
Challenges and solutions when adopting DevSecOps: A systematic review

Roshan N. Rajapaksea,b,∗, Mansooreh Zahedia, M. Ali Babara,b, Haifeng Shenc

aCentre for Research on Engineering Software Technologies, School of Computer Science, University of Adelaide, Adelaide
bCyber Security Cooperative Research Centre, Australia

cThe HilstLab, Peter Faber Business School, Australian Catholic University, Sydney, Australia

Abstract

Context: DevOps (Development and Operations) has become one of the fastest-growing software development paradigms in
the industry. However, this trend has presented the challenge of ensuring secure software delivery while maintaining the agility of
DevOps. The efforts to integrate security in DevOps have resulted in the DevSecOps paradigm, which is gaining significant interest
from both industry and academia. However, the adoption of DevSecOps in practice is proving to be a challenge.

Objective: This study aims to systemize the knowledge about the challenges faced by practitioners when adopting DevSecOps
and the proposed solutions reported in the literature. We also aim to identify the areas that need further research in the future.

Method: We conducted a Systematic Literature Review of 54 peer-reviewed studies. The thematic analysis method was applied
to analyze the extracted data.

Results: We identified 21 challenges related to adopting DevSecOps, 31 specific solutions, and the mapping between these
findings. We also determined key gap areas in this domain by holistically evaluating the available solutions against the challenges.
The results of the study were classified into four themes: People, Practices, Tools, and Infrastructure. Our findings demonstrate
that tool-related challenges and solutions were the most frequently reported, driven by the need for automation in this paradigm.
Shift-left security and continuous security assessment were two key practices recommended for DevSecOps. People-related factors
were considered critical for successful DevSecOps adoption but less studied.

Conclusions: We highlight the need for developer-centered application security testing tools that target the continuous prac-
tices in DevSecOps. More research is needed on how the traditionally manual security practices can be automated to suit rapid
software deployment cycles. Finally, achieving a suitable balance between the speed of delivery and security is a significant issue
practitioners face in the DevSecOps paradigm.

Keywords: DevOps, Security, DevSecOps, Continuous Software Engineering, Systematic Literature Review

1. Introduction

DevOps (Development and Operations) has led to a
paradigm shift aimed at removing the traditional boundaries (or
“silos”) of the software development and software operations
teams [1]. This shift resulted in reducing the time between
committing a modification in a system and that change being
placed in a production environment [2]. DevOps is currently
a widely adopted software development paradigm in the indus-
try [3]. This interest in adoption is due to the gains in busi-
ness value reported by industry practitioners and academic re-
searchers [4]. The most commonly reported benefit is the abil-
ity to deploy releases faster and more frequently [5]. However,
the practices of rapid delivery have presented new challenges
to organizations. One such challenge is ensuring the security of
software outputs to stakeholders while maintaining the agility
of DevOps [6].

∗Corresponding author
Email addresses: roshan.rajapakse@adelaide.edu.au (Roshan N.

Rajapakse), mansooreh.zahedi@adelaide.edu.au (Mansooreh Zahedi),
ali.babar@adelaide.edu.au (M. Ali Babar),
Haifeng.Shen@acu.edu.au (Haifeng Shen)

Traditionally, security is treated as a non-functional require-
ment [7], which is handled at a later stage of the software de-
velopment life-cycle [8], [9]. Accordingly, a set of standard
application security tests or activities are conducted on a soft-
ware release. These activities either need substantial manual
effort (e.g., security code review [10]) or are time consum-
ing tasks (e.g., Dynamic Application Security Testing (DAST)
[11]). Therefore, applying the same security tests in the con-
text of DevOps would hinder the speed of deployments. At the
same time, with the rising number of attacks, the security of
software is critical in today’s context, particularly in a cloud
environment. There are many examples of how security vul-
nerabilities of software have been exploited to cause substantial
damages to organizations [12], [13]. As a result, a key focus in
this domain is how an organization can produce outputs at the
speed required by DevOps while ensuring security [14].

This requirement of integrating security in DevOps has led
to the coining of the term, DevSecOps (Development, Security,
and Operations). At the core of DevSecOps is the principle
of keeping security as a priority and adding security controls
and practices into the DevOps cycle [6]. As the need for rapid
deployment of safe and secure software outputs increases, the

Submitted to the Journal of Information and Software Technology July 30, 2021

ar
X

iv
:2

10
3.

08
26

6v
2

 [
cs

.S
E

]
 2

9
Ju

l 2
02

1

Commit

Developer

Trigger

Source repository CI server

Build

Test

Continuous Integration

Deploy

Manual
Release

Staging
Environment

Acceptance
tests

Performance
tests

Manual release path: Continuous Delivery

Production
Environment

Automated
Release

Automated release path: Continuous Deployment

Figure 1: The relationships between the continuous practices discussed in this study [15], [16], [17]

interest in DevSecOps continues to grow in the industry and
academia. This is evident from the growing body of formal
literature in this area.

1.1. Aim and contribution
The transition from traditional software engineering method-

ologies (e.g., waterfall model) to DevSecOps is widely reported
to be a challenging task [4], [18], [14]. As the interest in De-
vSecOps continues to rise in the industry, it is valuable for prac-
titioners to be aware of such adoption challenges and the solu-
tions available to address them.

Firstly, this article is intended for practitioners who are plan-
ning or in the process of adopting DevSecOps to be aware of
the frequently reported problems in this domain. Identifying
the adoption challenges at a very early stage of a project would
be beneficial in addressing them early. Secondly, we aim to
provide practitioners with a critical review of the proposed so-
lutions related to DevSecOps adoption, reported in the peer-
reviewed studies. Thirdly, this study can be a starting point for
further research in the research community, as we identify the
gap areas in DevSecOps based on the current literature.

Accordingly, our main aim in this study is to systematically
select, thematically analyze and present the challenges, solu-
tions, and gaps for further research on DevSecOps. To achieve
this aim, we have conducted an SLR to evaluate a selected set
of peer-reviewed literature. Based on the results, our paper
makes the following three specific contributions:

• We present a thematic classification of the main security-
related challenges an organization could face in adopting
DevSecOps.
• We describe the current solutions proposed in the litera-

ture, which address these challenges in terms of guide-
lines, best practice, methodologies or frameworks, and
tools. We then thematically map the challenges to the pro-
posed solutions.
• We identify the potential gaps for future research or the

areas for technological development (e.g., tools) or frame-
work support by combining the findings of the above two
contributions.

2. Background and related work

In this section, we define the terms and concepts used in the
study. Then, we present a comparison of our study with the
existing related reviews.

2.1. Continuous software engineering and its practices
Continuous Software Engineering (CSE) aims to establish a

continuous movement in software engineering activities, rather
than a set of discrete activities performed by different teams or
departments [19]. To enable this continuous movement, CSE
bundles a set of continuous practices such as Continuous Inte-
gration. Fitzgerald and Stol [19] present several such continu-
ous practices categorized under business strategy & planning,
development, and operations. In the industry, the development-
related continuous practices have been used more and are well-
established [20]. Accordingly, much of the research on contin-
uous practices has been conducted on the development-related
practices [16], [21], [17], [22]. Based on these studies, Continu-
ous Integration, Continuous Delivery, and Continuous Deploy-
ment can be seen as the most popular continuous practices in
the domain [23]. Therefore, we have selected these three prac-
tices for review in our study. In the next subsections, we present
the definitions and relationships between these practices.

2.1.1. Continuous Integration (CI)
CI is the development practice where developers frequently

integrate their work (e.g., code changes) to the main branch,
usually on a daily basis [23]. These changes are validated by au-
tomated builds and tests [24]. By doing so, developers are able
to detect and address integration failures early, and as quickly
as possible [16], [19].

2.1.2. Continuous Delivery (CDE)
CDE aims to keep the software at a reliably deployable

or production-ready state at any time [25], [16]. To achieve
this goal, software needs to pass the relevant tests and quality
checks in a staging environment (e.g., acceptance tests). How-
ever, the deployment to the production environment is done
manually, where a team member with the relevant authority de-
cides when and which production-ready outputs should be re-
leased to the customer (i.e., pull-based approach) [17].

2.1.3. Continuous Deployment (CD)
CD extends CDE by automatically and continuously deploy-

ing software outputs to a production environment if all the re-
quired quality gates are passed [P18], [16]. CD is a push-based
approach, where software changes are automatically deployed
to production through the deployment pipeline without human
intervention [17]. Figure 1 depicts the relationship between
these continuous practices, which we have considered in our
study.

2

2.2. Development and Operations (DevOps)

DevOps is a paradigm that aimed to reduce the disconnect
between development and operations teams by promoting col-
laboration, communication, and integration between them [2].
Despite being a trend in the industry, DevOps lacks a widely
accepted definition [1]. Defining DevOps is difficult due to the
considerable overlap with continuous practices [23]. Due to this
reason, Stahl et al. [23] present definitions to differentiate De-
vOps and continuous practices from one another. We use their
interpretation for DevOps in our study, as they have attempted
to reflect the mainstream interpretation of these terms.

Stahl et al. [23] view DevOps as a combination of values,
principles, methods, practices, and tools. Here, the practices
include continuous activities such as CI, CD, and CDE. These
are considered key practices which enable achieving the above-
noted goal of DevOps [2]. The above five elements in combina-
tion, enable continuous and rapid delivery of software without
compromising on the quality.

2.3. Development, Security and Operations (DevSecOps)

The paradigm of DevSecOps refers to the integration of se-
curity principles and practices in DevOps through increased
communication, collaboration, and integration between the de-
velopment and operations teams with the security team [P42].
Studies and industry personnel have used variations of this
term, such as SecDevOps [26] and DevOpsSec [27]. However,
the main intended goal in each of these terms is to keep security
as a key focus throughout the DevOps cycle.

2.4. Other reviews in DevSecOps

We are aware that there are existing literature review and
mapping studies related to security in DevOps or DevSecOps
(Table 1). In this section, we highlight the contribution of our
SLR compared with these existing reviews.

The early review studies in DevSecOps have only included
a limited number of resources, as this paradigm was relatively
new in that period. For example, the systematic mapping study
by Mohan and ben Othmane [26], which was conducted in
2016, contained only five peer-reviewed articles and three De-
vSecOps presentations from conferences. The authors aimed to
determine whether DevSecOps or SecDevOps was just a buz-
zword during that period. Accordingly, Mohan and ben Oth-
mane [26] identified certain aspects related to DevSecOps noted
in Table 1. Additionally, they discussed a limited number of
challenges and solutions related to DevSecOps in some of the
noted aspects. We provide more detailed coverage and a sub-
stantially larger number of DevSecOps adoption challenges and
solutions in our study.

Another early Multivocal Literature Review (MLR) by Myr-
bakken and Colomo-Palacios [6] mostly relied on grey litera-
ture (e.g., white papers, blogs, and articles). They provided
a definition, characteristics, benefits, adoption challenges, and
evolution of DevSecOps. The authors also noted that the chal-
lenges were related to traditional or manual security methods,
organizational problems, and lack of appropriate tools. By

contrast, we provide more in-depth coverage in addressing the
adoption challenges from the recent peer-reviewed literature.

L. Prates et al. [28] aimed to uncover metrics that can be
used to measure the effectiveness of the DevSecOps method-
ology using 13 sources. While our study’s focus is not related
to identifying specific metrics, we mention it as one aspect of
measuring security in DevSecOps.

Sánchez-Gordón and Colomo-Palacios [29] conducted an
SLR on DevSecOps, which included only 11 papers. In this
study, the focus of the authors was on characterizing the cul-
ture in DevSecOps. Therefore, the main focus of this article
is different from that of our study. Further, a Grey Literature
Review (GLR) on DevSecOps was carried out by Mao et al.
[30]. Our research differs from this study based on the research
questions addressed. Their research questions investigated the
impact of DevOps on software security, the aspects that practi-
tioners use to understand DevSecOps and the key practices of
the paradigm. Some of the practices captured by this study are
reported as solutions in our study too. We map these practices
to the challenges identified in our thematic analysis.

We have also identified studies that have used a systematic
review of the literature as part of the study. The study con-
ducted by Rafi et al. [31] contained an SLR to identify the se-
curity challenges in DevOps as part of the research. The authors
then evaluated the identified challenges using DevOps experts.
However, only six papers overlap between this article and our
study. We give reasons for this observation below.

Studies state that continuous practices such as CD are closely
related with DevOps as a concept [32]. Based on the SLR by
Stahl et al. [23], many studies state that DevOps is enabled by
continuous practices [33], [34], [35], [36]. For example, CI,
CD, and CDE are key practices that enable the rapid and con-
tinuous deployment cycles of the DevOps paradigm [2], [37].
Another component of DevOps (as per Stahl et al. [23]) which
is quite similar to continuous practices, is tools. Tools are a crit-
ical component in both continuous practices and the DevOps
paradigm, as they enable automation. We note that there are
many overlaps between what practitioners consider as DevOps
tools and tools used in continuous practices (e.g., CI tools) [22].
Based on the above reasons, we argue that to cover security of
DevOps, security of these continuous practices needs to be con-
sidered.

To verify this argument, we conducted pilot searches in dig-
ital libraries using the search terms that captured the relevant
studies (e.g., security AND “continuous integration”). By ana-
lyzing the results, we found a number of studies that can con-
tribute to our research questions. However, none of the previous
SLRs or MLRs (Table 1) with similar research questions have
considered the security of these continuous practices, which we
have captured in our study. Only the study by Rahman and
Williams [P42], which is not a core literature review study, has
captured this aspect. When searching for internet artifacts in
Google search to answer their research questions and then to
prepare a survey on security in DevOps, they used “Security
in Continuous Delivery” and “Security in Continuous Deploy-
ment” as search terms.

Lastly, Stahl et al. [23] state that the terms DevOps and con-

3

Table 1: Comparison of other reviews in DevSecOps : *PC: Peer-reviewed literature count, *GC: Grey literature count, *OC: Overlapped peer-reviewed paper
count with other reviews, *A: Did the study include security of continuous practices?, *B: Did the study include adoption challenges?, *C: Did the study include
proposed solutions?, *D: Did the study include analysis of gap areas? [N/A: Not applicable]

Ë- The authors have considered the security of continuous practices in the study.
�- Adoption challenges, solutions or gap areas are addressed directly through research questions in the study.
�- Adoption challenges, solutions or gap areas are addressed partially through other research questions (i.e., by addressing a different research question, partial
information related to challenges or solutions is provided.)

Authors Focus Year PC GC OC A B C D
Mohan & ben Othmane
[26]

Definition, security best practice, compliance, pro-
cess automation, tools, software configuration, team
collaboration, availability of activity data and infor-
mation secrecy related to DevSecOps

2016 5 3 1 � �

Myrbakken & Colomo-
Palacios [6]

Definition, characteristics, adoption challenges, ben-
efits and evolution of DevSecOps

2017 2 50 0 �

L. Prates et al. [28] DevSecOps Metrics 2019 2 11 0 �
Sánchez-Gordón &
Colomo-Palacios [29]

Characterizing DevSecOps culture 2020 11 N/A 2 �

Mao et al. [30] Impact of DevOps on software security, practitioners
perceptions and practices associated with DevSecOps

2020 N/A 141 N/A �

Rafi et al. [31] Prioritization based taxonomy of DevOps security
challenges

2020 40 N/A 6 �

This study DevSecOps adoption challenges, solutions and gap
areas

2021 54 N/A N/A Ë � � �

tinuous practices are widely used interchangeably. Therefore,
our decision to cover security of continuous practices reduces
the possibility of missing out on the relevant studies. Ulti-
mately, this is why we managed to capture more peer-reviewed
studies relevant to security in DevOps than the previous SLRs
or MLRs. In summary, our review differs from the existing
studies in the following ways.

• To our knowledge, the combination of challenges related
to adopting DevSecOps and proposed solutions have not
been systematically reviewed using a substantial body of
literature. By identifying the challenges, solutions, and the
mapping between them, we were able to identify key gap
areas in this domain.
• We have considered security of the key continuous

practices which enable DevOps as part of our study. This
resulted in capturing a large set of relevant studies, which
were not included in the previous studies.

