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Practical Detection of CMS Plugin Conflicts in Large Plugin Sets

Igor Limaa, Jeanderson Cândidoa,b, Marcelo d’Amorima

aUniversidade Federal de Pernambuco, Brazil
bDelft University of Technology, The Netherlands

Abstract

Context. Content Management Systems (CMS), such as WordPress, are a very popular category of software for creating web sites
and blogs. These systems typically build on top of plugin architectures. Unfortunately, it is not uncommon that the combined
activation of multiple plugins in a CMS web site will produce unexpected behavior. Conflict-detection techniques exist but they
do not scale. Objective. This paper proposes Pena, a technique to detect conflicts in large sets of plugins as those present in
plugin market places. Method. Pena takes on input a configuration, consisting of a potentially large set of plugins, and reports on
output the offending plugin combinations. Pena uses an iterative divide-and-conquer search to explore the large space of plugin
combinations and a staged filtering process to eliminate false alarms. Results. We evaluated Pena with plugins selected from the
WordPress official repository and compared its efficiency and accuracy against the technique that checks conflicts in all pairs of
plugins. Results show that Pena is 12.4x to 19.6x more efficient than the comparison baseline and can find as many conflicts as it.

1. Introduction

A plugin is a software component that adds features to a
software system. Plugins can help amortize development costs
when developers reuse existing plugins. In plugin-based devel-
opment, a market place often exists to foster creation and use
of plugins–developers receive incentives to create and main-
tain plugins (e.g., public recognition or financial compensa-
tion) whereas application developers seek productivity by us-
ing them. Examples of systems with established plugin archi-
tectures include the Mozilla add-on framework for Firefox [1],
the Chrome extension framework [2], the Eclipse plugin plat-
form [3], and the Apache Maven build system [4].

The flexibility of plugin frameworks is important to at-
tract developers and, consequently, boost plugin market places.
However, flexibility comes at a cost—developers can create plu-
gins that unintentionally interact with others, resulting in unex-
pected behavior [5, 6, 7, 8]. For example, one plugin can modify
the value of a framework variable that will later be read by an-
other plugin, producing an incorrect state that propagates to the
output. Such feature interaction problem has been recognized
in the eighties in the telecommunication domain [9] and later
studied in many other contexts [10, 11, 12, 5, 7].

Content Management Systems (CMSs) [13, 14, 15] are pop-
ular tools to support rapid development of web sites and blogs.
They typically build on plugin architectures and suffer from the
plugin interaction problem mentioned above. Figure 1 illus-
trates one example conflict—detailed in Section 2—involving
two plugins from a popular CMS. Techniques for detecting plu-
gin interactions in CMS exist [6, 7] but, unfortunately, they do
not scale with the number of plugins (e.g., see [7, §5.2]).
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Our general goal is to harden the plugin ecosystem, reduc-
ing the chances that developers observe conflicts while build-
ing their websites, when the focus is not on finding and fix-
ing conflicts. Our specific goal is to efficiently find conflicts
on large sets of plugins as those found in public CMS market
places [2, 14, 15, 13]. The repository of the WordPress CMS,
for instance, contains over 60K plugins [13]. Then, it is impor-
tant that a technique scales with the number of plugins in the
market place.

We propose a technique, dubbed Pena1, to efficiently look for
conflicts on large sets of plugins. The sensible features of Pena
are the use of an iterative divide-and-conquer search to explore
the large space of plugin combinations and a staged filtering
process to eliminate false alarms. Pena builds on two core as-
sumptions: (i) that plugin interactions are unexpected and (ii)
that plugin interactions propagate to the output. The rationale
of the first assumption is that plugins are typically independent
plug-and-play artifacts whereas the rationale of the second as-
sumption is that plugins are supposed to assist the construction
of web pages; therefore, the visual impact is the norm, not the
exception. Although both assumptions can be violated, our ex-
periments showed that several conflicts can be detected under
these constraints. Note that our goal is to find conflicts as op-
posed to proving their absence.

Terminology. A configuration c is a set of plugins that will
be active during a test run. Informally, we say that there are
conflicting plugins in c if it is not possible to reconstruct the
compound effect of c on the output from the individual output
of each plugin in c. A configuration manifesting a conflict is
minimal if a conflict is no longer observed when any of the
plugins in that configuration is removed. Section 3.1 details
and expands the terminology used in the paper.

1Portuguese translation for the word “feather”.
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Approach. Pena’s search is similar to branch-and-bound opti-
mization [16] and Delta Debugging [17, 18]. It starts the search
from a configuration with all plugins active and systematically
prunes non-conflicting configurations from the search until it
finds minimal offending configurations. The search conceptu-
ally builds a binary search tree where nodes denote configura-
tions and edges denote “splits” in the configuration. The search
“splits” the configuration at every decision point, effectively di-
viding the problem in two halves. The decision on how to split
the configuration can result in conflict misses. Pena applies dif-
ferent strategies to circumvent unsuccessful splits. Figure 5 il-
lustrates an unsuccessful split on a configuration with five plu-
gins. The split on the left-hand-side of the figure could not
isolate the conflicting configuration. Pena realizes that the split
was unsuccessful right after the fact and splits again. Unfortu-
nately, Pena may also miss conflicts in a complete traversal of
the search tree. Figure 6 shows this problem and shows how
Pena addresses it. Consider a configuration [a, b, c, d, e] includ-
ing the minimal conflicting configurations [b, c] and [d, e]. In
the first iteration, only the conflict [d, e] is reported as plugins
b and c are linked to different branches of the tree after the first
split. To address that problem, Pena runs the search again, after
discarding one of the plugins that appear in the detected con-
flict. Pena stores the observations made during one iteration in
a cache object, using that cache to speedup subsequent itera-
tions. It is worth noting that Pena uses heuristics to maximize
the number of conflicts found; it is unable to ensure that all
conflicts will be found.

Methods. We evaluated Pena against publicly-available plug-
ins from WordPress [13], which holds nearly 60% of the CMS
market share [19] and runs websites of several notable institu-
tions, including The New York Times™, Harvard University™,
and eBay™. Considering comparison techniques, existing alter-
natives [6, 7] make different assumptions and provide different
guarantees compared to Pena. For example, Pena provides no
soundness guarantee and assumes that side effects propagate to
the outputs. Other techniques do not assume that side effects
propagate to the output. Consequently, they are able to find dif-
ferent types of conflicts, but they may be imprecise [6] or fail
to scale on large sets of plugins [7]. For fairness, we avoided
side-comparison with these alternative approaches. Instead, we
used all pairs of plugin combinations as the comparison base-
line. This strategy cannot miss conflicts manifested in pairs as
it checks for conflicts in each and every combination of pairs
of plugins. Consequently, there is no benefit in combinatorial
testing, because reduction could be done just as well from the
full configuration with all plugins.

Results. Considering the dataset of plugins we used, results
indicate that Pena is efficient (i.e., it scales and runs fast), ac-
curate (w.r.t. precision and recall), and effective (i.e., it was
able to find real conflicts in market places). To evaluate Pena’s
performance, we selected plugins from the WordPress reposi-
tory according to an objective criteria. We were able to run our
approach against plugin sets of much higher size compared to
prior work [6, 7]. For example, we were able to look for con-
flicts in plugins sets with 492 plugins whereas Nguyen et al. [7]
limited that number to 50. This is an increase of nearly one

order of magnitude. Furthermore, we showed that Pena was
12.4x-19.6x faster than the baseline technique. To evaluate ac-
curacy, we used approximations of precision and recall to assess
the rate of false positives and negatives, respectively. We con-
sidered two complementary oracles to determine conflicts—one
based on textual/html difference and another based on visual
dissimilarity of the output. To sum, the textual oracle weighs
recall higher than precision and the visual oracle does the op-
posite. Results indicate that Pena with the textual oracle ob-
tains 56% precision and 100% recall, whereas Pena with the
visual oracle obtains 100% precision and 20% recall. These
two strategies can be used in combination to leverage their indi-
vidual benefits. Considering effectiveness, we were able to find
18 real conflicts in WordPress.

