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Abstract

Context: During the development process of a software program, regression testing is used to ensure that the correct behavior of the
software is retained after updates to the source code. This regression testing becomes costly over time as the number of test cases
increases and it makes sense to prioritize test cases in order to execute fault-detecting test cases as soon as possible. There are many
coverage-based test case prioritization (TCP) methods that only use the code coverage data to prioritize test cases. By incorporating
the fault-proneness estimations of code units into the coverage-based TCP methods, we can improve such techniques.

Objective: In this paper, we aim to propose an approach which improves coverage-based TCP methods by considering the
fault-proneness distribution over code units. Further, we present the results of an empirical study that shows using our proposed
approach significantly improves the additional strategy, which is a widely used coverage-based TCP method.

Method: The approach presented in this study uses the bug history of the software in order to introduce a defect prediction
method to learn a neural network model. This model is then used to estimate fault-proneness of each area of the source code
and then the estimations are incorporated into coverage-based TCP methods. Our proposed approach is a general idea that can be
applied to many coverage-based methods, such as the additional and total TCP methods.

Results: The proposed methods are evaluated on datasets collected from the development history of five real-world projects
including 357 versions in total. The experiments show that using an appropriate bug history can improve coverage-based TCP
methods.

Conclusion: The proposed approach can be applied to various coverage-based TCP methods and the experiments show that it
can improve these methods by incorporating estimations of code units fault-proneness.

Keywords: Regression testing, Test case prioritization, Defect prediction, Machine learning, Bug history

1. Introduction

Regression testing is a testing activity meant to assure that
updates to the software have not changed the existing software
behavior. Regression test suites normally grow in size as the
software is developed or more quality assurance activity is per-
formed. Although creating more test cases help for the test suite
to be more effective, a large test suite is costly to execute and
its execution might take hours or even days to finish.

Test case prioritization (TCP) seeks to help testers by prior-
itizing test cases in an order that testers gain maximum benefit
from. For this purpose, test cases are prioritized and executed
in an order that optimizes a desired goal function. The common
target used for TCP is to minimize the time needed for finding
failed test cases. Finding failed test cases earlier helps the de-
velopment team to work on issues and resolve them faster in the
development process.

The vast majority of TCP methods use structural coverage
as a metric to prioritize test cases [1, 2]. Coverage-based TCP
methods usually aim to put test cases in an order that reaches a
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high coverage as soon as possible. There are two major strate-
gies in coverage-based TCP methods, namely, total and ad-
ditional strategies [3], which we will introduce in Section 2.2.
Recent studies have shown that even an optimal coverage-based
TCP method does not perform much better than the additional
method in terms of fault detection rate [4]. This suggests that
in order to improve the additional method some sources of data
other than the structural coverage data should be used.

Another source of information that can be used for TCP is
the fault-proneness information. A high fault-proneness for a
code unit indicates it is relatively probable that the code unit
contains a fault. There are various approaches for leveraging
fault-proneness information to improve TCP; hence, there is a
challenge to choose an appropriate approach in this regard. In
this paper, we propose a novel approach to incorporate fault-
proneness information into coverage-based TCP methods. Fur-
thermore, in order to estimate the fault-proneness of a code unit,
we designed a novel neural network based defect prediction
method customized for the current problem. Our approach is
generally applicable to many coverage-based TCP methods. In
this study, we will specifically apply it to the total and addi-
tional TCP methods to obtain modified total and modified ad-
ditional methods. Our experiment on 357 versions of five real-
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world projects, included in the Defects4J dataset [5], shows that
the fault detection rate of these methods is improved using the
mentioned modification.

To assess our research, we ask the following research ques-
tions:

RQ1: How does the modified additional TCP strategy
compare to the traditional additional TCP strategy in terms
of fault detection performance?

RQ2: How does the modified total TCP strategy com-
pare to the traditional total TCP strategy in terms of fault
detection performance?

RQ3: How does the value of the modification tuning pa-
rameters (explained in Section 3.2.2) affect the effective-
ness of the modified strategies?

This paper makes the following contributions:

• We propose a novel method to incorporate fault-proneness
estimations into coverage-based TCP methods. Our ap-
proach is based on a modification of the concept of cov-
erage in coverage-based TCP.

• We design a customized neural network based defect pre-
diction method to estimate the fault-proneness of a code
unit. This method is customized to work when only a
small set of bugs is available and utilizes the information
from all versions of the source code history.

• We present an extension of the Defects4J dataset. For
each program version included in Defects4J, our extended
dataset contains the test coverage data and computed val-
ues of some source code metrics of that version. The
source code metric data is used by the developed defect
prediction method.

• We present an empirical evaluation using five open-source
projects containing in total 357 versions of the projects.
Results show that our proposed modification could im-
prove existing coverage-based TCP techniques.

The rest of the paper is organized as follows: Section 2
presents the background material. Section 3 presents our ap-
proach of solving the problem and our proposed method. Sec-
tion 4 presents the setup of our empirical evaluation and Sec-
tion 5 shows the results of our experiments. In Section 6 the
empirical results and threats to the validity of this study are dis-
cussed. Section 7 summarizes the most related work to this
paper. Finally, Section 8 contains the conclusions and future
work of this paper.

2. Background

In this section, we present the definition of test case prior-
itization and briefly introduce coverage-based test case priori-
tization methods. We continue by providing background infor-
mation on defect prediction, which is related to our study.

2.1. Test case prioritization

Consider a test suite containing the set of test cases T =

{t1, t2, . . . , tn}. The TCP problem is formally defined as follows
[6]:

Given: T , a test suite; PT , the set of permutations of T;
f , a function from PT to the real numbers.
Problem: Find T ′ ∈ PT such that1:

∀T ′′ : PT | T ′′ , T ′ • f (T ′) ≥ f (T ′′) (1)

In other words, the problem of TCP is to find a permutation
T ′ such that f (T ′) is maximum. Here f is a scoring function
that assuming a permutation from PT , assigns a score value to
that permutation.

Users of TCP methods could have different goals, such as
testing high-risk components as soon as possible, maximizing
code coverage, and detecting faults at a faster rate. The f func-
tion represents the goal of a TCP activity.