The rest of this paper is organized as follows. In Section 3,
we present the research methodology used in this study. This
is followed by the results and discussion in Section 4. In Sec-
tion 5, we present the threats to validity and finally, Section 6
concludes our study.

3. Methodology

SLRs are considered as one of the most popular methods
in the field of Evidence-Based Software Engineering (EBSE)
[38]. Studies note that SLRs can enable practitioners to make
informed decisions related to technology selection and adop-
tion [39]. Therefore, we decided to conduct an SLR to answer
our research questions related to DevSecOps adoption.

To carry out this study, we followed the SLR guidelines pre-
pared by Kitchenham and Charters [40]. Also, similar to the

SLR on CD by Laukkanen et al. [41], we included multiple
studies of the same project if new contributions were available.
This was done in order to capture all the relevant information
for our research questions. According to this guide [40], the
study design is presented in the below subsections: (i) Research
questions, (ii) Search strategy, (iii) Inclusion and exclusion cri-
teria, (iv) Data extraction, (v) Data synthesis.

3.1. Research questions

We note the research questions and the motivation behind
each question in Table 2. All the authors discussed and agreed
on the research questions and the process of conducting the
search. However, the first author conducted the search and fil-
tered the studies under the close supervision of the other authors
who are experienced researchers. These steps are detailed in the
following sections.

3.2. Search strategy

We used the guide given by Kitchenham and Charters [40]
to iteratively develop the search string of this study. Our search
string consists of two types of search terms. Firstly, we se-
lected the more popular term DevSecOps and other similar
terms that are used interchangeably (e.g., SecDevOps). To find
such terms, we consulted industry reports and previous reviews.

Secondly, as noted in Section 2.1, we aimed to capture stud-
ies that addressed the security issues of the widely researched
continuous practices in DevOps. Therefore, as the second part
of the search string, we selected search terms that would capture
the security aspects of these continuous practices (e.g., secur*
AND “continuous integration”).

The final search string is presented below.

4

Table 2: Research questions addressed in this study.

Research questions Motivation

RQ1: What are the specific challenges related to adopting
DevSecOps reported in the previous research?

For organizations that are planning to adopt DevSecOps, early identification of the
adoption challenges is important. However, a single peer-reviewed source that sys-
tematically analyzes and synthesizes these adoption problems using a significant body
of up-to-date academic literature is unavailable. This research question aims to address
this specific gap.

RQ2: What are the solutions proposed in the previous re-
search to address the DevSecOps adoption challenges?

An aspect of DevSecOps which is of high interest for the practitioners is solutions in
terms of specific guidelines, best practice, and tools, frameworks or technologies. This
area has not been addressed rigorously by the previous reviews or survey studies in
DevSecOps.

RQ3: What are the opportunities for future research or gap
areas for technological development (e.g., tool support) or
framework support in this domain?

As an area with a growing interest in the research community, it is important to identify
the research gaps to plan future studies. By evaluating the findings of RQ1 and 2, we
aim to identify such gap areas for the research community. Further, we also aim to
highlight the areas in DevSecOps where tool or framework support is lacking. This
would be useful information for the industry (e.g., tool vendors).

devsecops OR secdevops OR devopssec OR secops OR
“rugged devops” OR ruggedops OR (secur* AND devops)
OR (secur* AND “continuous software engineering”) OR
(secur* AND “continuous delivery”) OR (secur* AND
“continuous deployment”) OR (secur* AND “continuous
integration”)

We selected one index engine (i.e., Scopus) as studies have
shown that there is a significant overlap among index engines
[42]. Then, we selected two publisher sites (i.e., IEEE Xplore,
ACM Digital Library) for our study. Next, we conducted pilot
searches on the three selected sources to check whether sev-
eral key papers were included in the results. Our selections are
further supported by Chen et al. [42] recommendations (e.g.,
IEEE Xplore and ACM Digital Library have considerable ex-
clusive contributions, and both of these sources have significant
overlap with Google Scholar).

We ran the search in June 2020 on the selected sources. The
search terms were matched only with the title, abstract, and key-
words of papers. As a result, we retrieved a total of 460 papers.
We then removed the duplicates and ended up with 283 papers.

3.3. Inclusion-exclusion criteria

We used the following inclusion and exclusion criteria to fil-
ter the papers resulting from the above step.

Inclusion criteria:
• The article specifically addresses (e.g., study objective or

research questions) some aspect of security in one or more
of the stages of DevOps or the selected continuous prac-
tices.
• The full text is available.
• The article is written in English.
Exclusion criteria:
• Publications that are not peer-reviewed (e.g., keynote ab-

stracts, call for papers, and presentations)
• The main element or contribution of the article is a litera-

ture review or survey (e.g., secondary study).
• The article is a short paper (i.e., five pages or below)

At first, we used the title and abstract for this purpose. How-
ever, in certain papers, we needed to consider the full text to
make the decision. In these papers, even though our search
string terms were present in the title, abstract, or keywords, it
was unclear how the paper’s content was related to the focus
of our SLR. For example, in several papers, the term DevOps
was noted in the title or abstract. However, upon inspecting the
full paper, we did not find the content to be adequately related
to DevOps (or continuous practices). To determine whether a
paper was adequately related to the focus of our review (i.e., se-
curity in DevOps or continuous practices), we assessed whether
the aim or objective of the study or the research questions ex-
plicitly addressed these areas. By following this step, we were
able to remove studies where the relevant keywords (e.g., De-
vOps) were only included in the paper to provide background
or attract readers (as these are areas with high interest) but not
the main focus of the study.

The first author shared an Excel sheet that detailed the selec-
tion decisions for each included or excluded paper among the
other authors, who conducted a detailed review. In the weekly
meetings, the first author used this sheet to discuss the task in
detail, and the other authors provided feedback which led to
paper inclusions and exclusions. We carried out several rounds
of discussions until a consensus was reached about the selected
list of papers. At the end of this process, we selected 62 papers
based on the inclusion and exclusion criteria.

3.4. Quality assessment criteria

We used the following quality assessment criteria (adopted
from [43]) to assess the papers resulting from the above stage.
As our study contained a high amount of industry-authored pa-
pers, we limited our quality assessment for the below criteria.
• Adequate description of the context: The context or orga-

nizational settings of the paper (e.g., particularly in indus-
try studies) are clearly noted.
• The research design or method suits the aims of the study:

The methodology followed is appropriate to address the
research goals.

5

Incompatibility
between security and

DevOps practices
due to velocity of

change, complexities
and dependancies

Inability to automate
traditionally manual
security practices

"Security assurance is difficult in
modern software processes due to
the velocity of change. The velocity
of change increases due to rapid

business changes, growing
vulnerabilities, software complexity

and dependencies [..]"

"[..] DevOps or Agile, are very
popular and widely used,[..]. They
dramatically reduce the time-to-

market of developed software but,
they can be hardly integrated with

security design and risk
management methodologies"

"One particular challenge is how to
integrate architectural risk analysis in

DevOps/Continuous
Integration/Continuous Deployment
pipelines, since threat modeling and

related activities are not easily
automated"

Practices

Main ThemeName of the
ChallengeCodes

(a) (b)

Figure 2: (a) Example of the coding process (b) Multi-layered coding in NVivo

• Adequate description of the result or solution (i.e., find-
ings): Clear statement of the findings or contributions of
the paper (e.g., solution proposal, tool) is presented.

The grading of these criteria was done using a binary scale
(Yes/No) in the previously noted Excel sheet by the first author
and reviewed by the other authors. We removed a paper if it
received more than one No grade for the three criteria. After the
quality assessment was done, we selected a total of 48 articles
for this study.

3.5. Snowballing activity

The first author conducted forward and backward snow-
balling on the 48 selected papers, which the other authors su-
pervised. The instructions for this activity were obtained from
Wohlin et al. [44]. We found that most of the papers with in-
scope content were already captured in our search stage. As a
result, only four papers were added using this activity.

We then performed snowballing on the primary study lists
of the secondary studies noted in Table 1. This was done to
identify any potentially missed primary studies. By screening a
total of 49 papers from the primary study lists of these studies,
we identified two papers that satisfied our inclusion/exclusion
and quality assessment criteria. Accordingly, the final in-scope
paper count for our study is 54 papers. The final set of articles
is listed in the Appendix.

3.6. Data extraction

We adopted and modified the data extraction sheet from
Garousi et al. [45] to extract data of the papers into Microsoft
Excel. Kitchenham and Charters [40] recommended that data
extraction should be performed independently by two or more
authors. Therefore, the first and fourth author (a senior re-
searcher) performed the data extraction in our study. The first
author extracted data from 39 papers, while the fourth author
extracted from the remaining 15 papers. We used an excel func-
tion to select these 15 papers randomly. After the data extrac-
tion was completed, both authors further examined the extrac-

tion sheets to ensure consistency. These sheets were then shared
with the remaining authors for review.

3.7. Data synthesis and mapping
The first author then carried out the data synthesis. The other

authors regularly reviewed the extracted data and synthesis re-
sults for improvements and to resolve issues.

As we aimed to classify the reported challenges and solu-
tions in the domain, we decided to use the thematic analysis
approach of qualitative research for our study. For this purpose,
we followed the thematic analysis process reported by Braun
and Clarke [46] to synthesize the extracted data. The extracted
data were imported into NVivo, a qualitative data analysis tool
[46]. We then performed open coding on the extracted data
using this tool. In open coding, the data is broken down into
smaller components and labeled using a code [47] (a code is a
word or phrase that acts as a label for a selection of meaningful
text [48]). We conducted this activity in an iterative manner,
where the codes assigned in the first attempt were modified in
the later rounds (e.g., coded content and the name of the code).
Finally, we analyzed the relationship between these codes and
formed the overall themes of the study. Figure 2 (a) presents
an example of how the themes were formed using the coded
content. For this process, we employed a multi-layered coding
structure in NVivo as depicted in Figure 2 (b).

Further, we considered the advice of Patton [49] in this task.
Here, we checked whether the codes within the themes were
meaningfully coherent and whether there were clear and iden-
tifiable distinctions between the themes. For example, we no-
ticed that the codes included in our initial theme Technology
were diverse and not coherently connected. Therefore, we
broke down this theme into Tools and Infrastructure. Also, in
deciding the naming of the main themes, we considered other
available and known DevOps mnemonics (or models). This
strategy is expected to enable a reader to compare our DevSec-
Ops findings with other studies in DevOps.

We also thematically mapped the challenges to the proposed
solutions. In doing the mapping, firstly, we considered how

6

Planning the
review

Conducting the review Main themes

Identifying
the need for
the review

Defining the
research
questions

250
papers

Search in
Scopus

Defining the
review

protocol

134
papers

Search in
IEEE

76
papers

460
papers

Search in
ACM

386
papers

Remove
Duplicates via

Endnote
[-74 papers]

283
papers

Remove
duplicates
manually

[-103 papers]

62
papers

Applying
inclusion &

exclusion cr.
[-221 papers]

48
papers

Applying
quality

assessment
[-14 papers]

52
papers

Forward and
Backward

snowballing
[+4 papers]

54
papers

Snowballing
primary study
lists of other

reviews
[+2 papers]

extraction
sheets

Data
extraction

using excel
sheets

Thematic
analysis

using NVivo

People

Practices

Tools

Infrastructure

2

31 42

1

X

3 4

21 3 4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

21 3 4

1 32 4 21 3 4

X: Author number

Conducted the activity

Cross checked or reviewed the
activity and results

Figure 3: The overview of our research process

the proposed solution addressed specific challenges, as reported
by the paper. Next, we used our own interpretations to map
further and update the diagram. Finally, we determined the gap
areas by holistically evaluating the currently available solutions
against the challenges. The devised gap areas were mapped to
the challenges and included in the mapping diagram as well.

The summary of the method followed in our study is pre-
sented in Figure 3.

4. Results and Discussion

In this section, we present the results of our study. First, we
present an overview of the primary studies and then discuss the
answers to our research questions.

4.1. Overview of the primary studies
The reviewed primary studies were published from 2011 to

June 2020. Based on these papers, the academic interest for
security in the DevOps and CSE domains has emerged in the
2013-2014 period, and there is a gradual upwards growth (Fig-
ure 4a). It is also evident that conducting research in this do-
main is gaining interest in the industry, based on the steadily
increasing contributions to the literature from industry-based
authors. Figure 4b. depicts the number of papers based on the
venue type. Over 60% of the selected papers (33 out of 54)
were published in a large range of conferences (i.e., the work
was not limited to specific conferences).

4.2. Overview of the results

We categorized our results into the following four main
themes.
• People: This theme covers issues related to knowledge

and skills, the collaboration of multidisciplinary team
members of DevSecOps, and the organizational culture
(e.g., inter-team collaboration issues leading to DevSec-
Ops adoption challenges).
• Practices: This theme covers issues related to DevOps or

continuous practices (e.g., CI/CD) and integrating security
practices (e.g., difficulties in integrating manual security
practices into DevSecOps)
• Tools: This theme covers issues related to tools utilized in

DevSecOps, their usage scenarios, and the pipeline (e.g.,
vulnerabilities in containers).
• Infrastructure: This theme covers issues related to

adopting DevSecOps in various types of infrastructures
(e.g., complex cloud environments)

In total, we identified 21 challenges and 31 proposed solu-
tions that were classified into the most relevant theme. Figure
5 presents these results based on the themes and the number
of primary studies per challenge or solution. We also provide
separate tables for the devised challenges (Table 3) and solu-
tions (Table 4) with the relevant key points that were used to
determine the theme.

7

0

2

4

6

8

10

12

14

16

2013 2014 2015 2016 2017 2018 2019 2020

Number of papers

Academic Collaboration Industry

(a) Number of papers based on authorship type

0

2

4

6

8

10

12

14

16

2013 2014 2015 2016 2017 2018 2019 2020

Number of Papers

Conference Journal Workshop

(b) Number of papers based on venue type

Figure 4: Number of papers included in the review across years

2 3 4

3 1 1 3 1 1

2 1 1 6

2 1 3 1

1

1

2

S25S24S23S22S21S20 S26

8264

3

5

43 6

22

Ch18Ch19Ch21 Ch20

5

Theme

4

Challenges

2447124

Ch1Ch2Ch4Ch5Ch6Ch7Ch8Ch9 Ch3

Ch10Ch11Ch13Ch14 Ch12

Ch15Ch16Ch17

2

2 1 23 11

S9S8S6S5S4S3S2S1 S7 S10

Tools

Infrastructure

People

5Practices

1

5

1

6

S19S18S16S15S14S13S12S11 S17

Solutions

S31S30S29S28S27

Figure 5: Number of papers per challenge and solution devised in our study: Bubble size based on the number of papers per challenge or solution

4.3. RQ1: What are the specific DevSecOps adoption chal-
lenges?

This section presents the results for the first research question
of our study, categorized under the four themes.

4.3.1. Challenges related to Tools
This theme reports the challenges related to using tools in a

DevSecOps setting.

Ch1: Challenges related to tool selection. The usage of tools is
highly encouraged in the DevSecOps paradigm. In addition, the
DevOps related practices heavily rely on tools [50]. Therefore,
there are many tools developed for all stages in DevSecOps
[51]. However, a significant barrier in implementing security
into this paradigm is the differences in tool-sets between secu-
rity and other teams [P52]. Each team member has their own
preferences in tools based on specific advantages. This has led
to different teams and even the same team members choosing
various tool-sets [P04, P52].

The empirical studies where developers were interviewed re-
ported that a reason for difficulties in security automation in
DevSecOps results from the lack of tool standards [P04]. One
reason for this issue is that there is no standard way to perform
security automation with a large range of tools [P04, P52].