Contributions. This paper makes the following contribu-
tions. [Idea.] We proposed a practical approach to find con-
flicts in large sets of WordPress plugins. In principle, Pena
should be applicable to other CMS frameworks, such as Blog-
ger [20], Drupal [15] and Joomla [21] given that the approach
is black-box and does not require modifications on the CMS in-
frastructure. [Empirical Study.] We conducted a study with a
large set of WordPress plugins and compared the baseline tech-
nique and the proposed solution with respect to efficiency, accu-
racy, and effectiveness. Results are encouraging. [Implementa-
tion.] Our implementation, including code artifacts and scripts
to run our experiments, is publicly available from the following
link https://pag-tools.github.io/pena/.

2. Motivational Example

WordPress is an extensible CMS framework based on PHP
and MySQL. Its architecture is divided in three major parts:
core components, themes, and plugins. The core components
implement essential functionalities accessible through APIs
that plugins can use, themes handle content appearance (e.g.,
page layout), and plugins add extensions to WordPress.

In the following, we describe an example conflict that has
been reported at the WordPress forum but not yet fixed [22].
Figure 1 illustrates the conflict. Suppose one wants to post a
collection of pictures and a small text describing it. For that,
she can use the Wen-Logo-Slider plugin [23], implementing
a picture slider. Figure 1a shows the picture slider added to a
web page, through shortcodes, using that plugin. Now, consider
that the developer also wants to display the description text in
two columns for better reading. Figure 1b shows the effects
of using the plugin Wen-Responsive-Columns [24] for that in
isolation. One would expect that when these two plugins are
activated simultaneously, WordPress would produce a page dis-
playing figures 1a and 1b one above the other. Unfortunately,
this is not what happens (see Figure 1c). When both plugins
are active, the plugin Wen-Logo-Slider cannot display the pic-
ture slider correctly. The observable effect on the page has been
caused by a malformed JavaScript produced when both plugins
are active. In this case, JavaScript is mixed with HTML tags,
resulting in a syntax error. Figure 1d highlights the misplaced
tags.
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(a) The Wen-logo-slider plugin adds a slider for the images up-
loaded by the user. The slider animation is implemented in
JavaScript.

(b) The Wen-Responsive-Columns plugin renders input text in multi-
ple columns.

(c) The slider disappears when both plugins are active.

(d) Snippet of JavaScript code for the image slider animation. The
code becomes not parsable when both plugins are active.

Figure 1: Example plugin conflict.

Finding such conflicts before they occur is important to make
the WordPress ecosystem more reliable. But the high number of
possible plugins makes the search for conflicts very challenging.
To put the scalability issue in perspective, let us assume that con-
flicts manifest only in pairs of plugins. In that case, one might
consider a brute force approach that would run the test against
each and every pair of plugins independently to pinpoint con-
flicts. Let us also conservatively assume that WordPress takes
∼1s to render a page when configured with one pair of plugins.
(Section 5.1.1 elaborates on that cost.) If one wanted to analyze
only a small fraction of the WordPress plugin repository, say
600 plugins (∼1% of the 60K plugins in the WordPress repos-
itory [13]), it would take nearly 50 hours to run the analysis2.
It is therefore imperative that solutions to this problem scales
with the number of plugin combinations.

3. Approach

This section presents Pena.

3.1. Terminology

The software that defines interfaces for accepting third-party
plugins (e.g., WordPress) is referred to as the plugin frame-
work. A configuration is a set of plugins. In the context of
WordPress, a configuration consists of those plugins that have
been installed and activated in the system. A test input refers
to a web page that will be run against a given configuration.
Section 3.2 describes the test oracle used by the tests. Figure 2
shows the WordPress default web page for illustration. The area

2There are n × (n − 1)/2 combinations of pairs of plugins in a set with n
plugins. For n = 600 and cost per run of ∼1s: n × (n − 1)/2 = (600 × 599)/2 =
179, 700s � 49, 92h.

Figure 2: The WordPress default page.

at the top is for the title, the area to the right shows a sidebar
with widgets (e.g., search box, recent posts, and recent com-
ments), and the remainder area lists web posts. For brevity, we
refer to a test input simply as a test. A test run consists of inter-
preting a test input (web page) against a configuration (plugins).
The symbol Ot,c denotes the output of test t on configuration
c. More precisely, the CMS produces this output by running
test t with the plugins in c active. We refer to the output simply
as Oc when the input t is clear from the context.

3.2. Correctness Specification

The correctness specification of Pena builds on the notion of
output difference. The expression∆(Ot,ca ,Ot,cb) denotes the out-
put difference observed when running test t against the config-
urations ca and cb, respectively. The expressions Ot,ca and Ot,cb

refer to the outputs obtained running the test t against ca and
cb. The delta symbol denotes the change sets (i.e., added and
removed elements) obtained when comparing the HTML pages
associated with Ot,ca and Ot,cb with some diff tool. For brevity,
we refer to the output difference between two configurations ca
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Configuration c

[nextgen-gallery] [wp-spamshield] [nextgen-gallery, wp-spamshield]

∆([], c)
+ <script

src=".../jquery-migrate.min.js?ver=1.4.1">
none - <script src=".../jquery-migrate.min.js?ver=1.4.1">

+ <script src=".../jquery.js?ver=1.12.4"> none - <script src=".../jquery.js?ver=1.12.4">

Table 1: Example of true positive. Pena detects a violation when these two plugins are combined.

and cb simply as ∆(ca, cb). The expression ∆([ ], [pi]) refers to
the special case where one configuration is empty and the other
configuration only contains the plugin pi. Intuitively, it high-
lights the contribution of a plugin pi to the output of a test. It
is obtained comparing the output produced with the empty con-
figuration [] and the output produced with configuration [pi].

The correctness specification used by Pena is based on the
union of output differences, which is defined in terms of the
union of the added and removed elements of the corresponding
operands. More precisely, let us consider (A,R) the change sets
of added (A) and removed (R) lines associated with ∆(ca, cb).
Then, ∆(cx, cy) ∪ ∆(cz, cw) = (Axy,Rxy) ∪ (Azw,Rzw) = (Axy ∪
Azw,Rxy ∪ Rzw). The specification is defined as follows. We
say that a configuration c= [p1, . . . , pn] is conflict free if the
following predicate holds and it is conflicting otherwise.

∆([ ], [p1]) ∪ . . . ∪ ∆([ ], [pn]) = ∆([ ], c)

The predicate above indicates that the contributions of each plu-
gin in a conflict-free configuration are independent, i.e., they do
not interfere with each other. Consequently, these contributions
can be combined–using set union–to obtain the compound ef-
fect produced by running the test on c. The union of the sets on
the left-hand-side of the equation includes the contributions of
each plugin pi ∈ c. The expression ∆([ ], c), appearing on the
right-hand-side of the equation, denotes the output difference
between the empty configuration and c. The output associated
with c is obtained by running the test with all plugins active.
Finally, the equality operator makes a pairwise set comparison.
More precisely, it checks if the following conditions hold:

A[][p1] ∪ ... ∪ A[][pn] = A[][p1 ...pn]

R[][p1] ∪ ... ∪ R[][pn] = R[][p1 ...pn]

Intuitively, the specification states the conditions to determine if
individual plugins are composable. The specification states that
the configuration c is conflict free if it is possible to reconstruct
the change sets obtained by comparing [] and c by taking the
union of the change sets associated with each plugin pi. Table 1
shows the changes associated with different configurations for
a case where Pena successfully finds a conflict. The symbol “+”
and “-” show, respectively, the added and removed elements
in the change set between the configurations [] and c. Plugin
nextgen-gallery introduces some changes on the page whereas
plugin wp-spamshield introduces none. When both plugins are
activated the changes introduced by nextgen-gallery disappear
and this is not the expected behavior of wp-spamshield. Note
that the conditions on A and R are violated.

