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Abstract

Context: Commercial video games usually feature an extensive source code and requirements that are
related to code lines from multiple methods. Traceability is vital in terms of maintenance and content
update, so it is necessary to explore such search spaces properly.

Objective: This work presents and evaluates CODFREL (Code Fragment-based Requirement Location),
our approach to fine-grained requirement traceability, which lies in an evolutionary algorithm and includes
encoding and genetic operators to manipulate code fragments that are built from source code lines. We
compare it with a baseline approach (Regular-LSI) by configuring both approaches with different granularities
(code lines / complete methods).

Method: We evaluated our approach and Regular-LSI in the Kromaia video game case study, which is
a commercial video game released on PC and PlayStation 4. The approaches are configured with method
and code line granularity and work on 20 requirements that are provided by the development company. Our
approach and Regular-LSI calculate similarities between requirements and code fragments or methods to
propose possible solutions and, in the case of CODFREL, to guide the evolutionary algorithm.

Results: The results, which compare code line and method granularity configurations of CODFREL
with different granularity configurations of Regular-LSI, show that our approach outperforms Regular-LSI
in precision and recall, with values that are 26 and 8 times better, respectively, even though it does not
achieve the optimal solutions. We make an open-source implementation of CODFREL available.

Conclusions: Since our approach takes into consideration key issues like the source code size in commer-
cial video games and the requirement dispersion, it provides better starting points than Regular-LSI in the
search for solution candidates for the requirements. However, the results and the influence of domain-specific
language on them show that more explicit knowledge is required to improve such results.
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1. Introduction

Traceability has been shown by researchers to have
a significant impact on successful software engineer-
ing projects [1]. This has encouraged reliability and
maintainability improvement efforts to trace and ver-
ify critical, non-reliable sections in software systems
[2]. Traceability Link Recovery (TLR) has been stud-
ied by software engineers for a considerable number
of years [3], [4], and low defect rates in software prod-
ucts are associated to more complete Traceability [5].

In the video game industry, the titles classified as
AAA are those produced and distributed by a mid-
sized or major publisher and are typically more com-
plex than regular games and have high development
and marketing budgets. Due to the nature of real-
time physics simulation, high numbers of interacting
entities, and long chains of events that branch and
have a significant impact on the course of the game,
AAA video games feature many requirements that
involve more than one complete method. Current
traceability approaches [6] evaluate methods in the
source code of a software product as atomic units.
The purpose of approaches of this type is to decide
which method or method set is the best candidate
for a given requirement, conceiving requirements as
functionalities that are likely to be mainly defined
by one or various complete methods in the source
code of a software product. These approaches are
not suitable for AAA video games featuring dispersed
requirements.

Our approach, Source Code Fragment-based Re-
quirement Location (CODFREL), generates possible
solutions that are more flexible than complete meth-
ods. Our approach relies on an evolutionary algo-
rithm which:

e searches for flexible solution candidates, repre-
sented by code fragments, i.e., sets of code
lines belonging to the source code that are not
necessarily contiguous or included in a single
method.

e explores the search space through genetic op-
erations involving mutation and fusion. The
search process is guided by similitude evalua-
tion between the terms present in a code frag-

ment and those specified by the requirement; this
similitude is measured through Latent Seman-
tic Indexing (LSI) [7].

Our evaluation compares our approach to Regular-
LSI. Regular-LSI uses LSI, but it does not use code
fragments or an evolutionary algorithm. We compare
our CODFREL approach to Regular-LSI using re-
quirements from Kromaia, a commercial video game
case study. Kromaia is a physics-based space sim-
ulation video game that was developed by Kraken
Empire (www.krakenempire.com) and published by
Rising Star Games (www.risingstargames.com). This
is a title that has been released worldwide both dig-
itally and physically, translated to eight languages,
and ported from PC to PlayStation 4.

In order to evaluate our approach and Regular-LSI,
we have configured different versions of the two ap-
proaches: our CODFREL approach was studied us-
ing code fragments and complete method granular-
ity; and Regular-LSI was configured with three dif-
ferent cut-off strategies to search for the best com-
plete method, a set containing the 10 best complete
methods, and a set containing the 10 best code lines,
considering each code line as a method. The results
obtained show that, in comparison to Regular-LSI,
our approach provides better solutions, both in terms
of precision and recall, for requirements that are dis-
persed within the source code. Precision, recall and
F-measure are information retrieval metrics that are
widely used [8]. These results show that, using the
different configurations mentioned, our CODFREL
approach outperforms Regular-LSI in precision, re-
call, and F-measure, with average values of 57% and
28% for precision, around 27% for recall, and 29%
and 21% for F-measure. Regular-LSI obtained aver-
age values of 4%, 0.7%, and 0.1% for precision, for
the different configurations used. For recall, the val-
ues were 0.5%, 0.5%, and 9%. F-measure reached
values of 0.9%, 0.6%, and 0.2%.

Both our approach and Regular-LSI output a so-
lution that has to be manually refined to obtain all
of the code that is relevant to the requirement. The
solutions generated by our approach are better start-
ing points in comparison to Regular-LSI. However,
our approach does not obtain perfect solutions (ev-



ery relevant code line in a requirement). Tacit knowl-
edge, which is not written in the requirements, causes
this issue. Therefore, we plan to deal with this matter
through reformulations that expand the requirements
with descriptions provided by domain experts.

The structure used in the paper is the following:
Section 2 describes the motivation for our work. Sec-
tion 3 presents an overview of our CODFREL ap-
proach. Section 4 presents the code fragment en-
coding. Section 5 describes the operations used in
code fragment generation. Section 6 discusses how
code fragment suitability is determined. Section 7
deals with the evaluation, comparing our approach to
Regular-LSI, and Section 8 discusses the results ob-
tained. Section 9 deals with future work, Section 10
describes the threats to validity, and Section 11 sum-
marizes related works. Finally, Section 12 presents
our conclusions.

2. Motivation

Commercial video games, like Kromaia, often be-
have like real-time simulation applications, which co-
ordinate internal update processes and data struc-
tures that render information as audiovisual data.
This data is meant to be coherent with internal log-
ics, but it is not necessarily directly related to them
in terms of locality.