Further, changing security tools after the project has pro-
gressed could lead to adverse effects or conflicts [P28]. For
example, Soenen et al. [P28] described how adding a secu-
rity scanning tool exponentially increased the duration of the
integration cycle of their work. Also, the usage of unsuitable
deployment tools could have a negative effect on the security
of software [P42]. This could only lead to rapidly deploying
insecure software.

Based on these studies [P04, P28, P42, P52], we observe that
the lack of standards for tool selection is a challenge related to
the security automation goal of this domain. The tool-centric
nature of DevSecOps and the availability of a substantial num-
ber of tools exacerbate this problem.

8

Table 3: Challenges related to adopting DevSecOps

Theme Challenges Key points [Papers which contributed to the point] #

Tools Ch1: Challenges related to tool selection • No consensus on tool selection across and within teams [P04, P52]
• Selecting wrong tools leading to conflicts with DevSecOps goals [P28, P42]

25

Ch2: Security issues resulting from tool
complexity and integration challenges

• Complexities of the DevOps and security tools [P33]
• Limitations in documentation resulting in security issues [P33]
• Lack of integrated testing tools [P45, P52]

Ch3: Configuration management issues
of tools

• Using default configurations of security tools [P46]
• Neglecting best practice for configuring software [P47]

Ch4: Limitations of static analysis tools
affecting rapid deployment cycles

• High number of false positives [P04, P25, P26]
• Lengthy code scanning time and resource consumption [P28]

Ch5: Limitations of dynamic analysis
tools restricting its usage in DevSecOps

• Need to be manually run by developers to find security flaws [P17]
• Typically lengthy time needed to run the tool [P22]
• Software/Code needs to be built, installed and configured [P25].
• Limited scope of testing scenarios [P32]

Ch6: Security limitations or
vulnerabilities affecting the container
ecosystem

• Vulnerabilities in containers or container images [P01, P22, P23, P30, P31, P40, P44]
• Security issues due to embedding third party elements & external intermediaries [P23, P44]
• Insecure configurations and access control settings [P44]
• Casting containers as virtual machines [P23]

Ch7: Vulnerabilities affecting CI systems • Tenants executing their own code on the CI environment [P34]

Ch8: Limitations of Infrastructure or
Configuration as Code tools and scripts

• Security smells of Infrastructure as Code scripts [P43]
• Security issues of Configuration as Code tools [P51]

Ch9: Security limitations or
vulnerabilities affecting the CD pipeline

• The pipeline opens up additional attack surfaces [P33, P36]
• Potential security damages related to compromised or misconfigured CDPs [P09]
• Different team members having same level of access to the pipeline [P09]
• Security vulnerabilities of the CD pipeline [P36, P50]

Pract. Ch10: Inability to fully automate
traditionally manual security practices to
integrate into DevSecOps

• Compliance (testing) practices [P08, P39, P41, P47]
• Security and privacy by-design practices [P02, P48]
• Architectural risk analysis [P05]
• Risk management practices [P02]
• Threat modelling [P05, P21]

20

Ch11: Inability to carry out rapid security
requirements assessment

• Security requirements assessment not being done before shipping to production [P06]
• Lack of methods to continuously and rapidly assess security requirements [P35]

Ch12: Challenges related to security
measurement practices in rapid
deployment environments

• Lack of suitable security metrics [P03, P04, P20, P32]
• Usage of traditional data or feedback gathering methods [P15, P52]

Ch13: Challenges related to continuous
security assessment

• Continuous vulnerability assessment not done in practice [P12, P17, P21]
• No consensus on how security measures should be added to the pipeline [P16]

Ch14: Incompatibility between security
and DevOps practices due to velocity of
change, complexities and dependencies

• Reluctance to adopt DevSecOps due to the perceived incompatibility of security and DevOps
practices [P06]

• Rapid releases not conducive to thorough testing schemes [P04, P20]
• Developers face trade-offs between speed and security in continuous practices [P49]
• Security assurance challenging due to the velocity of change [P52]

Infra. Ch15: Difficult to adopt DevSecOps in
complex cloud environments

• Multi-cloud environments [P37, P39, P54]
• Systems-of-Systems environments [P03]
• Data security in the cloud environment [P18, P24]

13

Ch16: Difficult to adopt DevSecOps in
resource constrained environments

• Embedded systems [P11]
• Internet of Things (IoT) systems [P10, P19, P38]

Ch17: Difficult to adopt DevSecOps in
highly regulated environments

• Air-gapped environments [P07, P27]
• Medical infrastructure [P13]

People Ch18: Inter-team collaboration issues • Conflicts between developer and security teams [P04, P45]
• The need for tools that facilitate collaborative efforts [P53]
• Silos between teams [P04, P41, P52]

09

Ch19: Knowledge gap in security • Lack of security education and training [P04]
• Developers lacking security skills [P33]

Ch20: Challenges in organizational
culture

• Fear of change or being replaced due to the required cultural/behavioural changes [P03]
• Reluctance to prioritize security among team members [P04]

Ch21: Insider threats • Misbehaviors due to extensive access [P29, P42]

9

Ch2: Security issues resulting from tool complexity and integra-
tion challenges. Current DevOps and security tools suffer from
complexity, particularly related to developers without security
training or skills [P33]. The lack of clear documentation for
such tools has increased this problem. Studies state that current
documentation does not give sufficient information about the
security settings of tools [P33]. For example, tool documen-
tation often does not provide details about the least privilege
security settings. This results in difficulties in setting up tools
with the recommended security settings or policies.

Tool integration (e.g., to form a pipeline) is an essential task
in DevSecOps. However, developers are finding it difficult to
integrate testing tools into the DevOps pipeline [P45]. This is
due to the reason that integrating tools can be a difficult, man-
ual, and time-consuming task [P52].

Based on the above details, a developer is required to have
in-depth expertise (guru-level knowledge as stated in [P33]) on
setting up these tools with the correct security settings or poli-
cies and securely integrating them.

Ch3: Configuration management issues of tools. Configura-
tion management is another problem related to tool usage in
DevSecOps. Developers cause vulnerabilities by neglecting the
best practice for configuring software and underlying infras-
tructure [P47]. For example, using default configurations of
security tools could lead to wasting resources and producing
unsuitable (either excessive or insufficient) security levels for
applications [P46].

Ch4: Limitations of static analysis tools affecting rapid deploy-
ment cycles. Static Application Security Testing (SAST) (i.e.,
Static analysis) tools inspect the source, byte, or binary code
without running the software [P25]. These tools play an essen-
tial role in the early detection of potential faults, vulnerabilities,
and code smells [P26].

However, one major problem related to SAST is the con-
siderable time needed to manually assess the substantial num-
ber of false positives these tools generate [P04, P25, P26]. In
a DevSecOps setting with multiple releases in a short period,
carrying out this task can cause delays. Further, teams would
also need developers who are knowledgeable in recognizing the
false positives [P04].

The lengthy code scanning time and high resource consump-
tion of SAST tools are also drawbacks for DevSecOps [P28].
In this paradigm, developers are encouraged to commit small
amounts of work frequently. However, scanning each incre-
mental work item might not be practical due to the significantly
long code scanning times of these tools (especially when the
whole codebase is required to be scanned) [P28].

Therefore, based on the above issues, developers find it hard
to use static analysis tools in the fast-paced DevSecOps envi-
ronment [P04].

Ch5: Limitations of dynamic analysis tools restricting its usage
in DevSecOps. Dynamic analysis or DAST tools have many
benefits in identifying a wide range of vulnerabilities (e.g.,
memory safety and input sensitization errors) [P17]. However,

software or code must be run to conduct dynamic analysis. This
requires software to be built, installed, and configured [P25].
In a DevSecOps setting, where the code is released frequently,
conducting these steps at each release is difficult. Another prob-
lem with these tools is the fair amount of manual effort needed
to set up and run these tools [P17]. Similar to SAST tools, dy-
namic analysis tools typically take a longer time period to run
[P22]. These tools can also be limited in relation to the scope of
testing scenarios, which depends on the type of tool being used
[P32].

All of the above are issues that could hinder the speed and
frequency of releases in DevOps. Therefore, despite the abil-
ities of dynamic analysis tools in identifying security defects
and vulnerabilities, the drawbacks limit its use in DevSecOps.

Ch6: Security limitations or vulnerabilities affecting the con-
tainer ecosystem. Containers are widely used in DevOps.
However, vulnerabilities affecting containers and their usage
scenarios are widely reported challenges in this domain [P01,
P22, P23, P30, P31, P40, P44]. The DevOps community pro-
vides a large range of reusable artifacts such as container im-
ages [52]. However, these images may be corrupted by attack-
ers and contain vulnerabilities. Although there have been ef-
forts to encourage security assessment of these images from the
users, they are often overlooked [P22].

Containers embedding various service providers’ third-party
elements have also increased the number of vulnerabilities
[P44]. The increase of external entities which provide code
that ends up in the production environment expands the attack
surface [P23]. Therefore, developers are faced with the chal-
lenge of limiting the reuse of already existing components (e.g.,
libraries), despite the requirement of fast deployments in De-
vSecOps.

The practitioners’ inappropriate usage of containers has re-
sulted in various other security implications as well [P44]. For
example, insecure configurations and access control settings ap-
plied by developers can lead to security breaches that can affect
all source files stored in the container [P44]. Another example
is casting containers as virtual machines by developers, which
results in many vulnerabilities [P23]. In this situation, the con-
tainer is used for requirements for which it was not designed
(e.g., embedding more software than supported by the container
design), thus increasing the attack surface [P23]).

Based on the above details, despite the advantages of the con-
tainer ecosystem for DevSecOps, it has also given rise to many
security challenges.

Ch7: Vulnerabilities affecting CI systems. Continuous integra-
tion plays a vital role in the DevOps pipeline. To technically
enable the CI practice, CI tools have been developed. However,
studies report that CI tools are more vulnerable (compared with
other tools) for security attacks as tenants execute their own
code in the CI environment [P34]. Therefore, there is a higher
number of attack vectors related to these systems [P34]. This is
a significant security challenge affecting DevSecOps due to the
substantial usage of CI systems in this paradigm.

10

Ch8: Limitations of Infrastructure or Configuration as Code
tools and scripts. Infrastructure as Code (IaC) tools are highly
utilized in DevSecOps, due to their use in configuring infras-
tructure rapidly. However, critical security challenges related
to the scripts used in the tools have been reported. For exam-
ple, studies have discovered that practitioners mistakenly intro-
duce many security smells into IaC scripts [P43]. Here, security
smells are indicative of security weaknesses and can lead to se-
curity breaches [P43].

Configuration as Code (CaC) tools are another type of tool
used heavily in CD, which enables the management of comput-
ing and network configurations through source code [53]. How-
ever, security-related issues in CaC tools are not given priority
in the community [P51]. This was evident by a study that mined
Stack Overflow posts to identify developer challenges in using
CaC tools [P51]. As one of the findings, the authors noted that
despite security-related questions of such tools being common,
they often do not get satisfactory answers from practitioners.

These results point towards developers’ lack of interest in
focusing on security issues of IaC and CaC tools which is prob-
lematic as any related faults could lead to substantial damages.

Ch9: Security limitations or vulnerabilities affecting the CD
pipeline. A critical security problem related to CD of software
is the security limitations or vulnerabilities of the CD pipeline
(CDP) itself. A typical CDP is not designed in a manner that
gives security requirements much prominence [P09]. Further,
a number of separate tool suites and users are involved in dif-
ferent CDP stages. Most of the technical components of the
CDP run in an environment with several online interfaces, and
these components are vulnerable to various kinds of malicious
attacks [P36]. Therefore, the CDP opens up additional attack
surfaces which can be exploited [P33]. Studies note that a com-
promised or misconfigured CDP may result in malicious code
or unwanted debugging/experimental code ending up in the pro-
duction environment [P09]. This is critical as malicious soft-
ware with customer access can lead to adverse consequences.

DevSecOps advocates for a high level of team-collaboration.
However, different team members (Dev/Sec/Ops) having the
same level of access to the pipeline can lead to security-related
challenges [P09]. Paule et al. [P50] assessed two CDPs from
industry projects using a threat modeling approach. They state
that even though most team members have access to CDP con-
figurations, these members pose a risk to the infrastructure and
the application due to the lack of security knowledge and aware-
ness. Therefore, any potential damages could be intentional or
unintentional. This study also reported on other vulnerabilities
such as unencrypted connections and insecure (e.g., foreign or
customer) environments affecting the CDP [P50].

4.3.2. Summary of the challenges related to Tools

• Developers are finding it difficult to select or use the in-
creasing number of security tools due to the lack of stan-
dards, documentation, and training. The complexity, in-
tegration, and configuration challenges of such tools ag-
gravate this problem [Ch1, Ch2, Ch3].

• The inability of established security tools to support the
rapid deployment of software is a significant challenge.
Therefore, there is a tendency among practitioners to
not utilize these tools despite their benefits [Ch4, Ch5].
• A large number of security vulnerabilities are affecting

popular tools used in the DevSecOps pipeline (e.g., con-
tainers, CI systems) and the pipeline itself [Ch6-Ch9].

4.3.3. Challenges related to Practices
This theme reports the challenges related to conducting cer-

tain practices (e.g., security practices) in a DevSecOps setting.

Ch10: Inability to fully automate traditionally manual security
practices to integrate into DevSecOps. In DevOps, automation
plays a significant role due to the requirement of rapid and con-
tinuous releases. To achieve this goal, DevOps contains a set of
continuous practices (e.g., CI/CDE/CD), which are automated
to a large extent. However, automation of security practices
has become problematic as many of them are traditionally per-
formed manually. Our study captured several such practices.
Many studies have stated that conducting compliance practices
has become challenging with the pace of DevOps [P08, P39,
P41, P47]. In this scenario, compliance of standards, frame-
works, and best practice processes and the velocity of DevOps
practices act as opposing factors [P08].

Other security practices which are challenging to integrate
into DevOps include: security or privacy by design [P02, P48],
architectural risk analysis [P05], threat modeling [P05, P21],
and risk management [P02]. The key reason for this difficulty
is the need for substantial human input to execute these pro-
cesses. As a result, they can be time-consuming and would
have a negative impact on rapid releases.

Ch11: Inability to carry out rapid security requirements assess-
ment. The process of conducting rapid assessment of security
requirements is seen as difficult in a DevSecOps setting. Due
to the fast pace of CDs, it is challenging to thoroughly verify
the security requirements before shipping software to a produc-
tion environment. Therefore, such an assessment of security re-
quirements is not carried out in a practical setting [P06]. Lack
of tools and methods to carry out this process could be a key
reason for this situation [P35].

Ch12: Challenges related to security measurement practices in
rapid deployment environments. The task of measuring secu-
rity in software is hugely challenging [54]. Measuring security
in the DevOps paradigm is even more difficult due to the contin-
uous and rapid software releases [P20]. Lack of suitable secu-
rity metrics [P03, P04, P20, P32] was a frequently cited reason
for these difficulties.

Another challenge related to security measurement in rapid
deployment environments was the usage of traditional (and
slow) data gathering methods. Fast feedback loops are required
for CD systems [P15]. Therefore, the usage of traditional meth-
ods hinders this task.

11

Quick feedback loops between the teams in DevSecOps and
other relevant project stakeholders are also highlighted as an
important requirement [P52]. This is important in terms of
maintaining traceability to enable fault localization and resolv-
ing issues. However, these processes are difficult to imple-
ment in practice due to problems ranging from using traditional
methods [P15] to cultural issues.

Ch13: Challenges related to continuous security assessment.
Continuous security [P14] assessment is a recommended prac-
tice in DevSecOps. However, processes related to this practice
are not widely adopted. Continuous vulnerability assessment
is one such process [P12, P17, P21]. This is due to practition-
ers not carrying out periodic checks for vulnerabilities [P12],
team members lacking knowledge of continuous vulnerability
assessment [P21], and other scaling issues related to continuous
security testing [P17].

For continuous security assessment to be a success, there
must be clear instructions on which sections of the pipeline se-
curity measures will be included. However, there is a lack of
consensus (i.e., a standardized methodology) on how security
measures must be included in a DevOps pipeline [P16].