Implementation details. Pena uses a weakened version of the
predicate above to check conflict freedom, namely ∆([ ], [p1])∪
. . . ∪ ∆([ ], [pn]) ⊆ ∆([ ], c). This modification checks the orig-
inal predicate only in one direction. In principle, this decision
could miss conflicts manifested when the configuration c adds
or removes elements from the output that no plugin, individu-
ally, added or removed. We did not find any of those cases in
our experiments and decided to optimize Pena for performance
by checking the predicate in one direction only. For example,
to check if c= [p1, p2] is conflict free, Pena evaluates the con-
dition ∆([ ], [p1]) ∪ ∆([ ], [p2]) ⊆ ∆([ ], [p1, p2]). For this case,
Pena needs to run the test on four configurations, namely [],
[p1], [p2], and [p1, p2], and check if the change sets associated
with individual plugins (i.e., ∆([ ], [pi])) are all included in the
change sets of ∆([ ], [p1, p2]). This operation takes time linear
on the size n of the configuration. It requires n + 2 runs of the
test and n + 1 output comparisons.

3.2.1. Visual Oracle
As previously discussed, Pena uses an oracle based on textual

difference by default. It aims efficiency, but it can be too coarse-
grained. Intuitively, the textual oracle weights recall higher than
precision. To account for the possibility of low precision, Pena
complements this oracle with a visual oracle that uses classical
computer vision algorithms to look for visual mismatches. The
rationale is to run a more expensive oracle on the output only
after using a less expensive and less precise oracle.

Figure 3: WordPress Admin login page.

The following example, involving plugins youtube-channel-
gallery [25] and restricted-site-access [26], illustrates how
the visual oracle avoids reporting false alarms. The plugin
youtube-channel-gallery loads two css files on the test page,
but that does not have visual impact (see Figure 2). The
plugin restricted-site-access redirects the test page to the
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Configuration c

[add-meta-tags] [seo-ultimate] [add-meta-tags, seo-ultimate]

∆([], c)

- <html class="no-js" lang="en-US"
prefix="og: http://ogp...">

+ <html class="no-js"
lang="en-US" prefix="og:

http://ogp...">

+ <html class="no-js" lang="en-US"
prefix=""

xmlns="http://www.w3.org/1999/xhtml">

- <html class="no-js" lang="en-US"
prefix=""

xmlns="http://www.w3.org/1999/xhtml">
+ <html class="no-js" lang="en-US"

prefix="og: http://ogp..."
xmlns="http://www.w3.org/1999/xhtml">

Table 2: Example of false positive. Pena flags the combination of plugins add-meta-tags and seo-ultimate, but it is a false alarm.

WordPress login page (see Figure 3). This behavior is expected
as the goal of the latter plugin is to limit access to visitors,
which it does so by redirecting the website to a login page. For
this case, Pena with the textual oracle reports a conflict as the
css files introduced by the first plugin are not added to the page
when the two plugins are combined. In contrast, Pena with the
visual oracle does not report any conflict as it finds that all im-
ages, uniquely introduced by each plugin, were present in the
page obtained with all plugins activated—the first plugin does
not introduce any images.

Pena uses the following conflict-free predicate to check for
visual discrepancies ∀i : 1..n . ∆([], [pi]) ⊆α=0.85 O[p1..pn]. This
predicate indicates that it is sufficient to verify that all visual ele-
ments introduced by a given plugin (term ∆([], pi)) are included
in the output produced when running the test on the configura-
tion with all plugins (term O[p1..pn]). The subscript α = 0.85 in-
dicates the similarity threshold for establishing a visual match.
In the following, we describe how we evaluate this predicate.
For a given configuration (say, c = [a, b]), Pena obtains screen-
shots for the test page with no active plugins (default.png), each
plugin separately activated (a.png and b.png), and all plugins
activated (ab.png). For a given plugin, the input to ∆ are the
screenshots obtained with: (i) the test run with the default con-
figuration and (ii) the test run with that plugin. The output of
∆ is an image showing the differences. We used the Python
library PyQt43 to obtain the screenshots. More precisely, we
used the component QWebView to render the page without a Web
browser and the component QImage to obtain the screenshot for
the page. To calculate the difference between images, we used
the scikit-image library that uses an optimized algorithm for
computing the mean structural similarity (SSIM) index between
images [27, 28] and save this difference in a new image. Fi-
nally, we verify if each of the images, previously computed,
are contained in the conflicting page, denoted by O[p1...pn]. We
used the open-source library opencv to process and normalize
the images, and used the template matching to check contain-
ment [29]. A visual conflict is reported when any of the diffed
images are below a similarity threshold α with the closer match
in O[p1...pn].

3Documentation at https://pypi.python.org/pypi/PyQt4

3.2.2. Limitations
Our approach is subject to the following limitations: (1) On

textual oracle. We used textual difference to implement the
∆ operation. Consequently, even minor changes on the out-
put are considered a conflict. For example, we found cases
where two plugins changed the same HTML element, with both
plugins adding new class attributes to that element. Although
the changes are in the same element, we could not find evi-
dence that they were not independent. Table 2 illustrates an
example of this limitation resulting in Pena producing a false
alarm. When the plugins add-meta-tag and seo-ultimate are
combined, their individual contributions are merged into one.
For the diff tool, and consequently for Pena, the previous con-
tributions were removed and a new one was added. A closer
look is needed to determine that the contributions were safely
merged. (2) On visual oracle. Computer vision algorithms are
approximate and can flag difference when human can easily de-
tect no difference. For example, consider the case where one
plugin changes the font of a page and another plugin produces
some arbitrary output on the page. When both plugins are ac-
tive, the change produced by the second plugin will appear with
the new font and the visual oracle will flag that as a discrep-
ancy, i.e., a change in the output that was previously unobserved.
Many factors influence the sensibility of the computer vision al-
gorithm, including the threshold α. (3) Unseen modifications.
Conceptually, it is possible that a conflict affects some part of
the test page in addition to the parts that each plugin individu-
ally changes. In those cases, Pena would miss the conflict as
it uses the operator ⊆ instead of = to check correctness (see
Section 3.3, Step 2). (4) Lack of specifications. Pena does not
require plugin specifications on input. As such, except for the
cases of crashes (we observed one case), it cannot determine
the verdict of a warning without human inspection.

3.3. Workflow

Pena takes on input a random seed, a web page, and a set
of plugins, and reports a set of minimal conflict-manifesting
configurations on output.

Figure 4 shows Pena’s workflow, consisting of five steps. The
first step determines equivalence classes of plugins to reduce
the search space, the second step searches for conflicts in the
reduced configuration, the third step groups similar conflicts,

5



seed {p1,...,pn}

Search2.

1.

3. Clustering

4.

5. Visual Oracle

Cleansing

conflicts

{(c2,c34), (c5,c9, c98), ...}

Reduction
Output

Figure 4: Pena’s workflow.

the fourth step eliminates likely spurious conflicts, and the last
step checks if “survivor” conflicts can be detected visually.

In the following, we describe these steps in detail.

Step 1 – No Output Reduction. The purpose of this step is
to reduce the number of plugins Pena needs to analyze. To de-
cide what plugins should be included in a configuration, we
ran an experiment where we partitioned the input set of plugins
in equivalent classes according to the output each plugin pro-
duces. We observed that, in all cases, there was one big parti-
tion with lots of plugins that did not produce output and several
single-element partitions where plugins produced different out-
puts. Based on this observation, Pena selects plugins as follows.
The configuration it uses in subsequent steps includes one plu-
gin from the partition that produces no effect on the output and
includes all other plugins from the partitions with output effect.
Note that it is possible that conflicts manifest depending on the
selection of plugin from the “no effect” partition. However, we
did not observe such cases.

Step 2 – Search for Conflicts. Pena follows a divide-and-
conquer approach to search for conflicts. The search takes as
input a configuration and starts by checking for the presence
of conflicts in the input configuration. The search stops if no
conflict is found in the input configuration. Otherwise, Pena
splits the configuration in two halves and three cases need to be
considered:

1 - This case corresponds to the scenarios where the con-
flict is detected in one partition but not in the other. For these
cases, Pena discards the conflict-free partition and recursively
searches for conflicts in the other partition.

2 - For the case where Pena finds conflicts in both partitions,
the search proceeds independently on each of them, reflecting
the fact that two or more conflicts were found.

3 - Finally, if none of the partitions manifest conflicts, it
means that the partitioning criteria was not effective as we

knew a conflict existed originally. That could happen when,
for example, there is a single conflict in the configuration and
the search assigns conflicting plugins to different partitions. To
address that, Pena shuffles the configuration and repeats the
search. For the case of a single conflict involving two plug-
ins, the probability that the split is successful is 0.5—it cor-
responds to the probability that both plugins fall in the same
partition.