Apart from various libraries used in the project,
Kromaia features a considerably high number of pri-
vate code lines (over 260,000) resulting from two main
blocks, both of which are owned by the development
company: a proprietary game engine, and the video
game source code (VGSC). The case study focuses on
the VGSC, which contains over 145,000 lines of code.

The use of an evolutionary algorithm emerges as a
response to a situation in which the solution space
is huge and the requirements are dispersed. Tak-
ing into account the VGSC, the current traceabil-
ity approaches [6] (which feature method granularity)
are required to evaluate approximately 9000 complete
methods. However, code fragments (the granularity
in our approach) may feature any code line in the
VGSC, so the total number of possible code frag-
ments in the VGSC is over 2145:000  Our approach,
CODFREL, works with code fragments and uses an

evolutionary algorithm to search such a large solution
space.

3. Overview of the CODFREL Approach

This section presents our CODFREL approach.
The approach has a clear goal: to obtain the code
fragment from the source code that realizes a require-
ment that is specified in a natural language. The
evolutionary algorithm of CODFREL iterates a code
fragment population, which evolves through genetic
operations inspired by processes that are present in
nature. This evolutionary algorithm is driven by a
fitness operation that takes into consideration the re-
quirement. In the end, the output delivered is a rank-
ing, which is a list sorted by a fitness value that fea-
tures code fragments that might realize the require-
ment described.

The upper left section in Fig. 1 shows an example
of input to our CODFREL approach.

e The Source Code. In this paper, we evaluate
our approach on the Kromaia VGSC, and we also
use it as a running example.

e The Requirement (in natural language) to be
located in our case study. The requirement is
in the Game Design Document created for the
video game. The requirement terms may in-
clude general vocabulary that is commonly used
in the video game industry and, more specifi-
cally, terms of the specific video game that are
likely to be found in the VGSC.

e In order to minimize the effects of both irrelevant
and deceiving terms, our approach asks to se-
lect the most relevant terms in the requirement.
These terms, the Keywords, help our approach
to find starting points and provide guidance to
the evolutionary algorithm.

The section on the right of Fig. 1 shows the main
steps in our approach.

e First, the Keyword Code Line Classification
step identifies those code lines from the VGSC
that feature keywords, which are tagged terms in
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Figure 1: CODFREL Overview

the requirement. These lines are used in both the
initial code fragment population creation step
and in those genetic operations involving the ex-
pansion of existing code fragments.

e The Population Initialization step calculates
the starting code fragment population, which is

extracted from the VGSC using code lines de-
termined by the keywords. FEach initial code
fragment is generated as follows: first, a ran-
dom code line with keyword presence is selected
as the starting point. Then, the code fragment is
completed by adding a random number of code
lines that are placed before and after the start-
ing code line. Random initialization is a common
practice in evolutionary computation.

e The Genetic Operations step produces a new
code fragment generation. This step involves the
use of a selection operator that chooses the code
fragments that will be the parents of the new
generation. This selection, which is done using
fitness values, is meant to promote the best code
fragments in the population to be parents. Then,
new code fragments are produced by mixing code
lines from two parents through a fusion opera-
tion. This step also introduces modifications in
the new code fragments using a guided mutation
operation (by adding or removing code lines from
the code fragment), which hopefully would make
the new code fragments reach fitness values that
exceed what their parents achieved.

e The Fitness step evaluates the code fragments
by assigning a value that depends on the sim-
ilarity between each code fragment and the re-
quirement. The code fragments that share more
terms with the requirement will get the highest
values.

The process is over when a code fragment features a
fitness value that is greater than a predefined thresh-
old or once a certain time limit is reached. As a result,
our CODFREL approach produces a code fragment
set, where each code fragment is relevant to the re-
quirement (see the lower section in Fig. 1). The set
may be organized as a ranking, ordering the code
fragments by similarity to the requirement.

In summary, our CODFREL approach ultimately
searches for code fragments that are relevant to
the requirement. In order to succeed, the ap-
proach creates/iterates a code fragment population
and searches within that population using a fitness
function that evaluates code fragments by assigning



values that depend on the similarity to the require-
ment defined in natural language.

Sections 4, 5, and 6 show how code fragments are
encoded in our CODFREL approach as well as the
genetic operations applied and the criteria used by
the fitness function to assign different values to code
fragments depending on how similar they are to the
requirement.

4. Code Fragment Encoding of the COD-
FREL Approach

The code fragments generated by our approach
represent the solutions proposed for the requirement.
These solutions need to be encoded, a task that, in
evolutionary algorithms, is usually done by storing
possible solutions as arrays or strings containing bi-
nary values such as 0/1 or true/false.

In our CODFREL approach, where the solutions
are the code fragments, the encoding is as follows:
each code fragment is a list of code line elements;
and a code line element contains indexing information
that is relative to the file from which the code line was
taken, its local position in that file, and its global po-
sition relative to the complete VGSC. Therefore, the
encoding used in our approach to represent code frag-
ments is not a fixed length structure, but a variable
length set of code lines that is ordered, taking into
account the relative positions of each of those lines in
the VGSC.

5. Genetic Operations of the CODFREL Ap-
proach

Our CODFREL approach generates new code frag-
ments using the existing ones as parents and making
use of two genetic operators: fusion and guided mu-
tation. We adapted these operators to function with
code fragments, which represent a code line set from
the VGSC.

Prior to the application of the genetic operators,
the best possible parents need to be selected from a
given code fragment population so that the genetic
operators have data to work with. For that reason,
our approach uses a selection operator that is based

on the widely used wheel selection method [9]: every
code fragment in the population has a probability of
being selected to reproduce that is proportional to its
fitness value; therefore a higher fitness value implies
a higher probability of being chosen to generate new
code fragments.

5.1. Fusion

The fusion operator works like traditional evolu-
tionary computation methods, in which a new indi-
vidual is generated by combining the generic material
of two existing individuals. Depending on the result-
ing combination and the environmental conditions,
the new individual could outperform their parents or
it may not even survive (or, subsequently, reproduce).
In our approach, code fragments act as the reproduc-
ing individuals and the fusion operator is responsible
for mixing the lines that they contain. As a result, the
new code fragment contains a code line set in which
the lines are ordered according to their relative po-
sition in the complete VGSC, without repetitions, in
the case of lines that are present in both parents.