Ch14: Incompatibility between security and DevOps prac-
tices due to velocity of change, complexities, and dependencies.
While one of the key aims of DevOps is the speed of release,
many security testing practices require human input. For exam-
ple, penetration testing requires substantial human input (even
though there are tools for penetration testing, human input is re-
quired to configure, run and then assess outputs) [P04]. There-
fore, these are time-consuming practices. As a result, rapid re-
leases are not conducive for thorough testing programs [P20].
In addition, the increasing complexities, vulnerabilities, and de-
pendencies to third-party components such as open-sourced li-
braries have made security assurance even more challenging
[P52]. Due to these reasons, developers face trade-offs between
the speed of release and security [P49], and organizations see
maintaining the velocity of DevOps and thorough security as-
surance as incompatible practices [P06].

4.3.4. Summary of the challenges related to Practices

• The inability to automate traditionally manual security
practices to fit into the DevSecOps paradigm is a critical
challenge yet to be adequately addressed [Ch10, Ch11].
• DevOps practices focus on speed and agility. The key

focus of security practices is security assurance through
comprehensive testing, which is time-consuming. Ul-
timately, developers face trade-offs between speed and
security in a DevOps setting [Ch10-Ch14]
• Due to these reasons, some organizations are reluctant

to transform into DevOps due to this perceived incom-
patibility between security and DevOps [Ch14].

4.3.5. Challenges related to Infrastructure
In this section, we present the challenges related to adopting

DevSecOps in certain types of infrastructures.

Ch15: Difficult to adopt DevSecOps in complex cloud environ-
ments. DevSecOps principles and practices are difficult to be
adopted in various types of complex cloud environments. For
example, producing secure software rapidly is challenging in
a cloud environment when the target system is in the form of
system-of-systems (SoS) [P03]. SoS are complex systems that
are comprised of other constituent systems [P03].

Another type of challenging infrastructure is multi-cloud en-
vironments (applications that combine multiple heterogeneous
cloud offerings) [P37, P39]. Security assurance has become
challenging in architectures such as microservices [P54] and
automated distributed deployments [P37] which are heavily uti-
lized in multi-cloud environments. Studies also report that data
security is another critical issue in this domain. Producing soft-
ware rapidly while ensuring data security in such distributed
and heterogeneous complex cloud environments is a complex
task [P18, P24].

Ch16: Difficult to adopt DevSecOps in resource-constrained
environments. We captured two types of resource-constrained
environments where adopting DevSecOps was reported to be
challenging: Internet of Things (IoT) systems and embedded
systems. Here, the challenges related to IoT include high het-
erogeneity of the infrastructure (which increases the attack sur-
face) and the complexity in maintaining and evolving such sys-
tems [P10]. Also, due to the distributed and heterogeneous
nature of IoT-based systems, setting up secure deployment
pipelines and monitoring security-related events are challeng-
ing [P38]. It has also been reported that there is a lack of key
enabling tools that could result in the low adoption of secure
DevOps practices in IoT [P19].

Regarding embedded systems, Mårtensson et al. [P11]
present a set of factors that must be considered when apply-
ing CI into software-intensive embedded systems. Firstly, they
state that compliance with standards, which is critical in embed-
ded systems, changes the focus away from delivering working
software rapidly. Secondly, another factor is the restriction for
information access resulting from security concerns in the do-
main. Therefore, such factors would hinder the implementation
of DevSecOps practices in these types of infrastructures.

Ch17: Difficult to adopt DevSecOps in highly regulated envi-
ronments. Highly regulated environments were the next type
of complex infrastructure that was captured from this theme.
The studies showed how secure continuous practices were chal-
lenging in patch delivery for medical devices [P13] and air-
gapped production environments [P07]. Characteristics of reg-
ulated environments (as reported in P07 and P27) such as zero-
trust security architectures, segregated environments, tempo-
rary access policies, and restricted communication with stake-
holders make it challenging to implement secure DevOps prac-
tices. Further, if the regulated environment or infrastructure has
an air-gap (i.e., no direct production access, or many security
gates) to production environments, adoption of certain continu-
ous practices can be challenging.

12

4.3.6. Summary of the infrastructure-related challenges

• Most of the problems in this theme arose due to the
nature of certain challenging infrastructures (e.g., dis-
tributed, heterogeneous or segregated environments) or
restrictive policies (e.g., access control) conflicting with
DevSecOps principles or practices [Ch15, Ch16, Ch17].

4.3.7. Challenges related to People
This section presents the reported challenges related to peo-

ple.

Ch18: Inter-team collaboration issues. Strong communication
and collaboration across teams are key success factors in De-
vSecOps. However, the most number of papers categorized un-
der the theme People were challenges related to inter-team col-
laboration. One of the main collaboration issues reported was
the conflicts between development and security teams [P04,
P45]. Studies reported developer sentiments such as how they
feel like security team members judge and criticize the work
done by them [P04]. Further, developers were unhappy about
losing the autonomy of their own development work [P04].

The silo-based work culture in the software community [P04]
is a barrier to secure DevOps [P52]. These silos hinder frequent
and effective communication and collaboration between stake-
holders. With regard to secure DevOps, security team members
are important stakeholders who need to be part of a project.
The other teams are required to communicate frequently and
collaborate with security team members, and have an attitude
of shared responsibility [P04]. However, studies captured by
our SLR showed that this was not the case in practice [P41].
There is also a need for tool-supported automation to facilitate
collaborative efforts with the security team [P53]. For exam-
ple, in the early stages of the development process, tool support
would be helpful to manage and provision design models and
understand the design rationales of the security team or other
teams members in a collaborative manner [P53].

Ch19: Knowledge gap in security. DevSecOps advocates de-
velopers to engage in security tasks. However, the lack of secu-
rity skills and knowledge of developers hinders this goal. De-
velopers lacking security education and training contribute to
this problem. Studies state that one reason for this situation
is software engineering and software security education being
separate [P04].

Wilde et al. [P33] offer a different point of view. They argue
that it is difficult to have a sufficient number of personnel with
the required security skills. Therefore, the security aspects of
DevOps should be simplified so that those tasks can be man-
aged by developers who lack specialized security skills [P33].

Ch20: Challenges in organizational culture. For successful
DevSecOps adoption, many cultural and behavioral changes are
required. However, this has resulted in competition and fear
among people [P03]. For example, fear of being replaced or no
longer being recognized and resentful sentiments of not being
the owner of the foreground are some issues reported [P03].

Reluctance to prioritize security is another reported chal-
lenge related to organizational culture [P04]. In this case, au-
thors have described instances where developers or other team
members not fully taking responsibility for security practices
(e.g., P04 quotes a developer: “nobody wants to take respon-
sibility for security because it adds nothing”). They also share
that in certain companies, the management does not prioritize
security [P04].

Ch21: Insider threats. The role of developers has changed in
DevOps, where now they have access to production services.
Therefore, a larger number of insiders have access to the pro-
duction environment [P29]. Consequently, if any one of these
insiders turns rogue, they can cause harm via access to the pro-
duction setting or governance tools used to control that environ-
ment [P29]. Therefore, unrestricted collaboration might lead to
inappropriate access to the system resources [P42]. Based on
the above, we can see that the risk of insider threats has in-
creased with the change of roles in DevSecOps.

4.3.8. Summary of the people related challenges

• Challenges reported in this theme mainly resulted from
the inability of Dev/Sec/Ops team members or the man-
agement to engage in the required culture change of this
paradigm [Ch18, Ch20].
• Developers lacking security skills is a critical issue in

this domain, as developers are required to carry out cer-
tain security practices in DevSecOps [Ch19].

4.4. RQ2: What are the solutions proposed to address the De-
vSecOps adoption challenges?

This section presents the results for the second research ques-
tion, the proposed solutions in DevSecOps.

4.4.1. Solutions proposed related to tools
This section reports the solutions proposed for the tool-

related challenges.

S1: Practitioners converge towards tool standards. Studies re-
ported that developers were finding the tool selection challeng-
ing due to the high number of tools available for each stage in
DevSecOps [P04]. To address this problem, developers were
advocating that the community should converge towards tool
standards (e.g., selection and usage) [P04]. In doing so, there
would be more commonly accepted selection and usage guide-
lines, which would reduce a large number of tool-related chal-
lenges.

S2: Documentation with security support. The complexity of
the available DevSecOps tools was a reported problem [P33].
The lack of thorough documentation seemed to exacerbate this
issue. Therefore, better documentation related to the usage of
tools is advocated [P43]. This would be a solution for the con-
figuration management challenges as well as security settings
related to tools. The optimal and recommended configurations
and security settings for tools can be delivered through clear

13

Table 4: Solutions proposed to address DevSecOps challenges

Main
theme

Solutions Key points [Papers which contributed to the point] #

Tools S1: Practitioners converge towards tool
standards

• The community converging towards standards in tool selection and usage [P04] 19

S2: Documentation with security
support

• Clear documentation detailing security settings [P43]
• Documentation delivered through centralized repositories [P06]

S3: Adopting best practice for tool
usage

• Tools configured based on the context, without using default settings [P46]
• Being specific on the nature of the testing (e.g., excluding non production code) [P26]
• Setting up optimized tool pipelines [P28]

S4: Move to cloud-based solutions • Using static code analysis as a service [P25]
• Cloud tools to facilitate collaboration across cross-disciplinary teams [P53]

S5: Interactive application security
testing (IAST) tools

• Using IAST tools which combine the SAST and DAST tool features [P32]

S6: Tools for continuous vulnerability
assessment

• Enabling continuous vulnerability assessment [P17, P40]
• Combining multiple static and dynamic analysis tools [P22, P31]

S7: Using orchestration platforms • Orchestrators to limit the misuse of containers [P23]
• To enable better isolation [P44]
• To reduce the container attack surface [P30]

S8: Using a virtualization tool to
encapsulate part of the system

• Encapsulate the build job to secure the build server [P34]

S9: Static analysis for IaC Scripts • To automatically identify security smells in IaC scripts [P43]

S10: Reusable design fragments and
security tactics

• Design fragments to secure the tool pipeline [P09]
• Security tactics to increase the security of a CD pipeline [P36]

Pract. S11: Adapting standards, policies,
models, service level agreements (SLA)
into testable criteria

• SLAs to model and assess security requirements or made machine readable [P02, P37, P39]
• Adapting information security standards into testable criteria [P08]
• Continuous automated compliance testing mechanisms [P47]

16

S12: Automated vulnerability detection
through requirement analysis

• Toolchains that automatically translate requirements documents [P35].

S13: Devising security metrics or metric
based approaches

• Security metrics based on developer attributes and activities [P04]
• Measure second-order effects in the development process [P20]
• A taxonomy of metrics for IoT [P38]

S14: Effective process documentation
and logging strategies

• Security logging of user processes using specific tools [P06]
• Automated process documentation [P06]

S15: Big data and behavioral analytics
techniques

• Obtain fast feedback from the end user of systems [P15]
• Predictive analytics to be aware of trends in user behaviours [P15]

S16: Shifting security to the left • Giving a higher priority to security and identifying security issues at a very early stage [P08]
• Overcome costly fixes at a later stage [P04]
• Having the correct tool sets in place early [P16]

S17: Implementing continuous security
assessment practices

• Security treated as a key concern across all stages [P14]
• A smart and lightweight approach to identify security vulnerabilities [P14]
• Consensus required on how security practices would be included in the cycle [P16]
• Required tools need to be in place [P12]
• Continuous monitoring as an example for a specific continuous security practice [P07, P38]

S18: Security patch management using
DevOps practices

• Addresses security vulnerabilities in a rapid manner [P20]

S19: Using threat analysis practices • Using STRIDE threat modeling approach to identify vulnerabilities in a CDP [P50]

Infra. S20: Strict access management and
policies

• Need-based-access [P07].
• Changes to production made automated [P07]

11

S21: Adopting Infrastructure as code • Infrastructure to be the versioned, tested, built and deployed using IaC in Air-gapped envi-
ronments [P07].

• IaC support for setting up pre-configured systems and networks [P27]

S22: Creating simulation or replication
environments for testing

• To enable internal testing in highly regulated environments [P27].
• To enable testing application scenarios against programmed circumstances [P19]

S23: Model driven engineering to
support DevSecOps

• To address the heterogeneity of IoT infrastructures [P10].

Continues to the next page

14

Table 4: Continued from the previous page

Main
theme

Solutions Key points [Papers which contributed to the point] #

S24: Systematic evaluation of
product-specific vulnerabilities

• Design aware risk assessment in highly regulated industries [P13].

S25: Hybrid life cycles with
data-security focus

• Combining data security and software development life cycles [P18].

S26: Framework support for DevSecOps • Author defined frameworks [P03, P19, P24, P37, P39, P54]

People S27: Facilitating inter-team
communication and collaboration with
the appropriate controls or standards

• Inter-team collaboration as a best practice [P06, P42]
• Forming multidisciplinary teams [P08]
• Short feedback cycles with other teams [P42]
• Increase developer engagement in security tasks [P41]
• Clear separation of duties [P06]
• The need for standardized communication strategies [P13, P27]

10

S28: Having security champions in
teams

• Security champions to bridge the gap between security and development [P04]
• To reduce developer resistance [P20].

S29: Carrying out organizational HRM
programs in parallel

• HRM programs to address challenges in culture change [P03]

S30: Implementing security knowledge
sharing methods and training

• To enable developers use security tools and assess the outputs [P04]
• Blameless security retrospectives [P04]
• To identify when to seek advice from the security team [P20]
• Examples of specific security training activities [P42]

S31: Integrity protection frameworks • Framework for holistic integrity protection in microservice-based systems [P29]

documentation [P43]. Further, the documentation can be made
easily accessible for all team members by using a centralized
repository [P06].

S3: Adopting best practice for tool usage. Best practice related
to tools needs to be followed to ensure quality attributes such
as security. For example, keeping the default configuration set-
tings could lead to issues such as unsuitable security (excessive
or insufficient) levels for software [P46]. A best practice in this
scenario is to configure the tool based on the context (e.g., tech-
nology stack) in which it is being used.

Studies have also offered a range of best practice regarding
using scanning tools in the pipeline, for example, being clear on
what specific checks to perform on a project (e.g., web specific
checks would not make sense for a non-web based project), ex-
cluding certain non-production code from scanning, properly
configuring tools based on the internal guidelines, and avoiding
duplicate checks can be noted [P26].

Another example related to using SAST tools is setting up
optimized tool pipelines [P28]. Here, studies discussed running
static analysis tools in parallel as a solution to the lengthy code
scanning time (e.g., particularly for deep scans) [P28].

S4: Move to cloud-based solutions. Moving to cloud services
is a popular trend in the current context. By using such ser-
vices, customers are able to avoid certain drawbacks of stan-
dalone tools. This is true concerning tools that are used in De-
vSecOps as well [P25]. For example, static analysis as a service
solutions were reported [P25]. By using such solutions, users
are able to minimize certain DevSecOps adoption challenges
related to SAST tools, such as high amounts of false positives
and configuration or setup difficulties of these tools.

A cloud-based service (i.e., CAIRIS) was also recommended
to facilitate inter-team collaboration between security and us-
ability teams [P53]. By using this service, security and usability
engineers are better able to manage machine-readable design
models (i.e., design as code), leading to higher collaboration
among their teams [P53].

S5: Interactive application security testing (IAST) tools. IAST
is a testing tool that integrates well with the DevOps paradigm.
This is a new class of security testing tools that combines the
features of static and dynamic analysis tools [P32]. These tools
are typically run during the functional unit testing stage. Both
commercial and open-sourced IAST tools that are suited to
modern software development methods are available [P32].

S6: Tools for continuous vulnerability assessment. Tools en-
abling continuous security assessment practices are a key solu-
tion proposed in DevSecOps. For example, a tool that checks
for vulnerabilities each time there is a code commit was re-
ported [P17]. Such continuous assessments can alert devel-
opers of security issues immediately after they are introduced
[P17, P40]. Another proposal was to use multiple static and
dynamic analysis tools for the vulnerability assessment of con-
tainers [P22, P31]. By doing so, drawbacks of individual tools,
such as false positives, can be mitigated.

