

13 validationContext = objects of type c.constrainedClass
14 within resource4scope (r, c.scope)
15
16 for each object o in validationContext:
17 −− obtain model fragment where the OCL expression will be evaluated (scope)
18 var validationScope = resource4scope (o.resource, c.scope)
19
20 −− validate constraint and report detected errors
21 if validationScope <> nil then
22 var result = o.validate (c.statement, validationScope)
23 if result = false then o.report (c.error)
24
25 def resource4scope (r : Resource, s : Scope) : Resource
26 var r4s = nil
27 if s = sameUnit then r4s = unit(r)
28 else if s = samePkg then r4s = package(r)
29 else if s = sameRootPkg then r4s = rootPackage(r)
30 else if s = sameProject then r4s = project(r)
31 else if s = sameWS then r4s = workspace(r)
32 loadResource(r4s)
33 return r4s
34
35 def unit (r : Resource) : Resource
36 if type(r) = Unit then return r
37 return nil
38
39 def package (r : Resource) : Resource
40 if type(r) = Package then return r
41 if type(r.container) = Package then return r.container
42 return nil
43
44 def rootPackage (r : Resource) : Resource
45 var root = r
46 while type(root.container) = Package: root = root.container
47 if type(root) = Package then return root
48 return nil
49
50 def project (r : Resource) : Resource
51 var root = r
52 while type(root) <> Project and root <> nil: root = root.container
53 return root
54
55 def workspace (r : Resource) : Resource
56 return $WORKSPACE

Listing 1: Algorithm for the validation of scoped constraints.

15

need to access to these other fragments, we load them and resolve the proxies.
This can be seen as a kind of model merge.

This algorithm performs an efficient re-evaluation of scoped constraints upon
model changes, as constraints are evaluated only over the objects in the valida-
tion context, which are those objects that may have been affected by the change.
This kind of incrementality is coarse-grained, in the sense that it only considers
the resources that have changed to identify the constraints to re-evaluate, but
not the actual model changes. Other approaches like [32, 33, 34] keep track of
those changes as well. This permits reducing further the set of constraints to
re-evaluate, at the cost of having to memoise the objects/fields accessed during
the last evaluation of each constraint.

We support the definition of scoped constraints by means of the scoped val-
idation pattern in Figure 9(a). A scoped constraint is defined by mapping a
domain class (the context of the constraint) to the class role ConstrainedClass.
Then, the configuration fields in the pattern allow defining the constraint name
(name), the OCL expression (statement), the evaluation scope (scope), and the
error message to be reported when the objects of the constrained class violate
the constraint (error).

ConstrainedClass

name@1: String

statement@1: OCLExpression

error@1: String

1..* «enum»

Scope

sameWS

sameProject

sameRootPkg

samePkg

sameUnit

scope@1

(a) (b)

«ConstrainedClass»

InPort

name=“inputPortConnected”
statement=Connector.allInstances()…
scope=samePkg

error=“The port must be connected”

Figure 9: (a) Scoped validation pattern. (b) Defining a scoped constraint for class InPort.

Example. Figure 9(b) assigns the scope samePkg to the constraint in Figure 8.
Now, assume file F1 in Figure 8 changes. Then, according to the algorithm in
Listing 1, the validationContext is the package where F1 resides (i.e., s1). Hence,
the constraint is evaluated in all InPort objects within s1 (i.e., {i1, i2, i3}) using the
scope of the constraint (same package) as validationScope. For i1, the validation
scope is the package s1 where i1 is located. Hence, Connector.allInstances() yields
{n1, n2, n3}. In case of i2, the constraint is evaluated on the package that
contains i2 (i.e., s2), where the only Connector is n2. In case of i3, it is evaluated
on its container package s3, where the only Connector is n3. With this scoped
validation strategy, we do not need to evaluate the constraint on i4 or consider
Connector n4. If the change happened in file F4, then the constraint would be
evaluated on i4 considering only the Connector c4.

16

5. Architecture and tool support

We have realized our approach as an Eclipse-based solution [35]. Figure 10
shows its architecture. It relies on the Eclipse Modelling Framework (EMF) [23]
to represent the domain meta-models and their instances. It contains a mod-
elling front-end called DSL-tao [25] which permits creating domain meta-models
graphically and offers a repository of patterns with services to configure the func-
tionality of the generated modelling environment. DSL-tao patterns describe the
pattern structure by means of a model, and can contribute services for the mod-
elling environment through an extension point called Pattern Implementation. The
pattern repository includes all modularity patterns presented in Section 4, and
EMF-Splitter is the tool implementing the extension points in charge of gener-
ating the modelling environment once the patterns have been applied. While
EMF-Splitter complements DSL-tao, it can also be used stand-alone.

Concordance 1

Model

Change

Hawk 1

Model

Factory

EMF
Splitter

1

Scoped

Validation

«Input»

Modular
Environment

1

Scoping

Fragmented Model

Visibility

DSL-tao 1 «Apply Patterns»

Indexing
Pattern

Implementation

modelling language
designer

«Generates»

Domain meta-model

instantiated with

patterns

modelling
language
users

DSML workbench

Modelling environment

Figure 10: Architecture of EMF-Splitter.

This way, with our solution, the modelling language designer creates the do-
main meta-model and applies to it the modularity patterns using DSL-tao. The
pattern applications are persisted as annotation models, which EMF-Splitter
uses to synthesize a modelling environment. This environment provides the
functionality defined by the patterns, like model creation using the defined frag-
mentation strategy and incremental validation of scoped constraints. The envi-
ronment also provides support for working with legacy monolithic models, as it
can automatically fragment an existing model according to the fragmentation
strategy, and merge a partitioned model into a monolithic one.

The models created or fragmented by the generated environment are dis-
tributed in files and folders in the file system. In consequence, the integrity of a
model can be affected if a file path changes (e.g., if a fragment is moved from a
folder to another one). In order to maintain the model integrity, the generated
environment integrates an indexer for cross-references called Concordance [30]
(see Figure 10). By default, Concordance only indexes cross references. In ad-
dition, the generated environment implements its extension point ModelFactory

17

to index containment references as well, and its extension point ModelChange to
receive notifications of model events in the workspace.

The generated environment can be extended through Eclipse extension points,
for example, to integrate it with other tools. Based on this mechanism, our
modularity patterns for scoped validation, reference scoping, visibility and in-
dexing generate code that integrates Hawk [29], a scalable model indexer that
improves the performance of queries over large models. This results in more
scalable environments, as we will demonstrate in Section 6.2.

Figure 11(a) shows DSL-tao being used to define a modelling environment for
the running example. The domain meta-model is built in the main canvas (label
1), and the patterns in the repository can be applied over it (Patterns View, with
label 2). The repository includes patterns with services for filtering, graphical
visualization and modularity, among others. Once a pattern is applied, the
meta-model elements get tagged with the pattern role names. The environment
provides a list of applied patterns, and when one is selected, the affected meta-
model elements are highlighted in the canvas. The figure shows highlighted
an application of the fragmentation pattern, while the upper-left corner of the
canvas indicates that the Scope and Visibility patterns have been applied as well.
Patterns can be instantiated using either a generic wizard or a specific wizard
contributed by the pattern. The figure shows the wizard to instantiate the
scoped validation pattern (label 3). This wizard permits selecting the context
class, scope, and constraint statement using a dedicated editor (label 4). The
editor features syntax validation of the constraint, which can be specified using
the Epsilon Object Language (EOL) [36], a variant of OCL.