The fusion operator receives two code fragments
and creates a new one by combining every code
line in the parents, hence, without losing informa-
tion. Most common recombination techniques in ge-
netic algorithms such as crossover [10] imply inher-
iting parental content, partially or totally. The fu-
sion operator could be considered as a special case of
crossover that does not discard code lines from parent
code fragments that have been selected as standing
out and contain supposedly valuable information that
is related to a requirement.

A typical case of fusion application in our COD-
FREL approach is shown in Fig. 2 with code frag-
ment examples. The fusion operator takes two code
fragments as parents (CF1 and CF2). First, the se-
lection operator uses the wheel selection method to
choose two parents. Then, the fusion operator gen-
erates a new code fragment containing the full code
line sets that are present in its parents. Therefore,
the new code fragment generated contains every code
line in the parents, without repetitions (e.g., code line
145902 is not duplicated). The new individuals ob-
tained with this operator may include a higher num-
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Figure 2: Genetic Operators: Guided Mutation and Fusion
over Code Fragments

ber of code lines than their parents, as shown in Fig.
2.

5.2. Mutation

The mutation operator makes new individuals
show changes in their genetic material that are caused
by random factors and are not due to being inherited
from their parents. The (usually) minimal variations
modifying the inherited material may be positive or
negative, depending on whether the mutation pro-
duces adaptive advantages or disabilities.

In our CODFREL approach, the mutation opera-
tor is applied on newly generated fragments after they
have been produced by the fusion operator. How-
ever, mutations do not always occur and depend on
a probability of a new code fragment being affected
by a mutation. After a mutation takes place, the
new code fragment may contain new lines belonging
to the video game code or lose some of the lines that
were featured prior to the mutation. Our approach
proposes that, since the search space is huge, the
creation of good starting code fragments should be
guided, since it is difficult to create or improve indi-
viduals by adding random code lines from the VGSC
due to its size. However, our CODFREL approach
proposes that the loss of code lines is not guided,
so that even the removal of lines with high similar-
ity with a requirement could lead to code fragments
that are closer to the realization of such a require-
ment. This proposal regarding mutations could be
improved or modified in future works, taking into ac-
count the results obtained. In the end, the mutation
operators provide another possible solution for the
target requirement (the unmodified code fragment
and its parents are also possible solutions). The na-
ture of the mutation applied by the operator is based
on random criteria:

e Subtractive Mutation: This type makes the
mutation operator remove lines from the code
fragment by randomly selecting them, as shown
in the bottom right section in Fig. 2. The num-
ber of lines removed and the selection criteria are
random, so there is no need to ensure that the
lines removed are consecutive.



e Guided Additive Mutation: When the oper-
ator performs an additive mutation, a random
number of lines belonging to the original VGSC
(and not necessarily consecutive) is added to the
code fragment, first selecting a starting code line
that acts as a reference for the eventual code line
set added. The guidance consists in having a cer-
tain probability of selecting a starting code line
in the VGSC that is not completely random; in-
stead, the operator may select a starting code
line featuring terms that are tagged as keywords
in the requirement (and, eventually, more code
lines surrounding that line). Fig. 2 shows an ex-
ample featuring a new code fragment, CF 1002,
that was created by applying this mutation op-
eration to CF 1001. The code lines added are
641 and 642, with 642 being the starting code
line featuring a keyword:

— 641: if ( units[i]->IsIdle() ) {

— 642: units[i] —>ResetInterface() ;

Code line 641, however, is a line that was added
for being adjacent to 642 in the VGSC, like other
lines which were not selected (but could have
been) in the example.

6. Fitness of the CODFREL Approach

In the context of our CODFREL approach, the fit-
ness step is intended to determine the value of each
code fragment generated. Following the principles
applied in evolutionary algorithms, the fitness step
takes a code fragment population as input and mea-
sures the degree of adaptation of each code fragment
to the environment (the adaptation being the quality
of the code fragment as a solution for the require-
ment described). Once the step finishes, it provides
a ranking in which every code is placed according to
the fitness value assigned so that the top-ranked code
fragments are the most similar to the requirement.

This similarity is evaluated in our approach
through Latent Semantic Indexing (LSI) [7], which is
currently the best performing Information Retrieval
(IR) technique in terms of outcomes [11, 12, 13, 14].
In this step, it is responsible for comparing the code

fragments proposed for a requirement with the re-
quirement specified in natural language. In the
context of LSI, the input for which the solution is
searched is denoted as ”query”, while the individual
elements to be evaluated as possible solutions for real-
izing this query are denoted as ”documents”. For our
approach, this scheme implies that the requirement
acts as a query, while code fragments are documents.

6.1. Natural Language Processing

Before applying LSI, the requirement is processed
through well-known Natural Language Processing
techniques (Part-of-Speech tagging [15] and Lemma-
tizing techniques [16]) so that the gap between the
code fragment texts and the requirement is reduced.

e The requirement is first divided into words or
tokens. Depending on the text complexity,
separators such as spaces or semicolons may
work as tokenizers (i.e., elements used to split
strings), but descriptions involving in-code ele-
ments might require more sophisticated process-
ing.

e The second stage in the requirement processing
consists in removing articles, conjunctions, and
other elements that do not provide useful infor-
mation. This task is carried out by applying the
POS (Part of Speech) technique. This tagging
technique analyzes the grammatical role of the
words in the text and helps remove the undesired
material.

e Through the usage of semantic techniques such
as Lemmatizing, words can be reduced to their
semantic roots or lemmas. Thanks to lemmas,
the language used in the requirement is uni-
fied, thus avoiding verb tenses, noun plurals, and
strange word forms that negatively interfere with
the fitness.

Fig. 3 shows the application of these techniques
to a requirement. The token extraction step involves
the use of separators. After the POS step, tokens
like ”a”, 7and”, or ”it” are removed for not being



When a human unit gets damage, its armour level decreases
and its interface shows it.