The APFD (Average Percentage of Faults Detected) goal
function, an area-under-curve metric that measures how quickly
a test suite can detect faults, is frequently used in the literature
for TCP when the goal of TCP is maximizing the fault detection
rate [3, 1, 8, 9]. The other target function that can be used is the
percentage of test cases executed until the first failing test case.
The first-failing test case metric is also applicable in our case,
however the APFD function is more commonly used in the field
of test case prioritization, and using it enables the results to
be comparable to future studies of TCP. APFD is defined as
follows: Denote the set of all failed test cases in T ′ as T f =

〈t f1 , t f2 , . . . , t fl〉, where l is the number of failed test cases and
the index of test case t fi in T ′ is fi. The APFD target function is
formulated as [10]:

APFD = 1 −

l∑
i=1

fi

nl
+

1
2n

(2)

For a permutation in which the failed test cases are executed
earlier, the values of f1 to fl are smaller, so the APFD value will
be larger.

2.2. Coverage-based test case prioritization

In order to measure coverage, the source code is partitioned
into hierarchical units such as packages, files, methods and state-
ments. Coverage-based TCP methods choose one level of par-
titioning (usually statements or methods) and define coverage
over those units. Assuming a chosen level of partitioning, con-
sider the source partitioned into units U = {u1, u2, . . . , um}.

For each test case ti and unit u j of the code, Cover(i, j) de-
notes whether test case ti covers unit u j. The amount of cover-
age is either 0 or 1 if the units of code are statements; however,
it can also be a real number in the range [0, 1] if the units are
methods, files, classes or packages.

1This relation is expressed using Z notation’s first order logic [7].
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The total coverage of a test case ti is usually defined as fol-
lows:

Cover(i) =
∑

1≤ j≤m

Cover(i, j) (3)

The basic idea of the total prioritization strategy is that test
cases with more coverage have more chance to uncover bugs.
The total strategy therefore, sorts test cases by the amount of
source code that each test case covers. This strategy ignores
the fact that some test cases might cover the same area of the
code. Therefore, when test cases are sorted using this strategy,
usually some units of code are run multiple times, before the
whole units are covered [6].

On the other hand, the additional prioritization strategy as-
sumes that running an uncovered unit of the code has more pri-
ority compared to an already covered unit. The intuition behind
the additional strategy is that early coverage of all units of the
code, results in revealing faults sooner [6].

Coverage information can be collected in two ways. Dy-
namic coverage information is collected by executing the pro-
gram and tracking every unit that is executed. In contrast, static
coverage is derived by static analysis on the source code [11].
We apply dynamic coverage in our study, as it is generally more
accurate than static coverage and usually leads to more effective
prioritization results.

2.3. Defect Prediction
It is frequently observed that some areas of the code are

relatively more fault-prone (i.e., more defects occur in that areas
throughout the development of software). This happens due to
various features of some code areas, such as relative complexity
of the implementation, more code churn, and faulty designs.

Issue trackers and bug databases contain important informa-
tion about software failures. This wealth of information can be
analyzed by defect prediction methods to identify fault-prone
areas of the code. Defect prediction applies machine learning
to analyze the bug history of software and produce a prediction
model for fault-proneness.

Defect prediction methods often include the following con-
ceptual steps [12]:

1. Feature extraction: In this step, metrics from the code and
development process and other sources of information
are extracted as a feature vector for each unit of the code
(package, file, class or method). Moreover, the number of
previous bugs related to each unit of the code is extracted
and stored.

2. Model learning: Data extracted from the previous step
is fed to a machine learning or data mining algorithm to
learn a prediction model. While creating this prediction
model, the metrics extracted in the previous step are used
as the feature vector and the number of previous bugs
related to each code unit is used as the target function.

3. Validation/Prediction: The model learned from the pre-
vious step can now be used to assign each unit of code
a fault-proneness score. Some part of the data (namely,

the validation set) is usually withdrawn from the learn-
ing procedure. The validation set is used to validate the
prediction strength of the model.

There are many studies using static code metrics for defect
prediction [13, 14, 15]. Other metrics, such as historical and
process related metrics (e.g., number of past bugs [16, 17] or
number of changes [18, 19, 20, 21]) and organizational metrics
(e.g., number of developers [22, 23]), have also been used.

3. Methodology

In this section, we introduce our proposed approach for TCP.
Since our approach is a modification of existing TCP methods,
before introducing our approach, we review the existing meth-
ods that we evaluate their modified versions in our empirical
study.

3.1. Review of traditional random, total, and additional TCP
methods

In this subsection, we review three traditional TCP strate-
gies that we compare them with their modified strategies in our
empirical study.

3.1.1. Random strategy
Due to the random strategy, test cases are randomly sorted.

The APFD of this strategy is about 50% and it is usually used
as a baseline to be compared with other proposed strategies for
evaluation [24, 25].

3.1.2. Total strategy for TCP
The total strategy for TCP begins by computing the total

coverage of all test cases according to Equation 3. In the next
step, test cases are sorted due to their total coverage so that the
first test case has the highest total coverage. Compared with
other non-random existing strategies, this strategy is simple, ef-
ficient. The time complexity of the total algorithm consists of
the time complexity of computing the total coverage for all test
cases plus the time complexity of the used sorting algorithm.
The summation of these items results in the time complexity of
the total algorithm that is O(nm + n log n).

3.1.3. Additional strategy for TCP
The same as the total strategy, the additional strategy begins

by computing the total coverage of all test cases. Afterwards,
a greedy algorithm is used to prioritize the test cases. Due to
this algorithm, in each step, the test case that has the highest
coverage over the uncovered code area is chosen as the next
test case. The selected test case is then appended to the end
of the ordered list of test cases and marked not to be chosen
in next steps. Moreover, the area of the code covered by this
chosen test case will be marked as covered area.

This strategy works in n steps where n shows the number of
test cases. In each step, selecting the next test case and updating
the coverage of the remaining test cases is done in O(nm) where
computing the updated coverage of a test case is performed in
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O(m). Therefore, the total time complexity of this algorithm is
O(n2m).

The additional strategy can be implemented in different vari-
ations. In two situations, this strategy faces different options:

• When more than one non-selected test cases have the
highest coverage over the uncovered code area: in this
case, one of these test cases should be selected with some
criteria. For example, one might select the test case ran-
domly or select the next test case with higher coverage
over the whole code area (i.e. covered and uncovered).