S7: Using orchestration platforms. Studies have widely pro-
posed using orchestration platforms as a solution for the chal-
lenges related to containers [P23, P30, P44]. Orchestrators offer
many advantages to limit the misuse of containers [P23]. For
example, orchestrators enable a high level of abstraction (e.g.,
task/replication controllers) and remote persistent storage, thus
allowing for better isolation [P44]. Other security features of

15

such an orchestration platform should include: enabling con-
tainer image sanity, reducing the container attack surface, tight-
ening user access control, and hardening of the host [P30].

S8: Using a virtualization tool to encapsulate part of the sys-
tem. This is a solution proposed to address attacks to the CI or
build servers. Here, the virtualization tool should encapsulate
the build job resulting in a secure build server. In this proposal,
the aim is to set the build server to an un-compromised state
after each build job [P34].

S9: Static analysis for IaC scripts. This is a solution proposed
to address security weaknesses (e.g., security smells) of IaC
scripts. Such scripts are the input to IaC tools, which are heav-
ily utilized in DevSecOps. In this case, Rahman et al. [P43]
developed a static analysis tool called Security Linter for In-
frastructure as Code scripts (SLIC) to automatically identify
security smells in IaC scripts.

S10: Reusable design fragments and security tactics. A pro-
posed solution to address the security issues of a CDP is the
usage of reusable verified design fragments. These design frag-
ments are introduced to package security patterns and platform
features [P09]. Rimba et al. [P09] showed how four primitive
tactics could compose design fragments into a secure pipeline.
Ullah et al. [P36] also demonstrated how security tactics could
be used to increase the security of a CDP. They focused on the
access control for the repository, main server, and CI server.

4.4.2. Summary of the tools related solutions

• A key recommendation in this theme is to use tools
that target or support the DevSecOps paradigm (e.g.,
hybrid tools [S5], continuous vulnerability assessment
tools [S6]).
• Studies also recommend moving to cloud solutions if

it reduces the drawbacks of in-house tool usage, which
affect DevSecOps goals (e.g., SAST) [S4].
• A range of methods and guidelines were reported to ad-

dress the vulnerabilities and security limitations of tools
and the CDP in DevSecOps [S6-S10].

4.4.3. Solutions proposed related to Practices
This section reports the solutions related to practices.

S11: Adapting standards, policies, models, service level agree-
ments into testable criteria. A frequently reported challenge
was the inability to automate certain manual security practices
to fit into a DevSecOps pipeline [Ch10]. To overcome this
problem, authors attempted to fully or partially automate prac-
tices such as compliance testing, risk management, security,
and privacy by design [P02, P39, P47]. One of the key propos-
als reported in these studies was adapting standards, policies,
models, and service level agreements (SLA) into testable crite-
ria. For example, SLAs have been used to devise a security-
by-design methodology that can be integrated with modern
paradigms such as DevOps [P02]. In this case [P02], the SLAs

were used to model and assess security requirements. SLAs
were also reported to be used for security and privacy assur-
ance in multi-cloud systems [P37, P39]. Here, the focus was
to make SLAs machine-readable and based on security and pri-
vacy standards [P39].

To perform compliance testing practices at DevOps speeds,
developers can use industry tools to adapt information secu-
rity standards into testable criteria [P08]. Studies have also
reported work on continuous automated compliance testing
mechanisms, which would suit the DevSecOps paradigm [P47].

S12: Automated vulnerability detection through requirement
analysis. Studies have proposed methods to automate secu-
rity requirement analysis to suit CSE paradigms. For example,
toolchains have been developed to automatically translate re-
quirements documents into ontological models, analyze those
models, and report the results [P35]. Once corrective guidance
can be obtained from toolchains, developers are able to address
security issues very early in the process.

S13: Devising security metrics or metric-based approaches. In
several empirical studies, developers discussed metrics for soft-
ware security assessment used in their organizations. One pro-
posal regarding metrics was to measure second-order effects in
the development process [P20]. The following are some of the
metrics discussed based on [P04] and [P20].
• The number of developers modifying the file or with secu-

rity training
• The number of commits per time period
• The number of mistakes uncovered from known secu-

rity classifications (e.g., Open Web Application Security
Project (OWASP) top 10)
• The time spent to correct mistakes, category-wise (if a

known classification was used)
• Internal/external penetration testing results for systems.
A taxonomy of metrics was developed by Diaz et al. [P38]

relating to monitoring IoT environments.

S14: Effective process documentation and logging strategies.
Due to the rapid pace of software releases in the DevOps
paradigm, practitioners do not prioritize documentation and
logging processes. However, these are some of the best prac-
tice processes in software development and must be followed
irrespective of release speed [P06]. For example, if the auto-
mated deployment and testing outcomes are documented, these
will serve as evidence for audits [P06]. Therefore, studies have
discussed using suitable tools and maintaining the required data
(e.g., security logging of user access, metadata, and document
repositories) to conduct documentation processes in a rapid
manner to suit the DevOps paradigm [P06].

S15: Big data and behavioral analytics techniques. As a so-
lution to the reported limitations of the traditional data gather-
ing methods in continuous practices, new approaches have been
presented. For example, behavioral analytics techniques can be
combined with big data solutions to obtain the advantages of
these new technologies in DevSecOps [P15]. The main objec-
tive is to obtain fast feedback from the end-user of systems that

16

are rapidly updated using DevSecOps practices. The following
specific advantages can also be achieved [P15].
• Using user profiling to be aware of actual user behavior

where customized responses can be provided from the ap-
plication
• Predictive analytics to be aware of trends in user behaviors

and intentions
• Setting up benchmarks to capture various measurements

S16: Shifting security to the left. Shifting security activities
and practices to the left of the development cycle is a key rec-
ommendation in DevSecOps [P04]. This shift would assign a
higher priority to security practices at a very early stage of the
development process [P08]. As a result, developers are able
to identify security issues such as vulnerabilities early. This
would overcome costly security fixes at the later stages of the
cycle [P04].

This solution contains a combination of recommendations re-
ported in other themes (i.e., People and Tools). Firstly, to con-
duct security activities at the initial stages of the cycle, security
team members need to be involved at those stages [P08]. Sec-
ondly, the correct tool-sets need to be in place early [P16].

S17: Implementing continuous security assessment practices.
Continuous security assessment is another critical recommen-
dation in DevSecOps. In this practice, security is treated as a
key concern across all stages of the development process and
even in the post-deployment period [P14]. It is a smart and
lightweight approach to identifying security vulnerabilities in
a rapid deployment environment [P14]. Similar to shifting se-
curity to the left, continuous security practices require security
team members to be involved in the early stages of the cycle
and continue to do so in a continuous manner. For this to occur,
there needs to be a consensus on how security practices would
be included in the process [P16]. Next, the required tools need
to be in place [P12].

As an example of continuous security assessment practices,
Continuous Monitoring (CM) can be noted [P07, P38]. CM
is a recommended practice in highly regulated environments
[P07]. In such conditions, all environmental settings, events,
logs, alerts, and assets should be continuously monitored. CM
was also recommended in IoT systems to obtain fast and contin-
uous feedback from the operations to development teams [P38].

S18: Security patch management using DevOps practices. An-
other aspect of DevOps and security is the usage of DevOps
practices to address security vulnerabilities rapidly [P20]. Due
to rapid releases in DevOps, vulnerabilities might exist in pro-
duction code. Therefore, once vulnerabilities are detected, it
is important to address them (e.g., security patches) as soon as
possible. For this purpose, the continuous practices of DevOps
(i.e., CD/CDE) can be used to deliver security patches rapidly.

S19: Using threat analysis practices. Threat modeling is a
practice used to identify, communicate and understand threats
and mitigation methods [55]. Moreover, it can be used to iden-
tify vulnerabilities at various stages and outputs. For example,

to detect vulnerabilities in a CD pipeline, the STRIDE threat
modeling approach can be used [P50].

4.4.4. Summary of the solutions related to practices

• In DevSecOps, security should be treated as a key con-
cern from the start of the process (shifting left), and it
should continue to be so, throughout the cycle (contin-
uous security) [S16, S17].
• We have reported on how automation of certain prac-

tices (e.g., SLAs made machine-readable), security
metrics and other strategies could be used to achieve
the above noted goals [S11-S19].

4.4.5. Solutions proposed related to Infrastructure
This section presents the reported solutions based on various

challenging infrastructures.

S20: Strict access management and policies. A key recom-
mendation of DevSecOps is to enable multiple team members
of different teams (Dev/Sec/Ops) to work on the same pipeline.
In practice, it entails giving permission and various access
rights to these members. However, strict access management
policies are proposed if the output is released to a sensitive and
highly regulated environment. For example, need-based access
(based on the principle of least privilege) is recommended for
developers who need access to highly regulated environments
or settings [P07]. Also, changes to the production environment
need to be automated, which should result in removing produc-
tion access from developers [P07].

S21: Adopting Infrastructure as code. In complex and highly
regulated infrastructures, IaC is highly recommended. As IaC
enables infrastructure to be versioned, tested, built, and de-
ployed, this is seen as a suitable solution to manage complex
environments with security concerns (e.g., air-gapped secure
environments [P07]). IaC also supports environment parity
by setting up pre-configured systems and networks (as relating
to highly regulated environments [P27]). Stakeholders should
agree to these configuration settings of the environment at the
inception of a project. When a need arises, they could then use
IaC to build and deploy an environment. This addresses the
challenge of the lack of centralized processes to deploy soft-
ware and environmental settings in highly regulated environ-
ments [P27]. However, in using IaC tools, developers need to
be mindful of the security limitations of the tool itself [Ch8].

S22: Creating simulation or replication environments for test-
ing. Setting up simulation environments is a recommended
solution in complex infrastructures for the purpose of testing
[P27]. By setting up common simulation environments, inter-
nal testing can be carried out by developers in these infras-
tructures. This could be very useful in terms of conducting
security-related testing and gathering end-user feedback. The
ENACT framework for trustworthy IoT systems by Ferry et
al. [P19] also contains a test and simulation tool in one of its
layers. These tools enable testing application scenarios against
programmed circumstances [P19].

17

S23: Model-driven engineering to support DevSecOps. A
model-driven approach was reported to address challenges re-
lated to IoT infrastructures [P10]. The model once, generate
anywhere quality of this approach enables to tackle specific
challenges of an IoT infrastructure, such as high heterogeneity.
Further, this approach can address the security and privacy dif-
ficulties in IoT. It provides the methods to specify security and
privacy requirements and supports the automatic deployment
and the relevant mechanisms (e.g., GENESIS, an approach that
leverages model-driven engineering to support the DevSecOps
approach in IoT infrastructures [P10]).

S24: Systematic evaluation of product-specific vulnerabilities.
This is a solution proposal targeting highly regulated environ-
ments (e.g., medical devices [P13]). Due to heavy regulations,
the vulnerability handling activity needs to be highly system-
atic and transparent [P13]. Further, design aware risk assess-
ment is critical for these industries (e.g., design of the system
in a highly regulated setting). In today’s context, software con-
sists of a number of diverse components (e.g., open-source soft-
ware). Therefore, in critical environments, the vulnerabilities of
the components used need to be assessed systematically.

S25: Hybrid life cycles with data-security focus. With the
cloud environment getting more complex and novel (e.g., multi-
cloud setups), ensuring data security has become challenging
while rapidly deploying software. To address this issue, a par-
ticular focus needs to be paid to data security in parallel to the
development cycle [P18]. A joint Software as a Service (SaaS)
security life cycle was proposed, which combined the data se-
curity and software development life cycles to address this spe-
cific issue [P18].

S26: Framework support for DevSecOps. Several reviewed
studies have proposed specific frameworks to address the se-
curity challenges in various challenging infrastructures.

A systems-of-systems security framework was proposed tar-
geting the requirements definition phase for cloud systems
[P03]. This research is an example of a case study for the imple-
mentation of DevSecOps in SoS [P03]. Framework support for
multi-cloud application modeling was reported by two in-scope
studies [P37], [P39]. Details of the MUSA security modeling
language and supporting tool for multi-cloud applications was
reported by [P37]. This paper introduced the MUSA SecDevOps
framework which included the above components. We reported
the machine-readable SLA mechanism of this project (MUSA)
in the solutions related to the practices section [P39] [S11].
A secure DevOps framework was proposed, which used Net-
work Functions Virtualization (NFV) and micro-service pattern
designs [P24]. This framework targeted distributed and het-
erogeneous cloud environments [P24]. The ENACT DevOps
framework targeted IoT systems [P19]. The goal of this frame-
work was to establish trustworthy (i.e., preservation of security
& privacy) smart IoT systems. Trihinas et al. [P54] proposed
the Unicorn Framework to address the challenges of develop-
ing scalable and secure applications based on the microservices
architecture in multi-cloud environments.

4.4.6. Summary of the infrastructure-related solutions

• This theme captured several framework based solutions
for the infrastructure challenges reported. The frame-
works provide holistic solutions targeting DevSecOps
adoption in various challenging infrastructures [S26].
• In addition to the frameworks, strict access management

[S20], model-driven engineering [S23] and setting up
simulation environments [S22] were some of the other
solutions specific for the infrastructure theme synthe-
sized.

4.4.7. Solutions to people-centric challenges
This section reports the solutions based on the People theme.

S27: Facilitating inter-team communication and collaboration
with the appropriate controls or standards. Several studies re-
ported inter-team collaboration (as opposed to working in silos)
as a best practice that should be adopted in DevSecOps [P06,
P42]. One related recommendation is the formation of multi-
disciplinary teams in an organization [P08]. This would lead to
a high level of collaboration among development, security, and
operations team members on a continual basis starting from the
early stages of the process. Other recommendations include
customizing security tools so that the feedback cycle with other
teams is short [P42] and increasing developer engagement in
security tasks (e.g., security incident management) [P41].

Despite the above encouragement for more collaboration,
this should be done with the appropriate controls or standards.
For example, a clear separation of duties should be established
for various cross-team members [P06]. Also, there should be
a clear established way of communication between team mem-
bers. Manual communication methods such as emails should
be discouraged as it would add up to the communication ef-
fort [P06]. Automated methods should instead be utilized to
inform team members of activities occurring in the processes.
For instance, the relevant stakeholders should be automatically
notified from a system about testing efforts, successful instal-
lations, etc., rather than an administrator manually messaging
each person [P06].

Studies have also reported the need for a systematic, consis-
tent and transparent methodology for the communication pro-
cesses, especially in regulated or restricted environments. For
example, the communication of risk information and evalua-
tion results or rationales to stakeholders on a continuous basis
is required in such environments [P13]. For this purpose, ver-
ified key stakeholders and communication channels need to be
in place [P27].

S28: Having security champions in teams. In a DevSecOps
environment, there are different teams with differing priorities.
Therefore, the bridging role of security champions is recom-
mended for this environment [P04]. Security champions are
security-minded developers who typically have the most secu-
rity training in a team [P04]. Therefore, they treat security as
a priority. Due to this reason, they can act as a bridge between
development and security teams. Another benefit of this role

18

is the effect of security champions on developers’ resistance to
security activities. As these members are usually from the same
development team, programmers are less likely to perceive se-
curity champions as outside agents hindering progress [P20].

S29: Carrying out organizational Human Resource Manage-
ment (HRM) programs in parallel. The culture change for De-
vSecOps can be challenging for certain people in an organi-
zation. To tackle this issue, studies recommended carrying
out HRM programs in parallel to DevSecOps transformation
projects [P03]. These programs should target common senti-
ments such as fear of being replaced or being recognized and
losing control of one’s own work [P03].