Initial, non-processed requirement.

TOKENIZATION

when, a, human, unit, gets, damage, its, armour, level,
decreases, and, its, interface, shows, it

The separators are used in order to divide the requirement into tokens.

POS TAGGING

POS TAGGED TOKENS

human, unit, gets, damage, armour, level, decreases,
interface, shows, when;a,-ts,-andits;t

Those elements that do not provide useful information are removed.

LEMMATIZATION

LEMMA REDUCED TOKENS

human, unit, get, damage, armour,
level, decrease, interface, show

The tokens are reduced to their semantic roots.

Figure 3: Natural Language Processing Techniques

relevant in terms of substantial information. Lem-
matizing analyzes and reduces words, transforming
verb tenses such as ”decreases” into ”decrease”.

The same Natural Language Processing techniques
used with requirements are applied to code frag-
ments, but include an additional step. This step

involves removing stop words, which are program-
ming language reserved words. Once a code frag-
ment is processed, it contains terms such as variable
and method names or words that are present in com-
ments. The following example shows a set of two code
lines as well as the result once it is processed:

e Code Lines:

— 3107: int Unit::GetNumberOfWeapons() {
— 3108: return moduleWeapons->GetSize();
e Result:

— unit, get, number, weapon,
module, weapon, get, size

The result obtained illustrates the techniques de-
scribed above. Tokenizing makes use of separators
(e.g., colons or spaces) and other criteria such as
naming conventions (CamelCase, in the example) to
extract tokens. POS removes elements that are not
useful (e.g., ”of”, a conjunction that does not pro-
vide relevant content). Lemma extraction is shown
by ”weapon”, which is a reduced, singular form. Fi-
nally, the additional step mentioned above searches
for stop words to be filtered. Therefore, terms such
as 7int” or ”return” will be removed since they are
both defined as reserved words by the programming
language used.

It is assumed that the language used in both the
requirement and the code fragment should be similar
in order to make the LSI work properly. If those lan-
guages are significantly different, not even the Natu-
ral Language Processing techniques will prevent the
fitness from failing unless the user assists the process
manually.

6.2. Latent Semantic Indexing (LSI) Fitness

After the Natural Language Processing, a co-
occurrence matrix is built in order to represent terms
in rows and each code fragment in a column, thus
providing occurrence counters for every term in each
code fragment or in the requirement. In the end, our
LSI fitness uses a term set that defines the rows in
the co-occurrence matrix, which is a union of two
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Figure 4: Fitness Operation via Latent Semantic Indexing
(LSI)

sub-sets: the terms in the requirement and the terms
in the code fragments.

The top part of Fig. 4 shows a schematic view of
a co-occurrence matrix in our running example. The
rows represent the terms from both the code frag-
ments and the requirement. The columns represent
the code fragments and the requirement. The values
in the cells are the number of occurrences for each
term in the code fragments and the requirements.

The co-occurrence matrix must be analyzed in or-
der to elaborate the code-fragment ranking. First,
it is normalized and decomposed through Singular
Value Decomposition (SVD) [7], which factorizes the
matrix and provides a vector set that represents the
latent semantic value for every code fragment and the
requirement. Similarity is evaluated using the angles
formed by such multidimensional vectors, since co-
sine is a measure of similarity that is 1.0 for identical
vectors and 0.0 for orthogonal vectors[17]. In the

end, the cosine between each code fragment vector
and the requirement vector is a value in the interval
[-1, 1] that defines the similarity or proximity to the
requirement, which allows a code-fragment ranking
to be established.

Let C; be a code fragment in the population; let X
be the vector representing the latent semantic value
of Cq; let Y be the vector representing the latent
semantic value of the requirement; the angle between
X and Y is . The following expression defines the
fitness function:

XY

fitness(Cy) = cos(8) = X171

(1)

The bottom part of Fig. 4 shows a three-
dimensional graph of the LSI results. The graph
shows the representation of each one of the vec-
tors, which are labeled with letters that represent
the names of the code fragments. Finally, after the
cosines are calculated, a value for each of the code
fragments is obtained, indicating its similarity with
the requirement.

7. Evaluation

This section presents the evaluation of our ap-
proach: the research questions, the oracle prepara-
tion, the experimental setup, the implementation de-
tails and the results obtained.

7.1. Research Questions

The following research questions address the evalu-
ation of our approach considering different configura-
tions and how they affect the results obtained. These
questions make reference to a threshold, which is the
number of complete methods (or code lines, depend-
ing on the granularity used) selected as a possible
solution by Regular-LSI, the baseline approach. In
addition, the research questions take into account the
use of code fragments or method granularity by our
approach:

RQ;:: Does our CODFREL approach perform bet-
ter than Regular-LSI when Regular-LSI uses a thresh-
old value (the number of complete methods) of 17



Table 1: Configurations used in our CODFREL approach and Regular-LSI for the different research questions

CODFREL

Regular-LSI

Research Question 1
Research Question 2
Research Question 3
Research Question 4

Research Question 5

Best Code Fragment
Best Code Fragment
Best Code Fragment with Method Granularity
Best Code Fragment with Method Granularity
Best Code Fragment

Best Complete Method
10 Best Complete Methods
Best Complete Method
10 Best Complete Methods
10 Best Code Lines

RQ:: Does our CODFREL approach perform bet-
ter than Regular-LSI if the threshold value is the most
widely used?

RQ3s: Does our CODFREL approach perform bet-
ter than Regular-LSI if the threshold value is 1 and
CODFREL uses method granularity?

RQ4: Does our CODFREL approach perform bet-
ter than Regular-LSI if the threshold value is the most
widely used and CODFREL uses method granularity?

RQ5: Does our CODFREL approach perform bet-
ter than Regular-LSI when both use code line granu-
larity (Regular-LSI considers each code line as a doc-
ument) and the threshold value for Regular-LSI is the
most widely used?

Table 1 shows how the different configurations for
our CODFREL approach and Regular-LSI combine
according to each research question.