From the domain meta-model annotated with pattern instances, EMF-Splitter
can synthesize a modelling environment. Figure 11(b) shows a snapshot of the
environment for the running example. With the application of the fragmenta-
tion pattern, each model is represented as an Eclipse project (see Package Explorer

view, with label 1), where packages are mapped to folders, and units to files.
The model fragments in files can be edited using a tree editor (label 2), or a
Sirius-based graphical editor which EMF-Splitter is also able to generate. The
Problems view (label 3) shows the violations of scoped constraints.

6. Evaluation

This section evaluates two relevant aspects of our approach, applicability
and performance, which we reformulate as the following two research questions:

RQ1: Is the proposed model fragmentation approach into projects, packages
and units applicable in practice?

RQ2: Is the evaluation of scoped constraints on fragmented models more effi-
cient than the evaluation of standard constraints on monolithic models?

Next, Sections 6.1 and 6.2 describe the experiments we have performed to
answer these questions and discuss the results. Then, Section 6.3 presents an

18

2
1

3

4

(a) Application of the scoped validation pattern using DSL-tao

1 2

3

(b) Generated modelling environment

Figure 11: Building a modelling environment for the running example.

19

industrial case study that further illustrates the usefulness of our proposal. In a
previous publication [17], we reported on an evaluation of the scalability of our
fragmentation strategies in combination with abstraction mechanisms to visual-
ize large models, where we obtained a 97% reduction of memory consumption,
and up to 55x speed-up of model visualization time.

The evaluation materials (e.g., meta-models, models) are available at https:
//github.com/antoniogarmendia/emfsplitter-materials.

6.1. Evaluating applicability of the fragmentation pattern

Our approach exploits the containment relations in meta-models to cus-
tomize a fragmentation strategy. The rationale is that EMF meta-models make
heavy use of containment relations, so that models have a tree structure where
each object is contained under one parent, except the root object. Hence, a
common idiom for EMF meta-models is to have a root class containing directly
or indirectly all other classes of the meta-model. This root class plays the role
of Project in our fragmentation pattern, while Package and Unit classes require
subsequent containment relations.

To have an intuition of the practical applicability of our fragmentation ap-
proach, we have analysed the following two meta-model repositories to assess to
which extent they make use of containment relations:

• The ATL meta-model zoo2. This is a repository hosted by the AtlanMod
research team, consisting of 301 EMF meta-models created by developers
with mixed experience. Hence, the repository includes meta-models used
in academia and appearing in research papers, but also meta-models of
large standards like BPMN or BPEL.

• Meta-models of OMG standards3. The Object Management Group (OMG)
is a standardization body that produces meta-model-based standards for
technologies like UML, OCL, QVT or BPMN, among others. These meta-
models were created by professional engineers with high expertise. For our
analysis, we have considered 224 meta-models of OMG standards, corre-
sponding to those meta-models which are in a format we can parse, and
considering that some standards provide several meta-models.

The repositories contain some very large meta-models. In the ATL zoo, the
Industry Foundation Classes (IFC) meta-model contains 699 classes, and the
OMG standard with most classes is the Robotic Interaction Service Specification
(RoIS) with 657. On the other hand, both repositories have meta-models with
a small number of classes. In the ATL zoo, 75% of meta-models have less than
38 classes, while in the OMG, 75% have less than 63 classes.

For each meta-model, we computed its containment depth. This is the length
of the longest path of containment relations starting from the root class. We

2http://web.emn.fr/x-info/atlanmod/index.php?title=Ecore
3https://www.omg.org/spec/

20

detected the root class of each meta-model automatically as follows. For each
class, we calculated the number of classes that it contained directly or indirectly.
Then, the class containing more classes was selected as the root, and in case
of tie, the class not contained by any other was selected. If several classes had
those characteristics, then the first one in the list of possible roots was selected.
The goal was to leave out as few classes as possible.

Within the analysed repositories, our algorithm did not detect a root in 7%
of meta-models because they lacked containment relations, while 58% of meta-
models had one root class. In the rest of cases, the algorithm found several
roots in the same meta-model, which justifies our decision to support multiple
roots in the fragmentation pattern.

Next, we heuristically assigned a fragmentation strategy to each meta-model.
The heuristic annotated the root classes as Projects; the classes with recursive
containment, or with containment depth greater than 1, as Packages; and the
classes with containment depth equal to 0 or 1 as Units. By recursive con-
tainment we mean containment relations that can store instances of the class
defining the relation, like Subsystem.subsystems in Figure 1.

Figure 12 shows the containment depth of the meta-models in both reposi-
tories (x axis) and the percentage of meta-models with that depth (y axis). We
separate the ATL and OMG meta-models to understand whether there are dif-
ferences between them, given the different background of their developers and
the different scope of the meta-models.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

O
M
G

A
tl
a
n
M
o
d

O
M
G

A
tl
a
n
M
o
d

O
M
G

A
tl
a
n
M
o
d

O
M
G

A
tl
a
n
M
o
d

O
M
G

A
tl
a
n
M
o
d

O
M
G

A
tl
a
n
M
o
d

O
M
G

A
tl
a
n
M
o
d

O
M
G

A
tl
a
n
M
o
d

O
M
G

A
tl
a
n
M
o
d

0 1 2 3 4 5 6 7 >=8

Recursive Packages Non‐Recursive Packages

Depth

Figure 12: Containment depth across the repositories, and distribution of packages and re-
cursive packages according to the depth.

21

The figure shows that less than 10% of the ATL meta-models and less than
5% of the OMG meta-models have no containment relations. In the ATL repos-
itory, 29 meta-models have no root, and 75% of them have less than 16 classes.
In the OMG repository, 9 meta-models have no root, and 75% of them have
less than 29 classes. Our fragmentation pattern cannot be applied to these
meta-models as they lack a root class.

On the contrary, the depth is greater than zero in more than 90% of the
meta-models, and our approach can be used on them. Most meta-models in both
repositories have depth 1. The ratio of recursive containment relations (leading
to recursive packages) vs. non-recursive packages increases as the containment
depth increases. Interestingly, excluding the meta-models with depth zero, the
containment depth follows a power law distribution, found in many natural and
man-made phenomena [37].

Figure 13 depicts the correlation of containment depth (x axis) with meta-
model size as number of classes (y axis). We can see that there is a tendency
for longer containment depths in bigger meta-models in both repositories.

0

20

40

60

80

100

120

140

160

180

0 1 2 3 4 5 6 7 8-27

Depth

Average of Classes (OMG Meta-models) Average of Classes (AtlanMod Meta-models)

Figure 13: Meta-model size (in classes) vs containment depth.

From this experiment, we conclude that our fragmentation approach can
be applied to most meta-models in both repositories (potentially 90% of ATL
meta-models and 95% of OMG meta-models). With regards to the fragmenta-
tion strategies that we computed heuristically, we found that nearly 50% of the
meta-models in both repositories contain some Package class. Packages permit
grouping model fragments and provide a modular structure, which is one of
the main objectives of our pattern. The analysis also shows that there are two

22

features that make a meta-model more amenable to fragmentation using our
approach: first, deep containment trees permit creating different types of pack-
ages; second, recursive containment relations permit nested packages. Hence,
our fragmentation is more useful on larger meta-models, as their containment
depth and ratio of recursive containment relations are higher.