• When all areas of the code are covered by the test cases
that have already been selected: in this case, the coverage
of all the remaining test cases would be 0%. Again, the
remaining test cases can be ordered with different criteria.
For instance, one might order them randomly or due to
their total coverage. Another option is to consider all the
code uncovered and repeat the algorithm with remaining
test cases again [6].

3.2. Proposed approach

In this subsection, we describe our proposed approach and
the rationale behind it.

3.2.1. Motivation
We have two main motivations for proposing our approach:

First, previous studies related to defect prediction have sug-
gested that defect prediction methods be leveraged for auto-
mated tasks, such as test case prioritization [26]. Second, de-
velopers usually tend to firstly test those parts of the program
that are more likely to be faulty; however, existing TCP meth-
ods generally do not consider this tendency of developers. By
incorporating the fault-proneness score, estimated by learned
defect prediction models, into TCP methods we address these
two mentioned motivations.

3.2.2. Modified coverage
Assuming that we can extract prior knowledge on the fault

probability of the code units, we propose a modified cover-
age formula that incorporates this prior knowledge. Given that
the probability of existing faults in unit u j (1 ≤ j ≤ m) is
Prob(F j)2, we propose the following modified coverage for-
mula to compute the coverage for the test case ti:

FaultBasedCover(i) =
∑

1≤ j≤m

Cover(i, j) × Prob(F j) (4)

This formula considers more weight for units with more
fault probability, resulting in giving more priority to these units.

To utilize this modified coverage formula, we need to esti-
mate a probability function that represents the estimation of the
probability of a defect existing in each unit of the source code.
In this manner, we designed an appropriate defect prediction

2F j indicates the event in which jth code unit is faulty and Prob(FJ) repre-
sents the probability of this event.

Figure 1: Overview of the defect prediction method.

method, which we present in Section 3.2.3. The defect predic-
tion method assigns a fault-proneness score Pdp( j) to every unit
u j in the code (1 ≤ j ≤ m). In order to incorporate the fault-
proneness score into the traditional TCP methods, one option is
to define the probability function Prob(F j) as follows:

Prob(F j) = Pdp( j) (5)

Using Equation 5 as the definition of the probability func-
tion has the implication that covering the code units that are not
predicted to be fault-prone will completely be ignored. Nonethe-
less, this is a downside for this definition because our prior
knowledge indicates that even parts of the code that are not pre-
dicted to be fault-prone might contain some faults.

In contrast with Equation 5, we can also define the probabil-
ity function as the following equation which leads to ignoring
the fault-proneness of unit codes:

Prob(F j) = 1 (6)

In order to avoid ignoring the fault-proneness of unit codes
or the test coverage over the code units that are not predicted
to be fault-prone, we introduce the following definition for the
probability function:

Prob(F j) = P0 + (1 − P0) × Pdp( j) (7)

In Equation 7, P0 should be a real number between 0 and 1.
If it is set to 1, the result would be the same as Equation 5 and
if it is set to 0, the result would be similar to Equation 6.

3.2.3. Proposed defect prediction method
Defect prediction methods work at various granularity lev-

els [15, 27, 28]. Nevertheless, mainstream research on defect
prediction has been mainly focused on file level defect predic-
tion. Therefore, we designed a file/class level defect predic-
tion method for regression test prioritization. We use the fault-
proneness score of the classes as an estimation for the fault
proneness score of the methods.

Figure 1 illustrates our defect prediction method. In this
method, each file of the source code that had a bug in a past
version was marked as buggy. A feature extractor was designed
to extract source code and historical features related to bug pre-
diction. The feature extractor is then executed on each class of
the source code, resulting in a feature vector for each class. The
details about the extracted features will be discussed further in
Section 4.
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The next step for bug prediction is to learn a prediction
model relating the source code feature vectors and the fault-
proneness of the class. For this purpose, a neural network with
two layers was learned with the following structure:

• The first layer (i.e. input layer) has an input neuron for
each of the features extracted by the feature extractor.
The total number of input features is the sum of all values
of the column Feature count in Table 3 (except the bug
label), which is 104. Therefore, this layer contains 104
neurons.

• The second layer (i.e. hidden layer) has 300 neurons with
a sigmoid activation function.

• The final output neuron has the sigmoid activation func-
tion.

The neural network is trained to solve a binary classification
problem with two classes of fault-prone and not-fault-prone.
Although all the class values in the training phase are either
zero (not-fault-prone) or one (fault-prone), the neural network
learns to output a real number between zero and one i.e. in the
range of [0, 1]. For each input source code class, this number
can be interpreted as the fault-proneness score of the class.

Various classification methods have been proposed for de-
fection prediction [29]. Certain challenges are raised due to the
specific differences that our defect prediction problem has com-
pared to a usual one. These differences can be summarized as
follows:

1. Traditional defect prediction methods work with the as-
sumption that source code classes do not change too much
over time [13]. Hence, they only consider the feature vec-
tor extracted from the last source code version and count
the total number of bugs in previous versions for each
class. The mentioned assumption leads to errors in the
learning process and because of the role that defect pre-
diction plays in our approach, we need to minimize such
errors in our study.

2. The size of our set of positive samples (the number of
classes marked as buggy) is small (the size and other
properties of the dataset used in our study will be further
discussed in Section 4.2).

To consider the first difference between our defect predic-
tion problem and a usual one, we design our method to take into
account the data from all versions of the source code for each
class. In this manner, we put together all the feature vectors of
all versions of the source code, resulting in a larger training set,
approximately with the size

∑
v∈Versions

|Classes(v)|.

This would cause the dataset to be more unbalanced, com-
pared to when a single feature vector is extracted for each class,
because the size of the positive samples would be nearly the
same while the number of negative samples would be multiplied
by a factor of |Versions|. Moreover, the dataset would include
some similar feature vectors with inconsistent labels. This hap-
pens because a non-buggy class can become buggy with a few

changes; therefore, the dataset will include two very similar fea-
ture vectors related to this class with different labels. We apply
a neural network learning method which is appropriate for this
situation.