7.2. Oracle

The concept of oracle, in the context of our work, is
applied to code line sets corresponding to the ground
truth or full coverage for a requirement. In other
words, this code line set represents the most accu-
rate possible solution corresponding to a requirement.
Twenty requirements, as well as the corresponding
oracles, are provided by the game development com-
pany responsible for the design of Kromaia. Figs. 5
and 7 show key data regarding the requirement set,
although detailed source code information is confi-
dential. The requirements in the set were selected
and provided by the developers for being a represen-
tative collection in terms of maintenance, and such
selection criteria did not depend on dispersion within

10

the VGSC. We perform a fair comparison by config-
uring the different versions (code line and method
granularity) of our approach and Regular-LST with
the same requirement set mentioned, to ensure that
neither Regular-LST nor CODFREL are studied for
optimized data sets.

7.8. Experimental Setup

The evaluation measures the performance achieved
by our approach. In addition, we compare our ap-
proach with a baseline approach (Regular-LSI) that
achieves the best results in the literature [6]. Regular-
LSI selects the method that is most relevant to the
requirement by means of LSI. The LSI documents are
methods, and the query is the requirement.

The first step involves feeding both our CODFREL
approach and Regular-LSI with each of the require-
ments. Since CODFREL is not a deterministic ap-
proach, our approach features 30 runs for each re-
quirement as suggested in [18], whereas Regular-LSI,
which is deterministic, features one run.

Once our approach and Regular-LST finish process-
ing a requirement, they provide the solutions found
for this requirement. Our CODFREL approach sup-
plies a code fragment from various code lines that
are present in the VGSC. Regular-LSI provides a so-
lution consisting of a set of code lines for a complete
method.

The results obtained by our approach and Regular-
LSI are compared to the oracle through a confusion
matrix, or error matrix [19]. Confusion matrices are
used to study the performance achieved by a classifi-
cation system on a certain test data set. The oracle
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destroyed a fail ~
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(defeated) and a -
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R9: When every key in
a set is collected a
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and its modules
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- VGSC Total Number of Methods: 9012
- Requirements Studied: 20
- Average Number of Terms per Requirement: 10.5

Figure 5: Sample containing some of the requirements in the

case study and data relative to the methods involved.
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indicates which data in that set is true or false. Con-
fusion matrices are useful for evaluating the results
provided by an approach and the ground truth that
the oracle represents.

The confusion matrix arranges the results of the
comparison into different categories:

e True Positives (TP), which refer to the number
of code lines in the code fragment selected as a
solution that are also present in the oracle.

o False Positives (FP), which denote the number
of code lines that are present in the proposed
solution but are not present in the oracle.

e False Negatives (FN), which denote the number
of code lines present in the oracle that are not
present in the code fragment or complete method
marked as a solution.

Then, performance measurements are derived from
the values in the confusion matrix. Specifically, we
create a report that includes three performance mea-
surements (precision, recall, and the F-measure).

e Precision is the fraction of correct code lines
among the code lines selected, according to the
corresponding oracle in the result proposed as a
solution.

. TP
Precision = TPLFP (2)

e Recall measures the number of code lines in the
oracle that are correctly retrieved over the total
number of code lines proposed in that solution.

TP
Recall = m (3)

e The F-measure corresponds to the harmonic
mean of precision and recall. It is used to evalu-
ate accuracy and is defined as follows:

Precision * Recall
F-M =2 4
casure * Precision + Recall @




7.4. Implementation Details

We have used the following libraries to implement
the approach of this work: the OpenNLP Toolkit for
the Processing of Natural Language Text [20] to de-
velop the Natural Language Processing operations;
and the Efficient Java Matrix Library (EJML) [21]
to perform LSI and SVD. The computer used in the
evaluation was a Toshiba Satellite PRo L830 laptop,
with an Intel(R) Core(TM) i5-3317UQ1.7GHz pro-
cessor with 4GB RAM and Windows 8 64-bit.

The fusion operation is applied with a fusion prob-
ability (pg). Through tuning tests, the value of p¢
varied changing from preliminary values, like 0.5, to
1 in order to maximize the number of new individu-
als produced by fusion in each iteration of the algo-
rithm (e.g., the change mentioned would involve not
only duplicating the individuals created through fu-
sion, but also duplicating the number of candidates
to produce additional, mutated individuals). Addi-
tional research could improve parameters like this.
The mutation operation is applied with a probability
(pm) of 0.25. The rest of the settings are detailed in
Table 2. The focus of this paper is not to tune the
values to improve the performance of our approach
when applied to a specific problem. As suggested
by Arcuri and Fraser [18], default values are good
enough to measure the performance of search-based
techniques in the context of testing. Nevertheless, we
plan to evaluate all of the parameters of our approach
in a future work. First, we started with default val-
ues used in the literature regarding software model
feature traceability [22]. However, since the objec-
tive in this work is different (fine-grained requirement
traceability in source code) and we use genetic op-
erations to manipulate code fragments, the parame-
ters are the result of starting with those studied in
the literature and then performing preliminary tun-
ing experiments. With the current configuration, 7
(1) parents are combined in pairs to create 21 new
code fragments. Apart from those new code frag-
ments and depending on py,, up to 21 mutated code
fragments could also be created. Therefore, it is nec-
essary to discard code fragments from the population
after each iteration in order to keep the population
stable, with 42 (r) being the maximum number of
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candidates (those with the lower fitness values) that
could be removed.