[a,b,c,d,e]

[a,b] [c,d,e]

[b,e,d,a,c]

[b,e] [d,a,c]

shuffle

✔ ✔ ✘ ✔

✘ ✘

Figure 5: Shuffling configuration to split properly.

Figure 5 illustrates case 3. We used a cross mark (�) to the
right side of a configuration to indicate that it manifests a con-
flict, according to our correctness specification. Similarly, a
check mark (�) indicates that the configuration is conflict free.
In this example, the search starts with a random permutation of
the input set of plugins provided to Pena, [a, b, c, d, e]. Let us
consider that the conflict, in this case, involves plugins b and e,
highlighted in the figure. The left side of the figure shows that,
after splitting the configuration in two, all derived configura-
tions became conflict free as plugins b and e no longer interfere
with each other. However, Pena knows that the original con-
figuration was conflicting; as such, it continues looking for a
conflict. At that point, Pena shuffles the current configuration
and repeats the process. After splitting the shuffled configura-
tion, Pena observes the minimal conflict on configuration [b, e]
and reports it.

Note that, according to the method described, Pena could
miss conflicts. That can happen depending on the choice of
input configuration and the random seed used for shuffling. To
mitigate that problem, Pena re-runs the search with conflicts
found in previous iterations removed. Figure 6 illustrates that
problem and shows how Pena’s iterative execution addresses it.

✔[a,b] [c,d,e] ✘

[d,e] ✘✔[c]

[a,b,c,d,e] ✘

✘[b,c]

[a,e,b,c] ✘

[a,e]✔

remove ’d’ or ’e’
and iterate

Figure 6: Pena’s iterative search.

Let us consider that the input configuration contains conflicts
[b, c] and [d, e]. The left side of the figure shows the explo-
ration tree associated with Pena’s first iteration, which finds the
conflict [d, e]. Pena missed the conflict [b, c] in this iteration
because plugins b and c were assigned to different partitions
after the first split. The second run, depicted at the right side
of the figure, starts from the original configuration with either
the plugins d or e removed. Removing a plugin prevents Pena
from driving the search towards that same conflict but it may in-
troduce false negatives when the removed plugin conflicts with
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others. The search stops if, by the end of one iteration, Pena
finds no more conflicts in the resulting configuration.

To speedup execution of subsequent iterations, we identify
each partition of the initial plugin set—appearing on figures 5
and 6 as nodes of the search trees—with a hash and used a
hash set to check if these partitions have already been visited.
Because of this caching mechanism, re-runs are substantially
cheaper compared to the original run.

Intuitively, the search described above builds a configuration
tree where the configuration associated with every internal node
is partitioned by their child nodes. The check for conflict of a
configuration c from an internal node involves three steps: 1)
computing the output of the test for configuration c, 2) com-
puting the diff ∆([], c) using that output, and 3) checking that
individual contributions belong to that diff. Note that individ-
ual contributions only need to be computed once, for the full
configuration associated with the root node.

The search component of Pena is similar in spirit and code to
the Delta Debugging DDMin algorithm [18], whose goal is iso-
lating failure-inducing inputs (see Section 6.2). The distinction
in this setting is that Pena needs to isolate multiple conflicts (i.e.,
faults in the case of DDMin) and those conflicts can be masked,
as shown in the examples from figures 5 and 6. Pena proposes
heuristics to address those issues.

Step 3 – Clustering. We observed that certain conflicts are very
similar. For example, a plugin that changes all absolute URLs4

will conflict with any plugin that introduces an absolute URL.
We inspected some of these cases and found that most of them
are duplicate reports of some expected plugin behavior. One
option to handle those cases would be to reject every conflict
that involves a plugin appearing in multiple conflicts under the
assumption that they would be all false alarms. However, to
avoid missing true conflicts, we chose instead to cluster those
conflicts, reporting only one conflict per cluster.

Step 4 – Cleansing: We observed empirically the occurrence
of certain patterns of false positives. The list below shows four
heuristics we used to eliminate these cases as to increase preci-
sion of our approach.

• Non-determinism. We found cases where plugins produce
non-deterministic output. Consider, for example, HotSpots
Analytics [30], a plugin for website usage tracking. When
activated, this plugin assigns a new value to a JavaScript
variable (session_id) each time a request is made to the test
page. To prevent false alarms because of the changing id,
Pena runs the test twice against every plugin that is found
to be in conflict. If the diff is non-empty, it records the non-
deterministic parts of the output to avoid blaming conflict
on those lines. In this example, the diff would contain the
line with the modified assignment to session_id.

• Optional closing tags. Some HTML elements have closing
tags optional (e.g., <meta> and <link>). A change on the
output caused by the addition or removal of a closing tag

4For example, Root Relative URLs: https://wordpress.org/plugins/root-relative-urls/

would lead to a false alarm. Let us consider a warning we
found involving the plugins contact-form-7 and compact-
wp-audio-player. The first plugin introduces a <link> el-
ement to load a css file, whereas the second plugin, in addi-
tion to making other changes, modifies this tag, just adding
a slash (<link/>). Pena identifies and eliminates those spu-
rious reports. In this case, we implemented a script that
checks if the only difference is due to the closing tag.

• Set Union. We found cases where two or more plugins
add elements to an HTML object that had the semantics
of a set. For example, the plugins event-tickets and the
plugin kingcomposer add distinct elements to the attribute
class of the HTML tag body (respectively, tribe-no-js
and kc-css-system). When both plugins are activated, the
attribute class aggregates the introduced strings with those
originally present in the attribute. The textual diff Pena
uses would not discriminate this case; consequently, a false
alarm would be reported. A similar case happens with the
plugins cherry-testi and social-media-widget. They both
modify the JavaScript variable wp_load_style responsible
for loading the CSS style in the page. Pena discards warn-
ings that follow this pattern. More specifically, we imple-
mented a script that checks the values associated with the
class attribute of the body tag or the specific array variable
wp_load_style. The treatment is the same in both cases–
we check if the values are merged in the original tag or vari-
able.

• Minification. The purpose of minification plugins is to mod-
ify the page to reduce contents and, consequently, reduce
download time. It removes unnecessary spaces and com-
ments, and renames variables and functions. Minification
is relatively common in WordPress and the changes in web
pages they produce are typically broad as several output el-
ements are affected. We noticed that the community adopts
the convention to use “minify” (or similar) as part of the plu-
gin name. Pena discards conflicts that match this pattern.

Step 5 – Visual Oracle: The visual oracle (see Section 3.2.1)
is an optional step that can be applied when the textual oracle
flags a potential conflict. As previously discussed, the intuition
for this step is that the textual oracle sacrifices precision for effi-
ciency and recall whereas the visual oracle sacrifices efficiency
for precision. The rationale is to run a more expensive and more
precise oracle (the visual oracle) only after using a less expen-
sive and less precise oracle (the textual).

3.4. Implementation

This section describes the implementation of Pena. Figure 7
illustrates the components involved in the infrastructure to run
Pena. Boxes denote data processors whereas edges denote con-
trol flow. The Pena shell script, appearing at the top of the
figure, installs and uninstalls plugins through the WordPress
Command-Line Interface (CLI), wp-cli (1). This script re-
quests the test web page to the web server (2), which delegates
to the CMS part of the task of preparing a response (3). The
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2. read

wp

Web Server

wp−cli

PENA script

1. (un)install plugin

3. interpret

Figure 7: Organization of key server-side components.

plugin code is interpreted at that moment. Note that the test-
ing process is entirely black-box. We did not modify any part
of the WordPress or the Web Server integration. Although we
instantiated this scheme to WordPress, in principle, Pena could
be instantiated to any plugin-based CMS with a command-line
interface.

Figure 8 shows Pena’s pseudo-code. The data-structure
Config encapsulates a list of plugin names (line 3), a factory
method to derive new configuration objects (line 5), a method
to verify the presence of conflicts in the target configuration
object (line 8), a method to ignore output-equivalent plugins
(line 10), and a method to ignore the conflict object passed as
parameter.