To address the second difference between our defect pre-
diction problem and a usual one, we propose learning the neu-
ral network, with the F1 score as the loss function. The F1
score function is the harmonic average of the precision and re-
call of the classification results. This score function is often
used whenever the number of positive samples is small. It is
frequently used in the field of information retrieval, as the num-
ber of relevant documents is much smaller than the total number
of documents. In our scenario, where the number of positive
(buggy) class samples is much smaller than the number of neg-
ative samples, using this score function as the loss function will
improve the learning precision.

Furthermore, we applied negative sub-sampling in the train-
ing phase of the neural network. This technique is implemented
in the training phase of the neural network. The neural network
is trained in 20 iterations. In each iteration all the positive sam-
ples and a subset of the negative samples is used for training.
The negative subset is a random subset of the total negative
samples with the size proportional to the size of positive sam-
ples set.

3.2.4. Proposed algorithm
Figure 2 shows a big picture of our proposed TCP algo-

rithm. As it can be seen in the figure, this algorithm starts with a
training phase in which a defect prediction classifier is learned.
In the training phase, the historical data regarding the previous
bugs in the source code (referred to as Source code bug history
in Figure 2) is utilized to train a defect prediction model. This
model is then used to predict fault proneness in the current or
later versions of the source code. More specifically, for each
version of the source code history, classes reported to be buggy
are marked as positive samples, and all other classes as negative
samples.

In the next step, for each program version in the testing set,
source code and historical metrics are computed and then used
by the defect prediction classifier to assign a fault-proneness
score to each code unit. Moreover, the code coverage of the
test cases recorded in previous executions of the program are
fetched. Next, the test coverage and assigned fault-proneness
score is used to prioritize the test cases and achieve a recom-
mended priority order. Note that in this phase different strate-
gies could be used. For the evaluation of the algorithm, the
actual test results and recommended priority for the test cases
are used to compute the APFD score.

3.2.5. Modified strategies
When the test coverage is computed, various strategies can

be used to prioritize the test cases. For example, the traditional
strategies reviewed in Section 3.1 could be used for this pur-
pose. As it was explained in Section 3.2.4, another option is
to use a modified version of these strategies which, in addition
to the test coverage data, also takes into account the code units
fault-proneness score.
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Figure 2: Overview of the proposed test case prioritization algorithm

In this paper, we propose a method to obtain such modified
strategies. In this manner, we can substitute the traditional cov-
erage (as defined in Equation 3) with the FaultBasedCover (in-
troduced in Equation 4) and then perform the traditional strate-
gies using this definition of test coverage. We call the resulting
strategies the modified strategies, which will be described in the
following subsections.

3.2.6. Modified Additional Strategy
Algorithm 1 shows the algorithm resulted from applying the

proposed modifications to the additional strategy. Before exe-
cuting Algorithm 1, a neural network must be learned using the
set of recorded bugs and previous versions of the source code
(See Section 3.2.3). The resulting model will be used as the
input DPModel in the algorithm.

Algorithm 1 consists of three major steps. The first step of
this algorithm (line 1) runs the defect prediction method and
produces Pdp array. The jth element of this array represents the
fault-proneness score assigned to the jth code unit. In the sec-
ond step (which is performed in lines 2-9), the value of Fault-
BasedCover is calculated for each test case. In the third step
(shown in lines 10-32), test cases are ordered using a greedy
algorithm. According to this greedy algorithm, in each step,
the test case with the highest fault based coverage over the un-
covered code area is chosen as the next test case. The rest of

Algorithm 1 Proposed modified additional algorithm

Inputs:
Metrics: computed metrics
DPModel: the learned defect prediction model
Cover: the coverage matrix of the test suite

Outputs:
Priority: the recommended order

1: Pdp ← de f ectPrediction(Metrics,DPModel)
2: n← numberO f Rows(Cover)
3: m← numberO fColumns(Cover)
4: for each j(1 ≤ j ≤ m) do
5: Prob[ j]← P0 + (1 − P0) × Pdp( j)
6: for each i(1 ≤ i ≤ n) do
7: Total[i]← 0
8: for each j(1 ≤ j ≤ m) do
9: Total[i]← Total[i] + Prob[ j] ×Cover[i, j]

10: for each i(1 ≤ i ≤ n) do
11: S elected[i]← f alse
12: for each i(1 ≤ i ≤ n) do
13: k ← 1
14: while S elected[k] do
15: k ← k + 1
16: sum← 0
17: for each j(1 ≤ j ≤ m) do
18: if Cover[k, j] then
19: sum← sum + Prob[ j]
20: for each l(k + 1 ≤ l ≤ n) do
21: if ¬S elected[l] then
22: s← 0
23: for each j(1 ≤ j ≤ m) do
24: s← s + Prob[ j] ×Cover[l, j]
25: if (s ≥ sum)∨
26: (s = sum ∧ Total[l] ≥ Total[k]) then
27: sum← s
28: k ← l
29: Priority[i]← k
30: S elected[k]← true
31: for each j(1 ≤ j ≤ m) do
32: Prob[ j]← max(Prob[ j] −Cover[k, j], 0)

the algorithm is similar to the traditional additional strategy ex-
plained in Section 3.1.3.

In the implementation of the additional method the follow-
ing details were considered:

1. Whenever there is a tie between multiple test cases with
the same additional coverage, the test case with bigger
total coverage is chosen to break the tie. In case both
the total and additional coverages are equal, the test case
which appears first in the test suite is chosen.

2. The additional coverage of all test cases is computed at
the beginning and whenever a test case is chosen, its cov-
erage is decreased from all units.

The first, second, and third steps of this algorithm run in
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time complexity O(m f ), O(nm), and O(n2m), respectively, where
n is the number of test cases, m shows the number of code units
and f determines the number of features which have been used
for defect prediction. Therefore, the whole algorithm runs in
the time complexity of O(m f + n2m).

3.2.7. Modified total strategy
The modified total strategy is developed in a process similar

to the modified additional strategy. The first and second steps of
the this algorithm is exactly the same as the modified additional
strategy, but the last step sorts the test cases by the FaultBased-
Cover values of test cases. The third step can be implemented
by an efficient sort algorithm so the time complexity of third
step is O(n log n). As a result, the whole algorithm runs in the
time complexity of O(m f + nm + n log n).