Table 2: CODFREL configuration parameters

Parameter description Value
Size: Population size 1000
w: Number of parents 7

A: Number of offspring from p parents 21

r: Maximum number of solutions replaced

to stabilize population 42

py: Fusion probability 1

Pm: Mutation probability 0.25

In general, there are two atomic performance mea-
sures for search algorithms: one regarding solution
quality and one regarding algorithm speed or search
effort. In this paper, we focus on the solution quality.
Therefore, we allocated a fixed amount of wall clock
time for each of the runs of our approach. First, we
ran some prior tests to determine the time needed to
converge, and then we selected the budget time based
on those tests. The allocated budget time was 1200
seconds. A prototype of CODFREL can be found at
bitbucket.org/svitusj/SCoFBReL

7.5. Results

In this subsection, we present the results obtained
for the case study in our approach and for Regular-
LSI. Fig. 6 shows the charts with the recall and preci-
sion results. For CODFREL, a dot in the graph rep-
resents the average result (after 30 runs and due to
random factors) of precision and recall for each of the
20 requirements. In the case of Regular-LSI, the so-
lution for a requirement is deterministic, so there are
no repetitions and the dots in the graph represent the
results after a single run for each requirement. Table
3 shows the precision, recall, and F-measure mean
values obtained for the case study by our approach
and Regular-LSI.
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Figure 6: Results for our CODFREL approach and Regular-LSI with different configurations
Table 3: Precision, Recall, and F-Measure mean values and standard deviations for the case study
Precision+ (0) Recall+ (¢) F-measuret (o)
(%) (%) (%)
CODFREL 57430 27420 29+13
CODFREL, Method Granularity 28+15 27£20 2149
Regular-LSI, Best Complete Method 4419 0.5+2 0.9+4
Regular-LSI, 10 Best Complete Methods 0.7+3 0.5+2 0.6+2
Regular-LSI, 10 Best Code Lines 0.1£0.2 9+11 0.2+0.4

7.6. Research Question 1

To answer the first research question, it is necessary
to study our CODFREL approach with code frag-
ments and a Regular-LSI configuration with a thresh-
old value of 1, since it only selects the best complete
method.

RQ; answer. Fig. 6 and Table 3 show that COD-
FREL outperforms Regular-LSI in precision, recall,
and F-measure, with average values of 57% in preci-
sion, 27% in recall, and 29% in F-measure. Regular-
LSI obtained average values of 4%, 0.5%, and 9% in
precision, recall, and F-measure, respectively, for the
requirement set studied. The deviations for Regular-
LSI, an approach which is deterministic, occur due
to performance variations that are related to the dif-
ferent requirements and are not caused by different
runs.
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7.7. Research Question 2

The second research question takes into account
that, while human subjects usually do not focus on a
single candidate, they tend to consider no more than
10 candidate trace links [6]. In this case, our COD-
FREL approach uses code fragments and Regular-LSI
selects the 10 best complete methods.

RQ: answer. Fig. 6 and Table 3 show that
CODFREL obtains better results in recall, precision,
and F-measure, with values of 27%, 57%, and 29%,
respectively. In comparison, Regular-LSI gets sig-
nificantly lower results for recall (0.5%), precision
(0.7%), and F-measure (0.6%).

7.8. Research Question 3

The third research question studies a Regular-LSI
configuration that only selects the best method and
our CODFREL approach with method granularity.



This variation implies that CODFREL creates and
manipulates code fragments that include every com-
plete method from which code lines were selected,
instead of using code line granularity.

RQs; answer. Fig. 6 and Table 3 show that
CODFREL, with method granularity, outperforms
Regular-LSI. Due to the granularity configuration
used, precision does not reach 30%, with an aver-
age value of 28%, and recall and F-measure values
are 27% and 21%, respectively.

7.9. Research Question 4

The fourth research question compares the follow-
ing configurations: our approach CODFREL, with
method granularity and Regular-LSI, with a thresh-
old of 10 complete methods.

RQ, answer. Fig. 6 and Table 3 show that COD-
FREL, with method granularity, gets better results
than Regular-LSI. Method granularity does have a re-
markable impact on precision for our approach, with
a value of 28%. However, since the values obtained
by Regular-LSI are very low, the difference in the re-
sults is high, with this configuration of Regular-LSI
selecting the 10 best complete methods as possible
solutions.

7.10. Research Question 5

The fifth research question considers these config-
urations: our approach CODFREL with code frag-
ments, and Regular-LSI with code line granularity
which involves treating each line as a method using
a threshold of 10 code lines.

RQs; answer. Fig. 6 and Table 3 show that
CODFREL, with code fragments, gets better results
than Regular-LSI configured with code line granular-
ity. The granularity used by Regular-LSI significantly
affects precision, with a value of 0.1%. Regular-LSI
obtains values that are low in recall and in F-measure:
9% and 0.2%, respectively.

8. Discussion

The requirements were provided by one of the de-
velopers of Kromaia before we started this research
work. The requirement selection criteria used by the
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developer did not depend on the requirement im-
plementation being condensed in just one complete
method or featuring a high dispersion level. In fact,
the criteria involved the selection of requirements
that were relevant in terms of maintenance. Most of
the requirements provided were dispersed, with the
average number of methods for a dispersed require-
ment being around 5.3. Fig. 5 shows that, even for
requirements that include less than five lines, accord-
ing to the oracles, it is not uncommon to find four
or more methods involved. In addition, Fig. 7 shows
that, in terms of cohesion, the realizations of the re-
quirements studied include gaps between code lines of
up to 70,000 code lines. This suggests that dispersed
requirements should not be neglected in maintenance
tasks.

Regular-LSI, which was selected for currently be-
ing the best performing IR technique, does not work
properly for highly dispersed requirements in the
VGSC of the case study, and the average results ob-
tained are not good in the performance measures
studied. The main cause for this is the fact that
Regular-LSI works in terms of complete methods
to trace requirements that are dispersed in various
methods. Besides that, in those cases featuring a
method that combines code lines that are relevant to
the requisite with code lines that are not relevant, the
irrelevant code lines prevent the method from getting
a higher score. For instance, in the following require-
ment:

e R1:

armour level decreases and its interface

When a human unit gets damage, its

shows it.

There is an event (gets damage) that has a notice-
able impact on an entity known as a human unit in
different contexts: the internal logics and structure in
the entity, which need to be modified; and the inter-
face elements that are directly related to this entity,
which provide visual feedback regarding its internal
status. This requisite is dispersed in five methods,
each one of which only features an average of 13%
(maximum 33%; minimum 8%) of relevant code lines
for R1.

Our CODFREL approach outperforms Regular-
LSI thanks to the fact that it uses code frag-



ments. The total number of possible code fragments
(2145:000) makes a thorough exploration and evalu-
ation unfeasible. The use of an evolutionary algo-
rithm, however, allows our approach to explore the
search space, and it gets better results than Regular-
LSI that is configured to work with code line gran-
ularity, due to the size of the search space and high
requirement dispersion. The results show that it is
possible to use the proposed encoding and genetic
operations in commercial software products that are
similar to Kromaia. In each iteration of the evolu-
tionary algorithm, the new code fragments created
with the fusion operator are progressively larger, but
code fragments that are remarkably large are prone
to being discarded if the code lines accumulated do
not contribute to increasing the value given to those
code fragments.