S30: Implementing security knowledge sharing methods and
training. Implementation of security training and knowledge
sharing methods could play an important role in improving the
security awareness of team members to carry out relevant tasks.
For example, security-related knowledge is vital in setting up
and using suitable security tools. If the development team is us-
ing static analysis tools to check for vulnerabilities, they would
need the relevant knowledge to identify actual security issues
and false positives [P04]. Further, as it is practically difficult
for every developer to be a security expert, it is important that
they are able to recognize when they would benefit from the ad-
vice of such an expert [P20]. Hence, at least some basic level
of security knowledge or awareness is needed for this purpose.

Studies reported detail on specific security training activi-
ties such as completing online coursework, participating in de-
veloper boot camps and in-house security awareness sessions
[P42]. Blameless security retrospectives are another type of ac-
tivity highlighted [P04]. What is advocated in this process is
that if security issues are discovered, they are not seen as faults
of a certain person. Therefore, the focus is to identify issues
and share knowledge.

S31: Integrity protection frameworks. To address insider
threats, the authors proposed system and data integrity protec-
tion frameworks. For example, Ahmadvand et al. [P29] formed
a set of integrity protection requirements based on the threats
and then proposed an integrity protection framework that tar-
gets holistic integrity protection in microservice-based systems.

4.4.8. Summary of the solutions to people-centric challenges

• The role of security champions is a key recommenda-
tion for DevSecOps proposed by the reviewed studies
[S28]. This role facilitates other advice of the People
theme, such as continuous and frequent inter-team col-
laboration [S27].
• However, studies highlight the need for controlled and

standardized communication strategies for DevSecOps
teams [S27].
• Finally, security knowledge sharing and training activi-

ties are crucial in DevSecOps as developers are required
to carry out security tasks [S30].

4.5. DevSecOps support in practice
In this section, we describe an example of how our results

can be combined to offer DevSecOps support in practice. The
concrete example that we provide is support for setting up a De-
vOps workflow with suitable security controls (e.g., application
security tools) integration.

One of the main challenges in DevSecOps practice is inte-
grating security controls (i.e., tools and practices) into the De-
vOps workflow without negatively impacting the rapid deliv-
ery goals [Ch14]. Further, while there are many security as-
sessment and control methods, in an environment with rapid
deployment needs, adopting all these solutions can overwhelm
developers [Ch1]. Therefore, proper support for DevSecOps in
practice would guide developers on selecting and applying the
most suitable security controls while having a minimal effect on
the deployment frequencies in DevOps. This requires an appro-
priate balance between speed and security needs to be achieved
for successful DevSecOps adoption. We offer some practical
suggestions on how this balance can be achieved in practice.

Our results show that development teams should set up a suit-
able DevOps workflow from the inception of the project. For
this purpose, developers should be encouraged to integrate se-
curity tools that facilitate the rapid deployment of software into
this workflow. We propose the usage of hybrid tools (i.e., IAST:
Interactive Application Security Testing) that combine the ad-
vantages of traditional application security testing tools (e.g.,
[S5]). However, due to other practical reasons (e.g., cost, de-
veloper preference), traditional tools may also be required to
be used in the DevOps workflow. In such cases, practitioners
should plan to minimize the negative drawbacks of such tools
using some of our proposed solutions. For example, developers
can set up a parallel testing pipeline in the workflow for static
scanning using a time-consuming SAST tool [S3]. In this setup,
the main pipeline moves forward while deep scans occur in par-
allel. This would ease some of the time constraints in a rapid
deployment environment.

Another method of obtaining DevSecOps support is to use
an application security testing as a service provider for specific
testing activities (e.g., static analysis as a service [S4]). The
reduced time to obtain the results of this model is suited for
DevOps. Further, if the required in-house security expertise is
not available, obtaining such services would increase the speed
of conducting the security testing activity with higher accuracy
levels.

Therefore, by adopting a combination of the above-noted so-
lutions, practitioners would be able to better balance the speed
of deployments in a DevOps workflow while ensuring the secu-
rity of the outputs.

4.6. RQ3: What are opportunities for future research or gap
areas for technological development (e.g., tool support) or
framework support in this domain?

In this section, we discuss the gap areas for future research
in this domain using the results of RQ1 and RQ2. We provide
the mapping of our study results (Figure 6) to enable the reader
to quickly determine the association between challenges, pro-
posed solutions, and gap areas in a holistic manner.

19

Infras-
tructure

People

Practices

Tools

Challenges in DevSecOps Proposed solutions

Documentation with security support

Adopting best practices for tool usage

 Move to cloud-based solutions (e.g., static analysis as a
service)

Using orchestration platforms

Reusable design fragments and security tactics

Using a virtualization tool to encapsulate part of the system

Static analysis for Infrastructure as Code scripts
Limitations of Infrastructure or Configuration as Code tools

and scripts

Inability to carry out rapid security requirements
assessment

Using threat analysis practices

Adapting standards, policies, models, service agreements into
testable criteria

Shifting security to the left

Implementing continuous security assessment practices

Devising security metrics or metric based approaches

Effective process documentation and logging strategies

Big data and behavioral analytics techniques

Model-driven engineering to support DevSecOps

Systematic evaluation of product-specific vulnerabilities

Hybrid lifecycles with data-security focus

Creating simulation or replication environments for testing

Adopting Infrastructure as Code

Facilitating inter-team communication and collaboration
with the appropriate controls or standards

Implementing security knowledge sharing methods and
training

Integrity protection frameworks

Framework support for DevSecOps

Strict access management and policies

Security patch management using DevOps practices

Practitioners converge towards tool standards

Tools for continuous vulnerability assessment

Interactive Application Security Testing (IAST) tools

Future research directions

Empirically validated security metrics for DevSecOps

Consensus on shift left and continuous security

The need for security tools that target developers and not
security experts (i.e., developer-centered security)

Application security testing as a service

Continuous vulnerability discovery and
management practices

Infras-
tructure

People

Practices

Tools

Defining security roles in DevSecOps

The need for socio-technical studies addressing people related
challenges in DevSecOps

Empirically validated frameworks in different contextual
settings

Limitations of static analysis tools affecting
rapid deployment cycles

Security issues resulting from tool complexity and
integration challenges

Challenges related to tool selection in DevSecOps

Limitations of dynamic analysis tools restricting
its usage in DevSecOps

Security limitations or vulnerabilities affecting the CD pipeline

Security limitations or vulnerabilities affecting
the container ecosystem

Vulnerabilities affecting CI systems

Inability to fully automate traditionally
manual security practices to integrate into DevSecOps

Challenges related to security measurement practices
 in rapid deployment environments

Challenges related to continuous security assessment

Inter-team collaboration issues

Challenges in organizational culture

Knowledge gap in security

Insider threats

Difficult to adopt DevSecOps in complex cloud
environments (e.g., multi cloud env.)

Difficult to adopt DevSecOps in resource constrained
environments (e.g., embedded systems, IoT)

Difficult to adopt DevSecOps in highly regulated
environments (e.g., air-gapped env., medical devices)

Automated vulnerability detection through requirement analysis

Having security champions in the teams

Carrying out organizational HRM programs in parallel

The need for security tools that compliment the rapid
deployment cycles in DevSecOps

Configuration management issues of tools

Incompatibility between security and DevOps practices
due to velocity of change, complexities and dependencies

Figure 6: Mapping of challenges, solutions and gap areas devised in the study

20

4.6.1. The need for security tools that complement the rapid
deployment cycles in DevSecOps

SAST and DAST tools are popular technologies in the in-
dustry, which are used in various stages in the development
process. However, several studies reported challenges related
to integrating these established tools in the rapid deployment
cycles [Ch4, Ch5]. While IAST was mentioned as a new type
of hybrid tool to address some of these challenges [S5], very
limited research exists on these technologies. Therefore, hy-
brid tools that combine the features of existing technologies in
a way that is suited for modern paradigms such as DevSecOps
are a clear gap area for further research.

Another key recommendation proposed in our study is using
tools that make continuous security assessment possible [S6].
However, there were only a few studies that reported empiri-
cally validated solutions for such tools. This is also a gap area
for new tool development.

Gap area: We highlight the need for application security
testing tools and methods, which specifically cater to the na-
ture of the DevSecOps paradigm (e.g., rapid CI/CD cycles).

4.6.2. Application security testing as a service
Another solution proposal that is compatible with DevSec-

Ops is the usage of application security testing tools as a ser-
vice. Many industry resources have advocated for this ap-
proach, with cloud-native applications on the rise (e.g., [56]).
Also, many leading companies in the application security test-
ing market are now providing their products as a service. How-
ever, we could only capture one peer-reviewed study that pro-
posed application security testing as a service in our SLR [P25].
This study demonstrated how static analysis offered as a service
could overcome the challenges that restrict this tool’s usage in
DevOps [S4].

Gap area: Further research can be carried out on how other
application security testing methods (e.g., DAST) can be of-
fered as a service to suit the DevSecOps paradigm.

4.6.3. The need for developer-centered security solutions
Developers, similar to end-users in security tasks, need sup-

port to create applications that are secure [57]. One of the main
difficulties that developers face is the use of complicated secu-
rity tools in their development workflow, resulting in low adop-
tion of such tools [57].

We reported several tool-related challenges on selection, con-
figuration, and integration that affected DevSecOps [Ch1, Ch2,
Ch3]. The limitations in the documentation for these tools made
the challenge more critical [Ch2]. The root cause for such prob-
lems is that most of the traditional security tools are developed
for the use of security experts and their workflow. Therefore,
developers are finding it challenging to select such tools from
a large range of existing products [Ch1] and then use them in
their own workflow [Ch2, Ch3]. This is an obstacle in modern
paradigms such as DevSecOps, as the developer must carry out
some security-related tasks.

Gap area: We advocate for empirically evaluated tools
which target developers in their development workflow (i.e.,
developer-centered security solutions).

4.6.4. Continuous vulnerability discovery and management
practices

Our results presented many challenges related to vulnera-
bilities of the tools and pipeline [Ch6, Ch7, Ch9]. However,
continuous vulnerability assessment processes were not widely
adopted in the industry [Ch13]. Therefore, more research is
needed to discover the reasons for this low adoption.

After the vulnerabilities are discovered, the next challenge is
the efficient management of the vulnerabilities within the rapid
deployment cycles. We reported several challenges regarding
this practice too [Ch14]. Due to the substantial effort needed
from engineers to address and manage the vulnerabilities (e.g.,
determine true/false positives, rectify true positives), they face
a trade-off between speed and security.

Gap area: Developers need to be presented with spe-
cific guidance on how the trade-off between DevOps release
speeds and security of the software can be effectively bal-
anced in a practical setting.

4.6.5. Consensus on shift left and continuous security
Shift left security and continuous security assessment were

two key solutions related to practices reported in our SLR.
There is a high interest among DevOps practitioners to imple-
ment these practices in their organizations [58]. However, a
consensus is required on how these practices can be practically
implemented and validated (e.g., what are the processes to be
shifted or automated and to which point in the pipeline?).

For example, studies reported that security tasks should be
moved to the left and automated as much as possible [S16].
However, more work needs to be done on how the traditionally
manual security practices can be automated to fit into DevSec-
Ops. Concerning this particular challenge, there were only a
few solutions captured by our SLR [S11], even though many
such security practices were reported as challenges in the liter-
ature [Ch10]. For example, practices such as threat modeling,
penetration testing, and code review were not addressed.

Gap area: More work is needed to establish consensus on
proposals such as shift left security and how traditionally
manual security practices can be automated to suit the De-
vSecOps paradigm.

4.6.6. Empirically validated security metrics for DevSecOps
Studies note that measuring security in software is a very dif-

ficult task [P20]. This task is even more challenging in De-
vSecOps, where multiple cross-disciplinary teams aim to de-
liver software rapidly. To address this problem, models such
as Building Security In Maturity Model (BSIMM) have been
devised in the industry [59]. Organizations use BSIMM as a
measurement tool to compare their software security initiatives

21

with the data from the broader BSIMM community. Such mod-
els emphasize the importance of security metrics for software
security assessment. For example, in BSIMM, the importance
of using metrics for measurement is highlighted (e.g., for data-
driven governance and track performance). The BSIMM report
also states that there is a high interest in the industry to con-
sume real-time security events to produce useful metrics [59].
However, our results indicate a lack of empirically validated se-
curity metrics in this domain [Ch12]. Therefore, this is a key
area for future work due to the lack of research and potential
importance to DevSecOps.

Gap area: While researchers have stated the importance
of introducing security metrics into DevSecOps practices, a
very limited number of studies have established such metrics
by empirically validating them.

4.6.7. Defining security roles in DevSecOps
In DevSecOps, the traditional roles of developers and secu-

rity engineers have changed. With the shift left approach pro-
moted in DevSecOps, the developers are encouraged to carry
out security-related tasks. The security engineer’s role has also
changed from being involved in a specific stage to all stages
of the cycle. However, ambiguity lies about who makes which
security decisions in a practical scenario. Further to the above,
several studies have stated the importance of bridging roles such
as security champions for DevSecOps [S28]. However, the ex-
act role of such developers with regard to security decision-
making has not been clearly established.

Gap area: More effort needs to be directed at clearly defin-
ing the security roles of the team members in DevSecOps.

4.6.8. The need for socio-technical studies addressing people-
related challenges in DevSecOps

The paradigms of DevOps and DevSecOps are widely rec-
ognized as a cultural transformation for an organization [60],
[61]. However, in our study, the people theme captured the
least amount of studies in our search. We also noticed that the
challenges reported in the people theme had a wide-ranging ef-
fect across themes. For example, developers lacking security
skills resulted in challenges in the tools and practices themes
(e.g., Ch04, Ch13).

Gap area: We highlight the need for socio-technical studies
which focus on the people-centric challenges and their effect
on the other components of DevSecOps. (e.g., tool usage,
implementation of practices).

4.6.9. Empirically validated frameworks in different contextual
settings

The infrastructure theme captured several framework-based
solutions for the challenges reported. Most of these frameworks
were presented as case studies or were not adequately evaluated
[S26]. Some authors presented the frameworks as solution pro-
posals for their own context (e.g., company) [P03]. Therefore,

more empirical studies are needed for the broader applicability
of these solutions and associated components (e.g., modeling
languages), especially in different contextual settings.

Gap area: Empirically validated solutions (e.g., frame-
works) which enable adopting DevSecOps in complex, re-
source constrained, or highly regulated environments is a
current need in this domain.

5. Threats to validity

Similar to previous systematic reviews [62, 63] our re-
sults may be affected by the potential threats associated with
imperfect collection of primary studies, bias in study selec-
tion/extraction, and publication bias.

Missing primary studies. We are unable to guarantee that we
have captured all the relevant primary studies in our SLR.
This is due to limitations in the search method, [43], and non-
comprehensive venues or databases [64]. We aimed to mini-
mize this effect as follows.

Firstly, we ran pilot searches on frequently used index en-
gines and publisher sites, evaluated the results, and selected the
sources for our papers. The search string was then iteratively
improved to capture the relevant studies. In determining the
sources, we chose one index engine and two individual pub-
lishers for our study. While this approach results in duplicates,
it reduces the threat of missed studies [62]. We then performed
backward, forward snowballing [44] and snowballed the pri-
mary study lists of other secondary studies (Table 1) to capture
the missed papers. From the above activities, we attempted to
minimize the number of relevant studies missed by our search.

Bias in study selection and data extraction. Bias in study se-
lection (i.e., applying the inclusion/exclusion criteria) and data
extraction are common limitations that affect SLRs [64]. To re-
duce this effect, we developed a study protocol that defined the
research questions and search procedures, inclusion/exclusion
criteria, and a data extraction strategy. [43, 62]. A well-defined
protocol is said to increase the consistency in the selection of
primary studies and data extraction [62]. This document was
discussed and shared among all authors. Two authors were
engaged in the data extraction process using data extraction
sheets. These sheets were stored in shared folders and checked
by the other authors. Regular discussions were held among the
authors to assess the outcome of these stages and to cross-check
the completeness of the search and data extraction [64].