3.2.8. Time complexity comparison
The time complexity analysis of the modified strategies, is

summarized in Table 1. The time complexity added from the
proposed modification in both the total and additional strate-
gies is O(m f ). The number of features used in our implementa-
tions is constant ( f = 104), and therefore O(m f ) is equivalent
to O(m). Therefore, the computational complexity of the mod-
ified algorithms is equivalent to their traditional counterparts
(as shown in Table 1). Experimental observations also show
a very small difference (for all projects less than 40 millisec-
onds) of execution time between the traditional and modified
algorithms.

Table 1: Time complexity of the traditional and modified strate-
gies

Strategy Traditional Modified

Additional O(n2m) O(n2m + m f )
= O(n2m)

Total O(mn + n log n) O(mn + n log n + m f )
= O(mn + n log n)

4. Empirical study

In this section, we explain our empirical study and discuss
the results of our experiments.

4.1. Research Questions
In our empirical study, we answer the research questions,

presented in the introduction of this paper. These research ques-
tions can be more precisely stated as follows:

RQ1: How does the modified additional TCP strategy
compare to the traditional additional TCP strategy in terms
of APFD?

RQ2: How does the modified total TCP strategy compare
to the traditional total TCP strategy in terms of APFD?

RQ3: How does the value of P0 affect the effectiveness
of the modified strategies?

4.2. Subjects of study
Among previous TCP researches, some studies have used

datasets with real bugs and some have used mutation analysis
methods to artificially create buggy versions of the code.

Artificially created bugs are created using a random process
of injecting bugs in the source code; hence, these bugs do not
represent the behavior of a software development team. In this
study, we want to propose a method for TCP in order to find
the bugs made by the development team as soon as possible.
Therefore, we limited our study to a dataset with real software
bugs.

Conclusively, the proposed method must be evaluated on
projects with the following properties:

1. The project must contain a test suite that is large enough
to be used for TCP.

2. The bugs of the project must be recorded during a long
period of time of the development process of the project,
leading to a bug database with enough number of bugs.

3. The version control asset of the project must contain the
faulty versions of the software that result in failing test
cases. Moreover, the failing test cases must be identifi-
able.

Just et al. have collected a dataset, namely Defects4J [5],
which has the mentioned properties. Considering the mentioned
criteria, Defects4J is one of the few datasets that can be used
for this purpose. In its initial published version, Defects4J pro-
vided a recorded bug history of five well-known open source
Java projects which contain a considerable number of test cases,
summarized in Table 2. As it represents a completely real project
development history, hopefully the results will be practically
significant.

Per each recorded bug, Defects4J provides two versions of
the project. First, a faulty version which contains the bug and
one or more failing test cases identifying the bug. Second, an-
other version with the bug fixed and no failing test cases. De-
fects4J localizes and isolates each bug fix, such that the dif-
ference between the buggy version and the fixed version is a
single git commit containing only bug fix changes. This helps
us to locate buggy classes in each version of the source code.

Table 2: Projects included in Defects4J initial version

Identifier Project name Bugs Test classes
Chart JFreechart 26 355

Closure Closure compiler 133 221
Lang Apache commons-lang 65 112
Math Apache commons-math 106 384
Time Joda-Time 27 122
Sum - 357 1194

4.3. Defects4J+M: The created dataset
Although Defects4J provides an appropriate dataset of real

bugs, we still need to perform some calculations on it in order
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to use the data to evaluate our proposed approach. The result
of these calculations is an extension of the Defects4J dataset
which contains computed test coverages and source code met-
rics for each version included in Defects4J. The new dataset can
be used by researchers in various software engineering fields,
such as software repair, bug prediction, software testing, and
fault localization. We made this dataset, called Defects4J+M,
publicly available on GitHub3.

The tests in the Defects4J projects are mainly written using
the JUnit framework [30]. In order to find test coverages we
executed all test methods and measured the dynamic statement
coverage. Method level was chosen as the partitioning level
of code into units and JaCoCo [31] library was used for code
coverage analysis. This library is intended for easy integration
with various development tools.

In this paper, we use a combination of static and process
metrics for feature extraction. To extract static metrics we used
the free version of SourceMeter (a tool for static code analysis).
SourceMeter supports five major groups of metrics4 [32]. All
the metrics were computed at class level. In addition to metrics
computed using SourceMeter, we also computed the number
of developers and changes per file and the number of previous
bugs for each class. Table 3 contains the details of each feature
group. The row referred as Bug label is the machine learning
label used to train the neural network.

In order to use the computed metrics for defect prediction,
we stored them in a vector that is used as the input feature vector
by the defect prediction algorithm.

The source code metrics and test coverages were computed
using a machine with two 10-core Intel CPUs (Intel(R) Xeon(R)
CPU E5-2690 v2 @ 3.00GHz) with 256GB RAM. It took more
than 100 hours for this computer to finish the calculations. In
addition to the large amount of resources and time that had to
be dedicated to these calculations, we also faced some difficul-
ties while creating the dataset that make it reasonable for us to
release the dataset publicly so that other researchers can use it
without facing the same difficulties. A short list of these diffi-
culties is as follows:

• In some projects, different program versions had to be
built using different building tools, such as Ant, Maven,
or Gradle.

• In some projects, different program versions used differ-
ent Java Development Kit (JDK) versions.

• Computing metrics and test coverages took very long for
some versions. Therefore, we had to do the calculations
in parallel in order to finish them in a reasonable length
of time.

• A few versions of some projects could not be compiled.
Moreover, the process of calculating metrics or test cov-
erages for some projects took too long. We had to rec-

3https://github.com/khesoem/Defects4J-Plus-M
4The detailed description for SourceMeter metrics is published in its user

guide page.

ognize such cases and ignore them if they could not be
fixed.

4.4. Experimental procedure
The experiment consists of running the proposed method,

the total and the additional prioritization methods on the projects
of the Defects4J+M dataset. In order to create the defect pre-
diction model for the ith version of a project, the procedure ex-
plained in Section 3.2.3 is performed using the data from the 1st
to (i−1)th versions of the same project. The resulting model was
then used for TCP. Since creating the defect prediction model
requires the data from, at least, a minimum number of buggy
versions, we created the model only for the more recent ver-
sions of each project. In this regard, the evaluation is done over
the last 13, 33, 50, 14, and 50 versions of the Chart, Lang, Math,
Time, and Closure projects, respectively.