There is another factor to be taken into account
regarding the results: the use of keywords. There
are terms featured in requirements, which, in spite
of being relevant for such requirements, are ambigu-
ous. In the requirement R1, terms like ”decrease”,
7armour”, and "level” are relevant for the require-
ment. " Level”, however, is widely used and accepted
as a video game Domain-Specific Language term with
different but equally valid meanings: ”level” could be
considered as a stage or zone that should be cleared
by the player, but it could also refer to the current
player status. For that reason, ”level” is relevant but
ambiguous.

However, terms that are relevant but ambiguous
are not discarded in our approach since they are used
(along with the keywords) to calculate fitness values.
In contrast, since keywords are terms that are both
relevant and unambiguous, they are given more im-
portance in our approach. They are not only used
in fitness calculations but are also used to provide
guidance in additive mutation. In R1, ”decrease”
and “armour” are suitable keywords that comprise
the main concepts involved by the requirement. Ad-
ditionally, we have considered the effects of guidance
in subtractive mutation, which is an operator that,
in our approach, removes code lines by randomly se-
lecting them. We included a modified operator that
takes keywords into account, like additive mutation,
and tends to preserve code lines that include key-
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words. One possible disadvantage of this alternative
operator is the low probability of removing code lines
that contain keywords, even if such lines are not rel-
evant; therefore, solution candidates with such con-
tent could not be improved through random modifi-
cations. In comparison to the results obtained with
the first version of the operator, precision and recall
increased an average of 20% in four of the 20 require-
ments studied. However, for 15% of the requirements
the average results were 16% lower after using the
new operator. This data could be studied in future
works to produce a better subtractive mutation op-
erator.

Even if CODFREL outperforms Regular-LSI, it
does not achieve solutions that include every code
line that is relevant for the requirements. Our anal-
ysis of the results suggests that tacit knowledge has
a negative effect on the results.

Tacit knowledge is often assumed to be known by
every domain expert. This assumption leads to a lack
of documented presence of that knowledge, and re-
quirements are no exception. The tacit knowledge
related to the domain involved by requirements is
usually considered and shared by the developers, who
are responsible for the VGSC as well as for provid-
ing the requirements. In the end, every aspect of the
domain knowledge (including tacit knowledge) that
remains unwritten and the information provided by
requirements are present in the VGSC. Therefore, re-
quirements that do not feature a detailed description
that reflects all relevant knowledge are incomplete,
and the approaches searching for solutions will expe-
rience difficulties trying to find optimal results. The
following example is a requirement that omits tacit
knowledge that is actually present in the VGSC and
the solution to be found:

e R2:
projectiles.

Shot input makes the human unit fire

This requirement omits relevant information re-
garding the modular nature of the VGSC featured
by many entities. Units contain weaponry modules,
which contain weapons. Besides, weapons internally
manage a variable number of cannons, but only the
cannons marked as ”valid” are those responsible for
ultimately firing projectiles.



Since tacit knowledge is the main issue to be stud-
ied in order to achieve better results with our ap-
proach, we plan to research it in more depth in our
future works. In order to address this subject, we
intend to use reformulation techniques so as to ex-
pand the requirements with elaborated descriptions
provided by domain experts.

9. Future Work

The main issues to be addressed in future works
are the eventual upgrade of genetic operators, the
re-evaluation of parameters, and research on tacit
knowledge:

With regard to genetic operators, it is possible that
mutations involving the removal of code lines from
code fragments should be guided, like additive mu-
tations. In order to include such an operation, the
management of terms that are not relevant, as op-
posed to keywords, could be useful.

The use of different values for the collection of pa-
rameters used in our approach could be studied in
future works since tuning those values, like the fusion
probability, the mutation probability, or the number
of code fragments selected to be the parents of the
next generation, could lead to configurations having
an impact on the results and the time used. Due
to the time required to test different configurations,
future works should focus on this issue in particular.

Tacit knowledge is a key issue that should also be
considered in future works. It would be necessary
to expand the requirements available, and domain
experts would be required for that task. The direct
participation of domain experts would play a key role
in providing additional explicit knowledge to be used
in the guidance of the evolutionary algorithm in our
CODFREL approach.

10. Threats to Validity

The classification for possible threats to validity
in [23] reflects the necessary awareness regarding the
limitations of our approach. This classification covers
aspects that are related to both the approach itself
and the commercial video game case study:
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e Internal Validity refers to eventual issues re-
lated to existing causal relations. There is a pos-
sible risk for code line selection to be biased dur-
ing the code fragment creation process due to the
use of keywords in the population initialization
as well as in guided additive mutations. That
risk is reduced since our approach includes ran-
dom deviation measures in these selection pro-
cesses.

External Validity is mainly concerned with
the actual extent to which the results found can
be generalized to case studies that are different
from Kromaia, which is the commercial video
game case study presented in this work. Two
factors that increase the possibilities of gener-
alization in the VGSC are the extensive use of
a strict coding style and design patterns. These
are widely used in real-time applications that are
similar to video games. Nevertheless, our results
should be replicated with other case studies be-
fore assuring their generalization.

Construct Validity is an aspect worth taking
into consideration since there is a risk that the
operations involved in our approach may not ac-
curately represent the desired functionalities for
this research. The use of widely accepted mea-
sures such as precision and recall minimizes the
risk described.

Reliability deals with the possibility of the re-
searchers influencing both the analysis process
and the data used in the approach. In order to
minimize the knowledge regarding the commer-
cial video game case study, the VGSC compre-
hends a vast number of code lines, thus prevent-
ing requirements from being located too easily.