Altogether, we can answer the research question RQ1 affirmatively: our
fragmentation pattern is applicable in practice, being more beneficial for large
meta-models.

6.1.1. Threats to validity

The analysis considers a large number of meta-models (more than 500) in-
cluding standards, which ensures the robustness of the findings. Moreover, it
takes into account two different repositories to foster diversity of meta-models.
To strengthen our results, we plan to repeat the analysis on meta-models hosted
in public code versioning systems like Github. On the other hand, our exper-
iment applied fragmentation strategies automatically computed according to a
set of heuristics, but these strategies may be different from the ones that a hu-
man may have manually defined. It is future work to perform another evaluation
using fragmentation strategies manually defined by developers.

6.2. Evaluating performance of scoped constraints

To evaluate the performance gains of our approach, next, we report on four
experiments analysing the effects of fragmentation and scope in the execution
time of constraint validation:

1. First, we compare the validation time of standard constraints on mono-
lithic models (the baseline) with respect to the full validation of equivalent
scoped constraints in fragmented models.

2. Second, we investigate whether the number of fragments affects the vali-
dation performance.

3. Next, we compare the full validation of scoped constraints (i.e., on all units
and packages of a fragmented model) vs. their incremental validation (i.e.,
only on the elements affected by a model change).

4. Finally, we analyse the efficiency gains when integrating the Hawk model
indexer with scoped constraint validation.

Experiment setting. In all four experiments, we used the meta-model of the run-
ning example (see Figure 1) and the fragmentation strategy defined in Figure 4.
We considered a suite of eleven EOL constraints in both standard and scoped
versions. The constraints are available in Appendix A, and Table 1 summa-
rizes their characteristics. We considered constraints with all kinds of scope
(one with scope sameProject, three with scope sameRootPkg, two with samePkg,
and five with sameUnit). As a measure of their complexity, the table includes
the number of nodes in the abstract syntax tree of each constraint expression.

23

For example, the expression StateMachine.allInstances()→size() <= 10 correspond-
ing to constraint numberStateMachines has three nodes. The average number of
nodes in the constraints is 6.3, ranging from three to fifteen.

Table 1: Characteristics of scoped constraints used in the evaluation of performance.
Constraint Scope Complexity (#nodes)
numberStateMachines sameProject 3

numberControlSubsystems sameRootPkg 3

numberComponents sameRootPkg 3

depthSubsystem sameRootPkg 13

connectedComponents samePkg 11

inputPortSubsystem samePkg 8

oneInitialState sameUnit 3

existsSimpleState sameUnit 3

reachableState sameUnit 5

connectedPorts sameUnit 15

initStateIsNotIsolated sameUnit 3

The experiments were executed four times in a computer with Windows 10
Education version, processor Intel(R) Core(TM) i7-3770, 3.40GHz, and Java SE
1.8 with 8GB as initial and maximum memory. The constraints were validated
on synthetic models of increasing size (from around 20 000 objects to around
125 000 objects) created using the EMF random instantiator from the AtlanMod
team4.

6.2.1. Full constraint validation in monolithic and fragmented models

The first experiment compares the validation of standard constraints in a
monolithic model, with the validation of equivalent scoped constraints in the
fragmented version of the same model. We consider the full validation of scoped
constraints, i.e., their validation on all units and packages of the fragmented
model. The objective is to assess whether reducing the number of objects in the
validation scope also reduces the validation time.

Figure 14 shows the experiment results. The vertical axis shows the valida-
tion time, and the horizontal one the size of the model in number of objects.
The graphic shows that the validation of scoped constraints is faster even for
the smallest model of 20 111 objects. For the largest model, scoped validation
is six times faster than standard validation. As explained in Section 4.2, this
happens because scoped constraints are validated within a limited scope, and
hence, fewer objects need to be loaded/queried. Moreover, scoped validation
is only performed on those packages/units that may contain instances of the
context class on which the scoped constraint is defined.

6.2.2. Effect of number of fragments on scoped validation performance

The previous experiment shows that scoped validation pays off even for
medium-sized models. However, fragmentation incurs an overhead, as each
fragment requires an access to disk to load the fragment in memory. Therefore,

4http://modeling-languages.com/a-pseudo-random-instance-generator-for-emf-models/

24

20111 40048 60169 80183 124449

Scoped validation in

fragmented model (mm:ss)
00:29 01:41 04:00 05:47 07:29

Standard constraint validation

in monolithic model (mm:ss)
01:59 07:17 17:25 30:06 43:51

00:00

07:12

14:24

21:36

28:48

36:00

43:12

T
im

e
 (

m
m

:s
s)

Figure 14: Constraint validation times in monolithic and fragmented models.

this second experiment analyses the impact of the number of model fragments
on the scoped validation performance. For this experiment, we created six
synthetic models of 20 000 objects, each one of them fragmented in a different
number of files ranging from 1 to 5 000. Then, we measured the validation time
of the eleven constraints used in the first experiment.

Figure 15 shows the results. If the number of files is low (horizontal axis),
the cost to iterate through the objects in the fragments increases (vertical axis).
In the limit, if the model is in one file, the scoped validation time is similar
to the time of evaluating the constraints in a monolithic model. Conversely, if
the model is fragmented in many files, the overhead of loading them becomes
apparent and the efficiency decreases. In this experiment, the best validation
time was obtained when fragmenting the model of 20 000 objects in 200 files.
This gives a ratio of 1 file for each 100 objects. However, this ratio cannot be
taken as a general guideline, as the optimal ratio may depend on the structure
and scope of the involved constraints. It is up to future work to investigate
methods to obtain optimal fragmentation sizes given a set of constraints.

6.2.3. Comparison of full validation and incremental validation

Section 4.5 presented an algorithm for incremental scoped validation that is
applicable when a localized model change occurs, optimizing the re-evaluation
of constraints to the scope of the change. Hence, in this experiment, we em-
ulate a model change, and then compare the incremental validation time (i.e.,
the re-evaluation of constraints on the affected model elements) and the full val-
idation time (i.e., the re-evaluation of constraints on all model elements). The
experiment considers changes on units that are located at different containment

25

0

8

16

24

32

40

0 1000 2000 3000 4000 5000

T
im

e
 (

se
cs

)

Number of Files

Figure 15: Effect of the number of files on the scoped validation performance.

depths, from 2 to 5. We distinguish the depth of the changed resource because
changes in resources that are deeper in the containment tree need to re-evaluate
more constraints, incurring longer validation times.

Figure 16 presents the results. The figure does not show data for the model
with 20 111 objects at level 5, because this model has no units or packages
at this level. We can observe that the incremental validation scales better
than the full one. In average, the incremental validation time is just 1 second
slower for models of 124 449 objects than for models of 80 183 objects, while
the full validation is more than 90 seconds slower. For the biggest model, the
incremental validation yields a speed-up of around 4.5x.

6.2.4. Effect of a model indexer on scoped validation performance

Next, we evaluate the use of the Hawk model indexer to execute scoped
constraints. Although Hawk is integrated with several database technologies,
we used Neo4j5 for this experiment.