The source code and usage instructions of the methods im-
plemented in this paper are made publicly available on a GitHub
project5. This package contains detailed instructions on usage
and replicating the results of this paper in multiple steps.

The defect prediction neural network is implemented using
Python language and Keras and scikit-learn machine learning
libraries. The TCP algorithm is also implemented with Python
language using NumPy and pandas libraries.

Table 4 shows some properties of the learning process. The
column Evaluation versions shows the number of versions that
the project is evaluated on. As the number of input samples
varies in different versions, the minimum and maximum num-
ber of input samples used in the learning process for each project
is shown in column Min input samples and Min input samples

The neural network performance can be measured by count-
ing the number of predicted bugs using the neural network.
More exactly, for each version of the project, if a bug is pre-
dicted using the defect prediction model, this value is incre-
mented. A bug is considered to be predicted, if a buggy class
corresponding to its bug-fix is assigned fault-proneness value
of more than 0.1. This value is displayed in column Predicted
bugs of Table 4.

5. Results

In this section, we present the results of our empirical study.
In this regard, we provide the experimental results to answer the
research questions raised in Section 4.1.

5.1. RQ1 and RQ2: Comparing modified strategies with tradi-
tional strategies

In order to answer RQ1 and RQ2, we computed the APFD
score of traditional total and additional strategies as well as that
of their modified versions. For each project of study, the APFD
value is extracted over all the versions considered for evalua-
tion in Section 4.4. Our preliminary experiments showed that
our approach works the best when P0 is set to 0.3. Therefore,

5https://github.com/mostafamahdieh/

FaultPronenessBasedTCP
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Table 3: Defect prediction features

# Feature
type Category Definition Feature

count General Items

1 Input Source code
metrics

Used to quantify different source
code characteristics 52

Cohesion metrics, Complexity metrics, Coupling
metrics, Documentation metrics, Inheritance

metrics, Size metrics

2 Input Clone metrics
Used to Identify the number of

type-2 clones (same syntax with
different variable names)

8

Clone Classes, Clone Complexity, Clone
Coverage, Clone Instances, Clone Line Coverage,

Clone Logical Line Coverage, Lines of
Duplicated Code, Logical Lines of Duplicated

Code

3 Input Coding rule
violations

Used for counting coding violation
rules 42

Basic Rules, Brace Rules, Clone Implementation
Rules, Controversial Rules, Design Rules,

Finalizer Rules, Import Statement Rules, J2EE
Rules, JUnit Rules, Jakarta Commons Logging

Rules, Java Logging Rules, JavaBean Rules,
Naming Rules, Optimization Rules, Security

Code Guideline Rules, Strict Exception Rules,
String and StringBuffer Rules, Type Resolution

Rules, Unnecessary and Unused Code Rules

4 Input Git metrics

Used to count the number of
committers and commits per file

(these metrics could not be
computed for inner classes)

2 Committers count, Commit counts

5 Output Bug label Label that shows this file is buggy
in this version of the project or not 1 IsBuggy

(a) Math (b) Chart (c) Time (d) Lang (e) Closure

Figure 3: Evaluation results of traditional and modified additional TCP strategies (RQ1)

Table 4: Performance of defect prediction

Project Evaluation
versions

Min
input

samples

Max
input

samples

Predicted
Bugs

Chart 13 11121 21763 3/13
Closure 50 57570 102459 25/50
Lang 33 7128 13863 16/33
Math 50 33443 76804 22/50
Time 14 6330 10154 5/14

Overall 160 6330 102459 71/160

we compare the modified strategies with traditional ones using
this setting. The effect of changing the value of P0 is further
discussed in Section 5.2.

The box plots in Figure 3 and Figure 4 represent the APFD
score of the modified and traditional versions of additional and
total strategies on each subject of study, respectively. Table 5
also shows the mean APFD score of each strategy on each project.
The improvement column is the mean improvement of the APFD
value of the modified strategy compared to the traditional strat-
egy, defined using Equation 8:

impr =
1

|Versions|

∑
v∈Versions

APFDMod
v − APFDTrad

v

APFDTrad
v

(8)

Where APFDMod
v and APFDTrad

v denote the APFD of the mod-
ified and traditional algorithms, Versions represents the set of all
versions under evaluation and impr stands for the improvement
value.

This value can be used as a measure to show the magnitude
of improvement of the modified algorithms with respect to the
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traditional algorithms. Note that this value is not equal to the
difference of the value of the modified column (mean APFD
value of the modified strategy) to the traditional column (mean
APFD value of the total strategy).

As it can be observed in Table 5, the mean APFD scores
of modified strategies are superior to that of traditional strate-
gies in most occasions and especially, in the overall case. This
can be seen numerically in the improvement column, which is
positive in most of the cells. The overall improvement for the
five projects is 4.63% and 3.60% for of the additional and total
strategy respectively.

Moreover, we performed a Wilcoxon signed-rank test [33]
(p-value < 0.05) to make sure that our results are statistically
significant. The null hypothesis is that there is no significant
difference in the performance of the modified strategies with
respect to their traditional counterparts. The results of this test
demonstrate that:

1. There is overally a statistically significant difference be-
tween the modified and traditional additional strategies
(p-value = 0.00268). This means that the modified addi-
tional strategy significantly performs better than the tra-
ditional one (RQ1).

2. There is no significant difference between the modified
and traditional total strategies (RQ2, p-value = 0.406).
Furthermore, Figure 4 confirms this result since it shows
that the modified total strategy does not outperform the
traditional total strategy in terms of the median APFD
value (note that the mean value of APFD is not shown in
the box plot). In three of the projects (Math, Time, and
Closure), the differences between the median APFD of
the modified and traditional strategies are negligible, on
the Chart project the traditional strategy is superior and
only on the Lang project the modified strategy is superior.

5.2. RQ3: Investigating the effect of changing P0 on the effec-
tiveness of modified strategies

As it was mentioned in Section 3.2.2, Equation 7 estimates
the fault-proneness probability as a linear combination of a con-
stant value (1) and the fault-proneness score assigned by the
defect prediction model (Pdp), using the parameter P0 or equiv-
alently 1 − P0 denoted as Cdp.

The relation between the mean APFD values versus Cdp =

1−P0 is plotted in Figure 5. Each curve in this figure is showing
the performance (APFD) of a modified method on a specific
project. To observe the behavior of the modified strategies, the
value of P0 is varied in the range [0, 1]. This shows how the
value of APFD changes in response to changing the value of
P0.