Function Pena is the entry-point of this pseudo-code. It takes
as input a configuration to check for conflicts and the seed for
making random choices. The algorithm starts by calling the
noOutputRed method (line 23) from the input configuration c to
discard configurations that produce no output (see Section 3.3).
After this reduction step, Pena checks if the resulting configura-
tion has conflicts (line 24). If no conflict exists, execution stops.
Otherwise, execution proceeds according to the selected search
strategy—SS (“Split Search”) or BF (“Brute Force”).

Function searchSS implements SS, which is the default
search strategy of Pena. This function uses a divide-and-
conquer approach to search for conflicts in the input configu-
ration c, as described in Section 3.3, Step 2. The base case is
reached when the size of c is two as a conflict needs at least a
pair of plugins to occur (line 46). Line 48 splits c in two halves.
Lines 51–54 discard one of the partitions if it is found to be con-
flict free. If both halves contain conflicts, execution proceeds
independently on each half (lines 49–50). Otherwise, it means
that the offending set of plugins are no longer in the same parti-
tion. In this case, Pena shuffles the configuration c and tries to
isolate conflicts until a threshold MAX is reached (lines 55–59),
as Figure 5 illustrates. Note that, if flag ITER is set, function
searchSS is called multiple times to find potentially missing
conflicts, as illustrated in Figure 6. Although not shown in code,
for brevity, results of ∆-expressions evaluations are cached as
to avoid repeated computations in subsequent runs in iterative
mode. Recall that these ∆-expressions appear in the checks for
conflicts.

Function searchBF implements BF, which we use as compar-
ison baseline to evaluate Pena’s search. This function exhaus-

1 // data structures
2 class Config {
3 List<String> plugins;
4 /* factory method */
5 Config pair(int i, int j) {
6 return new Config(plugins.get(i), plugins.get(j)); }
7 /* Returns true if no conflict is found; cache results */
8 boolean check() {...}
9 /* Reduce size of the configuration */

10 void noOutputRed() { // As per Section 3.3 }
11 /* Ignore known conflicting plugins */
12 void ignore(Set<Conflict> c) { ... }
13 }
14

15 class Conflict { List<String> plugins; }
16

17 enum Mode { BF, SS };
18 static Mode mode = SS; // default search is SS
19 static boolean ITER = true;
20 static int MAX = 5;
21

22 Set<Conflict> PENA(Config c, int seed) {
23 c.noOutputRed(); // reduce dimensionality
24 if (c.check()) return ∅; // no conflict; done
25 Set<Conflict> res = ∅;
26 switch (mode) {
27 case BF: res = searchBF(c); break;
28 case SS:
29 if (ITER) {
30 c = shuffle(seed, c.plugins); // randomly shuffles c
31 Set<Conflict> tmp = ∅;
32 do {
33 if (tmp � ∅) c.ignore(tmp);
34 Set<Conflict> tmp = searchSS(c, 0, seed); break;
35 res = res ∪ tmp;
36 } while (tmp � ∅) // fix point
37 } else { res = searchSS(c, 0, seed); }
38 break;
39 }
40 /* cluster and cleanse reports */
41 return res;
42 }
43

44 Set<Conflict> searchSS(Config c, int nRetries, int seed) {
45 // pre-condition: ¬ c.check()
46 if (c.plugins.size() = 2)
47 return new Set(new Conflict(c.plugins));
48 <ca, cb> = split(c); // splits c in two halves
49 if (!ca.check() & !cb.check) { /* case 2 */
50 return searchSS(ca, 0, seed) ∪ searchSS(cb, 0, seed);
51 } else if (!ca.check()) { /* case 1.1 */
52 return searchSS(cb, 0, seed);
53 } else if (!cb.check()) { /* case 1.2 */
54 return searchSS(ca, 0, seed);
55 } else { /* case 3 */
56 if (nRetries == MAX) return c;
57 Config newc = new Config(shuffle(seed, c.plugins));
58 return searchSS(newc, nRetries+1, seed);
59 }
60 }
61

62 Set<Conflict> searchBF(Config c) {
63 Set<Conflict> res = new Set();
64 for(i=0; i<c.plugins.length; i++) {
65 for(j=i+1; j<c.plugins.length; j++) {
66 Config pair = c.pair(i,j);
67 if (!pair.check()) res.add(pair);
68 } }
69 return res;
70 }

Figure 8: Pena

tively explores all pairs of plugins looking for conflicts. This
function takes as input a configuration objects with a list of n
plugins, generates all n(n − 1)/2 pairs of plugin combinations,
and then checks if each pair manifests a conflict. Note that
the number of checks is quadratic on the number of input plug-
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ins. We focused on conflict pairs, but higher interaction degrees
could be used with a higher cost of checking input combina-
tions.

The implementation of Pena depends mostly on Python’s
standard libraries. It uses library urllib.request to make
HTTP requests to WordPress, the library difflib to compute
textual diff, the library python-Levenshtein to check similar-
ity of strings using the Levenshtein distance, and the Beautiful-
Soup library [31] to parse and sanitize the test page.

4. Experimental Setup

This section describes the setup we used in our experiments.

4.1. Objects

To select plugins, we wrote a script to scrap the pages from
the WordPress market place website. The script selects the cat-
egory “popular” from the list of categories and processes the
output until no more elements (i.e., plugins descriptions) are
found in the result set. It downloads plugins with over 10K ac-
tive installations that are compatible with PHP version 5.6 and
WordPress version 4.7 (see Section 4.4). A total of 1,386 plu-
gins are selected according this criteria. We noticed that, in
some cases, exceptions occur due to missing dependencies or
incompatibilities with our setup. For that reason, we enforced
the following additional restrictions on plugins: 1) the plugin
installation, activation, and deactivation must not display any
message on the error stream and 2) it must be possible to make
an HTTP request to the main page with the plugin activated. Af-
ter removing 75 plugins for one of those reasons, our final set
of verified plugins included a total of 1,311 plugins.

4.2. Metrics

We evaluated Pena under three dimensions: 1) efficiency,
2) accuracy, and 3) effectiveness. The first dimension evalu-
ates performance of Pena, the second dimension measures the
quality of the reports (i.e., rate of false positives and negatives),
and the third dimension evaluates the ability of Pena to find real
conflicts in large sets of plugins. We used the following metrics
to evaluate Pena on these dimensions: time to find conflicts (for
efficiency), precision and recall (for accuracy), and number of
conflicts found (for effectiveness).

4.3. Techniques

Our evaluation compares different search strategies. Split-
Search (SS) is the default strategy of Pena, as described in
Section 3.3. We compared the default search strategy with
Brute Force (BF), the exhaustive alternative that enumerates
all n(n − 1)/2 pairs of plugins from the input set with n con-
figurations, and checks each pair for conflict the same way as
SplitSearch does using the checker described in Section 3.2. Al-
though Pena relates to Varex [7] and the static analysis tool de-
veloped by Eshkevari et al. [6], we decided to avoid side com-
parisons for fairness. As discussed on Section 1, these tech-
niques make different assumptions on how interference prop-
agates to the output, provide different guarantees, and con-

sequently have different runtime costs. Our focus is to han-
dle large sets of plugins as those present in plugin market
places [2, 14, 15, 13].

4.4. Setup
To run our experiments, we used a virtual machine con-

figured with 4GB and a dual-core processor running Ubuntu
14.04.5 (64-bit version). The host machine sits on a Core i7-
4790 CPU (3.60GHz) Intel processor with 16GB. The software
configuration is as follows: WordPress 4.7, PHP 5.6, MySQL
Server 5.5, and Apache 2. As in Varex’s evaluation [7, §5.1
and 5.4], we used in our experiments the default page from a
fresh WordPress install as the test input (see Figure 2). The
rationale is that conflicts can manifest discrepancies even on a
simple page. Test data generation is out of scope for this paper.