This case study drove a number of optimisations and additions to Hawk.
The most notable change was the addition of two new query scoping modes for
Hawk. Hawk already had the capability to limit the scope of a query so that
Type.all would only return the instances within a certain subset of the indexed
locations and/or files. Previously, Hawk only had one implementation for this: it
would go to the type node, and then visit each instance node while checking if it
belonged to a file node within the desired scope. For sufficiently common types,

5https://neo4j.com/

26

20111 40048 60169 80183 124449

Incremental validation: level 2 00:06 00:19 00:42 01:02 01:13

Incremental validation: level 3 00:07 00:23 00:51 01:14 01:25

Incremental validation: level 4 00:10 00:32 01:06 01:27 01:33

Incremental validation: level 5 00:46 01:10 01:35 01:36

Full validation 00:29 01:41 04:00 05:47 07:29

00:00

01:26

02:53

04:19

05:46

07:12

T
im

e
 (

m
m

:s
s)

Figure 16: Comparison of incremental and full scoped validation times.

Hawk would end up visiting more instances than necessary. Two alternative
implementations of Type.all were implemented to reduce the number of misses:

• The new file-first mode was used for validation rules spanning single files.
It iterates over the contents of the file, filtering objects by type. This is
useful when we have more instances of the type than objects in a typical
fragment, which may be the case for sufficiently large fragmented models.

• The new subtree scoping mode was used for validation rules spanning
projects or packages. The mode uses an advanced feature of Hawk called
derived edges. Derived edges are references that are precomputed accord-
ing to a derivation logic specified by the user. Derived edges are updated
incrementally as new versions of the fragments are detected.

Upon a request for Type.all, the subtree scoping mode will ensure that
Hawk precomputes “allof Type” derived edges from each instance to all
its containers. Once this is done, answering Type.all scoped to the subtree
rooted at the x project/package only requires following the “allof Type”
edges from x in reverse.

Figure 17(a) compares the full validation time with and without Hawk. For
the biggest model, Hawk speeds up constraint evaluation more than 2x.

Figure 17(b) makes the same comparison but for incremental validation,
and distinguishing the depth of the changed resource. As before, we generally
obtained shorter validation times using Hawk, peaking a speed up of around 3x
for the biggest model. However, the validation time for some of the smallest
models (the deeper ones) was slightly faster without indexing.

27

00:00

01:26

02:53

04:19

05:46

07:12

08:38

20111 40048 60169 80183 124449

T
im

e
 (

m
m

:s
s)

Number of Model Elements

Full scoped validation using Hawk Full scoped validation without Hawk

(a) Full validation times

00:00

00:17

00:35

00:52

01:09

01:26

01:44

2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5

20111 40048 60169 80183 124449

T
im

e
 (

m
m

:s
s)

Incremental validation using Hawk Incremental validation without Hawk

level

#objects

(b) Incremental validation times

Figure 17: Validation times with and without Hawk.

28

In view of the results obtained in the four experiments presented in this
section, we can answer RQ2 affirmatively: scoped constraint validation is more
efficient than the evaluation of equivalent non-scoped constraints on monolithic
models. Model fragmentation and scoped constraints permit the incremental
validation of constraints, which leads to speed ups of up to 4.5x. Incremen-
tal validation can be enhanced with model indexers, obtaining an additional
increase of efficiency up to 3x. The number of files in which a model is frag-
mented has an effect in performance as well; for this particular experiment,
having 1 file for each 100 objects yielded optimal validation times, though this
ratio may vary for other cases.

6.2.5. Threats to validity

This evaluation has been performed using a meta-model that comes from an
industrial partner in a European project6. The aim of the project was improv-
ing scalability in MDE, and the meta-model was expected to have large mod-
els, though maybe not such large as in the experiment. Moreover, we slightly
adapted the meta-model to better illustrate our approach, removing some of its
complexity. Therefore, our results may have been different if the meta-model
would have been designed differently. To mitigate this risk, the following section
presents a case study built over a meta-model and a set of constraints from a
third-party.

On the other hand, the evaluation uses synthetic models generated using an
open-source random model instantiator. We configured the instantiator with a
real seed model, and made sure that the generated models were balanced, in
the sense that their fragmentation resulted in fragments with a reasonable size
and structure (e.g., subsystem packages always contain at least one architecture
file and zero or more subsystem packages, while architecture files contain several
components connected by ports). This way, we generated more realistic models,
and mitigated the impact that the use of synthetic models may have on the
results of the evaluation.

6.3. Case study

In this section, we compare an existing meta-model-based modelling envi-
ronment developed by a third-party, with another one created by us using our
approach. We use as a case study the environment developed for Computer
Aided Engineering Exchange (CAEX), which is described in [16]. CAEX is a
neutral data format, used as a standard by the International Electrotechnical
Commission (IEC) to represent the hierarchical structure of production systems.
Other IEC standards use CAEX. For example, AutomationML uses CAEX to
model plant components, including devices and communication structures.

To create an environment for CAEX, we first applied the fragmentation pat-
tern to its meta-model, using as guiding principles the editor and models in the
Github repository https://github.com/amlModeling/. Figure 18(a) shows an

6http://mondo-project.org

29

excerpt of the meta-model annotated with the instantiated fragmentation pat-
tern. A CAEXFile (project) stores the engineering data in instanceHierarchies and
contains several libraries of elements (RoleClassLib, InterfaceClassLib and SystemU-

nitClassLib, which are packages). Altogether, we identified one project class, four
package classes, and seven unit classes in the meta-model.

Then, we converted the EVL [38] constraints available in the same Github
repository into EOL scoped constraints in our meta-model. Appendix B con-
tains the list of scoped constraints, and Table 2 shows their characteristics.
There is one constraint with scope sameProject, one with scopes samePkg and
sameUnit at the same time, and seven with scope sameUnit. The average number
of nodes in the constraints is 10.3, ranging from two to seventeen.

Table 2: Characteristics of scoped constraints used in the case study (CAEX).
Constraint Scope Complexity (#nodes)
superiorStandardVersionIsMandatory samePkg 3

CAEXObject samePkg,sameUnit 2

inheritanceMustPointToSUC sameUnit 5

strongConformanceSUC2IE sameUnit 15

strongConformanceIE2SUC sameUnit 15

noInheritanceForIEs sameUnit 2

processContainsProcesses sameUnit 17

resourceContainsResources sameUnit 17

productContainsProducts sameUnit 17

Finally, we used EMF-Splitter to generate an environment for CAEX from
the meta-model and instantiated patterns. Figure 18(b) shows the environment.
The Package Explorer view contains a project that represents a fragmented model
(label 1). One model fragment is being edited (label 2). The Problems view lists
the violated constraints (label 3). The Hawk view shows a running instance of
Hawk for EMF-Splitter (label 4).

Next, we compared the constraint validation performance in our environment
and the original one. For this purpose, we created models of size 210 162, 310 222
and 410 282 objects, and measured the time to validate the defined constraints
on them. We created the models using a model generator available in the same
Github repository, slightly modified to enable the generation or larger, more
balanced models, compatible with CAEX version 3.0.

Figure 19 shows the time of validating the scoped constraints on the frag-
mented models, considering both full validation and incremental validation with
Hawk upon an emulated model change. It also shows the validation time of the
standard non-scoped constraints on the equivalent monolithic models. Using
incremental validation with Hawk is the most efficient, as it improves in one
third the validation time of standard constraints. The incremental validation
on a model with 410 282 objects takes less than one second.

Overall, this case study shows that we could improve an existing industrial
modelling environment with model fragmentation (strengthening our positive
answer to RQ1), and improved performance of constraint evaluation (strength-
ening our positive results regarding RQ2).