The value of Cdp can be set by the practitioner to an appro-
priate value regarding the project conditions. From one point of
view, Cdp tunes the amount of confidence to the predicted fault-
proneness values. In the extreme cases of the interval [0, 1],
setting Cdp to one gives full confidence to the defect prediction
method and setting Cdp to zero ignores the defect prediction and

only takes the coverage into account. When the project provides
more prior knowledge (e.g. bug history size), Cdp can be set to
a higher value to increase the impact of this knowledge; other-
wise, it should be set to lower values.

Figure 5 shows the relation between the APFD and Cdp

in modified total and modified additional strategies. Note that
when the value of Cdp is set to 0, the modified strategy works
the same as the traditional strategy. Therefore, in each curve, on
the points that are higher than the most left point of the curve,
the modified strategy is working better than the traditional one.

As it can be observed in Figure 5, the curves show an in-
creasing trend in most cases; therefore, it can be claimed that
the modified strategy performs better when the fault-proneness
score is more taken into account. An exception to this claim is
Figure 5b. This Figure shows the effect of changing Cdp on the
APFD value in the modified total strategy for the Chart project.
We believe that this exception occurs because of the low num-
ber of bugs (26) recorded for the Chart project which, in turn,
causes an inaccurate defect prediction model.

6. Discussion

6.1. Practical Considerations

The proposed modification method relies on the success of
the defect prediction phase. Therefore, practically this method
will fail in case the requirements for successful defect predic-
tion, such as a large enough history of bugs, are not met. More-
over, the bug history must contain real bugs related to a single
software development team, not artificial bugs or bugs created
by mutants.

The time required for executing the defect prediction phase
is almost the same as the time needed for running the additional
TCP strategy (in terms of order of magnitude). However, we
can avoid executing the defect prediction phase for each priori-
tization task because the same defect prediction model created
for a recent project version can also be used for the last version.

6.2. Threats to validity

Internal Validity. As mentioned in Section 3.2.3 our pro-
posed method estimates the fault-proneness of the methods us-
ing defect prediction on classes and extrapolates the fault-proneness
values assigned to classes to estimate the fault-proneness of
methods. Using this approach results in more false positive
instances for the prediction of bugs (i.e. falsely reporting a
method as being buggy). In this regard, we measured the num-
ber of classes being reported as buggy, and our observations
show that only a small ratio of classes are reported as buggy
which means the ratio of false positives would be low as well.
Hopefully, a small amount of false positives would not be harm-
ful for our results.

External Validity. Our subject projects are all implemented
in the Java language; therefore, the results might differ in projects
developed using other languages. Furthermore, all the projects
used in our empirical study are popular open-source projects
and contain large test suites while projects that use our approach
in the future might not have these features. We conducted the
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Table 5: Average APFD scores of each TCP strategy

Subject Additional Strategy Total Strategy
Traditional Modified Improvement Traditional Modified Improvement

Chart 55.47% 57.84% 5.95% 58.59% 57.25% -2.68 %
Closure 71.06% 71.01% -0.14 % 64.13% 64.59% 1.44%

Lang 45.76% 46.92% 7.41% 53.80% 54.51% 6.95%
Math 59.43% 60.78% 4.37% 60.84% 61.88% 9.32%
Time 57.48% 58.65% 5.57% 59.28% 60.15% 2.99%

Overall 59.54% 60.50% 4.63% 60.02% 60.60% 3.60%

(a) Math (b) Chart (c) Time (d) Lang (e) Closure

Figure 4: Evaluation results of traditional and modified total TCP strategies (RQ2)

(a) Math (b) Chart (c) Time (d) Lang (e) Closure

(f) Math (g) Chart (h) Time (i) Lang (j) Closure

Figure 5: The APFD performance of the modified strategies with respect to varying Cdp (RQ3)

statistical test in order to make sure that our results can be gen-
eralized with confidence; however, we still have to evaluate our
approach using projects with different languages and character-
istics in the future to ensure the results are generalizable.

7. Related work

There have been many methods proposed for the problem
of test case prioritization. Among methods proposed for TCP,
the largest category is the category of the coverage-based meth-
ods. These methods rely on the assumption that choosing test
cases with larger coverage leads to more effective fault detec-
tion. Therefore, these methods attempt to prioritize the test
cases in an order that has the most coverage in the least number

of executed test cases. Coverage-based TCP methods inher-
ently solve an optimization problem, which is related to the set
cover problem [34] and is proved to be NP-hard [35]. There-
fore, there is no polynomial time algorithm for computing an
optimal solution to the coverage-based TCP problem, and al-
gorithms proposed for the coverage-based TCP problem are
heuristic methods to solve this problem.

Coverage measurement is done in two main categories: Dy-
namic coverage and static coverage. Dynamic coverage is mea-
sured by executing the test cases and auditing the execution
trace of each test case. Static coverage is an approximate esti-
mation of dynamic coverage, measured by analyzing the static
structure of the source code. Dynamic code coverage is widely
used in many existing TCP studies; however, static code cover-
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age, which is the coverage estimated from static analysis, has
also been studied for TCP [11, 36, 37].

Each coverage-based TCP method consists of two main build-
ing blocks: first, the coverage criteria used to measure coverage
and second, the strategy used to take into account the measured
test case coverage for TCP. Regarding the first building block,
various coverage criteria have been applied for coverage-based
TCP. The early studies in TCP used the statement coverage,
branch coverage [3], and method coverage [38]. After that mul-
tiple other criteria have been proposed [39, 40, 41]. Fang et al.
compare major existing logic and fault-based coverage criteria
[42]. Their main conclusion is that criteria with fine-grained
coverage information, MC/DC and fault based logic coverage
criteria, have better fault detection capability. Elbaum et al. in-
corporate fault index, a metric calculated using a combination
of multiple measurable attributes of the source code [43]. There
proposed method tracks variations of fault index over regres-
sions and prioritizes test cases which run code with higher fault
indexes.