Publication bias. This refers to the issue that positive results
are more likely to be reported compared to negative results
[40]. However, in our study, we captured many papers which re-
ported negative effects, such as challenges faced by practition-
ers in this domain (RQ1). When forming the gaps (RQ3), these
challenges were assessed against the solutions (RQ2). There-
fore, unreported negative results would only have a moderate
effect on these contributions.

22

6. Conclusion

Based on our results, we conclude:
• Out of the themes devised in this study, the main focus

area for researchers in DevSecOps is automation and tool
usage. We found that some of the older technologies, such
as SAST and DAST tools had drawbacks that affected De-
vSecOps goals. Therefore, research and development on
new technologies that support the rapid deployment cycles
of DevOps (e.g., hybrid tools or IAST) is a current need.
• A large number of tool-related security issues and vulner-

abilities were captured by our study (e.g., vulnerabilities
affecting containers). Therefore, developers should take
appropriate action to minimize the effect of these security
issues when including such tools in the pipeline.
• Shift-left security and continuous security assessment

were two key recommendations related to the practices-
theme of our study. These practices keep security as a pri-
ority in a continuous manner throughout the deployment
cycle. However, this is another area where tool support is
lacking (e.g., tools that support continuous security assess-
ment).
• Inability to automate traditionally manual security prac-

tices is a critical problem in this field. These practices are
hard to be fully integrated with the CD or CDE practices
of DevOps. Further studies are needed on how a suitable
trade-off can be achieved in balancing the goals of DevOps
and such security practices.
• Even though cultural or human aspects are critical for De-

vSecOps success, these are less discussed areas in the lit-
erature. In our study, the people-related challenges had a
wide-ranging effect across the other themes. This leads us
to recommend more socio-technical related research ex-
ploring the people-related challenges and solutions in this
domain.
• Adopting DevSecOps principles or practices in various

complex, resource-constrained, and highly regulated in-
frastructures is a growing area of research. However, more
empirically evaluated solutions are needed to ensure wider
adoption of such tools or frameworks.
• Finally, we note that many DevSecOps adoption chal-

lenges and solutions captured in our study were interre-
lated across themes. We provided the mapping of the re-
sults of our study to illustrate this point. Therefore, re-
searchers need to thoroughly consider challenges or solu-
tions across themes and their applicability when devising
studies in this domain.

7. Acknowledgement

The work has been supported by the Cyber Security Re-
search Centre Limited whose activities are partially funded by
the Australian Governments Cooperative Research Centres Pro-
gramme. We also thank our colleagues at CREST and the
anonymous reviewers for their useful feedback on this work.

8. References

[1] L. Leite, C. Rocha, F. Kon, D. Milojicic, P. Meirelles, A survey of devops
concepts and challenges, ACM Computing Surveys (CSUR) 52 (6) (2019)
1–35.

[2] L. Bass, I. Weber, L. Zhu, DevOps: A software architect’s perspective,
Addison-Wesley Professional, 2015.

[3] A. Mann, A. Brown, M. Stahnke, N. Kersten, State of devops report 2018,
Tech. rep. (2018).

[4] Signal Sciences, A DevOps roadmap for Security: Third Edition, Tech.
rep. (2020).

[5] L. Riungu-Kalliosaari, S. Mäkinen, L.E. Lwakatare, J. Tiihonen,
T. Männistö, Devops adoption benefits and challenges in practice: a case
study, in: International Conference on Product-Focused Software Process
Improvement, Springer, 2016, pp. 590–597.

[6] H. Myrbakken, R. Colomo-Palacios, Devsecops: a multivocal literature
review, in: International Conference on Software Process Improvement
and Capability Determination, Springer, 2017, pp. 17–29.

[7] I. Fléchais, Designing secure and usable systems, PhD diss., University
College London.

[8] What is shift left testing? (2021).
URL https://www.techarcis.com/shift-left-testing-

explained-by-sunil-sehgal-of-techarcis-2/

[9] R. Sharma, What is DevSecOps? Definition, Importance, Benefits,
Challenges, and Best Practices (2020).
URL https://www.netsolutions.com/insights/what-is-

devsecops/

[10] M.A. Howard, A process for performing security code reviews, IEEE Se-
curity & privacy 4 (4) (2006) 74–79.

[11] J. Peterson, Dynamic application security testing: Dast basics (2020).
URL https://resources.whitesourcesoftware.com/blog-

whitesource/dast-dynamic-application-security-testing

[12] A. Ng, How the Equifax hack happened, and what still needs to be done
(2018).
URL https://www.cnet.com/news/equifaxs-hack-one-

year-later-a-look-back-at-how-it-happened-and-whats-

changed/

[13] S. Bushwick, Giant U.S. Computer Security Breach Exploited Very
Common Software (2020).
URL https://www.scientificamerican.com/article/giant-

u-s-computer-security-breach-exploited-very-common-

software/

[14] A. Mann, A. Brown, M. Stahnke, N. Kersten, State of devops report 2019,
Tech. rep. (2019).

[15] S. Prince, The Product Managers’ Guide to Continuous Delivery and
DevOps (2016).
URL https://www.mindtheproduct.com/what-the-hell-are-

ci-cd-and-devops-a-cheatsheet-for-the-rest-of-us/

[16] M. Shahin, M.A. Babar, L. Zhu, Continuous integration, delivery and
deployment: a systematic review on approaches, tools, challenges and
practices, IEEE Access 5 (2017) 3909–3943.

[17] M. Shahin, M. Zahedi, M.A. Babar, L. Zhu, An empirical study of ar-
chitecting for continuous delivery and deployment, Empirical Software
Engineering 24 (3) (2019) 1061–1108.

[18] Checkmarx, An Integrated Approach to Embedding Security into De-
vOps, 2020.
URL https://www.checkmarx.com/ebooks/an-integrated-

approach-to-embedding-security-into-devops

[19] B. Fitzgerald, K.J. Stol, Continuous software engineering: A roadmap
and agenda, Journal of Systems and Software 123 (2017) 176–189.

[20] J. Bosch, Continuous software engineering: An introduction, in: Contin-
uous software engineering, Springer, 2014, pp. 3–13.

[21] G. Schermann, J. Cito, P. Leitner, U. Zdun, H. Gall, An empirical study
on principles and practices of continuous delivery and deployment, Tech.
rep., PeerJ Preprints (2016).

[22] M. Zahedi, R.N. Rajapakse, M.A. Babar, Mining questions asked about
continuous software engineering: A case study of stack overflow, in:
Proceedings of the Evaluation and Assessment in Software Engineering,
2020, pp. 41–50.

[23] D. Ståhl, T. Mårtensson, J. Bosch, Continuous practices and devops: be-
yond the buzz, what does it all mean?, in: 2017 43rd Euromicro Con-

23

https://www.techarcis.com/shift-left-testing-explained-by-sunil-sehgal-of-techarcis-2/
https://www.techarcis.com/shift-left-testing-explained-by-sunil-sehgal-of-techarcis-2/
https://www.techarcis.com/shift-left-testing-explained-by-sunil-sehgal-of-techarcis-2/
https://www.netsolutions.com/insights/what-is-devsecops/
https://www.netsolutions.com/insights/what-is-devsecops/
https://www.netsolutions.com/insights/what-is-devsecops/
https://www.netsolutions.com/insights/what-is-devsecops/
https://resources.whitesourcesoftware.com/blog-whitesource/dast-dynamic-application-security-testing
https://resources.whitesourcesoftware.com/blog-whitesource/dast-dynamic-application-security-testing
https://resources.whitesourcesoftware.com/blog-whitesource/dast-dynamic-application-security-testing
https://www.cnet.com/news/equifaxs-hack-one-year-later-a-look-back-at-how-it-happened-and-whats-changed/
https://www.cnet.com/news/equifaxs-hack-one-year-later-a-look-back-at-how-it-happened-and-whats-changed/
https://www.cnet.com/news/equifaxs-hack-one-year-later-a-look-back-at-how-it-happened-and-whats-changed/
https://www.cnet.com/news/equifaxs-hack-one-year-later-a-look-back-at-how-it-happened-and-whats-changed/
https://www.scientificamerican.com/article/giant-u-s-computer-security-breach-exploited-very-common-software/
https://www.scientificamerican.com/article/giant-u-s-computer-security-breach-exploited-very-common-software/
https://www.scientificamerican.com/article/giant-u-s-computer-security-breach-exploited-very-common-software/
https://www.scientificamerican.com/article/giant-u-s-computer-security-breach-exploited-very-common-software/
https://www.scientificamerican.com/article/giant-u-s-computer-security-breach-exploited-very-common-software/
https://www.mindtheproduct.com/what-the-hell-are-ci-cd-and-devops-a-cheatsheet-for-the-rest-of-us/
https://www.mindtheproduct.com/what-the-hell-are-ci-cd-and-devops-a-cheatsheet-for-the-rest-of-us/
https://www.mindtheproduct.com/what-the-hell-are-ci-cd-and-devops-a-cheatsheet-for-the-rest-of-us/
https://www.mindtheproduct.com/what-the-hell-are-ci-cd-and-devops-a-cheatsheet-for-the-rest-of-us/
https://www.checkmarx.com/ebooks/an-integrated-approach-to-embedding-security-into-devops
https://www.checkmarx.com/ebooks/an-integrated-approach-to-embedding-security-into-devops
https://www.checkmarx.com/ebooks/an-integrated-approach-to-embedding-security-into-devops
https://www.checkmarx.com/ebooks/an-integrated-approach-to-embedding-security-into-devops

ference on Software Engineering and Advanced Applications (SEAA),
IEEE, 2017, pp. 440–448.

[24] M. Leppänen, S. Mäkinen, M. Pagels, V.P. Eloranta, J. Itkonen, M.V.
Mäntylä, T. Männistö, The highways and country roads to continuous
deployment, Ieee software 32 (2) (2015) 64–72.

[25] L. Chen, Continuous delivery: Huge benefits, but challenges too, IEEE
Software 32 (2) (2015) 50–54.

[26] V. Mohan, L. ben Othmane, Secdevops: Is it a marketing buzzword?-
mapping research on security in devops, in: 2016 11th international con-
ference on availability, reliability and security (ARES), IEEE, 2016, pp.
542–547.

[27] J. Bird, DevOpsSec: Securing software through continuous delivery,
O’Reilly Media, 2016.

[28] L. Prates, J. Faustino, M. Silva, R. Pereira, Devsecops metrics, in: Eu-
roSymposium on Systems Analysis and Design, Springer, 2019, pp. 77–
90.

[29] M. Sánchez-Gordón, R. Colomo-Palacios, Security as culture: A system-
atic literature review of devsecops, in: Proceedings of the IEEE/ACM
42nd International Conference on Software Engineering Workshops,
2020, pp. 266–269.

[30] R. Mao, H. Zhang, Q. Dai, H. Huang, G. Rong, H. Shen, L. Chen, K. Lu,
Preliminary findings about devsecops from grey literature, in: 2020 IEEE
20th International Conference on Software Quality, Reliability and Secu-
rity (QRS), IEEE, 2020, pp. 450–457.

[31] S. Rafi, W. Yu, M.A. Akbar, A. Alsanad, A. Gumaei, Prioritization based
taxonomy of devops security challenges using promethee, IEEE Access 8
(2020) 105426–105446.

[32] A.A.U. Rahman, E. Helms, L. Williams, C. Parnin, Synthesizing contin-
uous deployment practices used in software development, in: 2015 Agile
Conference, IEEE, 2015, pp. 1–10.

[33] J. Wettinger, V. Andrikopoulos, F. Leymann, Enabling devops collabora-
tion and continuous delivery using diverse application environments, in:
OTM Confederated International Conferences” On the Move to Meaning-
ful Internet Systems”, Springer, 2015, pp. 348–358.

[34] G. Gotimer, T. Stiehm, Devops advantages for testing: Increasing quality
through continuous delivery, CrossTalk Magazine (2016) 13–18.

[35] M. Olszewska, M. Waldén, Devops meets formal modelling in high-
criticality complex systems, in: Proceedings of the 1st international work-
shop on quality-aware DevOps, 2015, pp. 7–12.

[36] J. Wettinger, U. Breitenbücher, F. Leymann, Dyn tail-dynamically tai-
lored deployment engines for cloud applications, in: 2015 IEEE 8th In-
ternational Conference on Cloud Computing, IEEE, 2015, pp. 421–428.

[37] M. Shahin, M.A. Babar, M. Zahedi, L. Zhu, Beyond continuous delivery:
an empirical investigation of continuous deployment challenges, in: 2017
ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM), IEEE, 2017, pp. 111–120.

[38] B.A. Kitchenham, T. Dybå, M. Jørgensen, Evidence-based software en-
gineering, in: Proceedings. 26th International Conference on Software
Engineering, IEEE, 2004, pp. 273–281.

[39] T. Dybå, B.A. Kitchenham, M. Jørgensen, Evidence-based software en-
gineering for practitioners, IEEE software 22 (1) (2005) 58–65.

[40] B. Kitchenham, S. Charters, Guidelines for performing systematic litera-
ture reviews in software engineering (2007).

[41] E. Laukkanen, J. Itkonen, C. Lassenius, Problems, causes and solutions
when adopting continuous delivery a systematic literature review, Infor-
mation and Software Technology 82 (2017) 55–79.

[42] L. Chen, M.A. Babar, H. Zhang, Towards an evidence-based understand-
ing of electronic data sources, in: 14th International Conference on Eval-
uation and Assessment in Software Engineering (EASE), 2010, pp. 1–4.

[43] T. Dybå, T. Dingsøyr, Empirical studies of agile software development: A
systematic review, Information and software technology 50 (9-10) (2008)
833–859.

[44] C. Wohlin, Guidelines for snowballing in systematic literature studies and
a replication in software engineering, in: Proceedings of the 18th interna-
tional conference on evaluation and assessment in software engineering,
2014, pp. 1–10.

[45] V. Garousi, M. Felderer, M.V. Mäntylä, Guidelines for including grey
literature and conducting multivocal literature reviews in software engi-
neering, Information and Software Technology 106 (2019) 101–121.

[46] V. Braun, V. Clarke, Using thematic analysis in psychology, Qualitative
research in psychology 3 (2) (2006) 77–101.

[47] A. Sbaraini, S.M. Carter, R.W. Evans, A. Blinkhorn, How to do a
grounded theory study: a worked example of a study of dental practices,
BMC medical research methodology 11 (1) (2011) 128.

[48] M. Rosala, How to analyze qualitative data from ux research: Thematic
analysis (2019).
URL https://www.nngroup.com/articles/thematic-

analysis/

[49] M.Q. Patton, Qualitative evaluation and research methods, SAGE Publi-
cations, inc, 1990.

[50] L. Zhu, L. Bass, G. Champlin-Scharff, Devops and its practices, IEEE
Software 33 (3) (2016) 32–34.

[51] Digital.ai, Periodic table of devops.
URL https://digital.ai/periodic-table-of-devops-tools

[52] J. Wettinger, U. Breitenbücher, M. Falkenthal, F. Leymann, Collaborative
gathering and continuous delivery of devops solutions through reposito-
ries, Computer Science-Research and Development 32 (3) (2017) 281–
290.

[53] J. Humble, D. Farley, Continuous delivery: reliable software releases
through build, test, and deployment automation, Pearson Education,
2010.

[54] M.G. Jaatun, Hunting for aardvarks: Can software security be measured?,
in: International Conference on Availability, Reliability, and Security,
Springer, 2012, pp. 85–92.

[55] OWASP, Application threat modeling.
URL https://owasp.org/www-community/Application_

Threat_Modeling

[56] R. Lemos, App sec as a service: Ready for the fast lane?
URL https://techbeacon.com/app-dev-testing/app-sec-

service-ready-fast-lane

[57] M. Tahaei, K. Vaniea, A survey on developer-centred security, in: 2019
IEEE European Symposium on Security and Privacy Workshops (Eu-
roS&PW), IEEE, 2019, pp. 129–138.