30

«Project»

CAEXFile

fileName: String «name»

icon=“CAEXFile.gif”

«Package»

RoleClassLib

name: String «name»

icon=“RoleClassLib.gif”

*

«Unit»

RoleClass

name: String «name»

extension=“role”
icon=“RoleClass.gif”

roleClassLib
«contents»

*

«contents»

roleClass

«Package»

InterfaceClassLib

name: String «name»

icon=“InterfaceClassLib.gif”

«contents»

* interfaceClassLib

«Package»

InterfaceFamily

name: String «name»

icon=“InterfaceFamily.gif”

«contents»

interfaceClass

«Unit»

InterfaceClass

name: String

extension=“interface”
icon=“InterfaceClass.gif”*

«Unit»

ExternalInterface

name: String

extension=“external”
icon=“ExternalInterface.gif”

«name»«contents»

interfaceClass

«Unit»

InstanceHierarchy

name: String

extension=“hrchy”
icon=“InstanceHierarchy.gif”

«name»

«contents»

instanceHierarchy

*

«Package»

SystemUnitClassLib

name: String «name»

icon=“SystemUnitClassLib.gif”

«contents»

systemUnitClassLib

*

*

«Unit»

SystemUnitClass

name: String

extension=“system”
icon=“SystemUnitClass.gif”

«name»

*

«contents»

systemUnitClass

«Unit»

SystemUnitFamily

name: String «name»

extension=“sysf”
icon=“SystemUnitFamily.gif”

«Unit»

InternalElement

name: String «name»

extension=“internal”
icon=“InternalElement.gif”

(a) Excerpt of the CAEX meta-model annotated with the fragmentation strategy

1

3

2 4

(b) Generated modelling environment

Figure 18: Building a modelling environment for the case study (CAEX).

31

0

2000

4000

6000

8000

10000

12000

14000

210162 310222 410282

T
im

e
 (m

s)

Incremental validation using Hawk
Full scoped validation using Hawk
Standard constraint validation in monolithic model

Figure 19: Comparison of full validation, incremental validation and baseline for CAEX.

7. Related work

Modularization (i.e., breaking a large system into smaller parts) is an es-
sential mechanism for tackling the complexity of systems, and is common in
many modelling notations [39]. However, support for modularity is often de-
veloped ad-hoc for each modelling language [40], which can be laborious to im-
plement manually. Therefore, we contribute a generic pattern-based approach
to customize fragmentation and other modularity services for arbitrary DSML
meta-models.

The reuse of DSMLs is a major concern in the software language engineer-
ing (SLE) community. The aim is developing modularity concepts at the lan-
guage level to permit creating new DSMLs out of existing ones, e.g., by com-
position [41, 42, 43]. Instead, our focus is on offering modularization services
within single DSMLs to enable scalable modelling. Nonetheless, our services are
reusable for different DSMLs. Related to this, the SLE community has urged
researchers to explore the notion of language interface as a mechanism to reuse
language services [44]. Our patterns are an example of interfaces that allow
reusing these services.

There are some proposals to achieve modularity in modelling. For example,
aspect-oriented modelling [45, 46] adapts ideas from aspect-oriented program-
ming to modelling. Cross-cutting concerns can be modelled separately and then
woven and composed into base models. While our fragmentation services could
be the basis for aspect-oriented modelling, we do not provide weaving support.

Multi-view modelling permits describing a complex system using several
model views. This promotes separation of concerns and helps tackling the com-
plexity of the system [47, 48]. While each view is understandable on its own, it

32

needs to be consistent with the other views to achieve a meaningful system de-
scription. Frequently, views need to store redundant information (e.g., different
aspects of the same element), and techniques to derive the whole system from
the views are provided. Our approach could be used as a basis to build a multi-
view framework, but for this purpose, it should be extended with mechanisms
to handle redundant information.

Concepts from component-based software engineering [49] have been trans-
ferred to MDE to improve modularity. For example, in [50, 51, 52], composite
models are created using components which comprise a model and a set of im-
port and export interfaces for their interconnection. Our visibility pattern also
provides an interface for a fragment to the rest of the model, customised with
a visibility level (package, root package, project, or workspace). Moreover, our
fragmentation pattern enables a hierarchical organization of models into pack-
ages, which we exploit to optimize constraint validation.

Fragmenta is the theory of model fragmentation [53] that describes our
fragmentation strategy. The main result of the theory is the observation that
the satisfaction of some local fragment constraints is enough to ensure that some
relation types (inheritance, composition) remain well-formed (acyclic) globally
when fragments are composed. While Fragmenta is theoretical, here we pro-
vide a concrete realisation along with further modularity services.

To improve the processing of large models, some authors have proposed
splitting them for solving different tasks. For instance, models are sliced in
[54] to improve the efficiency of test input data generation. Another example
is EMF Fragments [55], a persistence framework which allows automatic and
transparent fragmentation to add, edit and update EMF models. This process
is executed at runtime with considerable performance gains. The framework has
been applied to the model-based analysis of large code repositories [56]. In our
case, we provide further services that profit from the fragmentation (e.g., scoped
constraints), generate a modelling environment that integrates these services,
and use a model indexer to improve efficiency.

Sometimes, the motivation for decomposing models into chunks is enhancing
their comprehensibility. For example, in [57], the authors tackle the problem
of synthesizing a lattice with all possible ways to partition a model into sub-
models, such that each submodel conforms to the meta-model. The meta-model
can define OCL invariants restricted to so-called forward-constraints, which for
example forbids the use of allInstances. In contrast, our scoped constraints have
no restrictions, and their scope can be used to improve the efficiency of their
evaluation and reduce unnecessary re-evaluations.

Also to improve model comprehension, Strüber and collaborators [58] use
Information Retrieval (IR) algorithms to split a model based on the relevance
of its elements. Hence, splitting models that belong to the same meta-model
can produce different structures. We plan to include this fragmentation strategy
into our framework in future work.

Some works propose techniques to improve the performance of querying large
models [34, 59, 60]. For models persisted in NoSQL (a common choice for large
models), in [59], the authors extend Morsa – a model persistence backend based

33

on NoSQL databases – with the query language MorsaQL, an internal language
embedded in Java. Mogwäı [60] is a model query framework which translates
OCL into Gremlin, a query language supported by several NoSQL engines. Not
specifically for NoSQL, IncQuery-D [34] uses incremental graph search tech-
niques along with a distributed cloud infrastructure to enhance query efficiency
in large models. This tool relies on Viatra2 to specify the queries [61]. Model/-
Analyzer is a UML consistency checker, which supports incremental constraint
evaluation by detecting the scope of changes and dynamically selecting the con-
straints to re-evaluate [33]. The technique in [32] is similar, but for UML/OCL
schemas. With respect to these approaches, our contribution is to exploit an
explicit definition of fragmentation strategies and constraint scopes. Compared
to incremental approaches, relying on fragmentation avoids the need to calcu-
late the scope of changes at run-time [32, 33], or incur in high memory costs for
memoisation [34]. We believe the concepts of fragmentation and scoping may
be transferred to those approaches to improve their efficiency.

Textual DSLs often need mechanisms to support reference scoping and vis-
ibility rules [62]. These are commonly supported by workbenches for textual
DSLs like Xtext [21] and Spoofax [63]. While namespaces and scope rules are
defined with a DSL in Spoofax, Xtext offers a Java API (based on the IScope-

Provider interface) for this purpose. In our case, reference scoping and visibility
rules are defined on the abstract syntax level, i.e., not tied to a particular con-
crete syntax, and using high-level patterns.