As for the second building block of TCP methods, the strat-
egy/algorithm can be thought as of a method to solve the opti-
mization problem underlying coverage-based TCP. The aim of
this optimization problem is to maximize the coverage with the
hope that a high test coverage results in a high fault detection
rate. For instance, the total and additional techniques are sim-
ple greedy algorithms providing approximate solutions for this
optimization problem [3]. Being simple, efficient, and effective
has popularized the usage of these basic methods [2]. The ran-
dom strategy, which simply randomly orders the test cases is
used for comparison with techniques in this research area. Li et
al. [35, 44] have applied some well known meta-heuristic opti-
mization algorithms including hill climbing, K-optimal greedy
algorithms (refer to [35] for its definition) and genetic algo-
rithms to solve the coverage-based TCP problem. When com-
pared to the total and additional prioritization algorithms using
different metrics, the results indicate that the additional priori-
tization algorithm and the 2-optimal greedy algorithm, despite
their simplicity, are the most efficient techniques in the major-
ity of cases and the differences between the additional and 2-
optimal algorithm are insignificant.

Zhang et al. [45, 2] introduce strategies to mix the addi-
tional strategy and the total strategy resulting in a spectrum of
algorithms in between them. Their results show that the mixed
strategy may outperform both the additional strategy and the
total strategy in terms of APFD. Jiang et al. [46] propose the
random adaptive strategy, a variation of the greedy additional
method with a technique used for choosing between ties. Their
tie strategy technique chooses the test case farthest away from
the currently selected test cases. They report that the random
adaptive strategy does not improve effectiveness in terms of
APFD but has better computational performance. Hao et al.
[47] propose utilizing the intermediate output of the execution
process to improve test-case prioritization.

Hao et al. [4] focus on the coverage-based TCP problem
to evaluate how much improvement is available in this prob-
lem. In this manner, they formulate this problem as an integer
linear programming (ILP) problem, to produce the optimal so-

lution and study its empirical properties. This empirical study
demonstrates that the optimal technique can only slightly out-
perform the additional coverage-based technique with no statis-
tically significant difference in terms of coverage. However, the
additional technique significantly outperforms the optimal so-
lution in terms of either fault detection rate or execution time.
Note that their algorithm is not computationally practical and is
only designed to compare the optimal solution with the output
of other algorithms.

Some authors have leveraged similarity and information re-
trieval metrics between test cases and source code to prioritize
test cases. Saha et al. [48] introduced a new approach to address
the problem of TCP by reducing it to a standard information re-
trieval problem such that the differences between two program
versions form the query and the test cases constitute the doc-
ument collection. Noor et al. [49] proposed a TCP approach
that uses historical failure data of test cases. Their method uses
similarity between test cases considering a test case as effective
if it is similar to any failed test cases in the previous versions of
the source code.

Some researchers have proposed using development pro-
cess information to help rank test cases. Arafeen et al. [50]
used software requirements to cluster test cases and rank them.
Ledru et al. [51] proposed a method that doesn’t assume the ex-
istence of code or specification and is based only on the text de-
scription of test cases, which may be useful in cases where the
code coverage information is not available. Korel et al. [52, 53]
proposed a model-based method for regression TCP, which as-
sumes the system has been modeled using a state-based mod-
eling language. In this method, when the modifications to the
source code are made, developers identify model elements (i.e.,
model transitions) that are related to these modifications. Then
the test suite is prioritized according to the relevance of test
cases to these modifications. Some researches are focused on
practical constraints in TCP, such as time constraints [54, 55,
56, 57, 58] and fault severity [59, 60].

Engstrom et al. [61] proposed utilizing previously fixed
faults to choose a small set of test cases for regression test se-
lection. Laali et al. [62] propose an online TCP method that
utilizes the locations of faults revealed by executed test cases
in order to prioritize the non-executed test cases. Some stud-
ies such as [63] and [8], use the idea of utilizing the history
of failed regression tests to improve future regression testing
phases. Kim et al. employed methods from fault localization to
improve test case prioritization. Using the observation that de-
fects are fixed after being detected, they propose that test cases
covering previous faults will have lower fault detection possi-
bility [64]. [65] proposed quality-aware test case prioritization
method (QTEP) which focuses on potentially unrevealed faults.
QTEP is based on CLAMI [66], an unsupervised defect predic-
tion method. Their evaluation shows improvement of 7.6% on
average with respect to the basic prioritization methods on 7
open source Java projects. Recently, Paterson et al. [67] pro-
posed a ranked-based technique to prioritize test cases based on
an estimated likelihood of java classes having bugs. This likeli-
hood is estimated using a mixture of software development his-
tory features, such as number of revisions, number of authors,
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and number of fixes. Their experiments show that using their
TCP method reduces the number of test cases required to find
a fault on average by 9.48% compared with existing coverage-
based strategies.

As mentioned at the beginning of this section, coverage-
based methods consist of the main building blocks of the used
coverage criteria and strategy. The method proposed in this
paper can be categorized as an approach to modify the exist-
ing coverage criteria proposed for TCP by utilizing the fault-
proneness score assigned by defect prediction methods. Among
the mentioned studies, [65] and [67] are the two approaches
that are the closest ones to our proposed approach. However,
these two studies utilize sources of information different from
the sources used in the current paper. Therefore, they should
not be directly compared with our approach. More specifically,
QTEP ([65]) is an unsupervised method while our method is
supervised and uses the bug history data. Also the method pre-
sented by Paterson et al. [67] incorporates different sources of
information such as test execution history, which is not used in
this paper.

8. Conclusions and future work

In this research, we introduced a novel approach to incor-
porate the code units fault-proneness estimations into coverage-
based TCP methods. For this purpose, we proposed using the
fault based coverage (introduced in Equation 4) instead of the
traditional coverage (introduced in Equation 3). In order to in-
vestigate our proposed approach, we conducted an empirical
study on 357 versions of five real-world projects included in
the Defects4J dataset. Our evaluations show that traditional to-
tal and additional TCP strategies are improved when they are
modified due to our proposal and the improvement of the mod-
ified additional strategy is statistically significant.

In the future, we can also take into account the test case exe-
cution results in the history of the development process in order
to improve the proposed TCP methods. Moreover, cross-project
defect prediction techniques [68] could be used to achieve a bet-
ter estimation of the code units fault-proneness. The effect of
modifying other existing coverage-based TCP strategies should
also be investigated. Finally, the proposed approach can also
be evaluated using larger datasets with various programming
languages.
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