Increasing memory limits in WordPress and the PHP inter-
preter. Pena aims scalability. In practice, however, we found
that the execution environment imposes memory restrictions
that limits scalability. More precisely, the PHP interpreter lim-
its the maximum amount of memory that a PHP script is able
to allocate [32] and WordPress enforces memory restrictions
on plugins to prevent misbehaving plugins from wasting mem-
ory resources [33]. We needed to relax these policies to enable
Pena to analyze configurations with a large number of plugins.
We disabled the memory constraints from the PHP interpreter
and increased the maximum amount of memory for WordPress.
For the PHP interpreter, we updated the option memory_limit

from 128M (default value) to 1, which indicates unlimited mem-
ory. In WordPress, it is not possible to disable the memory re-
striction, but it is possible to set memory limit. We configured
WordPress to use 75% of the available memory from our vir-
tual machine–command define(’WP_MEMORY_LIMIT’, ’3G’).
To illustrate the amount of plugins that our setup can simul-
taneously handle, we considered the entire selection of 1,311
plugins. We activated each plugin incrementally, measuring the
elapsed time for activation. Figure 9 shows the increase in cost
to activate one plugin as new plugins are added to WordPress.
The dashed vertical line in the figure indicates saturation, i.e.,
the point when WordPress refuses to activate new plugins Note
that with the default PHP and WordPress settings, it is only pos-
sible to activate 168 plugins. In contrast, using the modified
settings, it is possible to activate 939 plugins before reaching
the saturation point. Overall, we noticed a substantial increase
in the amount of plugins that can be simultaneously activated in
WordPress. Note that these limits can increase, depending on
how much resources are available on the machine.

5. Evaluation

This section reports results of Pena on efficiency (Sec-
tion 5.1), accuracy (Section 5.2), and effectiveness (Sec-
tion 5.3).

5.1. Efficiency
To evaluate efficiency of Pena, we conducted an experiment

to measure how the number of conflicts and the size of con-
figurations (independent variables) affect Pena’s performance
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Figure 9: Time to activate one plugin in WordPress with a default and modified
setups. As the number of activated plugins increases, the time to activate more
plugins with similar memory requirements increases as well. Saturation points
are highlighted with vertical lines.

(response variable). To measure the effects of the independent
variables in isolation, we considered two scenarios. In the first
scenario, we considered configurations of increasing size con-
taining a single conflict. Our goal in this scenario is to analyze
the base scalability of Pena. In the second scenario, we con-
sidered multiple conflicts in a large fixed-size configuration. In
this scenario our goal is to observe how re-runs of the algorithm
affect overall scalability.

Input configurations. To obtain input configurations of vari-
ous sizes and with an increasing number of conflicts, we pro-
ceeded as follows. First, we ran output reduction on our se-
lection of 1,311 (see Section 4.1) to eliminate noise in the
evaluation–if we ran output reduction a posteriori it could dis-
card different number of plugins from the search depending on
the plugin selection. A total of 492 plugins remained after this
reduction step; each one from a different equivalence class. Af-
ter this step, we ran Brute Force and, based on the results ob-
tained, we produced a conflict graph. A node in this graph cor-
responds to one of the 492 plugins and an edge connects two
nodes if and only if the pair is conflicting. Note that this repre-
sentation cannot characterize conflicts involving more than two
plugins. Finally, we produce the input configuration by search-
ing this conflict graph. For example, let us consider the case of
creating a configuration with a hundred plugins and exactly two
distinct conflicts among them. For that, we look at the graph
and select plugins manifesting exactly two distinct conflicts and
then select a number of plugins–to reach a hundred–that do not
manifest conflicts with any other plugins that were previously
selected.

5.1.1. Single conflicts
The goal of this experiment is to observe how Pena scales

with a growing number of plugins. We fixed the number of con-
flicts to one and ran Penawith BF and SS against configurations
of increasing sizes. For each configuration size, we selected 10
random configurations according to the methodology described
in Section 5.1. It is worth mentioning that the techniques were
compared against the same set of configurations.

Figure 10 shows the increase in cost as the size of configura-
tions increase. The plot at the top compares scalability of BF
and SS. Results show that, for sufficiently small configurations,
BF explores all possible pairs relatively fast. For example, for
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Figure 10: Running times of BF and SS in minutes (with error bars ±σ) for
increasing number of plugins, considering a single conflict in the configuration.
Plot at the bottom shows that SS scales linearly with the configuration size for
the scenario of single conflicts.

configurations of 30 plugins, BF is able to generate and check
all pairs of plugins in 20.8m, on average. Unfortunately, cost
quickly becomes unacceptable with the increase in the number
of plugins. For that reason, we decided to set the upper bound
of 150 for the size of configurations in this plot. Note that the
curve associated with SS in the top plot has a very slow aclive.
The plot at the bottom better illustrates the scalability of SS on
larger configurations (not limited to a 150). In this experiment,
we needed to disable output reduction as to process larger con-
figurations. The curve associated with SS in this plot shows a
trend linear in the size of the configuration. A closer look at
the source of cost showed that the cost of SS is dominated by
the cost of processing each plugin in separate, which consists
of activating the plugin in WordPress and rendering the page.

5.1.2. Multiple conflicts
This section compares the techniques on configurations with

an increasing number of conflicts with the goal of observing the
impact of additional iterations on Pena’s performance. Recall
that one iteration of Pena in SS mode can miss conflicts when
multiple conflicts are present and the iterative execution mode
mitigates this issue (see Figure 6 and Figure 8, Line 19). In this
experiment, we varied the number of conflicts from one to five
and, for each case, we ran BF and SS for ten times on a different
selection of a hundred plugins.

Figure 11 shows the average cost of each technique (y-axis)
for an increasing number of conflicts in a configuration (x-axis).
The plot shows average cost across all runs, with error bars.
Note that the scales in the y-axis for BF and for SS are different.
Results show that SS is significantly more efficient than BF. Al-
though the running times of Pena (SS) increase with the number
of conflicts added, the overhead associated with the extra itera-
tions is relatively low. Recall that Pena caches the results of pre-
vious iterations to speed up subsequent iterations. The plot at
the bottom of Figure 11 shows the average number of iterations
for each number of conflicts injected in the input configuration.
It is worth noting that, in principle, SS could still miss conflicts
(see Section 5.2.2), but, in this experiment, it found all conflicts
in every run.
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Figure 11: Execution cost of BF and SS, and number of iterations for SS.
Considering input configurations of fixed size (one hundred) and increasing
number of conflicts (1–5).

5.2. Accuracy

This section reports accuracy as measured by precision (mea-
sure for false positives) and recall (measure for false negatives).

5.2.1. Precision
Precision is the ratio RT/R, where R denotes the number of

conflict reports and RT denotes the number of true reports. We
manually inspected the documentation of each plugin involved
in a report to classify a report as true or false. In this experiment,
we ran Pena with different random seed for a hundred times,
each time with a different selection of 50 plugins from our
dataset (see Section 4.1). The rationale for this selection was
to maximize diversity in the combinations of plugins. Our re-
sults indicate that, considering all runs together, Pena reported
74 conflicts after clustering the reports. After further removing
likely spurious conflicts as per step four from Section 3.3, the
number of conflict reports went down to 18. The clustering step
is akin to step three from Section 3.3 but, in this experiment, it
is applicable to the reports obtained across all hundred runs.

Of these 18 conflicts, 10 conflicts were true positives. The
precision obtained with the textual oracle was therefore 56%
(i.e., 10/18). Considering the visual oracle described in step
five from Section 3.3, we found that only two out of the 18 con-
flicts manifested visual discrepancies and they were true reports,
leading to 100% (i.e., 2/2) precision. Note that, for scalability,
we made the conscious decision of sacrificing precision in the
textual oracle (as it is based on textual difference) and sacrific-
ing recall in the visual oracle (as it focuses on manifested visual
changes on the output). As to optimize diagnosis, Pena would
report on output a rank with the 18 conflicts where the 2 con-
flicts found by the visual oracle would appear on the top. We
describe examples of true and false positives in the following.

True positive examples. Figure 12 shows the report of a real
conflict that Pena finds involving the plugins os-related-posts
and fb-display-events-shortcode. WordPress does not report
any warnings or errors when it runs with each of these plugins in
isolation, but execution crashes when both plugins are activated.
In this case, Pena displays a division by zero message instead

of the resulting test page. It is worth noting that we only found
this crash in our experiments; in the remaining cases we needed
to inspect the report and the plugin documentation to decide if
it was a case of false alarm or true conflict.