Regarding graphical language workbenches, Sirius [20] is a framework that
permits defining visual concrete syntaxes for meta-models using a model-based
approach. It supports viewpoints, layers and drill-down exploration. However,
these facilities are at the concrete syntax level, but the model itself remains
monolithic. Instead, our modularity services work at the abstract syntax level,
producing a truly fragmented model. We have integrated our fragmentation
pattern with high-level wizards to produce scalable Sirius editors [25], but a full
integration with the other modularity services is future work.

Altogether, even though techniques for model modularization have been pro-
posed to improve scalability in MDE, they typically focus on one specific aspect
– like fragmentation, scoping, persistence or query – and sometimes are tied to
a concrete syntax style (textual or graphical). Instead, ours is a comprehensive
proposal providing five services (fragmentation, reference scoping, visibility, in-
dexing and constraint scoping) that are highly reusable and customizable via
pattern instantiation.

8. Conclusions and future work

In this paper, we have discussed the need for modularization services to im-
prove the scalability of DSMLs. For this purpose, we have proposed five modu-
larity services (fragmentation, reference scoping, object visibility, field indexing,
and scoped validation) which can be configured by means of patterns. We have
presented tool support (EMF-Splitter), evaluated its applicability (by analysing
meta-model repositories built by third parties), assessed the efficiency gains on

34

a synthetic running example inspired by an industrial scenario, and with respect
to an existing modelling tool in the industrial automation domain.

We are currently developing an API to facilitate the programmatic use of
EMF-Splitter, and improving the fragmentation service with the possibility to
fragment models across non-containment references, e.g., based on strategies
like [58]. Another line of future research is developing heuristics to recommend
a scope and attribute indices for a given constraint, based on the static analysis
of the constraint. In particular, we plan to recommend a scope for an OCL
constraint based on the scope and visibility of the objects and references ap-
pearing in it. Our idea is traversing the constraint expression and, for each
reference access, look at the applied patterns to extract the scope assigned to
the reference, and the visibility assigned to the reference type, annotating the
reference with the narrowest of both. When the scope of all reference accesses
has been computed in this way, we plan to heuristically recommend the widest
one as the scope of the constraint.

We are also investigating methods to recommend optimal fragmentation
granularities given a set of constraints. Finally, fragmented models are more
amenable to collaborative use – for example via version control systems – than
monolithic models, as they tend to produce fewer conflicts. Hence, we plan to
integrate our approach with version and access control systems for collaborative
modelling [64].
Acknowledgements. Work funded by the R&D programme of the Madrid
Region (P2018/TCS-4314).

References

[1] M. Brambilla, J. Cabot, M. Wimmer, Model-driven software engineering
in practice, Morgan & Claypool Publishers, 2012.

[2] D. C. Schmidt, Guest editor’s introduction: Model-driven engineering,
Computer 39 (2) (2006) 25–31. doi:10.1109/MC.2006.58.

[3] S. Kelly, J. Tolvanen, Domain-Specific Modeling - Enabling Full Code Gen-
eration, Wiley, 2008.

[4] D. S. Kolovos, L. M. Rose, N. D. Matragkas, R. F. Paige, E. Guerra,
J. S. Cuadrado, J. de Lara, I. Ráth, D. Varró, M. Tisi, J. Cabot, A re-
search roadmap towards achieving scalability in model driven engineering,
in: BigMDE@STAF, ACM, 2013, pp. 2:1–2:10.

[5] F. DeRemer, H. H. Kron, Programming-in-the-large versus programming-
in-the-small, IEEE Trans. Software Eng. 2 (2) (1976) 80–86.

[6] R. W. Quong, M. A. Linton, Linking programs incrementally, ACM Trans.
Program. Lang. Syst. 13 (1) (1991) 1–20. doi:10.1145/114005.102804.

[7] S. P. Reiss, An approach to incremental compilation, in: SIGPLAN Sym-
posium on Compiler Construction, 1984, pp. 144–156.

35

[8] ArgoUML, http://argouml.tigris.org/ (last accessed in 2018).

[9] Enterprise Architect, http://sparxsystems.com/products/ea/ (last ac-
cessed in 2018).

[10] IBM Rational, https://www-01.ibm.com/software/rational/uml/

products/ (last accessed in 2018).

[11] MagicDraw, https://www.nomagic.com/products/magicdraw (last ac-
cessed in 2018).

[12] Modelio, https://www.modelio.org/ (last accessed in 2018).

[13] Papyrus, https://www.eclipse.org/papyrus/ (last accessed in 2018).

[14] A. Garćıa-Domı́nguez, K. Barmpis, D. S. Kolovos, R. Wei, R. F. Paige,
Stress-testing remote model querying APIs for relational and graph-based
stores, Software and System Modeling (2017) 1–29.

[15] A. Garmendia, E. Guerra, D. S. Kolovos, J. de Lara, EMF Splitter: A
structured approach to EMF modularity, in: XM@MoDELS, Vol. 1239 of
CEUR Workshop Proceedings, CEUR-WS.org, 2014, pp. 22–31.

[16] T. Mayerhofer, M. Wimmer, L. Berardinelli, R. Drath, A model-driven
engineering workbench for CAEX supporting language customization and
evolution, IEEE Trans. Industrial Informatics 14 (6) (2018) 2770–2779.

[17] A. Jiménez-Pastor, A. Garmendia, J. de Lara, Scalable model exploration
for model-driven engineering, Journal of Systems and Software 132 (2017)
204–225.

[18] A. Gómez, X. Mendialdua, G. Bergmann, J. Cabot, C. Debreceni, A. Gar-
mendia, D. S. Kolovos, J. de Lara, S. Trujillo, On the opportunities of
scalable modeling technologies: An experience report on wind turbines con-
trol applications development, in: ECMFA, Vol. 10376 of Lecture Notes in
Computer Science, Springer, 2017, pp. 300–315.

[19] GMF, http://www.eclipse.org/modeling/gmp/ (last accessed in 2018).

[20] Sirius, https://eclipse.org/sirius/ (last accessed in 2018).

[21] Xtext, https://www.eclipse.org/Xtext/ (last accessed in 2018).

[22] E. Dijkstra, On the role of scientific thought, EWD447 (1974).

[23] D. Steinberg, F. Budinsky, M. Paternostro, E. Merks, EMF: Eclipse Mod-
eling Framework, 2nd Edition, Addison-Wesley Professional, 2008, see also
http://www.eclipse.org/modeling/emf/.

[24] OCL, http://www.omg.org/spec/OCL/ (2014).

36

[25] A. Pescador, A. Garmendia, E. Guerra, J. S. Cuadrado, J. de Lara, Pattern-
based development of domain-specific modelling languages, in: MODELS,
IEEE Computer Society, 2015, pp. 166–175.

[26] T. Kühn, S. Böhme, S. Götz, U. Aßmann, A combined formal model for
relational context-dependent roles, in: SLE, ACM, 2015, pp. 113–124.

[27] C. Atkinson, T. Kühne, Rearchitecting the UML infrastructure, ACM
Trans. Model. Comput. Simul. 12 (4) (2002) 290–321.

[28] J. de Lara, E. Guerra, J. S. Cuadrado, When and how to use multilevel
modelling, ACM Trans. Softw. Eng. Methodol. 24 (2) (2014) 12:1–12:46.