[58] Gitlab, Mapping the DevSecOps Landscape, Tech. rep. (2020).
[59] S. Migues, J. Steven, M. Ware, Building Security In Maturity Model

(BSIMM) - Version 11, Tech. rep. (2020).
URL https://www.bsimm.com/download.html

[60] M. Sánchez-Gordón, R. Colomo-Palacios, Characterizing devops culture:
a systematic literature review, in: International Conference on Software
Process Improvement and Capability Determination, Springer, 2018, pp.
3–15.

[61] Atlassian.com, Building a DevOps culture.
URL https://www.atlassian.com/team-playbook/examples/

devops-culture

[62] M. Unterkalmsteiner, T. Gorschek, A.K.M.M. Islam, C.K. Cheng, R.B.
Permadi, R. Feldt, Evaluation and measurement of software process im-
provementa systematic literature review, IEEE Transactions on Software
Engineering 38 (2) (2011) 398–424.

[63] M. Khatibsyarbini, M.A. Isa, D.N.A. Jawawi, R. Tumeng, Test case prior-
itization approaches in regression testing: A systematic literature review,
Information and Software Technology 93 (2018) 74–93.

[64] X. Zhou, Y. Jin, H. Zhang, S. Li, X. Huang, A map of threats to validity
of systematic literature reviews in software engineering, in: 2016 23rd
Asia-Pacific Software Engineering Conference (APSEC), IEEE, 2016,
pp. 153–160.

9. Appendix: List of selected papers

P01 J. Bjørgeengen, A Multitenant Container Platform with OKD, Harbor
Registry and ELK, International Conference on High Performance Com-
puting, 2019

P02 V. Casola, A. De Benedictis, M. Rak and U. Villano, A novel Security-
by-Design methodology: Modeling and assessing security by SLAs with
a quantitative approach, Journal of Systems and Software, 2020

P03 S.B.O. Gennari Carturan and D.H. Goya, A systems-of-systems security
framework for requirements definition in cloud environment, European
Conference on Software Architecture (ECSA), 2019

P04 N. Tomas, J. Li, H. Huang, An empirical study on culture, automation,
measurement, and sharing of DevSecOps, International Conference on
Cyber Security and Protection of Digital Services (Cyber Security), 2019

24

https://www.nngroup.com/articles/thematic-analysis/
https://www.nngroup.com/articles/thematic-analysis/
https://www.nngroup.com/articles/thematic-analysis/
https://www.nngroup.com/articles/thematic-analysis/
https://digital.ai/periodic-table-of-devops-tools
https://digital.ai/periodic-table-of-devops-tools
https://owasp.org/www-community/Application_Threat_Modeling
https://owasp.org/www-community/Application_Threat_Modeling
https://owasp.org/www-community/Application_Threat_Modeling
https://techbeacon.com/app-dev-testing/app-sec-service-ready-fast-lane
https://techbeacon.com/app-dev-testing/app-sec-service-ready-fast-lane
https://techbeacon.com/app-dev-testing/app-sec-service-ready-fast-lane
https://www.bsimm.com/download.html
https://www.bsimm.com/download.html
https://www.bsimm.com/download.html
https://www.atlassian.com/team-playbook/examples/devops-culture
https://www.atlassian.com/team-playbook/examples/devops-culture
https://www.atlassian.com/team-playbook/examples/devops-culture

P05 M.G. Jaatun, Architectural Risk Analysis in Agile Development of Cloud
Software, International Conference on Cloud Computing Technology
and Science (CloudCom), 2019

P06 V. Mohan, L. ben Othmane and A. Kres, BP: Security concerns and best
practices for automation of software deployment processes: An industrial
case study, IEEE Cybersecurity Development (SecDev), 2018

P07 E. Zheng, P. Gates-Idem and M. Lavin, Building a virtually air-gapped
secure environment in AWS: with principles of DevOps security program
and secure software delivery, Annual Symposium and Bootcamp on Hot
Topics in the Science of Security, 2018

P08 M.Z. Abrahams and J.J. Langerman, Compliance at Velocity within a
DevOps Environment, International Conference on Digital Information
Management (ICDIM), 2018

P09 P. Rimba, L. Zhu, L. Bass, I. Kuz and S. Reeves, Composing patterns to
construct secure systems, European Dependable Computing Conference
(EDCC), 2015

P10 N. Ferry, P.H. Nguyen, H. Song, E. Rios, E. Iturbe, S. Martinez and A.
Rego, Continuous Deployment of Trustworthy Smart IoT Systems, Jour-
nal of Object Technology 2020

P11 T. Mårtensson, D. Ståhl and J. Bosch, Continuous Integration applied to
software-intensive embedded systems: problems and experiences, Inter-
national Conference on Product-Focused Software Process Improvement
(PROFES), 2016

P12 K. Vijayakumar and C. Arun, Continuous security assessment of cloud
based applications using distributed hashing algorithm in SDLC, Cluster
Computing, 2019

P13 H.M. von Stockhausen and M. Rose, Continuous security patch delivery
and risk management for medical devices, IEEE International Confer-
ence on Software Architecture Companion (ICSA-C), 2020

P14 B. Fitzgerald and K.J. Stol, Continuous software engineering and be-
yond: trends and challenges, International Workshop on Rapid Continu-
ous Software Engineering (RCoSE), 2014

P15 J. Brewer, G. Joyce and S. Dutta, Converging Data with Design Within
Agile and Continuous Delivery Environments, International Conference
of Design, User Experience, and Usability, 2017

P16 X. Larrucea, A. Berreteaga, and I. Santamaria, Dealing with security in
a real DevOps environment, European Conference on Software Process
Improvement, 2019

P17 M. Lescisin, Q.H. Mahmoud and A. Cioraca, Design and Implementation
of SFCI: A Tool for Security Focused Continuous Integration, Comput-
ers, 2019

P18 I. Weber, S. Nepal and L. Zhu, Developing dependable and secure cloud
applications, IEEE Internet Computing, 2016

P19 N. Ferry, J. Dominiak, A. Gallon, E. González, E. Iturbe, S. Lavirotte,
S. Martinez, A. Metzger, V. Muntés-Mulero, P. H. Nguyen, A. Palm, A.
Rego, E. Rios, D. Riviera, A. Solberg, H. Song, J. Y. Tigli and T. Win-
ter, Development and Operation of Trustworthy Smart IoT Systems: The
ENACT Framework, International Workshop on Software Engineering
Aspects of Continuous Development and New Paradigms of Software
Production and Deployment, 2019

P20 M.G. Jaatun, D.S. Cruzes and J. Luna, DevOps for better software secu-
rity in the cloud invited paper, International Conference on Availability,
Reliability and Security, 2017

P21 M. Zaydi and B. Nassereddine, DevSecOps Practices for an Agile and
Secure IT Service Management, Journal of Management Information and
Decision Sciences, 2019

P22 K. Brady, S. Moon, T. Nguyen and J. Coffman, Docker container secu-
rity in cloud computing, Computing and Communication Workshop and
Conference (CCWC), 2020

P23 A. Martin, S. Raponi, T. Combe and R. Di Pietro, Docker ecosystem
Vulnerability Analysis, Computer Communications, 2018

P24 T.Q. Thanh, S. Covaci, T. Magedanz, P. Gouvas and A. Zafeiropoulos,
Embedding security and privacy into the development and operation of
cloud applications and services, International Telecommunications Net-
work Strategy and Planning Symposium (Networks), 2016

P25 J.A. Kupsch, B.P. Miller, V. Basupalli and J. Burger, From Continuous
Integration to Continuous Assurance, IEEE Annual Software Technology
Conference (STC), 2017

P26 F. Zampetti, S. Scalabrino, R. Oliveto, G. Canfora, and M. Di Penta, How
open source projects use static code analysis tools in Continuous Integra-
tion pipelines, International Conference on Mining Software Reposito-

ries (MSR), 2017
P27 J.A. Morales, H. Yasar, and A. Volkman, Implementing DevOps prac-

tices in highly regulated environments, International Workshop on Se-
cure Software Engineering in DevOps and Agile Development (SecSE),
2018.

P28 T. Soenen, S. Van Rossem, W. Tavernier, F. Vicens, D. Valocchi, P.
Trakadas, P. Karkazis, G. Xilouris, P. Eardley, S. Kolometsos, M. Kour-
tis, D. Guija, S. Siddiqui, P. Hasselmeyer, J. Bonnet and D. Lopez,
Insights from SONATA: Implementing and Integrating a Microservice-
based NFV Service Platform with a DevOps Methodology, IEEE/IFIP
Network Operations and Management Symposium, 2018

P29 M. Ahmadvand, A. Pretschner, K. Ball and D. Eyring, Integrity protec-
tion against insiders in microservice-based infrastructures: From threats
to a security framework, Federation of International Conferences on Soft-
ware Technologies: Applications and Foundations (STAF), 2018

P30 A. Khan, Key characteristics of a container orchestration platform to en-
able a modern application, IEEE Cloud Computing, 2017

P31 K. Brown and C. Hay, Patterns of software development with containers,
Conference on Pattern Languages of Programs, 2018

P32 G. Siewruk, W. Mazurczyk, and A. Karpiński, Security Assurance in De-
vOps Methodologies and Related Environments, International Journal of
Electronics and Telecommunications, 2019

P33 N. Wilde, B. Eddy, K. Patel, N. Cooper, V. Gamboa, B. Mishra and K.
Shah, Security for DevOps Deployment Processes: Defenses, Risks Re-
search Directions, International Journal of Software Engineering & Ap-
plications, 2016

P34 V. Gruhn, C. Hannebauer and C. John, Security of public continuous
integration services, International Symposium on Open Collaboration
(OpenSym), 2013

P35 M. Atighetchi, B. Simidchieva and K. Olejnik, Security Requirements
Analysis - A Vision for an Automated Toolchain, International Confer-
ence on Software Quality, Reliability and Security Companion (QRS-C),
2019

P36 F. Ullah, A. J. Raft, M. Shahin, M. Zahedi and M.A. Babar, Security
support in continuous deployment pipeline, International Conference on
Evaluation of Novel Approaches to Software Engineering, 2017

P37 E. Rios, E. Iturbe, and M.C. Palacios, Self-healing multi-cloud applica-
tion modeling, International Conference on Availability, Reliability and
Security, 2017

P38 J. Dı́az, J.E. Pérez, M.A. Lopez-Peña, G.A. Mena and A. Yagüe, Self-
Service Cybersecurity Monitoring as Enabler for DevSecOps, IEEE Ac-
cess, 2019

P39 E. Rios, E. Iturbe, X. Larrucea, M. Rak, W. Mallouli, J. Dominiak, V.
Muntés, P. Matthews and L. Gonzalez, Service level agreement-based
GDPR compliance and security assurance in (multi) cloud-based sys-
tems, IET Software, 2019

P40 J.M. Schleicher, M. Vögler, C. Inzinger and S. Dustdar, Smart brix - a
continuous evolution framework for container application deployments,
Peer J Computer Science, 2016

P41 M.G. Jaatun, Software security activities that support incident manage-
ment in secure DevOps, International Conference on Availability, Relia-
bility and Security, 2018

P42 A.A.U. Rahman and L. Williams, Software security in DevOps: synthe-
sizing practitioners’ perceptions and practices, International Workshop
on Continuous Software Evolution and Delivery (CSED), 2016

P43 A. Rahman, C, Parnin and L. Williams, The seven sins: Security smells
in Infrastructure as Code scripts, International Conference on Software
Engineering (ICSE), 2019

P44 T. Combe, A. Martin and R. Di Pietro, To docker or not to docker: A
security perspective, IEEE Cloud Computing, 2016

P45 S. Rafi, W. Yu and M.A. Akbar, Towards a hypothetical framework to se-
cure DevOps adoption: Grounded theory approach, Evaluation and As-
sessment in Software Engineering (EASE), 2020

P46 K. Kritikos, M. Papoutsakis, S. Ioannidis and K. Magoutis, Towards Con-
figurable Cloud Application Security, International Symposium on Clus-
ter, Cloud and Grid Computing (CCGRID), 2019

P47 A. Steffens, H. Lichter and M. Moscher, Towards Data-driven Continu-
ous Compliance Testing, Workshop on Continuous Software Engineer-
ing, 2018

P48 M. Guerriero, D.A. Tamburri, Y. Ridene, F. Marconi, M. M. Bersani and
M. Artac, Towards DevOps for Privacy-by-Design in Data-Intensive Ap-

25

plications: A Research Roadmap, International Conference on Perfor-
mance Engineering Companion, 2017

P49 M. Hilton, N. Nelson, T. Tunnell, D. Marinov, D. Dig, Trade-offs in con-
tinuous integration: assurance, security, and flexibility, Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering, 2017

P50 C. Paule, T.F. Düllmann, A.V. Hoorn, Vulnerabilities in Continuous De-
livery Pipelines? A Case Study, International Conference on Software
Architecture Companion (ICSA-C), 2019

P51 A. Rahman, A. Partho, P. Morrison, and L. Williams, What questions do
programmers ask about configuration as code?, International Workshop
on Rapid Continuous Software Engineering, 2018

P52 H. Yasar and K. Kontostathis, Where to integrate security practices on
DevOps platform, International Journal of Secure Software Engineering
(IJSSE), 2016

P53 S. Faily and C. Iacob, Design as code: Facilitating collaboration between
usability and security engineers using cairis, IEEE 25th International Re-
quirements Engineering Conference Workshops (REW), 2017

P54 D. Trihinas, A Tryfonos, M.D. Dikaiakos, and G. Pallis, Devops as a
service: Pushing the boundaries of microservice adoption, IEEE Internet
Computing, 2018

26

	1 Introduction
	1.1 Aim and contribution

	2 Background and related work
	2.1 Continuous software engineering and its practices
	2.1.1 Continuous Integration (CI)
	2.1.2 Continuous Delivery (CDE)
	2.1.3 Continuous Deployment (CD)

	2.2 Development and Operations (DevOps)
	2.3 Development, Security and Operations (DevSecOps)
	2.4 Other reviews in DevSecOps

	3 Methodology
	3.1 Research questions
	3.2 Search strategy
	3.3 Inclusion-exclusion criteria
	3.4 Quality assessment criteria
	3.5 Snowballing activity
	3.6 Data extraction
	3.7 Data synthesis and mapping

	4 Results and Discussion
	4.1 Overview of the primary studies
	4.2 Overview of the results
	4.3 RQ1: What are the specific DevSecOps adoption challenges?
	4.3.1 Challenges related to Tools
	4.3.2 Summary of the challenges related to Tools
	4.3.3 Challenges related to Practices
	4.3.4 Summary of the challenges related to Practices
	4.3.5 Challenges related to Infrastructure
	4.3.6 Summary of the infrastructure-related challenges
	4.3.7 Challenges related to People
	4.3.8 Summary of the people related challenges

	4.4 RQ2: What are the solutions proposed to address the DevSecOps adoption challenges?
	4.4.1 Solutions proposed related to tools
	4.4.2 Summary of the tools related solutions
	4.4.3 Solutions proposed related to Practices
	4.4.4 Summary of the solutions related to practices
	4.4.5 Solutions proposed related to Infrastructure
	4.4.6 Summary of the infrastructure-related solutions
	4.4.7 Solutions to people-centric challenges
	4.4.8 Summary of the solutions to people-centric challenges

	4.5 DevSecOps support in practice
	4.6 RQ3: What are opportunities for future research or gap areas for technological development (e.g., tool support) or framework support in this domain?
	4.6.1 The need for security tools that complement the rapid deployment cycles in DevSecOps
	4.6.2 Application security testing as a service
	4.6.3 The need for developer-centered security solutions
	4.6.4 Continuous vulnerability discovery and management practices
	4.6.5 Consensus on shift left and continuous security
	4.6.6 Empirically validated security metrics for DevSecOps
	4.6.7 Defining security roles in DevSecOps
	4.6.8 The need for socio-technical studies addressing people-related challenges in DevSecOps
	4.6.9 Empirically validated frameworks in different contextual settings

	5 Threats to validity
	6 Conclusion
	7 Acknowledgement
	8 References
	9 Appendix: List of selected papers