Conflicting Configuration:
* [’fb-display-events-shortcode’, ’os-related-posts’]

Unexpected: added when all are activated:
+on line 570 Warning
+: Division by zero in
+.../plugins/os-related-posts/os-related-posts.php

Figure 12: An warning message is displayed on the test page when plugins
os-related-posts and fb-display-events-shortcode are used together.

Another true positive Pena reports involves the plugins like-
this-post and appstore. Pena finds the conflict because the plu-
gin like-this-post fails to add the variable ltpajax to the page
when both plugins are active. A closer look revealed that this
happened because both plugins declare a callback function with
the same name, admin_register_head. Because of the name
collision, WordPress missed the function call associated with
the plugin like-this-post that would have added the missing
variable. Although no visual effects were observed in this case
(only changes in page contents), the missing variable could be
read on a different test.

Another example of true positive involves the plugins super-
socializer and facebook-thumb-fixer. Figure 14 shows the
social-network widgets that the plugin super-socializer adds to
the left side of the test page when activated. The function of the
plugin facebook-thumb-fixer is to adjust the look-and-feel of
thumbnails (i.e., a representative image) associated with posts
to Facebook, Twitter, or Google+ in the area reserved to posts in
WordPress. When these two plugins are combined, Pena finds
that some HTML tags that the plugin super-socializer intro-
duces on the test page are missing. These tags are responsible
for displaying the social-network widgets on the screen. Read-
ing the documentation of facebook-thumb-fixer we found no
explanation that would explain the removal. In this case, the vi-
sual oracle found and reported the conflict as a true positive due
to the differences between the images with super-socializer plu-
gin and the image with both plugins activated (see Figure 14).

False positive examples. One aspect that we observed on this
experiment was that false positives are easy to catch by the hu-
man eye. We discuss two of these in the following.

One example false alarm Pena found involved the plugins
woocommerce-social-media-share-buttons and easy-coming-
soon. The first plugin inserts css and JavaScript on the in-
dex page of WordPress whereas the second plugin changes
the contents of the test page to display a “coming soon” mes-
sage. Individually, both plugins work as expected. When
both plugins are activated, Pena detects that the code added
by the woocommerce-social-media-share-buttons plugin was
removed from the test page. In this case, however, the plugin
easy-coming-soon is expected to change the contents of the test
page (e.g index.html), including meta-data, to display the “com-
ing soon” message to visitors. This behavior is expected—the
“coming soon” plugin overwrote the code that the social-media
plugin added. Domain-knowledge is necessary to identify that
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Figure 13: super-socializer widgets.

Figure 14: The visual oracle found that the widgets added by super-socializer
were removed and highlighted the difference in the red rectangle.

this is legal behavior and exclude this conflict from the warning
list.

Another case of false positive was observed with the plugins
megamenu and root-relative-urls. The plugin megamenu adds
a customizable menu to WordPress whereas the plugin root-
relative-urls converts absolute urls into relative urls. When
activated, the plugin megamenu includes two JavaScript files in
the test page and the plugin root-relative-urls modifies all ab-
solute urls it finds in the page, including those related to the
included JavaScript files. After checking the resulting page,
we could not find behavioral changes–only the URLs were
changed. Pena could detect some of those transformations, but
it would lead to additional execution cost. In both cases, the
visual oracle did not report warnings as the images were similar
and there were no changes on the page when both plugins were
active.

5.2.2. Recall
Recall is the ratio RT/T , where RT denotes the number of true

reports and T denotes the total number of true conflicts. We
made the following assumptions to estimate the ground truth
(i.e., the set T ): that conflicts are manifested in pairs of plug-
ins and that our textual oracle does not miss conflicts. These
assumptions were made to reduce cost of manual inspection
necessary to establish the ground truth. For that same reason,
we focused on a random selection of 250 plugins, reduced to
88 plugins after output reduction. For this set of plugins, exe-
cution of BF takes nearly 4 hours, which amounts to checking
conflicts on 3,828 plugin pairs. It reports a total of five distinct
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Figure 15: Histogram for the number of conflicts (out of five) reported by Pena
in a single iteration.
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Figure 16: Cost of iterations for 492 plugins.

conflicts, which constitutes our ground truth.
Because Pena is sensitive to the configuration selected, we re-

executed the tool ten times with different permutations of these
88 plugins and analyzed the distribution of results. Figure 15
shows an histogram for the number of conflicts reported when
restricting Pena to execute for only one iteration. In this setup,
Pena reports one conflict in five runs and reports five conflicts
in only two runs. For this setup, Penawould have an average re-
call of 54%, which highlights the importance of iterative execu-
tion (see Section 3). With iterative execution, which is enabled
by default (see Line 19 in Figure 8), the first run of Pena is as
usual. If no conflict is found, no subsequent run is necessary.
Otherwise, one of the plugins involved in a conflict is removed
from the configuration and Pena starts a new iteration. With
iterative execution, Pena obtains 100% average recall. All five
conflicts were found after at most two iterations of Pena (i.e.,
one additional re-run) in all ten executions. It is worth mention-
ing that, in principle, Pena can still miss conflicts. Consider, for
example, the case of a conflicting pair (a, b) where a or b is in-
volved in another conflict previously detected. In that case, a or
b would be removed from the configuration (see Figure 6) and
the conflict (a, b) would be missed. Pena can also miss a con-
flict if the number of shufflings on a given configuration (see
line 56 in Figure 8) reaches the limit.

5.3. Effectiveness

This section reports results of an experiment we ran with the
goal of finding more conflicts in WordPress. In this experiment,
we used the entire dataset of plugins selected according to the
criteria described in Section 4.1, including a total of 492 plugins
(1,311 plugins before output reduction). The entire experiment
runs in 7.5h. The cost of running Pena is distributed across
various sources, with conflict checking being responsible for
3.57h of the entire cost.

Figure 16 shows the time that Pena takes at each iteration in
this experiment. The number of conflicts reported, x, and the
number of conflicts found, y, on a given iteration appear above
the data points in the figure in the format x/y. For example, in
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the first iteration 236 conflicts are found with only 6 actually
reported. Note from the figure that the cost to run each itera-
tion decreases substantially over time. Overall, Pena found 491
conflicts during the search, but reported only 21. Of the 470
conflicts discarded, 46 were non-deterministic conflicts (9.7%),
414 were conflicts caused by optional tags (88.0%), 2 were
HTML/JS union-semantics conflicts (0.4%), and 8 were con-
flicts involving minify plugins (1.7%). Overall, Pena reported a
total of 21 conflicts. We inspected each of these conflicts to eval-
uate whether or not they were real. We used the same methodol-
ogy described in the previous section for this. We found that, of
these 21 conflicts, 8 were legitimate reports. We contacted 22
developers and contributors of the plugins involved in the con-
flicts that we classified as problematic. The goal was to confirm
our manual classification and to provide actionable feedback to
developers. Unfortunately, no developer responded.

5.4. Threats to Validity

The main threats to validity of this work are the following.
Construct Validity. We made various assumptions on how

plugins are used and how conflicts come to be. All these de-
cisions may not reflect reality. We justified these assumptions
and decisions along the text with a rationale. For example, we
assume that conflicts necessarily manifest output differences as
WordPress plugins typically produce visual effects on the web-
page. Note that, similarly to Varex [7], we used a single test
page in our experiments. The consequence is that the evalu-
ation was limited to conflicts manifested through the default
WordPress page. A larger set of input pages would enable Pena
to potentially capture more conflicts.

Internal Validity Our results could be influenced by unin-
tentional mistakes made when writing Pena and the scripts to
run our experiments. To mitigate those threats, we reviewed
our code, scripts, and results to increase the chances of captur-
ing mistakes. For example, for each conflict the tool reported,
we inspected the documentation of the corresponding plugins–
available on the WordPress market place–to determine if the
problem was real or not.

External Validity Our results may not generalize to other sce-
narios. To eliminate selection bias in our sample set, we consid-
ered all popular plugins from the WordPress repository and ran-
domized the selection of configurations in our experiments. We
focused on scenarios where the conflicting configuration pro-
duces side effects on the output. We used as test the default
WordPress page. It is possible that, for certain kinds of plugins,
errors manifest only with user interaction, such as those pro-
duced with the creation of posts that would trigger some plugin
action. It remains as a future work to explore scenarios were
plugins require user interaction.