[29] K. Barmpis, D. S. Kolovos, Towards scalable querying of large-scale models,
in: ECMFA, Vol. 8569 of Lecture Notes in Computer Science, Springer,
2014, pp. 35–50.

[30] L. M. Rose, D. S. Kolovos, N. Drivalos, J. R. Williams, R. F. Paige, F. A. C.
Polack, K. J. Fernandes, Concordance: A framework for managing model
integrity, in: ECMFA, Vol. 6138 of Lecture Notes in Computer Science,
Springer, 2010, pp. 245–260.

[31] JDT, Java Development Tools, http://www.eclipse.org/jdt/.

[32] J. Cabot, E. Teniente, Incremental integrity checking of UML/OCL con-
ceptual schemas, Journal of Systems and Software 82 (9) (2009) 1459–1478.

[33] A. Egyed, K. Zeman, P. Hehenberger, A. Demuth, Maintaining consistency
across engineering artifacts, IEEE Computer 51 (2) (2018) 28–35.

[34] Z. Ujhelyi, G. Bergmann, Á. Hegedüs, Á. Horváth, B. Izsó, I. Ráth,
Z. Szatmári, D. Varró, Emf-incquery: An integrated development envi-
ronment for live model queries, Sci. Comput. Program. 98 (2015) 80–99.

[35] E. Clayberg, D. Rubel, Eclipse plugins, 3rd Edition, Addison-Wesley Pro-
fessional, 2008, see also http://www.eclipse.org/.

[36] D. S. Kolovos, R. F. Paige, F. A. C. Polack, The Epsilon Object Language
(EOL), in: A. Rensink, J. Warmer (Eds.), ECMDA-FA, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2006, pp. 128–142.

[37] M. Newman, Power laws, Pareto distributions and Zipf’s law, Contempo-
rary Physics 46 (5) (2005) 323–351.

[38] D. S. Kolovos, R. F. Paige, F. A. Polack, Eclipse development tools for
Epsilon, in: Eclipse Summit Europe, Eclipse Modeling Symposium, Vol.
20062, 2006, p. 200.

[39] D. L. Moody, The “physics” of notations: Toward a scientific basis for
constructing visual notations in software engineering, IEEE Trans. Software
Eng. 35 (6) (2009) 756–779.

37

[40] J. L. Lawall, H. Duchesne, G. Muller, A.-F. L. Meur, Bossa Nova: Intro-
ducing modularity into the Bossa domain-specific language, in: GPCE, Vol.
3676 of Lecture Notes in Computer Science, Springer, 2005, pp. 78–93.

[41] H. Krahn, B. Rumpe, S. Völkel, Monticore: a framework for compositional
development of domain specific languages, STTT 12 (5) (2010) 353–372.

[42] T. Degueule, B. Combemale, A. Blouin, O. Barais, J. Jézéquel, Melange:
a meta-language for modular and reusable development of dsls, in: Proc.
SLE, ACM, 2015, pp. 25–36.

[43] A. Sut̂ıi, M. van den Brand, T. Verhoeff, Exploration of modularity and
reusability of domain-specific languages: an expression DSL in metamod,
Computer Languages, Systems & Structures 51 (2018) 48–70.

[44] T. Degueule, B. Combemale, J. Jézéquel, On language interfaces, in:
Present and Ulterior Software Engineering., Springer, 2017, pp. 65–75.

[45] M. Wimmer, A. Schauerhuber, G. Kappel, W. Retschitzegger,
W. Schwinger, E. Kapsammer, A survey on uml-based aspect-oriented de-
sign modeling, ACM Comput. Surv. 43 (4) (2011) 28:1–28:33.

[46] F. Heidenreich, J. Henriksson, J. Johannes, S. Zschaler, On language-
independent model modularisation, T. Aspect-Oriented Software Devel-
opment VI 6 (2009) 39–82.

[47] C. Atkinson, C. Tunjic, T. Moller, Fundamental realization strategies for
multi-view specification environments, in: EDOC, IEEE Computer Society,
2015, pp. 40–49.

[48] H. Bruneliere, E. Burger, J. Cabot, M. Wimmer, A feature-based survey of
model view approaches, Software and System Modeling (in press) (2017)
1–22.

[49] B. J. Cox, A. J. Novobilski, Object-oriented programming - an evolutionary
approach (2. ed.), Addison-Wesley, 1991.

[50] S. Jurack, G. Taentzer, A component concept for typed graphs with inher-
itance and containment structures, in: ICGT, Vol. 6372 of Lecture Notes
in Computer Science, Springer, 2010, pp. 187–202.

[51] D. Strüber, S. Jurack, T. Schäfer, S. Schulz, G. Taentzer, Managing model
and meta-model components with export and import interfaces, in: Big-
MDE@STAF, Vol. 1652 of CEUR Workshop Proceedings, CEUR-WS.org,
2016, pp. 31–36.

[52] D. Strüber, G. Taentzer, S. Jurack, T. Schäfer, Towards a distributed mod-
eling process based on composite models, in: FASE, Vol. 7793 of Lecture
Notes in Computer Science, Springer, 2013, pp. 6–20.

38

[53] N. Amálio, J. de Lara, E. Guerra, Fragmenta: A theory of fragmentation
for MDE, in: MoDELS, IEEE, 2015, pp. 106–115.

[54] D. D. Nardo, F. Pastore, L. C. Briand, Augmenting field data for testing
systems subject to incremental requirements changes, ACM Trans. Softw.
Eng. Methodol. 26 (1) (2017) 1:1–1:40.

[55] M. Scheidgen, A. Zubow, J. Fischer, T. H. Kolbe, Automated and trans-
parent model fragmentation for persisting large models, in: MODELS, Vol.
7590 of Lecture Notes in Computer Science, Springer, 2012, pp. 102–118.

[56] M. Scheidgen, M. Schmidt, J. Fischer, Creating and analyzing source code
repository models - A model-based approach to mining software reposito-
ries, in: Proc. MODELSWARD, SciTePress, 2017, pp. 329–336.

[57] Q. Ma, P. Kelsen, C. Glodt, A generic model decomposition technique and
its application to the Eclipse modeling framework, Software and System
Modeling 14 (2) (2015) 921–952.

[58] D. Strüber, J. Rubin, G. Taentzer, M. Chechik, Splitting models using
information retrieval and model crawling techniques, in: FASE, Vol. 8411
of Lecture Notes in Computer Science, Springer, 2014, pp. 47–62.

[59] J. Espinazo-Pagán, J. G. Molina, Querying large models efficiently, Infor-
mation & Software Technology 56 (6) (2014) 586–622.

[60] G. Daniel, G. Sunyé, J. Cabot, Mogwäı: A framework to handle complex
queries on large models, in: RCIS, IEEE, 2016, pp. 1–12.

[61] G. Bergmann, Z. Ujhelyi, I. Ráth, D. Varró, A graph query language for
EMF models, in: Proc. ICMT, Vol. 6707 of Lecture Notes in Computer
Science, Springer, 2011, pp. 167–182.

[62] M. Voelter, S. Benz, C. Dietrich, B. Engelmann, M. Helander, L. C. L. Kats,
E. Visser, G. Wachsmuth, DSL Engineering - Designing, Implementing and
Using Domain-Specific Languages, dslbook.org, 2013.
URL http://www.dslbook.org

[63] G. Wachsmuth, G. D. P. Konat, E. Visser, Language design with the
spoofax language workbench, IEEE Software 31 (5) (2014) 35–43.