11. Related Work

A recent traceability survey [6] has identified the
need for more industrial case studies. This work
also shows that in spite of being the most commonly
used, algebraic models (LST and Vector Space Model)
search in solution spaces with sizes below 2°%°. Our



work deals with an industrial case study that fea-
tures a significantly wide space (214%909) to be ex-
plored and dispersed requirements, as shown in Fig.
7. Therefore, we work with code fragments instead
of complete methods, and we search for possible so-
lutions by means of an evolutionary algorithm since
this type of algorithm has proven to be useful in large
search spaces [24].

There are works that use design documents or do-
main models to support traceability [25] [26]. How-
ever, in the case study in this work, those artifacts
were not available. Currently, video game developers
are pressured by what is called ”the age of crunch”
[27] and the ever-increasing high demand of game
content, which is caused by early access releases,
post-launch updated versions, DLC (Downloadable
Content), and games as a service. In this context,
these artifacts end up not being synchronized or they
are not even created, so approaches like CODFREL,
which work when the artifacts mentioned are not
available, are necessary.

The ADAMS document management system by
De Lucia et al. [28] was used as evaluation con-
text in trace recovery empirical experiments through
LSI. Through case studies with students, as well
as different controlled experiments, they have rein-
forced the empirical basis (De Lucia et al. [29],
[30], [31]). Also, various studies by Cleland-Huang
and colleagues, which are focused on Information Re-
trieval (IR)-based trace recovery, show the use of
PIN-based retrieval as a model that supports the in-
troduction of probabilistic trace recovery. This model
was implemented in their tool, Poirot (Lin et al. [32]).
To a great extent, their work focuses on accuracy
improvements for their tool. The enhancements in-
clude the localization of key phrases [33], synonymy
management with a thesaurus, and a glossary that
weights the most important terms in the project with
higher values [33].

In comparison to the works mentioned above, our
work makes use of LSI to guide an evolutionary algo-
rithm. LST does not give values directly to complete
artifacts such as methods but rather guides the ex-
ploration within the solution space.

The use of probabilistic models has been used by
several researchers to support trace recovery. For in-

stance, the probabilistic topic model Latent Dirichlet
Allocation is one of the various IR models combined
by Dekhtyar et al. [34] using a voting scheme. Abadi
et al. [35] proposed using Probabilistic Latent Se-
mantic Indexing and two information theory-based
concepts: Jensen-Shannon Divergence and Sufficient
Dimensionality Reduction. Parvathy et al. [36] sug-
gested the Correlated Topic Model, while Getters et
al. [37] proposed the Relational Topic Model. The
use of a non-centralized set of self-organized agents
that work together to extract conclusions is a swarm-
like approach to trace recovery implementation pro-
posed by Sultanov and Huffman Hayes [38]. Similar-
ity calculations in the Cartesian plane are also possi-
ble. Capobianco et al. [39] suggested using B-Splines
as Natural Language artifact representations so that
similarity would be given by the distance between
these splines on the Cartesian plane.

Unlike those works, our work searches for solutions
in terms of code fragments. These solutions could be
any code line set in the source code. Solutions of this
kind are necessary in commercial contexts like the
AAA video game industry, where requirements are
dispersed across several methods.

Genetic Algorithms have been used to configure
and assemble IR processes automatically in order
to support different software engineering tasks [40],
thereby positively affecting the time and resources
spent on maintenance. These approaches deter-
mine near optimal solutions for the different IR pro-
cess stages without training, and they outperform
previous approaches without remarkable differences
in comparison to combinatorial and supervised ap-
proaches. Our work also uses an evolutionary algo-
rithm, but it explores in a completely different way.
Instead of using the evolutionary algorithm to search
for the best IR technique combination, we use the
evolutionary algorithm to search the vast code frag-
ment solution space, which is the case for AAA com-
mercial video game software (2145990 in our case
study).

Other works have studied the extent to which IR
techniques can provide decision support in the con-
text of large, industrial software engineering tasks
in terms of traceability and maintenance [41]. In
these works, the researchers noticed issues regarding
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Figure 7: Dispersion of the requirement realizations in the source code of the case study.

the difficulties of scaling IR techniques to industry
data, due to latent semantic analysis. The way in
which IR-based traceability recovery tools are used
by developers and how they validate/discard correct
information and false positives has been studied in
works that are focused on going beyond the perfor-
mance analysis of IR-based traceability methods [42].
The approach used in those works suggests counting
recovered traceability links in order to increase the
quality of the validation process that is carried out by
the users that are working with recovery tools. Our
approach not only outperforms Regular-LSI, but it
also finds a new cause behind the inability to obtain
better requirement traceability results: tacit knowl-
edge that is not formalized when the requirements
are written.

Recent works [43, 44, 45] propose the use of Neu-
ral Networks to address the challenge of traceability.
Guo et al. [43] leverage Word Embedding and Re-
current Neural Network (RNN) models to generate
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trace links, which contain the requirements artifact
semantics and the domain knowledge. Zhao et al.
[44] propose training deep neural networks to gener-
ate text-based knowledge in software repositories in
order to improve the accuracy of TLR. The work in
[45] presents some challenges in traceability and some
of their proposals consider addressing these traceabil-
ity issues through neural networks.

The above works based on Neural Networks re-
quire the existence of a knowledge base for training.
For example, in [43], the training set is composed
of 45% of the 769,366 artifacts, so this training set
contains 423,151 feature vectors. However, some in-
dustrial companies do not store enough information
to create the required knowledge base for Neural Net-
works. Actually, this lack of documented knowledge
has been previously reported as the knowledge va-
porization problem [46]. Nevertheless, these domains
also need to recover the traceability links, and our
CODFREL approach as well as the Regular-LSI ap-



proach can be applied for traceability recovery even
without a knowledge base.

12. Conclusions

In comparison to those generated by Regular-LSI,
the solutions provided by our approach are better
starting points, assuming, however, that both ap-
proaches need to be refined manually. The use of
evolutionary algorithms and code fragments improves
the results obtained by Regular-LSI, since a VGSC
like the one featured in the video game case study
involves highly dispersed methods and a huge solu-
tion space. However, tacit knowledge, which is not
explicitly present in the requirements, prevents our
approach from achieving better solutions. Getting
domain experts to be more involved could make this
implicit knowledge become explicit. To facilitate the
adoption of CODFREL, we have made a reference
implementation freely available.
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