6. Related Work

In the following, we summarize most related work.

6.1. Conflict Detection in CMS

Nguyen et al. [7] proposed Varex to speedup execution of
WordPress tests against multiple plugin combinations. Pena
and Varex have similar goals but differ in important ways.
Varex is a whitebox technique that uses variability-aware ex-
ecution [34, 35, 36] to explore similarities across executions
of plugin combinations. Varex looks for conflicts in state
that can propagate to the outputs whereas Pena is a blackbox
technique that looks for conflict manifestations directly on the
test outputs. Pena does not aim to prove absence of conflicts
(modulo existing tests) as Varex does by exploring all reach-
able configurations from a given test case. Combinatorial ex-
plosion is addressed in Varex by merging paths of executions
with similar control flow. Pena, instead, uses a seed configu-
ration to guide the search towards conflicts. Varex does not
miss a test failure that can be captured through plugin inter-
actions. However, this guarantee comes at a cost—results in-
dicate that even with variability-aware execution scalability is
still an issue when a high number of plugins are involved [7,
§5.2]. For example, t-wise testing [37] with t=10, which is
a high interaction degree [38], outperforms Varex when only
35 plugins are involved in the search. It is also important
to note that Pena does not require a custom variability-aware
PHP interpreter to run tests. Building (and maintaining) such
interpreters is challenging, especially for statically-typed lan-
guages [34]. Implementations for dynamically-typed languages
exist (for PHP [7] and JavaScript [36]) but still suffer from im-
portant limitations (e.g. [7, § 3.2.4]). It is worth noting that we
did not consider t-wise testing [39, 40] a plausible solution to
the problem as it would not enable us to pinpoint the conflict.
If a conflict is detected in a t-wise covering array it would still
be necessary 1) to isolate the conflict and 2) to find conflicts in
other arrays. Pena addresses issue 1 with a specialized search
and addresses issue 2 by starting the search with a set including
lots of plugins.

Eshkevari et al. [6] proposed a static analysis for PHP that
over-approximates the side effects of WordPress plugins. Their
analysis can be complemented with dynamic analysis to track
the runtime resolution of includes in PHP programs. The main
application is to find conflicts in WordPress plugins. They em-
pirically found that static analysis was, in most cases, sufficient
to find the kind of conflicts they focused.

To sum, prior work make different assumptions on what
should be declared faulty behaviors. Consequently, prior work
is not directly comparable to Pena. The goal of this paper is to
find plugins in large sets of conflicts. Pena sacrifices recall, i.e.
it can miss conflicts, in favor of scalability.

6.2. Conflict Detection in Component-based Systems

Large component-based software systems often need to pro-
vide a package management subsystem with the capability of in-
stalling, uninstalling, and upgrading components as per user’s
request. In this setup, the dependencies of a component are
often expressed explicitly. As an example, the snippet below
shows dependency metadata for the tesseract-ocr component
of the Debian GNU/Linux distribution [41].
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Package: tesseract-ocr
Source: tesseract (2.04-2.1)
Version : 2.04-2.1+b1
Depends: libc6 (>= 2.2.5), libgcc1 (>= 1:4.1.1),
libjpeg8 (>= 8c), libstdc++6 (>= 4.1.1),
libtiff4, zlib1g (>= 1:1.1.4),
tesseract-ocr-eng | tesseract-ocr-language

It comes with no surprise that, specially when multiple com-
ponents are combined in a given installation, conflicts may arise
because of inconsistencies in these constraints. For that rea-
son, package managers need to quickly detect conflicting up-
grades. A conflict is characterized by a “broken set” of compo-
nents [42, 43], i.e., components which could be co-installed in
a given version but no longer can be installed because of some
change in the inter-component relationship. Several techniques
have been proposed to find such broken sets [44, 45, 42, 46, 47].
For example, Vouillon and Di Cosmo [47] encoded this prob-
lem as a boolean satisfiability problem and used a SAT solver
to find unsatisfiable cores, which correspond to the aforemen-
tioned broken sets. Pena addresses this same problem, i.e., find-
ing conflicts in component-based systems, however, the context
of application of Pena is different. The components of an oper-
ating system, for example, are typically inter-dependent. This
is not the case for WordPress, whose plugins are typically in-
dependent. In this setup, there are no constraints available to
enable automatic checking without interpreting the code (either
in the concrete or abstract domain). In summary, prior work on
conflict detection in systems with expressed component depen-
dencies is orthogonal to ours.

6.3. Delta Debugging

Delta Debugging (DD) [17, 18] is a technique that uses a
form of binary search to automate fault localization, an impor-
tant task in software debugging. There are many variants and
applications of DD [48, 49, 50, 51]. For example, DD can
be used to isolate the fragments of an input file to reproduce
a failure in a program. In the presence of a single conflict,
the searchSS procedure (one of the components of Pena), pre-
sented on Section 3.4, isolates one conflict. Likewise, DD iso-
lates fault-inducing elements on the input. So, it is fair to say
that Pena degenerates to DD under when the configuration con-
tains a single conflict/fault. (Recall that Pena looks for multiple
conflicts.) For example, consider the Mozilla Lithium tool [52]
that uses the DDMin algorithm [18] to minimize files that man-
ifest bugs. At the first iteration of the search, Lithium attempts
to discard from the file chunks of size m (initially smaller than
the file size). At the next iteration, it halves chunk sizes and
looks for chunks that can be discarded in the potentially already-
smaller configuration. It repeats this process until chunks can
no longer be discarded (without making the test to pass) and
a minimal fault-inducing file is produced. Conceptually, Pena
and Lithium explore the configuration in a similar fashion to
discover single conflicts. In contrast to Lithium, Pena does not
discard chunks at arbitrary positions of the configuration vector
that it uses to represent the plugin set. As Figure 5 shows, Pena
looks for conflicts at the boundaries of the configuration vector
and shuffles the vector if a conflict cannot be found. Despite

this operational difference, the algorithms operate similarly at
the conceptual level and should find the same solution in the
presence of a single conflict in input configurations. The key
difference between DD and Pena lies in the support of mul-
tiple conflicts (or faults). To the best of our knowledge, DD
does not prescribe a method to handle multiple conflicts, which
is the central problem we address. Consequently, using an ex-
isting DD implementation, like Lithium, to solve our problem
did not seem realistic. However, in principle, we could adapt
Pena to use DD to find single conflicts. For example, replacing
searchSS with Lithium seems a promising alternative. We left
that as future work given that searchSS is itself a DD variant, as
pointed above. The key contribution of Pena is the adaptation
of the algorithms to look for (potentially many) plugin conflicts
in large plugin sets.

7. Conclusions

CMS systems, such as WordPress, are popular tools for build-
ing websites and blogs. These systems often build on plugin
architectures. Unfortunately, conflicts can manifest when mul-
tiple plugins are simultaneously active. This problem has been
investigated for different kinds of configurable systems. Solu-
tions exist for CMSs, but, unfortunately, they do not scale.

This paper proposes Pena, an approach to find plugin con-
flicts in large sets of plugins as those present in public market
places. Pena uses an iterative divide-and-conquer search to ex-
plore the large space of plugin combinations and a staged fil-
tering process to eliminate false alarms. We evaluated Pena on
hundreds of plugins selected from the WordPress official repos-
itory. Results show that the approach is promising. It was able
to detect 18 conflicts on a large set of plugins that would oth-
erwise be hard to find manually by developers. Furthermore,
Pena performed 12.4x to 19.6x faster compared to our compar-
ison baseline.

We showed that it is possible to find conflicts in large sets
of plugins using heuristics. Conceptually, the approach could
be applied to other scenarios, including different plugin archi-
tectures and also different domains. For example, we are eager
to evaluate whether it is possible to use Pena to find high-order
mutants in code [53]. In the future, we plan to leverage au-
tomated test generation (as to exercise plugins and enable the
discovery of additional conflicts), investigate variations of the
split decision in our algorithm, and evaluate the use of multiple
virtual environments to parallelize Pena’s workload.

The artifacts of Pena (e.g., code, dockerfiles to run experi-
ments, description of conflicts) are available online from the fol-
lowing website https://pag-tools.github.io/pena/.
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