[64] C. Debreceni, G. Bergmann, M. Búr, I. Ráth, D. Varró, The MONDO col-
laboration framework: secure collaborative modeling over existing version
control systems, in: Proc. ESEC/FSE, ACM, 2017, pp. 984–988.

Appendix A. Scoped constraints for the evaluation of performance

This appendix contains the scoped constraints used in the experiment of Sec-
tion 6.2. For completeness, we consider constraints with all kinds of scopes: one

39

with scope sameProject, three with scope sameRootPkg, two with scope samePkg,
and five with scope sameUnit.

Listing 2 shows the constraint with scope sameProject, which controls the
number of state machines in the whole model.

1 context StateMachine inv numberStateMachines:
2 StateMachine.allInstances()→size() <= 10

Listing 2: Scoped constraints with scope sameProject.

Listing 3 shows the invariants with scope sameRootPkg. The first two con-
straints control the maximum number of instances of ControlSubsystem and Com-

ponent. The third one validates that there are no more than 5 nested Subsystems
(i.e., nested packages of type Subsystem).

1 context ControlSubsystem inv numberControlSubsystems:
2 ControlSubsystem.allInstances()→size() <= 10
3
4 context Component inv numberComponents:
5 Component.allInstances()→size() <= 50
6
7 context Subsystem inv depthSubsystem:
8 self.subsystems→forAll(sub1 |
9 sub1.subsystems→forAll(sub2 |

10 sub2.subsystems→forAll(sub3 |
11 sub3.subsystems→forAll(sub4 |
12 sub4.subsystems→forAll(sub5 |
13 sub5.subsystems→size() = 0)))))

Listing 3: Scoped constraints with scope sameRootPkg.

Listing 4 shows the invariants with scope samePkg. The first one checks that
every subsystem contains a component connected with itself through references
inPort and outPort. The last one validates that each Subsystem has at least one
component with an input port.

1 context Subsystem inv connectedComponents:
2 self.ensembles→collect(connectors)→flatten()→exists(con |
3 Component.allInstances()→exists(comp |
4 comp.ports→includesAll(Set{con.inPort, con.outPort})))
5
6 context Subsystem inv inputPortSubsystem:
7 self.ensembles→collect(elements)→flatten()→exists(c |
8 c.ports→exists(p | p.oclIsTypeOf(InPort)))

Listing 4: Scoped constraints with scope samePkg.

Finally, Listing 5 shows the constraints with scope sameUnit. The first two
constraints ensure that every StateMachine has exactly one InitialState and at least
one SimpleState. The third constraint checks that every SimpleState is reachable
from the InitialState. The fourth constraint checks that every Port is connected
to another one. The last constraint ensures that each InitialState is connected to
some state.

1 context StateMachine inv oneInitialState:
2 self.states→one(s | s.oclIsTypeOf(InitialState))
3
4 context StateMachine inv existsSimpleState:
5 self.states→exists(s | s.oclIsTypeOf(SimpleState))

40

6
7 context SimpleState inv reachableState:
8 self→closure(incoming.source)→exists(v | v.oclIsTypeOf(InitialState))
9

10 context Port inv connectedPorts:
11 Connector.allInstances()→exists(c |
12 (c.inPort = self and not c.outPort.oclIsUndefined()) or
13 (c.outPort = self and not c.inPort.oclIsUndefined()))
14
15 context InitialState inv initStateIsNotIsolated:
16 self.outgoing→size() >= 1

Listing 5: Scoped constraints with scope sameUnit.

Appendix B. Scoped constraints for the case study (CAEX)

This appendix contains the nine scoped constraints used in the case study of
Section 6.3. One constraint has scope sameProject, another has scopes samePkg

and sameUnit simultaneously, and seven constraints have scope sameUnit.
Listing 6 shows the constraint with scope sameProject, which validates the

version of the AutomationML model.

1 context CAEXFile inv superiorStandardVersionIsMandatory:
2 self.superiorStandardVersion→exists(v | v = ’AutomationML 3.0’)

Listing 6: Scoped constraints with scope sameProject.

Listing 7 shows the constraint with two scopes: samePkg and sameUnit. This
happens because CAEXObject is a base class from which many other classes
inherit, and therefore, its instances can be found in packages and units. The
constraint ensures non-empty object identifiers.

1 context CAEXObject inv idIsMandatory:
2 self.iD <> null

Listing 7: Scoped constraints with scope samePkg and sameUnit.

Finally, Listing 8 shows the constraints with scope sameUnit. The first one
checks that the base class of a SystemUnitClass is a SystemUnitClass as well. The
second and third constraints validate that InternalElements with a base system
unit define, for every attribute in the base system unit, another attribute with
the same name and value, and vice versa. The fourth constraint ensures that
InternalElements have no base class. The last tree constraints ensure that if an
InternalElement contains a requirement with role class name Process, Resource or
Product, then, all its internal elements must also define a requirement with an
equally named role class.

1 context SystemUnitClass inv inheritanceMustPointToSUC:
2 self.baseClass <> null implies self.baseClass.oclIsTypeOf(SystemUnitClass);
3
4 context InternalElement inv strongConformanceSUC2IE:
5 self.baseSystemUnit <> null implies
6 self.baseSystemUnit.attribute→forAll(aC |
7 self.attribute→one(cI |
8 aC.name = cI.name and aC.value = cI.value));
9

41

10 context InternalElement inv strongConformanceIE2SUC:
11 self.baseSystemUnit <> null implies
12 self.attribute→forAll(aI |
13 self.baseSystemUnit.attribute→one(aC |
14 aC.name = aI.name and aC.value = aI.value));
15
16 context InternalElement inv noInheritanceForIEs:
17 self.baseClass = null;
18
19 context InternalElement inv processContainsProcesses:
20 self.roleRequirements.roleClass.name→exists(r | r = ’Process’) implies
21 self.internalElement→forAll(ie |
22 ie.roleRequirements.roleClass.name→exists(r | r = ’Process’));
23
24 context InternalElement inv resourceContainsResources:
25 self.roleRequirements.roleClass.name→exists(r | r = ’Resource’) implies
26 self.internalElement→forAll(ie |
27 ie.roleRequirements.roleClass.name→exists(r | r = ’Resource’));
28
29 context InternalElement inv productContainsProducts:
30 self.roleRequirements.roleClass.name→exists(r | r = ’Product’) implies
31 self.internalElement→forAll(ie |
32 ie.roleRequirements.roleClass.name→exists(r | r = ’Product’));

Listing 8: Scoped constraints with scope sameUnit.

42

	Introduction
	Motivation and running example
	A pattern-based approach to modularity in DSMLs
	Catalogue of modularity patterns and services
	Fragmentation
	Reference scoping
	Visibility
	Indexing
	Scoped validation

	Architecture and tool support
	Evaluation
	Evaluating applicability of the fragmentation pattern
	Threats to validity

	Evaluating performance of scoped constraints
	Full constraint validation in monolithic and fragmented models
	Effect of number of fragments on scoped validation performance
	Comparison of full validation and incremental validation
	Effect of a model indexer on scoped validation performance
	Threats to validity

	Case study

	Related work
	Conclusions and future work
	Scoped constraints for the evaluation of performance
	Scoped constraints for the case study (CAEX)

